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Abstract. We generalize theorems of Frohlich on the Galois-module structure of the ring of integers and of
the group of S-units in a Galois extension of number fields. The arguments work for any base field and Galois
group without using “admissibility.” For abelian extensions K CL of number fields we deduce a formula for
the index in the ring of integers of L of the additive subgroup generated by integers from subfields that are
cyclic over K.
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1. Introduction.

This note focuses on two theorems of Frohlich on the Galois module structure of rings
of integers and of groups of units in number fields. Frohlich [12] published these the-
orems for the case of abelian Galois groups in 1989, and they are given in [5, §3| for
“admissible” Galois groups. It was proved by Ritter and Weiss [23] (1992) that all
finite groups are admissible. In this paper we show how more general versions of the
two theorems can be derived without using any subtle properties of integral representa-
tions like admissibility. Basically, the theorems are reformulations of Hasse’s conductor
discriminant product formula and of Brauer’s class number relations.

The results are formulated in terms of “factorizability.” More subtle modifications
such as “canonical factorizability” have been considered in the past few years [3; 26],
but in this note we only deal with the original notion. We give the definitions in the
next section and we will point out existing factorizability results in number theory and
algebraic geometry, which occur in Brauer’s 1951 paper [1], and in work of Kani and
Rosen [16; 17] (1989, 1994).

The notion of factorizability gives rise to an equivalence relation on lattices over
finite group rings called “factor equivalence.” The additive theorem says that the ring
of integers in a Galois extension is factor equivalent to the group ring of the Galois
group. We give a short algebraic proof of this fact in section 3, that works over any
Dedekind domain of characteristic 0 with a perfect residue field.

For the abelian case a more explicit characterization of factor equivalence is given
in section 4. This approach enables us to apply the additive theorem to do certain
index computations in rings of integers. For any abelian extension of number fields
K C L, a formula is given for the index in the ring of integers of L of the subgroup

generated additively by the integers from intermediate fields that are cyclic over K. The
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remarkable point here is that this index is determined by the Galois module structure
of the ring of integers up to factor equivalence so that our computation only needs to
consider the group ring. This will allow us to answer some particular cases of a problem
raised by Cohen and Lenstra; see (4.8).

In section 5 the multiplicative theorem is given, which essentially expresses the
factor equivalence class of the Galois module of S-units in terms of S-class numbers.

We use ideas that can be found in Tate’s formulation of the Stark conjectures [27].

2. Factorizability and factor equivalence.

Let G be a finite group. A character of G is said to be rational if it is the character of
a representation of G defined over Q. Denote the additive group of rational characters
of G by R(G). One can view R(G) as the Grothendieck group of finitely generated
Q[G]-modules. It is the free abelian group generated by the set X (G) of isomorphism
classes of irreducible Q[G]-modules.

The trivial character 15 on a subgroup H of GG induces the permutation character
1% € R(G), corresponding to the G-module Q[G/H].

(2.1) Definition. A Brauer relation is an equality 3, ay1% = 0 in R(G), where H

ranges over the subgroups of G and ay € 7.

The permutation character 1% depends only on H up to conjugacy, so we have a Brauer

relation 1§ = 1%, for every pair H, H' of conjugate subgroups of G.

(2.2) Examples. If G =V} is the Klein group of order 4, i.e. abelian of type (2,2),
then G has 3 subgroups Hi, Hs, H3 of order 2, and the trivial subgroup 1. We have
the Brauer relation 2 - 1g + 1¢ = lfh + 1%2 + 1%3.

For the symmetric group G = S3, which has a normal subgroup Ajs of order 3 and

a subgroup H of order 2, we have the relation 2- 15 + 1¢¥ = 1%3 +2- lfl.
Let T be any abelian group, with multiplicative notation of the group operation.

(2.3) Definition. A function f on the set of subgroups of G with values in T is
factorizable if [[,; f(H)* =1 for every Brauer relation Y ay1% =

(2.4) Remark. A function f as in (2.3) is clearly factorizable if there are g(x) € T
for x € X(G) such that
fiH) = ] 9k~

XEX(G)

where np , is the multiplicity of x in 1%, ie., 1% = Zx nHX- In many cases, for
instance if G is abelian or T is divisible (see (2.8) below), the converse holds, that is,

there are such values g(x) whenever f is factorizable. This is the factorization that the
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word “factorizable” refers to. Often, the product can be broken down further to the

irreducible complex characters.

