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Abstract. In this note we address the question whether for a given
prime number p, the zeta-function of a number field always determines
the p-part of its class number. The answer is known to be no for p = 2.
Using torsion points on elliptic curves we give for each odd prime p
an explicit family of pairs of non-isomorphic number fields of degree
2p + 2 which have the same zeta-function and which satisfy a necessary
condition for the fields to have distinct p-class numbers. By computing
class numbers of fields in this family for p = 3 we find examples of fields
with the same zeta-function whose class numbers differ by a factor 3.

1 Introduction

Two fields are said to be arithmetically equivalent if they have the same zeta-
function. The easiest examples of non-isomorphic arithmetically equivalent fields
are the fields K = Q({/a) and K’ = Q(¥/16a), where a is any integer for which
both |a| and 2]a| are not squares. One can show that the class number quotient
h(K)/h(K') is 1 or 2 or 1/2; see [4]. By actually computing the class numbers
for some small a one finds that all three values occur [5]. The question we will
address in this paper is the following.

For a given odd prime number p, do there exist arithmetically equivalent
number fields for which the p-parts of the class numbers are distinct?

We expect the answer to be yes for all p. In this paper we will construct, for
each prime p > 2, a family of pairs of fields of degree 2p+ 2 which have the same
zeta-function but which also satisfy a necessary condition for the class numbers
to have distinct p-parts. By computing class groups of some fields in the family
for p = 3 of relatively small discriminant, we found examples which settle the
question in the affirmative for p = 3.

To find examples for larger p by this method will require a considerable
amount of computation with class groups or units of fields of degree at least 12.
We hope that the families of fields given in this paper will provide interesting
testing material for those working on improving the performance of software for
computing class groups and units.

In Section 2 we will describe the necessary combinatorial conditions that the
Galois groups of arithmetically equivalent fields have to satisfy in order to have
any hope that they may have distinct p-parts of the class numbers. Since we want
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to compute class numbers, we want our fields to have small degree. The smallest
degree for which we could produce the right combinatorial setting is 2p + 2. For
p = 3,5 and 7 we know that this degree is minimal. Since our construction is
based on the group G = GLy(IF,), we can find our fields in any Galois extensions
of @ with Galois group GLy(IF,).

It is well known that the group GLy(IF,) can be realized as a Galois group
over Q by adjoining the coordinates of p-torsion points of an elliptic curve.
These torsion points are described by explicit division polynomials. In Section
3 we show how one can produce the equations for our particular subfields. We
can control the discriminant of the fields we obtain by starting with an elliptic
curve with small conductor.

In Section 4 we address the issue of deciding when two arithmetically equiv-
alent fields have the same p-class number, and we give a small table of results
for p =3.

2 Group theoretic setting

Let NV be a finite Galois extension of @ with Galois group G. By Galois theory, the
category of fields that can be embedded in N is anti-equivalent to the category
of transitive G-sets X. Under this equivalence a field K corresponds to the set
of field embeddings of K in N. By the formalism of the Artin L-function, two
such fields have the same zeta-function if and only if for the corresponding G-
sets X and X’ we have an isomorphism of C[G]-modules C[X]=C[X']; see [2]
This last condition is also equivalent to the Q[G]-modules Q[X] and Q[X’] being
isomorphic (cf. [2, p. 110]).

One can show that the two number fields must have isomorphic p-parts of
the class group if we have a ZZ,[G]-module isomorphism ZZ,[X|=7,[X']; sce
[8], [9]. We sketch a short proof: if Cy is the idele class group of N, and Uy
denotes the group of ideles which are units at the finite primes, then we have a
canonical map f: Uy — Cp. For a subgroup H of G we have U = Uyn and
Cﬁ = Cyu. The p-part of the class group of N¥ is the cokernel of the map
that we get by applying the functor Homzp[G](Zp[G/Iﬂ7 Z @ z77—) to f, so
it depends only on the field N and the ZZ,[G]-module Z,[G/H].

Thus, our first, purely combinatorial, task is to find for given p, a finite group
G and two transitive G-sets X and X’ of smallest cardinality possible so that

() QX] 21 QX'] but Z,[X]% 7 1) Z[X) -

The key to our construction is to consider the standard action of the group
G = GLy(IF),) on the set V of column vectors of length 2 over IF,. Let V* =
Hom(V,IF,) be the dual of V with G-action given by (gp)(z) = (g~ ') for
g € G,z € V and ¢ € V*. The character of the representation C[V] of G
assigns to each element g € G the number of points of V fixed under g. For
g € G the number of fix-points in V' and V* are the same, so it follows that
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C[V]=¢(g C[V*]. Taking out the trivial representation, i.e., the zero-elements of
V and V* and changing scalars we get

QV\{0}] =qia) QIV\{0}] -

Note that the G-sets V\{0} and V*\{0} are transitive of order p> — 1. If p > 2
then the stabilizer of a point fixes no element of V*\{0}, so that the G-sets are
not isomorphic. Thus, the G-sets give non-isomorphic arithmetically equivalent
fields. The degree of these fields is the cardinality of V'\{0}, which is p? — 1.

