The fundamental group of the Hawaiian earring is not free

(International Journal of Algebra and Computation Vol. 2, No. 1 (1992), 33–37)

Bart de Smit

Department of Mathematics University of California Berkeley, CA 94720

Abstract. The Hawaiian earring is a topological space which is a countably infinite union of circles, that are all tangent to a single line at the same point, and whose radii tend to zero. In this note a short proof is given of a result of J.W. Morgan and I. Morrison that describes the fundamental group of this space. It is also shown that this fundamental group is not a free group, unlike the fundamental group of a wedge of an arbitrary number of circles.

Key words: Fundamental groups, Van Kampens theorem, free groups, projective limits.

1980 Mathematics subject classification (1985): 20E05, 20F34, 57M05.

1. Introduction.

For each positive integer n, let $C_n \subset \mathbb{C}$ be the the circle $\{z \in \mathbb{C} : |z - \frac{1}{n}| = \frac{1}{n}\}$. The union $\bigcup_{n=1}^{\infty} C_n$ is a topological space $H \subset \mathbb{C}$ called the *Hawaiian earring*. On a homework assignment to an algebraic topology course, M.W. Hirsch asked whether the fundamental group $\pi_1(H)$ of H with base-point 0 is a free group. In the following an algebraic description of $\pi_1(H)$ is given, and it is shown that it is torsion free, but not free.

In a wedge X of an arbitrary number of circles each loop can only go around finitely many circles, because a loop has a compact image, and consequently the fundamental group of X is free on the obvious generators. In the case of the Hawaiian earring however, we have a coarser topology admitting more loops. For instance, let f: $[0,1] \to H$ be a loop that goes around C_1 on the middle third part of the unit interval, around C_2 on the middle third part of each of the remaining intervals, etcetera. This defines f as a map $[0,1] \to H$, and f is continuous because any open neighborhood of 0 in H contains all C_i with i sufficiently large. Note that $f^{-1}(0)$ is the Cantor set in the unit interval.

The results in this note are not new, but the proofs are. The algebraic description of the group $\pi_1(H)$ was first given in [1], but more recently J.W. Morgan and I. Morrison found a flaw, and published an alternative proof (see [4]). In the purely group-theoretical paper [2, section 6], G. Higman mentions the same group, and shows that it is not free. A different argument, suggested by H.W. Lenstra, Jr., will be given for this in section 3.

For more background on free groups, free products and reduced words, we refer to [3].

2. An algebraic description.

The space $H_n = \bigcup_{i=1}^n C_n$ is a wedge of n circles, and it follows from Van Kampen's theorem that the fundamental group $\pi_1(H_n)$ is a free group on n generators l_1, \ldots, l_n , where l_i is the homotopy class of a loop that wraps around C_i once (so l_i is a generator of $\pi_1(C_i)$).

For each $n \geq 0$ we have a retraction $H \to H_n$ collapsing the loops C_i with i > n to 0. Therefore we may view F_n as a subgroup of $\pi_1(H)$, and the retraction induces a map from $\pi_1(H)$ to F_n The restricted retractions $H_n \to H_{n-1}$ induce group homomorphisms $F_n \to F_{n-1}$ fixing l_i for i < n, and mapping l_n to 1. The groups F_n form a projective system of groups, and we get a canonical group homomorphism

$$\varphi:\pi_1(H) \to F = \varprojlim_{n\geq 1} F_n.$$

Recall that the projective limit F is the subgroup of the product $\prod_{i=1}^{\infty} F_i$ consisting of those elements $(f_i)_i$ for which the map $F_i \to F_{i-1}$ sends f_i to f_{i-1} for all i > 1. We will write down elements of F by specifying each coordinate.

It will turn out that φ maps $\pi_1(H)$ isomorphically to a subgroup π of F which can be roughly described as the subgroup consisting of the elements $(f_i)_i \in F$ for which the following condition holds for each $j \geq 1$: the number of times that l_j occurs in the reduced word representation of f_i is a bounded function of i.