(2.5) Examples from group theory. Take T'=Z and let f(H) = [G : H] for any
subgroup H of G. With g(x) = deg x the above factorization holds, so f is factorizable.
The function H — 1 € Z is also factorizable. This follows by taking g(x) = 1 for the
trivial character, and g(x) = 0 for other x € X(G). The function H — #H € 7Z is not
in general factorizable. A more subtle factorizable function in a purely group theoretic

setting is given in (5.7).

(2.6) Examples from number theory. If L/K is a Galois extension of number fields
with Galois group G, then each subgroup H of G has a field of invariants L. Many
well-known parameters of the number field L¥ turn out to depend factorizably on H.
The most important examples are the discriminant over the base field (see (3.1)) and
the parameter hR/w. The latter result is known as “Brauer’s class number relations.”
In fact the zeta-function of L¥ depends factorizably on H, and —hR/w is its leading
coefficient at s = 0 (see (5.1)).

Brauer showed that the odd part of the number of roots of unity in L7 is a Q*-
valued factorizable function of H. We elaborate on his proof (5.9) and we also deduce
that the number of primes of L over a fixed prime p of K with given residue degree, is
a factorizable Z-valued function. Walter [28] has shown that for primes p not dividing
the order of G the p*-rank of the class group is factorizable. I. Kersten has pointed
out to the author that this was already known to E. Witt [29] in 1961.

See Perlis [21] for constructions of Brauer relations of the form 1% = 1§ for
non-conjugate subgroups of G. Thus, one can obtain non-isomorphic number fields

with the same zeta-function. Such fields need not have the same class number [10].

(2.7) Examples from algebraic geometry. Let C' be a smooth curve over a field
k, and let G be a subgroup of Auty(C). Kani and Rosen [16] have shown that the
Jacobians of the curves C/H satisfy Brauer relations up to isogeny (i.e., the map
sending H to the k-isogeny class of Jac(C/H) is a factorizable map with values in the
free abelian group on simple abelian varieties up to k-isogeny). In particular, the genus
of C'//H, which is the dimension of its Jacobian, is a factorizable Z-valued function of H.
For a quasi-projective variety X over a finite field k£ and a finite group G C Auty(X),
the zeta function of X/H depends factorizably on H and the number of k-rational
points on X/H is a Z-valued factorizable function of H (cf. [17, 19]).

(2.8) Factorizable homomorphisms. Let B(G) be the free abelian group generated
by the subgroups of G. A function f from the set of subgroups of G to T" induces a group

homomorphism from B(G) to T, which will be called factorizable if f is factorizable.
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The map H + 1§ gives a canonical homomorphism 7 : B(G) — R(G), which is
by definition factorizable. A homomorphism f : B(G) — T is factorizable if and only if
it vanishes on the kernel of . In particular, if f factors through R(G), that is, f = gr
for some homomorphism ¢ : R(G) — T, then f is factorizable. With this g one can
write down the factorization in (2.4). Clearly, the converse holds if T is divisible.

For abelian groups G the map r is surjective (see (4.2)), so factorizable functions
factor through R(G). For arbitrary groups G, the image of B(G) in R(G) is of finite
index by Artin’s induction theorem (see [6, §39] or [25, chap. 13, thm. 30]). For instance,
if G is the quaternion group of order 8, then the image of B(G) in R(G) is of index 2.

(2.9) Other coefficient fields. Let K be a field whose characteristic does not
divide the order of G. The group ring K[G] is semisimple, so the Grothendieck group
Rk (G) of finitely generated K[G]-modules is the free abelian group generated by the
irreducible representations of G over K. The homomorphism B(G) — Rk (G) that
sends a subgroup H of G to the class of the module K[G/H], is factorizable. In fact,
it factors through the map R(G) — Ry (G) that sends a Q[G]-module V to A ®z K,
where A is a G-stable lattice of V; see Serre [25, §15.2] for details.

Let M be a finitely generated K[G]-module and let ¢ be a K[G]-endomorphism
of M. Then ¢ maps VH to VH for any subgroup H of G, and the characteristic
polynomial f(H) € K[t] of the restriction |y # is a K (t)*-valued factorizable function.
To see this, define g(V') for any K[G]-module V' as the characteristic polynomial of the
K-linear endomorphism of Homg g (V, M) induced by ¢. Indeed, g : Rx(G) — T is
a homomorphism and we have f(H) = g(K[G/H]). This result is also given by Kani
and Rosen [17, prop. 4.6]. It implies the following lemma.