Note that the group IF; is embedded in G as the scalar multiplications on
V. To find fields of smaller degree we consider the action of subgroups S of I,
Since S lies in the center of G, we have a quotient G-set X/S for any G-set X.
We now consider X = (V\{0})/S and X’ = (V*\{0})/S. We can also take the
quotient by S for G-modules, so

QX] =qi) QIV\{0}/S =Zqia) QIV™\{0}]/S Zqie) QX -

The stabilizers of elements of X are the conjugates of the subgroup H = (g ) of
G, and the stabilizers of the elements of X’ are the conjugates of the subgroup
H' = (§ &)- Note that both H and H' have only one stable 1-dimensional
subspace of V. If S # IF; then the number orbits of H and H’ on their stable
lines is not the same, so that X and X’ are not isomorphic as G-sets. For p > 2
and S = ]F;2 we thus obtain non-isomorphic arithmetically equivalent fields of
degree 2p + 2.

In order to check that ZZ,[X] %‘(ZZ,,[G] Z,(X'] we consider the subgroup

H= ((lJ ) of G. Note that the H has orbit lengths 1, 1, 2p on X and 2, p, p
on X’. This implies that the ZZ,[G]-modules Z,[X] and Z,[X’] have distinct
Tate-cohomology groups H°(H, —), where HO(H, M) = M" /(3 .y h)M.

This completes the group-theoretic part of the construction. One can sum-
marize as follows:

Proposition 1. Suppose p is an odd prime number. Let G = GLa(IF},), and
let H and H' be the subgroups (3 *) and (5 &) of G, where 7 denotes the
condition that the matriz entry be a square. Then H and H' have index 2p + 2
in G, and the G-sets X = G/H and X' = G/H' satisfy (x).

For p = 3, 5 and 7 we have checked computationally that the degree, i.e., the
cardinality of the G-sets X and X’ in this proposition is minimal by using the
classification of transitive groups of degree up to 15. Moreover, for p = 3 and
for p = 5 we know that the configuration in the proposition is the only one with
this minimal degree. It would be nice to have a more conceptual proof of these
statements which may also say something for larger p.

For p = 2 our construction fails because then ]F; has no strict subgroups. The
smallest degree in this case is obtained in the same way by taking G = GL3(IF3)
rather than GLy(IF2). This leads to number fields of degree 7 as in [8]. In this
case G is the simple group group of order 168, and it is quite some work [6] to
realize this group as a Galois group over @ and find explicit equations [1]. An
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example of such fields with distinct 2-parts of the class numbers has been found
by Wieb Bosma and the author:

27 + 825 + 2° — 152% + 132® + 822 — 20z + 8
27 + 2425 + 19425 + 6042 + 65323 + 81622 + 359z + 212 .

These polynomials define two arithmetically equivalent fields with class numbers
2 and 1 respectively.

3 Realization as number fields

It is well known that we can realize the group GL(2,IF),) as a Galois group over
@ by considering p-torsion points on elliptic curves. Such a Galois extension of
@ always contains a p-th root of unity, so the families of fields obtained in this
way are somewhat limited.

In this section E denotes an elliptic curve

E:y?=a"+ax+b,  d=4a>+270*> 40
with coefficients a,b € Q. The set V = E(Q)[p] of p-torsion points is a vector
space of dimension 2 over IF;,, on which the Galois group Gal(Q/Q) acts linearly.
This means that we have a group homomorphism

p: Gal(Q/Q) — Aut(E(Q)[p]) = GLo(IF)) .

We will assume that a and b are chosen in such a way that p is surjective.
This is true generically (see [10, Rem. 6.7] or [7, Chap. 6, §3]) and by Hilbert’s
irreducibility theorem the pairs (a, b) for which p is not surjective form a “thin”
set.

Let us first consider the particularly easy case that p = 3. We take X =
V\{0} and X" = V*\{0}. The field corresponding to X is obtained by adjoining
both coordinates of a non-trivial 3-torsion point of E. Writing us for the group
of third roots of unity in @, we have isomorphisms of Galois representations

V* = Hom(V,F3) = Hom(V, u3)®us = Vous .

