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Abstract. Let A be a noetherian ring whose maximal spectrum has

dimension at most 1. For instance, A can be a noetherian local ring

or an order in a number field. Let B be a finite projective A-algebra

that becomes étale over the total ring of quotients of A. In this note

it is shown that B is of the form A[X1, . . . , Xn]/(f1, . . . , fn) if and

only if the Fitting ideal FitB(ΩB/A) of the module of differentials of

B over A is free of rank 1 as a B-module. In particular, the ring of

integers in a number fieldK is of the form Z[X1, . . . , Xn]/(f1, . . . , fn)

if and only if the different of K over Q is a principal ideal.

1. Introduction

In this note we explain a criterion to decide whether certain finite projective algebras

are complete intersections. The criterion is formulated over an arbitrary noetherian base

ring. Applied with base ring Z it tells us which orders in number fields are of the form

Z[X1, . . . , Xn]/(f1, . . . , fn). Such orders are called complete intersection orders, and

they share several ring-theoretic properties with the well-studied subclass of equation

orders, i.e., orders of the form Z[α]. Applied with a complete discrete valuation ring as

a base ring, the criterion gives results that have recently gotten attention in relation

to Wiles’ proof of Fermat’s Last Theorem. We first state the theorem and then return

to these two number-theoretic applications.

Rings and algebras in this note are supposed to be commutative with identity

element. By a complete intersection over a ring A we mean an A-algebra of the from

A[X1, . . . , Xn]/(f1, . . . fn) that is finitely generated as an A-module. Such an algebra

is always projective as an A-module [3].
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If A is a ring and B = A[X1, . . . , Xn]/(g1, . . . , gm) then the module of differentials

ΩB/A is the cokernel of the B-linear map Bm → Bn with matrix (∂gi/∂Xj)i,j . The

Fitting ideal FitB(ΩB/A) is the B-ideal generated by all n × n minors of this m × n

matrix. Clearly, FitB(ΩB/A) is a principal B-ideal if we can take m = n. The theorem

below gives sufficient conditions for the converse to hold. We say that B is generically

étale over A if ΩB/A is annihilated by a non-zero divisor of A.

(1.1) Theorem. Let A be a noetherian ring and let B be an A-algebra that is finitely

generated and projective as an A-module. Then the following are equivalent:

(1) B is a generically étale complete intersection algebra over A;

(2) there exists a finite free B-module F and a short exact sequence

0 → F → F → ΩB/A → 0.

If the maximal dimension of A is at most 1 then these are also equivalent to

(3) FitB(ΩB/A) is free of rank 1 as a B-module;

(4) B is generically étale over A and FitB(ΩB/A) is a principal B-ideal.

We explain the terminology in the next section and we give the proof in Section 3.

The proof follows ideas of Mohan Kumar [7], Vasconcelos [14], and Lipman [10]. It

uses a ring-theoretic result of Auslander-Buchsbaum [2] and a result of Serre [13] on

projective modules. The equivalence of (1) and (2) in the case that B is reduced can

also be deduced from Kunz [6, Th. 9.5].

Suppose that O is an order in a number field K. If O is the maximal order in

K then FitO(ΩO/Z) is equal to the different of K over Q; see [12, Ch. III, §7]. The

theorem implies that O is a complete intersection over Z if and only if FitO(ΩO/Z) is

a principal O-ideal.

In the context of Wiles’ proof of Fermat’s Last Theorem one takes a complete

discrete valuation ring A as a base ring, and one considers only finite local A-algebras

B with the same residue field as A. One can show that B is then a complete intersection

over A if and only if B is of the form A[[X1, . . . , Xn]]/(f1, . . . , fn); see [3]. The theorem

above gives a criterion to decide whether B is a complete intersection in the case that

B is generically étale over A. A slightly weaker criterion in this setting, which was

suggested by Mazur, was shown recently by Lenstra with a method close to Wiles’s

arguments [9, pp. 106–108].

If B is a finite projective algebra over a ring A then we say that B is locally a

complete intersection over A if for all primes p of A the ring B ⊗A Ap is a complete
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intersection over the localization Ap. One can deduce from (1.1) that a finite projective

algebra B over a noetherian ring A is both generically étale and locally a complete

intersection if and only if FitB(ΩB/A) is projective of rank 1 as a B-module. Some

further ring-theoretic properties of (locally) complete intersections are mentioned in

(2.4) below.

2. Terminology

In this section we give the definitions used in Theorem (1.1), and we mention some

of the ingredients of the proof. The main statement of this section is the formulation

in Proposition (2.6) of four equivalent criteria for a finite projective algebra over a

noetherian ring to be generically étale.