(2.10) Lemma. The functions dimg (M*) € Z and Tr(¢|yu) € K are factorizable.
If ¢ is an automorphism then d,(H) = det(p|yn) € K* is factorizable. O

If char K | #G, then the lemma is not necessarily true. For example, let G be the
additive group of the field F4 of four elements and let a € G act on M = Fy x F, as
the matrix ((1) ‘f) It is easy to check that the function H — dimp, M does not satisfy
the Brauer relation given in (2.2).

We now give the definition of factor equivalence. Let K be the quotient field of
a Dedekind domain A and still assume that char K { #G. An A-lattice is a finitely
generated A-module without A-torsion, or equivalently, a finitely generated projective
A-module. An A[G]-lattice is an A[G]-module that as an A-module is an A-lattice.
Denote the group of fractional A-ideals by I(A). For two A-lattices X C Y with
X ® K =Y ® K, the quotient X/Y is an A-module of finite length. Denoting the
Jordan-Hélder factors of X/Y by A/p1,..., A/pm, we define the A-index [Y : X]4 to
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be the A-ideal py---p,, (cf. [24, chap. I, §5]).

(2.11) Definition. We say that two A[G]-lattices M and N are factor equivalent if
there is an A|G]-linear map i : M — N for which the following hold:

(1) the induced map M @4 K — N ®4 K is an isomorphism;
(2)  the index [NH :i(M)H]4 € I(A) is a factorizable function of H.

(2.12) Proposition. If N and M are factor equivalent then for any A[G]-linear
embedding j : M — N the function H — [N : j(M*)] 4 is factorizable.

Proof. We have j = @i, where i is the embedding from (2.11) and ¢ is a K[G]-linear
automorphism of N ® 4 K. Using [24, chap. III, §1, prop. 2] and the notation of (2.10)
we have dy,(H) = [i(M*™) : j(M*™)] 4. It follows that

NP (M) 4 = dyp(H) - [INT (M) 4,

which is a product of two factorizable functions by (2.10) and our choice of . U

The fact that “factor equivalence” is an equivalence relation is an easy consequence of
(2.12). For the abelian case the same definition of factor equivalence can be found in
[2; 12; 13].

The next proposition says that the only primes of A that play a role in (2.11) are
those that divide the order of G. In particular, if p = char K > 0 and p t #G then the

theory of factor equivalence is vacuous in the sense that (1) implies (2) in (2.11).

(2.13) Proposition. Ifp is a prime of K not dividing #G then condition (1) of (2.11)
implies that the p-part of [NH :i(M)H] 4 is factorizable.

Proof. Denote the localization of A at p by A,. By (2.12) we are done if M ® 4 A, and
N®4 A, are isomorphic as A,[G]-modules. Let k be the residue field A/p. Since M®@ 4 K
and N ® 4 K are isomorphic K[G]-modules, the k[G]-modules M ®4 k and N ®4 k
are Jordan-Hélder-isomorphic [25, §15.2] and since k[G] is semisimple this implies that
they are isomorphic. We now deduce by [25, §14.4, lemma 21] that M ®4 A, and
N ®4 A, are projective as A,[G]-modules and that they are isomorphic. O

(2.14) Remark. The definitions of factorizability given by Frohlich [12; 13] and Burns
[2] for abelian groups G are special cases of our definitions. We now show that the
definition in [5, §3] for arbitrary finite groups is a special case of our definition as well.
Here a factorizable function f has to take values in the ideal group I(Q) of Q, and it
has to satisfy the following additional condition: there is a map g from the group of
complex characters Rc(G) to I(E), where E is some normal number field containing
all character values of G, such that g is Gal(E/Q)-equivariant, and such that g(1%)
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is the E-ideal generated by f(H). If f is factorizable in the sense of (2.3), then this
condition is satisfied as follows. First note that for some positive integer n, the map
nf factors through h : R(G) — I(Q). For each irreducible rational character x of G,
suppose X is a sum of k, complex irreducible characters. Let k be a positive integer
such that k, | k for all such x. Let E be a normal splitting field of G in which the
ramification index of each prime p occurring in f(H) for some H, is divisible by nk.
It is easy to check that the fractional ideal in F generated by any such p is a nkth
power of a Galois invariant ideal in E. The fractional E-ideal generated by h(x) is
therefore equal to a™*x for some Galois invariant ideal a. For each irreducible complex

constituent y; of x, we can now define g(x;) to be a.

3. Rings of integers.

Let A be a Dedekind domain with quotient field K and let L a Galois extension of K
with Galois group G. The group of fractional A-ideals is denoted by I(A). The integral
closure B of A in L is again a Dedekind domain. Assume that at all primes of L the

extension of residue class fields is separable.