For a more precise formulation, define the *j*-weight $w_j(x)$ of an element $x \in F_i$ as follows: first write x as a reduced word $x = g(1)^{a_1}g(2)^{a_2}\cdots g(s)^{a_s}$, where each a_k is a non-zero integer and g a map $\{1, 2, \ldots, s\} \to \{l_1, l_2, \ldots, l_i\}$ with $g(k) \neq g(k+1)$ for any k. Now put

$$w_j(x) = \sum_{g(k)=l_j} |a_k|.$$

Note that $w_j(x)$ is well defined as the representation of x as a reduced word is unique. Now let π be the subgroup of F consisting of all elements $(x_i)_i \in F$ such that for every $j \in \mathbb{Z}_{\geq 1}$ the function $\mathbb{Z}_{\geq 1} \to \mathbb{Z}$ defined by $i \mapsto w_j(x_i)$ is bounded.

For j > 0 define $F_{\geq j} = \{(x_i)_i \in F : w_k(x_i) = 0 \text{ for all } i \text{ and all } k < j\}$, and put $\pi_{\geq j} = \pi \cap F_{\geq j}$. The next lemma will turn out to be an instance of the Van Kampen theorem, once we know that π is $\pi_1(H)$, but at this point we have to prove it by group-theoretic means.

Lemma. The group π is the free sum $F_{j-1} * \pi_{\geq j}$ of its subgroups F_{j-1} and $\pi_{\geq j}$.

Proof. The subgroup of π generated by F_{j-1} and $\pi_{\geq j}$ is their free sum because of the unique reduced word representation in the free groups F_i . If $x = (x_i)_i \in F$ then the condition $x \in \pi$ implies that the number of occurrences of elements of F_{j-1} in the reduced representation of x_i is a bounded function of i. Again by uniqueness of the reduced word representation, it follows that x is a finite product of elements of F_{j-1} and of $\pi_{\geq j}$.

Proposition. The image of the homomorphism $\varphi : \pi_1(H) \to F$ is π .

Proof. Let $f:[0,1] \to H$ be a loop at 0. By Van Kampens theorem, $\pi_1(H) = F_1 * \pi_1(C_{\geq 2})$, where $C_{\geq 2} = \bigcup_{n \geq 2} C_n$. So after a homotopy, we may assume that f is a composition of loops $f_0 * e_1 * f_1 * \cdots * e_s * f_s$ where the e_i are loops in C_1 and the f_i are loops in $C_{\geq 2} = \bigcup_{n \geq 2} C_n$. We have $w_1(\varphi(f_i)) = 0$ and for n > 1 this implies $w_1(\varphi(f)_n) \leq \sum_{i=1}^s w_1(\varphi(e_i))$, which is a bounded function of n. Repeating the same argument shows that for every i the function $w_2(\varphi(f_i)_n)$ of n is bounded, so that $w_2(\varphi(f)_n)$ is also bounded. Using induction we obtain that $\varphi(f) \in \pi$, so the image of φ lies in π .

Now let $x = (x_i)_i \in \pi$. We will construct a loop $f : [0,1] \to H$ such that the homotopy class of f is mapped to x by φ . By the lemma we can write x as $y_0e_1y_1e_2y_2\cdots e_sy_s$ with $e_i \in \{l_1, l_1^{-1}\}$ and $y_i \in \pi_{\geq 1}$. Accordingly, we divide the unit interval in 2s+1 intervals $I_i = \left[\frac{i}{2s+1}, \frac{i+1}{2s+1}\right]$ where $0 \leq i \leq 2s$, and define a map $f_1 : [0,1] \to H$ to be zero on the intervals I_{2i} , and to go around C_1 in the appropriate direction on the interval I_{2i-1} , so that the homotopy class of the loop $f_1|I_{2i-1}$ is e_i for $i = 1, 2, \ldots, s$.

Next we break up each $y_i \in \pi_{\geq 2}$ into elements $l_2^{\pm 1}$ and elements of $\pi_{\geq 3}$, and divide the interval I_{2i} accordingly. Then we define a map f_2 , that only differs from f_1 on subintervals of I_{2i} , where it gives the l_2 -pattern in y_i . This way we get a uniformly convergent sequence f_1, f_2, \ldots of loops in H, so they converge to a continuous loop f in H. As the image of $\varphi(f)$ in F_n is x_n , it follows that $\varphi(f) = x$.