(2.1) The maximal dimension and Serre’s theorem. Let A be a ring, and let

X(A) be the set of prime ideals of A that can be written as an intersection of a collection

of maximal ideals of A. We define the maximal dimension m-dim(A) of A to be the

largest integer k for which there is a chain p0 ⊂ p1 ⊂ · · · ⊂ pk of prime ideals in X(A) in

which all inclusions are strict. In particular, m-dim(A) is at most the Krull-dimension

dim(A) of A, and we have m-dim(A) = 0 if A is local. If B is a finite A-algebra then

m-dim(B) ≤ m-dim(A), because pulling back prime ideals gives a map X(B) → X(A)

that preserves strict inclusions [1, 5.8, 5.9]. It is not hard to show that m-dim(A) is

the dimension of the topological subspace of SpecA consisting of the maximal ideals;

cf. [5, Ch. I, §1].

A theorem of Serre [13, Th. 1] says that every finitely generated projective module

of constant rank over a noetherian ring A is the direct sum of a free A-module and a

projective A-module of rank at most m-dim(A). For Dedekind A and for local A this

is well-known; see [8, Ch. III, Ex. 13] and [8, Ch. XVI, Th. 3.8].

(2.2) Fitting ideals. Let R be a ring and let M be a finitely generated R-module.

Choose an R-linear surjection Rn
ϕ−→ M for some n ≥ 0. The Fitting ideal FitR(M)

is the R-ideal generated by the determinants det(v1, . . . , vn) with v1, . . . , vn ∈ Kerϕ.

The ideal FitR(M) does not depend on the choice of ϕ. See [8, Ch. XIX, §2] for details.

For each set X of R-module generators of Kerϕ, the Fitting ideal FitR(M) is already

generated by those determinants for which the vi are contained in X. If S is an R-

algebra then FitS(M ⊗R S) = FitR(M) · S. If M ∼= R/a1 ⊕ · · · ⊕R/an for R-ideals ai,

then FitR(M) = a1 · · · an.

(2.3) The trace map. Let A be a ring and let B be a finite projective A-algebra,

i.e., an algebra that is finitely generated and projective as an A-module. We denote
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by B† the A-linear dual HomA(B,A) of B. It has a B-module structure given by

(bϕ)(x) = ϕ(bx) with b, x ∈ B and ϕ ∈ B†. Since B is projective as an A-module the

canonical map B⊗AB† → EndA(B) that sends b⊗ϕ to the endomorphism x 7→ bϕ(x),

is an isomorphism. The trace map TrB/A: B → A is defined to be the composition

of canonical maps B → EndA(B) ∼= B ⊗A B† → A, where the first map sends b to

the endomorphism x 7→ bx and the last map is the evaluation map b ⊗ ϕ 7→ ϕ(b).

This gives rise to a canonical B-linear map ψB/A: B → B† that sends x to the map

y 7→ TrB/A(xy).

(2.4) Remark. With this terminology in place we can state two properties of (locally)

complete intersections. We will not need them in the sequel. Let A be a ring and let B

be a finite projective A-algebra which is locally a complete intersection over A. Then B

is Gorenstein over A, which means that B† is projective of rank 1 over B; cf. [6, E.16].

Moreover, if B is a complete intersection over A then B† is free of rank 1 over B.

Secondly, we have FitB(ΩB/A) = AnnB(CokerψB/A) = FitB(CokerψB/A). One can

show these properties with [3, Prop. 1.1].

(2.5) Étale algebras. We say that a finite projective A-algebra B is étale if the

following equivalent conditions hold:

(1) the map ψB/A: B → B† is an isomorphism;

(2) ΩB/A = 0;

(3) for all maximal ideals m of A we have a Cm-algebra isomorphism Cm ⊗A B ∼=
Cm × Cm × · · · × Cm, where Cm is the algebraic closure of A/m.

Let us briefly sketch the proof that these statements are equivalent. Using the fact that

ΩB/A and ψB/A are well-behaved under base change (cf. the proof of (2.6) below), and

Nakayama’s lemma, one first reduces to the case that A is a field, and then to the case

that A is an algebraically closed field. Now B is a product of local Artin rings with

residue field A, and we reduce to the case that B is local. Write m for the maximal

ideal of B. Note that the map B → B/(A + m2) = m/m2 is a derivation, and that

TrB/A(m) = 0. Then deduce that all three statements are equivalent to m = 0.