(3.1) Proposition. The map from the set of subgroups of G to I(A) sending H to
the discriminant A(B* /A) over A of the H-invariants of B, is factorizable. O

The proof is immediate from the discriminant conductor product formula of Hasse [24,
chap. VI, §3]. In fact, f factors through a map Rc(G) — I(A) that sends a complex
character x of G to its Artin-conductor f(x, L/K) € I(A). The proposition does not
hold without the assumption that the residue field extensions are separable.

The following theorem is a generalization of theorem 1 in [5, §3]. In view of (4.5),
theorem 7 (additive) in [12] is the same statement for abelian G. The first statement
of this sort is due to Nelson [18].

(3.2) Theorem. If the characteristic of K does not divide the order of G, then the
A[G]-lattices B and A|[G] are factor equivalent.

Proof. By the normal basis theorem there is an A[G]-linear injection i : A[G] — B
satisfying the first condition of (2.11). Define a B[G]-module structure on B ® 4 B by
letting G act on the left factor and B on the right. The map ¢ induces a B[G]-linear
map i, : B[G] — B® 4 B given by i,(bo) = i(c)®bfor 0 € G and b € B. Furthermore,

taking H-invariants commutes with tensoring with B, so
[(Be B)" i (BIG)")]s = [BY - i(A[G]")]4 - B.

It remains to show that B ® B and B[G] are factor equivalent B[G]-lattices, because
(2.12) then implies that the left hand side is a factorizable function of H.
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The base change from A[G]-lattices to B[G]-lattices has the advantage that we
now have a canonical B|G|]-linear map ¢ : B ® B — B[G] defined by

TRY Zya_l(x)~a.

We claim that for any subgroup H of G we have
[BIG)" : (B ® B)"]; = A(BY/A) - B.

It is clear from (3.1) that this implies our theorem.

It suffices to prove the claim in the case that A is local, so that A-lattices are free
A-modules. We will write down a matrix for the restriction of ¢ to H-invariants. Define
the B-basis {b;}; of B|G]¥ by letting {0;}; be the set of K-algebra homomorphisms
of L# — L and letting b; be the sum of all the o € G with o7}y = o;. If {w;},
denotes a basis for B over A, then {w; ® 1}; is a basis of (B ® B)? = B” @ B over
B. The matrix of the restricted B-linear map ¢ : (B ® B)? — B[G]¥ on the given
bases is (0;(w;))i;. We know that the square of its determinant generates the A-ideal
A(B*H /A), which proves our claim. O

4. Factor equivalence in the abelian case.

We now give a description of a criterion for factor equivalence in the abelian case, and
then proceed with the index computation announced in the introduction.

The main argument was given by Gillard [14], and Burns [2] indicated the relevance
to factor equivalence. A key ingredient is the following lemma, which was first stated by
Rédei and proved by De Bruijn [7; 22]. Gillard and Gras [15] attribute it to Martinet.

(4.1) Lemma (De Bruijn-Rédei). Let n > 1 be an integer. The ideal of Z|X]
generated by the polynomials (X™ — 1)/(X™/? — 1), where p ranges over the prime
factors of n, is the principal ideal generated by the n-th cyclotomic polynomial ®,,(X).

Proof. Note that Z[X]/(X"™—1) is the group ring Z[C,,] of the cyclic group C,, of order
n generated by the image of X. Let I,, be the image in Z[C,,] of the ideal generated
by the polynomials (X™ —1)/(X™P — 1) where p ranges over the prime factors of n.

For any m > 0 we have [];,, ®a(X) = X™ — 1, and since Q[X] is a unique
factorization domain this implies that (Z[C)]/I,) ®z Q is isomorphic to Q((,). We
still have to show that Z[C,]/I, is a torsion free abelian group or, equivalently, that
we have a ring isomorphism Z[C,,]/I,, = Z[(,].

If n is a prime power, the lemma is clear. Otherwise write n = mk with m > 1
and k > 1 coprime. We have Z[C,,| = Z[C},] ® Z[C}], and under this isomorphism I,

7



maps to I, ® Z[Ck| + Z[Cy,] ® I, It follows that Z[C,,]/ 1, = (Z]Ch]/Im) @ (Z[Ck]/1I1),
and by induction this is Z[(,] ® Z[Ck] = Z[(,]- O

Let G be an abelian group. The group ring Q[G] is a product of cyclotomic fields F,
where y ranges over the set X (G) of irreducible rational characters of G. If o : G — C*
is an irreducible complex constituent of x of order n,, then F\ = Q(xo(G)) = Q((n, )-
The kernel of xq, which depends only on X, is denoted by H,. Clearly, H, is cocyclic,
i.e., G/H, is cyclic.