Proposition. The canonical map $\varphi : \pi_1(H) \to F$ is injective.

Proof. Let $f:[0,1] \to H$ be a loop, whose image in F is 1. We want to construct null-homotopy for f, i.e., a homotopy of f with the constant loop. As in the previous proof, we first homotop f to a composition of loops $f_0 * e_1 * f_1 * \cdots * e_s * f_s$ where the e_i are loops in C_1 and the f_i are loops in $C_{\geq 2}$. Then $\varphi(f_i) \in \pi_{\geq 2}$ and $\varphi(e_i) \in F_1$, and since $\varphi(f) = 1$, the word $\varphi(f_0)\varphi(e_1)\varphi(f_1)\cdots\varphi(e_s)\varphi(f_s)$ in the free sum $F_1 * \pi_{\geq 2}$ can be reduced to 1. We can now make a null-homotopy for f by following the cancellation steps to reduce this word to 1, provided that we can find a homotopy to the constant loop for loops in $C_{\geq 2}$ that are in the kernel of φ . In other words we can define the homotopy on

part of $[0,1] \times [0,1]$, and on the remaining parts we still need to fill in a null-homotopy for certain loops in $C_{\geq 2}$ that we know to be null-homotopic. But to construct such a homotopy we follow the same procedure to obtain a word in $\pi_1(C_2) * \pi_{\geq 3}$ that can be reduced to 1, etcetera. Taking the union of the sequence of "partial homotopies" obtained by this inductive procedure, we obtain the required null-homotopy for f. \square Since F is torsion free, this shows that $\pi_1(H)$ is torsion free.

3. Proof that the fundamental group is not free.

In this section, a group-theoretical proof is given that π is not free. First note that π is uncountable. An uncountable free group F is free on uncountably many generators, and therefore $\text{Hom}(F,\mathbb{Z})$ is uncountable. So it suffices to show that $\text{Hom}(\pi,\mathbb{Z})$ is countable. We start with a lemma.

Lemma. For each positive integer j let $x^{(j)} = (x_i^{(j)})_i$ be an element of F such that $x_i^{(j)} = 1$ for all i < j. Then there is a homomorphism $f : F \to F$ sending l_j to $x^{(j)}$ for all j. If $x^{(j)} \in \pi_{\geq j}$ for all j, then $f(\pi) \subset \pi$.

Proof. As F_n is a free group on l_1, \ldots, l_n , there are unique group homomorphisms $f_n: F_n \to F_n$ sending l_j to $x_n^{(j)}$ for $j \le n$. As we have $x_i^{(j)} = 1$ for i < j, we have a commutative diagram:

$$F_1 \leftarrow F_2 \leftarrow F_3 \leftarrow \cdots$$
 $\downarrow \qquad \downarrow$
 $F_1 \leftarrow F_2 \leftarrow F_3 \leftarrow \cdots$

This induces a homomorphism $f: F \to F$ of the projective limits, that satisfies the conditions.

Now suppose $y = (y_i)_i \in F$ and fix $k \ge 1$ then

$$w_k(f(y)_n) = w_k(f_n(y_n)) \le \sum_{j=1}^n w_j(y_n) w_k(f_n(l_j)) = \sum_{j=1}^n w_j(y_n) w_k(x_n^{(j)}).$$

If $x^{(j)} \in \pi_{\geq j}$ for each j, then the terms with j > k on the right hand side vanish. If in addition $y \in \pi$ then the remaining k terms are all bounded functions of n, so that $w_k(f(y)_n)$ is a bounded function of n and $f(y) \in \pi$. This shows the last statement. \square

Proposition. Let f be a homomorphism from π to \mathbb{Z} . Then $f(l_i) = 0$ for all sufficiently large i.

Proof. Suppose that $f(l_{i_1}), f(l_{i_2}), \ldots$ are non-zero for some $i_1 < i_2 < \cdots$. By the lemma there is a homomorphism $g: \pi \to \pi$ mapping l_j to $l_{i_j}^{\pm 3}$ where the sign in the exponent is chosen to be the sign of $f(l_{i_j})$. By replacing f by $f \circ g$ we may now assume that $f(l_i) \geq 3$. Put $a_i = f(l_i)$.