The first isomorphism holds because ;13®p3 has trivial Galois action. The second
isomorphism is due to the Weil-pairing [11, Chap. 3, §8]. It follows that we get V*
as a Galois representation by twisting V' with the quadratic character associated
with of the number field Q(u3) = Q(v/=3). But it is also possible to twist the
entire elliptic curve by a quadratic character, that is, we have

Veus = E'(@Q)[3],
where E’ is the twist of E given by

F -3 =2*4ar+b.
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Thus, the number field corresponding to X’ is obtained by adjoining the coor-
dinates of a non-trivial 3-torsion point of E’.

Let give some explicit equations for in this case: the xz-coordinates of the
nontrivial 3-torsion points of E are the four zeros of the division polynomial (see
[11, Ex. 3.7])

P(x) = 3z* + 6az? 4+ 12bz — o .

By our hypothesis that p is surjective, the 4-dimensional Q-algebra Q[z]/(P) is
a field. A purely formal computation shows that the minimum polynomial of the
image of 3 + az + b in Q[z]/(P) is

4 3,20 1 o
F(8) =t 4 8687 + 2dt? — d?

This means that the y-coordinates of the nontrivial 3-torsion points of E are
the zeros of the octic polynomial f(t?) € Q[t]. By considering the isomorphism
over Q(v/=3) from E’ to E that sends (z,y) to (z,v/—3y) one sees that the
y-coordinates of the non-trivial 3-torsion points of E’ are the zeros of f(—3t2).
It turns out that the z-coordinate of a non-trivial 3-torsion point of E or E’ is
contained in the field generated by its y-coordinate (this follows from the next
proposition). Thus, for p = 3 the two arithmetically equivalent fields are the
fields Q(v/@) and Q(v/—3a), where « is a zero of the polynomial f.

We will now show how to obtain equations for any odd prime p. We will not
use the standard equations for p-torsion points. Let Q(E) denote the function
field of E over Q. Any rational function ¢ € Q(E) gives a map

E(@ —PY(Q) = QU{cx} ,

which is Gal(Q/Q)-equivariant. Suppose that we have a function ¢ € Q(F) that
satisfies the following hypotheses.

(1) ¢ has no poles in E(Q)[p]\{0}; -
(2) ¢ is constant on each ]F;Q—orbit of E(Q)[p|\{0};
(

3) ¢ is not constant on each IF;-orbit of E(Q)[p]\{0}.

Let the “quadratic twist” of ¢ be the function @ = ¢ o [n] where n € Z is not
a square modulo p and [n] denotes multiplication by n on E. Note that @ does
not depend on the choice of n. We now set ¢ = (¢ — ¢)2. Let the groups H, H'
and G = GLy(IF,) be as in Proposition 1.

Proposition 2. Let p* = £p =1mod 4, and let « = Y(P) € Q for a non-
trivial p-torsion point P € E(Q). Then the fields Q(y/@) and Q(v/p*a) are the
fields of invariants of H and H' in a Galois extension of Q with Galois group

isomorphic to G.

Proof. The function ¢ restricts to a Gal(Q/Q)-equivariant map

¢ E@QPN0} - Q.
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Choose an IF)-basis for E(Q)[p] with P as the first basis element. Since the
homomorphism p is surjective, the image of ¢ lies in a Galois extension N of Q
within @ whose Galois group is identified with Aut(E(Q)[p]) = GL2(IF,) = G.
Moreover, ¢(P) is fixed by the subgroup ((1) 7) of G.

The element 3 = ¢(P) — @(P) € @ also lies in N. A diagonal matrix M =
(o 3) € G now sends 3 to (%)ﬂ, where (%) denotes the quadratic symbol. By
the Weil-pairing the composite map

Gal(Q/Q) & ¢ & I}

is equal to the restriction map to Gal(Q(u,)/Q) = T}, where p, denotes the

group of p-th roots of unity in Q. Thus, the matrix M sends /p* to (%b)ﬁ
This implies that [ is fixed by the subgroup (ﬁ ) of G, and that §/p* is fixed
by (5 5.

It remains to show that § and (By/p* are not fixed by larger subgroups,
because we then know that the fields @Q(3) and Q(8+/p*) are non-isomorphic
and arithmetically equivalent by Proposition 1. Thus, we must show that Q((3)
and Q(3+/p*) have degree 2p + 2.

We first claim that ®(3) contains no abelian extension of @ of degree at
least 2. To see this, note that the commutator subgroup of G is SLy(IF,), and
that the group (; ) maps surjectively to IF, by the determinant. We have
3 # 0 by hypothesis (3) above, and since —( is conjugate to £, it follows that
the degree of Q(B3) is larger than 2. Thus, the field Q(a) where o = 32 is a
nontrivial extension of @Q. The element « is fixed by the maximal subgroup
B = (; 1) of G. Since Q(a) # Q it follows that Q(a) has degree p + 1. We
already saw that B does not fix 3, or 3/p*, so these algebraic numbers have
have degree 2p + 2. This proves the proposition.