If v € X(G) has non-zero multiplicity in the Q[G]-module Q[G/H,], then the
multiplicity is 1 and we write ¢ | x. In other words, we have 1%)( = wa 1, and the

following lemma follows from Mobius inversion.

(4.2) Lemma. The permutation characters 1 of cocyclic subgroups H of G form a
Z-basis of R(G). O

A Q[G]-module V is just a product of vector spaces V, over F,. For a Z[G]-lattice M,
we let M (x) be the projection of MHx in (M ®z Q),.

(4.3) Lemma. The kernel of the epimorphism M*x — M(x) is 3, M, where H’

runs over all subgroups of G that strictly contain H,,.

Proof. One inclusion is clear: >, M# " lies in the stated kernel, because the character
y does not occur in MH @ Q.

Let g be a generator of G/H,. Note that (M ®z Q) is killed by ®,,(g) for any
¢ | x. Put n = ny and let ¥, = (X" —1)/®, € Z[X]. If z € M]" maps to zero in
M (x), then the characters ¢ € X (G) for which the image of x in (M ®7Q),, is non-zero
satisfy ¢ | x and @ # x. It follows that ¥, (g)x = 0 because ¥,, is the product of all
®,,, where m strictly divides n.

It follows from (4.1) that the polynomials ¥,, /(X™/P —1) generate the unit ideal in
Z[X]. By writing 1 as a Z[X]-linear combination of these polynomials, and substituting
g for X, we see that the element z is a sum of elements of M each annihilated by
g"/? — 1 for some p | n, in other Words:L‘GZH,MH/. O

Let A be the ring of integers in a number field K. For an A[G]-lattice M, we define
Meye as > M, where H ranges over all subgroups of G with G/H cyclic. The

following generalizes the argument of [14, §4.1].

(4.4) Lemma (Gillard). If N C M are A[G]-lattices with M @ 4 K = N ® 4 K, then

[Meye : Neyela = H [M(x) : N(x)]a-
XEX(G)
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Proof. In this proof we will write MX for M*x. For a subset S of X(G) we denote
> ves MX by M . We claim that for every subset S of X (G) for which x € S whenever
X | ¥ and ¢ € S, we have

(M3 N4 = []IM(x) : N(O)]a-
xX€S

Taking S = X (G) the proposition then follows.

We prove this claim by induction to #S5. If S is empty there is nothing to prove.
Assume S is non-empty and choose a maximal element y € S, so that thereisno ¢ € S
with x | ¢ and x # ¢. Then S" = S — {x} satisfies the condition of our claim, and

(M52 N9 = [M¥ + MX e NX 4+ MSJANY + M - NX 4+ N9, =
[MX s NX 4 (MY A M) A[ME NS+ (N0 M) 4

By (4.3) the intersection MXNM?3" is the kernel of the map MX — M (). Furthermore,
NX N M5 maps to zero in N(x), so by (4.3) it is contained in the sum of all N¥ with
Y | x and 1 # x, which in turn lies in N* / by maximality of y. It follows that

(M5 N¥4 = [M(x) : N(x)]a[M5 - N9] 4.

Applying the induction hypothesis for S’, we get the desired formula for S. U

(4.5) Remark. It follows from (4.4) that for two factor equivalent Z[G]-lattices
N C M the map g : R(G) — I(Q) defined by g(1%) = [M# : N*] sends an irreducible
rational character x to [M(x) : N(x)]. As M(x)/N(x) is a finite Z[(,, ]-module, it
follows that g(x) is a norm of an ideal of Q((,, ). This implies that the notion of

“Q-factor equivalence” in [2; 12; 13] is in fact the same as factor equivalence.
(4.6) Corollary (Burns [2, §1]). The lattices M and N are factor equivalent if and
only if for all subgroups H of G one has

[MH : (MH)cyc]A = [NH : (NH)cyC]A-

Proof. We know from (4.4) that [(M#)cye : (Nf)eye]a is a factorizable function of
H,so M and N are factor equivalent if and only if

(M2 (M) eye]a

B NI (N )y

is factorizable. Since M¥ = (M), if H is cocyclic, (4.2) implies that the latter

function is factorizable if and only if it is identically 1. O
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(4.7) Theorem. If K C L is a Galois extension of number fields with abelian Galois
group G and rings of integers A C B, then [B : Beycla = [Z[G] : Z][Gleyc] - A.