For every $j \ge 1$ define the element $x^{(j)} = (x_i^{(j)})_i \in \pi$ by $x_i^{(j)} = 1$ if i < j, and for $i \ge j$:

$$x_i^{(j)} = l_j (l_{j+1} (\cdots (l_{i-1} l_i^{a_{i-1}})^{a_{i-2}} \cdots)^{a_{j+1}})^{a_j}.$$

The integer $f(x^{(1)})$ now satisfies congruence conditions that are too strong to hold for any integer. First note that $x^{(j)} = l_j(x^{(j+1)})^{a_j}$, so $f(x^{(j)}) = a_j + a_j f(x^{(j+1)})$. If follows that

$$f(x^{(1)}) = a_1 + a_1 a_2 + \dots + a_1 a_2 \dots a_n + a_1 a_2 \dots a_n f(x^{(n)}).$$

Put $b_n = a_1 + a_1 a_2 + \dots + a_1 a_2 \cdots a_{n-1}$ and $c_n = a_1 a_2 \cdots a_n$, then $f(x^{(1)}) \equiv b_n \mod c_n$. Now $b_n < c_n$ and b_n tends to infinity. If $f(x^{(1)}) \ge 0$ then $f(x^{(1)}) \ge b_n$ for all n, which is a contradiction. If $f(x^{(1)}) < 0$, then $f(x^{(1)}) \le b_n - c_n$, and we get a contradiction too, because it follows from the fact that $a_i \ge 3$ that $c_n - b_n$ also tends to infinity. \square

Proposition. Let g be a homomorphism from π to \mathbb{Z} such that $g(l_i) = 0$ for all i. Then g = 0.

Proof. Suppose that $g(x) \neq 0$ for some $x \in \pi$, then we can write $x = f_1 y_1 f_2 y_2 \cdots f_s y_s$ with $f_i \in F_{j-1}$ and $y_i \in \pi_{\geq j}$. Now put $x_{\geq j} = y_1 y_2 \cdots y_s$, then $g(x_{\geq j}) = g(x) \neq 0$ as $g(f_i) = 0$ for $i = 1, \ldots, s$. By the lemma there is a homomorphism $\pi \to \pi$ mapping l_j to $x_{\geq j}$. Composing with g, we get a homomorphism $\pi \to \mathbb{Z}$ mapping all l_i to non-zero integers, contradicting the previous proposition.

These two propositions imply that the homomorphism $\operatorname{Hom}(\pi,\mathbb{Z}) \to \prod_{i\geq 1} \mathbb{Z}$ that sends a homomorphism g to the tuple $(g(l_1),g(l_2),\ldots)$, maps the group $\operatorname{Hom}(\pi,\mathbb{Z})$ injectively to $\bigoplus_{i\geq 1} \mathbb{Z}$, which is countable. This concludes the proof that π is not free.

As subgroups of free groups are free, this implies that the projective limit F of free groups can not be free either. This can also be shown by replacing π with F is the above proof, with a slight adaptation in the proof of the last proposition (cf. [2]).

It follows from the proof that all homomorphisms from π to \mathbb{Z} factor over F_n for some n (in other words, all algebraic homomorphism are continuous if we give \mathbb{Z} and F_n the discrete topology and π the induced topology from $\prod_{n\geq 1} F_n$). Again, the same is true with F instead of π .

The first homology group of the Hawaiian earring (the abelianized group π^{ab}) is uncountable too, and as it has the same group of homomorphisms to \mathbb{Z} as π , the proof also implies that π^{ab} is not free abelian.

References.

- [1] H.B. Griffiths, Infinite products of semigroups and local connectivity, Proc. London Math. Soc. (3), 6 (1956), pp. 455–485.
- [2] G. Higman, Unrestricted free products and varieties of topological groups, J. London Math. Soc. (2), 27 (1952), pp. 73–81.
- [3] R.C. Lyndon and P.E. Schupp, *Combinatorial group theory*, Ergeb. Math. Grenzgeb. (2), vol. 89, Springer-Verlag, 1977.
- [4] J.W. Morgan and I. Morrison, A van Kampen theorem for weak joins, Proc. London Math. Soc. (3), **53** (1986), pp. 562–576.