There are some obvious candidates for the function ¢ above. If p= — 1 mod 4
then we can take ¢ = )y o [n] where n ranges over a set of representatives
in ZZ of IF;Z. In this case we have @ = —¢, and 1 = 4. If p = 1 mod 4 then
—1 is a square in IF,, and we take ¢ = ) x o [n] where n ranges over a set
of representatives in ZZ of ]F;2/<71). In both cases hypotheses (1) and (2) are
clearly satisfied.

For given p, a, and b we would now like to find the minimal polynomial
f € Q] of the element a = 9(P) of Q. To do this, it is convenient to first com-
pute approximations of its complex roots by explicitly computing Weierstrass
functions. The Pari program (see [3]) is well suited for this.

For small p one could also use the addition formulas or division polynomials
and do formal computations over the field Q(a,b) with transcendental a and
b, but typically this will take much more effort. In fact, the best method to
compute f as a polynomial with coefficients in the transcendental field Q(a, b),
is to compute the polynomial for enough sample values of a and b and then
interpolating.

Let us treat some small cases explicitly. For p = 3 take ¢ = y; for p = 5 take
¢ = (z—x0]2])/2, and for p =7 take ¢ =y +y o [2] + y o [4]. This gives rise to
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the following polynomials for a:

31 f(t)=t*+8bt% + 2 dt? — - d?

5:  f(t)=5t0+12at® — $dt* + {5 d?

T: o f(t) =75 +13824bt7 + 51586416 dbt® + 319956 dt°
—42d(6237547 d — 4976640 b?)t* + 10947369888 d2bt>
—28 (150387289 d + 4417425072 b?)d>t?
+226800 (409637 d + 1174176 b%) bd>t
—81d*(17161d — 41472 b%)2.

LIRS T S
Il

Here we use the notation d = 4a® + 27b%. These “generic” minimal polynomials
can be used as follows.

If for given a, b € Q with d # 0 the homomorphism p is surjective, and 0 is
not a root of f, then by Proposition 2 the polynomials f(#2) and f(p*t?) define
realizations of the G-sets of Proposition 1 as field extensions of @, so that we
indeed obtain non-isomorphic arithmetically equivalent fields.

In practice, we do not test whether p is surjective for given a and b € @, but
we test whether f(#2) and f(p*t?) are irreducible. If this is the case, then the
Galois group of the minimal common normal field will be a subgroup of the group
GLy(IF)) /IF;‘,Q, which we obtain generically. Then the fields are arithmetically
equivalent, because if two G-sets give isomorphic permutation representations of
G, then they also give isomorphic permutation representations of any subgroup
of G. It is still possible that the fields are isomorphic. However, if we are searching
for arithmetically equivalent fields with distinct class numbers, then this is of
no concern, since fields with distinct class numbers are certainly not isomorphic,
and we do not expect to waste a lot of computing time on the thin set of pairs
(@, b) with non-generic behavior.

4 Computing class numbers

By explicit computations with the equations of the last section, we can answer
the question in the introduction for p = 3.

Proposition 3. There exist two number fields with the same zeta-function for
which the 3-parts of the class numbers are distinct.

To find such fields we used the Pari program. We computed the class numbers
of 819 pairs of fields of relatively small discriminant. Of those pairs, 118 had one
or both class numbers divisible by 3, and 88 pairs had distinct class numbers. In
all these 88 cases the class numbers differed by a factor 3, and one can actually
prove that this is the only possibility [1]. We did not use the rigorous version of
the routines for class number computation, but we did check correctness of the
class number quotients for all 819 pairs by the method given in [5].

In the next table one finds a small selection of these fields with the notation
of Section 3: the a and b give the elliptic curve E and its twist E’, and the
number D is the absolute value of the discriminant of the number fields K and
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K’ that one gets by adjoining a non-trivial 3-torsion point of E and E’. The
class numbers of K and K’ are denoted by h and h’

a b D ho| 1
12 64 | 21833174 | 1| 3
6 8 222 311 12 | 4
—51 78 37534 31
6| —3 | 29037414 | 3| 1
—24 | —60 | 237974 11 3
48 48 | 2837734 21 6

Since it seems unlikely, by the Cohen-Lenstra heuristics, that a degree 12 number
field has class number divisible by 5, one would have to sieve through many pairs
before finding arithmetically equivalent fields whose class numbers differ by a
factor 5. But perhaps this is feasible as routines for class group computations
become faster. A theoretical construction which forces a factor 5 in the class
number would be even more helpful.
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