For x € X(G), let D, be the absolute value of the discriminant of F\, = Q((p, )
over Q, and let ¢ be the Euler phi-function. Then one has:

[ZIG) : Z[Gleye] =n~"2 ] (n/ny)?"™) D).
XEX(G)

Proof. The first statement follows from (3.2) and (4.6).

Under the isomorphism Q[G] = [] Fy, the ring N = Z[G] maps into the product
M of the rings of integers Oy = Z[(, ] of F,. We first compute [M : Ney.] with (4.4),
using that M = Mcy.. If x € X(G), then [M(x) : N(x)] is the index of the image of
NHx in O,. Note that N Hx is generated as an abelian group by the sums of elements
in a fixed coset of G mod H,. Such a sum maps to #H, (, for some root of unity ¢ in
O,, and as O, is a free abelian group on ¢(n, ) of these roots of unity, it follows that
M) : NO)] = (/m)#™) and [M : Neye = [T, (n/n) 7).

In order to compute [M : NJ, note that both M = [[ O, and N = Z[G] are algebras
over Z, so that their index can be computed by calculating their discriminants. It is
easy to see that [A(N/Z)| = n", and we have |[A(M/Z)| =[], Dy. The theorem now
follows from [M : N> = |A(N/Z)|/|A(M/Z)|, and [N : Neye] = [M : Neye|[M : NJ71
O

(4.8) Examples. If G is of exponent 2 and rank m, then the only occurring cyclotomic
field is Q. The theorem gives

[B: Beyela = (2m) 72" 2m(2m )2 A = o2 L g,
This formula was first established by A. Fajardo [11].
If G is of type (p, p), for some prime number p, then there are p+1 cyclic quotients

of order p, and one of order 1. Using that |A(Z[(,]/Z)| = pP~2, we get

B:Beyela=p " g2 (P p TP A=p" T A
The case p = 3 has been computed by Parry [20, lemma 5.

If G is an abelian p-group generated by two elements, then one can deduce from
the formula for type (p,p), that there is no set of generators of B as an A-module,
whose elements lie in extensions of K that are strictly contained in L. This confirms
at least a special case of a numerical observation of H. Cohen and of H. W. Lenstra,
Jr., that a Z-basis of a ring of integers always seems to contains a field generator over

Q of the number field. See [8] for a more thorough discussion of this topic.
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5. Class number relations and S-units.

Let K C L be a Galois extension of number fields with Galois group G. Let ur be the
group of roots of unity in L, and denote its order by w(L). Let S be a finite G-stable
set of primes of L, containing the infinite primes.

The S-class number hg(L) is defined as the class number of the ring consisting of
all elements of L that are integral outside S. The S-units Ug(L) of L are the elements
of L that are units outside S. We now recall the definition of the S-regulator Rg(L) as
in Tate [27, chap. I]. By Dirichlet’s unit theorem the logarithm map Us(L) — R given
by u +— (log ||ullq)q € R embeds Us(L)/pr as a cocompact lattice in the hyperplane
of R with coordinate sum zero. If we choose a basis {u;}; of Us(L)/uur, as a Z-module,
then the S-regulator Rs(L) is defined as | det(log ||u;]|q, ):j|, where the g; are the primes
of S, with one prime omitted. Here the normalization of the valuation at a prime ¢ of
L lying over a prime p of Q, is given by |[ullq = [N, /g, (u)|y, where |- [, is the usual
valuation on the completion Q, of Q. Note that we also consider the infinite prime
p=o0 and Q, =R.

For a subfield F' of L, we denote the restriction of S to F' by S(F'), but we will
write hg(F') for hg(p)(F) and Rg(F) for Rgp)(F).

(5.1) Theorem (Brauer). The map H — (L) is a factorizable function

with values in R<.

Applying this theorem to the relations given in (2.2), we obtain the well-known class
number formulas for biquadratic fields and for fields with Galois group S3 over Q.

Using zeta functions of number fields one can prove (5.1) as follows. Denote the S-
zeta function of the number field L¥ by Crr s(s). The map H — (. g is factorizable,
because (pu g is equal to the Artin L-series L(1%,s), and we have Lg(x1 + X2,5) =
Ls(x1,s)Ls(x2,s) for any characters 1, x2 of G. Brauer [1] now looks at the residue
of zeta functions at s = 1. Alternatively, one can use that the quotient in the theorem
is the absolute value of the leading coefficient in the Taylor series expansion at s = 0
of (rr g(s) (see Tate [27]). Since the leading coefficient of a product of Taylor series is
the product of their leading coefficients, this implies (5.1).

In this section we show how (5.1) implies statements about the Galois module
structure of Ugs(L). The group G acts on the set S, so it acts on the free abelian
group Z[S| generated by S. Define the Z[G]-lattice Xg by the short exact sequence of
Z|G]-modules

0— Xg—Z[S]—7Z — 0,
where every q € S maps to 1 € Z. The logarithm map Us(L) — R[S] in the definition
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of the regulator is the composite map

Us(L)—22% X s @7 R C R[S].

The map log; provides an isomorphism of R[G]-modules Us(L) ®7 R—Xg ®z R. It
follows that Us(L) ® Q and X g ® Q are isomorphic Q[G]-modules (see e.g. [4, p. 110]).
In particular, there exists a Z[G]-linear embedding i : Xg — Ug(L).

Let H be a subgroup of G. For p € S(L¥) let n, denote the local degree of p in
the extension L C L by ny,. Let n(H) be the product of all n, with p € S(LH), and

let [(H) be the least common multiple of the same collection of n,.

(5.2) Theorem. For any Z|G|-linear embedding i : Xg — Ug(L), the function

n(H)

H — Us(D)" : i(Xs) "5

with values in Q. is factorizable.

Proof. For Z-lattices Ly, Lo spanning the same real vector space V we define [Ls :
L] € Ry as follows: choose a Haar measure on V such that Lo has covolume 1 and
let [Ly : Lq] be the covolume of L;. Note that this notion coincides with the index
in the case that Ly C Lo, and that [Ly : Ls][Le : Ls] = [Ly : Ls]. Moreover, for any
R-linear automorphism ¢ of V' we have [Ly : p(L1)] = |det ¢|.
The composite map
Xg—Ug(L) 85 X g @7 R
induces an R[G]-automorphism ¢ of Xg ®7 R. We have Rg(L) = [Xg : log; Us(L)]
and therefore |det | = Rg(L)[log; Us(L) : log; i(Xg)] so that

[Us(L) : i(Xs)] w(L)

(5.3) ho(D) = |detw|m.

It is the idea to obtain a formula similar to (5.3) for the H-invariants of X rather than
X itself, and that the right-hand side should then be factorizable by (2.10) and (5.1).

We have an injective map Z[S(L*)] — Z[S] sending p to >, npp. Thus Xg(1m)

alp
is identified with a subgroup of X gf , and the logarithm map is respected in the sense

that we have a commutative diagram

log, u

Us(LH) _— XS(LH) ®z R

l |

Us(D)?  —%2,  XH @, R,
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We therefore have

X2+ log, Us(1)"]

RSLH:X H:logHUSLH =

For any subgroup H of G we have
|do(H)| = [X§ : o(X§)] = [XE :logp, Us(L)"][Us(L)™ = i(XE)] fw(L™T).

Combining these two, and dividing by hs(L¥) we get our version of (5.3) for H-

invariants:

[Us(L)™ :i(Xs)"]
hs(LH)

w(L)

(5.4) ho(LH) R (L)

(X Xgpm)] = |dp(H)|

The right hand side is factorizable by (2.10) and (5.1). To obtain the first statement
of the theorem it remains to show that n(H)/I(H) = [X{ : Xg(m)]. First note that

we have a commutative diagram with exact rows

0 — Xgguy — Z[S(LH)] —

C

0o— X — ZS)Hr —

—)O

The vertical maps are injective, and the cokernel C' of the middle vertical map is the
group B, cg(pn)Z/npZ, which has order n(H). It is not hard to see that the image of
C' in the cokernel Z/nZ of the rightmost vertical map has order {(H). This shows the

theorem. O

(5.5) Remark. One can shorten this proof somewhat by using results in Tate’s book
on the Stark-conjectures. Tate shows in [27, chap. II, 1.1] that the quantity on the left in
(5.3) is the quotient A(1,%) from the Stark-conjectures, where 1 is the trivial character
of the trivial Galois group of L over L. Properties of A(y,i), such as compatibility
with inflation and additivity in x, imply that the number on the left in (5.4) equals
A(1%,4), and that it is a factorizable function of H.

(5.6) Remark. We only developed the notion of factor equivalence for torsion free
G-modules. In order to say that (5.2) determines the factor equivalence class of Ug(L)
we should develop factor equivalence for modules with finite torsion. This can be done
by replacing condition (ii) in (2.11) by the condition that the quotient of the order of
cokernel and kernel of the map MY — N should be factorizable. The reader may

check that (2.12) can then be generalized for any j giving an isomorphism over K.
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Alternatively, one can look at U(L) = Ug(L)/ur, instead of Us(L). This approach
does however introduce new factors into the formula because U(L)# is not necessarily
equal to U(LH). More precisely, c(H) = [U(L)? : U(L*)] is the order of the kernel
of the map H'(H,ur) — H'(H,Us(L)), and it is built up from primes dividing both
w(L) and #G. For Z|G]-embeddings i : X5 ~— U(L) it turns out that the function

w(Ln(H)
hs(L™)c(H)I(H)

(5.7) Hw— [UL)" :i(Xg)H]

is factorizable. Thus we recover Frohlich’s statement [5, §3, theorem 3], where it is
assumed that L has odd degree over K and K is totally real, so that ¢(H) = n(H) =
I(H)=1and w(L?) = 2.

In the rest of this paper we seek to identify factors of the function in (5.2) which are
factorizable themselves.

If S is totally split, then of course n(H) = I(H) = 1. In the case that S is the set
of infinite primes then /[(H) = 1 if no infinite primes ramify in L/L¥, and I(H) = 2
otherwise. For a complex Vj-extension of QQ this already fails to be factorizable.

Our main tool is the following lemma, which is inspired on Brauer’s proof [1, §2]
that the odd part of w(Lf) is factorizable. Kani and Rosen have formulated a result

[17, prop. 4.7] which is easily seen to be equivalent.

(5.8) Lemma. Let G be a group, D a subgroup of G and N a normal subgroup of
D such that D/N is cyclic. For every integer d | [D : N] and subgroup H of G, let
ma(H) € Z be the number of D-orbits of G/H that split up into exactly d orbits under
the action of N. Then mg4(H) is a factorizable Z-valued function of H.

Proof. Let y be a complex linear character of D that vanishes on N. Let n be the order
of x, and let ¢ be the induced character of G. We claim that (x“,1%) is the sum of
those mg(H) for which n | d. See [25, §7.2] for the notation (-,-)g. Clearly, (x“,1%)4
is factorizable, and letting x vary, we deduce our lemma by Mobius inversion.

By Frobenius reciprocity we have (x“,1%)s = (x,1%|p)p, which is equal to the
C-dimension of Homgp)(C[G/H],C,), where C, is C with the y-action of D. Now
C[G/H] is D-isomorphic to @, C[D/D,], where z runs over the D-orbits of G/H, and
D, is a subgroup of D which is determined by x up to conjugation. It follows that
(x%,1%) 5 is equal to the number of D-orbits z of G/H for which x(D,) = 1. Now
X(D,) =1 is equivalent to x(ND,) = 1, which is the case if and only if the number of
N-orbits of D/D, is divisible by n. This proves the claim. U

(5.9) Roots of unity. Let p be a prime number, denote the p-part of w by w,, and
let K’ be the field generated over K by the p-power roots of unity in L. Let D = G
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and N = Gal(L/K’) and suppose that G/N is cyclic. Then w,(L¥) is factorizable,
because w, (L) = [],w,(Kq)™*), where d ranges over the divisors on [D : N] and
K4 C K' is determined by K4 : K| =d.

Note that D/N is a subgroup of (Z/w,(L)Z)*, which is indeed cyclic if p is odd.
Therefore, we may replace w(L®) by we(Lf) in (5.2) and (5.7), and we may omit
it altogether if the 2-power roots of unity in L generate a cyclic extension of K. An

example where w(L*) is not factorizable is the extension Q((s)/Q.

(5.10) Local degrees and residue degrees. Let p be a prime of K and let D be
the decomposition group of some extension q of p to L. If we take N to be the inertia
group of g, then mgy(H) is the number of primes of L lying over p for which the
residue degree in the extension L/L* is d. It follows that the number of primes of L
lying over p with given residue degree, is factorizable. Kani and Rosen have shown a
similar result in scheme theoretic context [17, cor. 4.8].

If D is cyclic then we can also take N = 1, so that mg(H) is the number of
primes of L7 with local degree d in the extension L/L*. For primes p with cyclic
decomposition group it follows that the number of primes of L lying over p of given
local degree, is factorizable.

One deduces that the factor n(H) in (5.2) and (5.7) can be replaced by the factor
e(H), which is defined as follows: e(H) is the product of the ramification indices in the
extension L/L* of those primes q € S(H) which extend to a prime of L with non-cyclic
decomposition group in L/K. In particular, n(H) is factorizable if S contains no finite

ramified primes.
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