(2.6) Proposition. Let A be a noetherian ring with total ring of quotients Q(A). For

a finite projective A-algebra B the following are equivalent:

(1) the map ψB/A: B → B† is injective;

(2) B ⊗A Q(A) is étale over Q(A);

(3) ΩB/A is annihilated by a non-zero divisor of A;

(4) ΩB/A is annihilated by a non-zero divisor of B.
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Recall that the total ring of quotients of A is the localization of A at the multiplicative

set of non-zero divisors of A. We say B is generically étale over A if (1)–(4) hold. If A

is a domain of characteristic zero, then a finite projective A-algebra B is generically

étale if and only if it is reduced. In the remainder of this section we give the proof of

(2.6). We start with a lemma in linear algebra.

(2.7) Lemma. Let R be a noetherian ring, and let f : P → Q be an injection of

finitely generated projective R-modules of the same constant rank r ∈ Z≥0. Then the

following three statements are equivalent:

(1) f is injective;

(2) the induced map det f :
∧r

P →
∧r

Q is injective;

(3) the induced map f ⊗ 1: P ⊗R Q(R) → Q⊗R Q(R) is an isomorphism.

Proof. The associated primes Ass(M) of an R-module M are those prime ideals p of

R for which p = AnnR(x) for some x ∈M . We show first that (1) is equivalent to

(4) for p ∈ Ass(R) the map fp: Pp → Qp of localizations is an isomorphism.

Assume that (1) holds. Suppose that p ∈ Ass(R), so p = AnnR(x) for some x ∈ R.

Clearly f injects xP to xQ. Since multiplication by x identifies P/pP with xP and

Q/pQ with xQ, and since f commutes with multiplication by x, we deduce that the

map P/pP → Q/pQ that one gets by reducing f modulo p is injective. By localizing

at p we get an injection Pp/pPp → Qp/pQp. But this is an injection of vector spaces of

the same dimension, so it is an isomorphism. With Nakayama’s lemma (4) follows.

Now assume that (4) holds and suppose that V = Ker f is not zero. By [8, Ch.

X, 2.7] there exists a prime p ∈ Ass(V ), so p = AnnR(x) for some x ∈ V . Since V can be

embedded in a finitely generated free R-module F we have Ass(V ) ⊂ Ass(F ) = Ass(R);

see [8, Ch. X, 2.12]. But by (4) we then have Vp = 0, and in particular ax = 0 for some

a ∈ R− p, which contradicts p = AnnR(x). Thus V = 0, so (4) implies (1).

Using the fact that a matrix over a commutative ring is invertible if and only

if its determinant is a unit, one sees that (4) is equivalent to the statement that

det fp:
∧r
Rp
Pp →

∧r
Rp
Qp is an isomorphism for all p ∈ Ass(R). Since exterior prod-

ucts commute with base change, and since we already have equivalence of (1) and (4),

we conclude that (1) ⇐⇒ (2).

Since P and Q inject to P ⊗RQ(R) and Q⊗RQ(R) it is clear that (3) implies (1).

We now assume (4) and we will show (3). We may assume that Q is free because

Q ⊕ Q′ is free for some projective R-module Q′, and if we know (3) for the map

P ⊕ Q′
f⊕1−→ Q ⊕ Q′, then (3) follows for f . It suffices to show that the induced map
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∧r
P ⊗R Q(R) →

∧r
Q ⊗R Q(R) is an isomorphism, so we reduce to the case that

r = 1 and Q is free. This means that f can be taken to be the inclusion of a projective

R-ideal I of rank 1 in R. We have to show that I contains a non-zero divisor of R.

One can infer this from a result of Auslander-Buchsbaum that we will need later (see

the proof of (3.4)), but we will sketch an easier argument here. For every p ∈ Ass(A),

our assumption says that Ip = Rp and in particular this means that I 6⊂ p. Since R is

noetherian, the set Ass(R) is finite, and the union of all primes in Ass(R) is the set of

zero divisors of R; see [8, Ch. X, 2.9]. Our non-zero divisor in I can now be produced

with the following general fact, known as “prime avoidance.”

(2.8) Lemma. Let R be ring, let I be an R-ideal, and let S be a finite collection

of R-ideals, none of which contain I. If at most two ideals in S are not prime then I

contains an element that does not lie in any ideal in S.

For a proof see [11, Ex. 1.6] or [4, §3.2]. This finishes the proof of (2.7). �

(2.9) Remark. For the equivalence of (1) and (2) the noetherian hypothesis is not

needed. One can see this by reducing to the noetherian case, or by using a matrix

argument [11, Ex. 2.4(b)]. The implication (3) ⇒ (1) also holds without the noetherian

condition, but its converse does not. To see this, one may consider the following exam-

ple, which was pointed out to the author by H. W. Lenstra, Jr. Let A be a Dedekind

domain that has a maximal ideal m that generates an infinite cyclic subgroup of the

class group. Now let R = A ⊕ V where V 2 = 0 and V is the A-module
⊕

pA/p with

the direct sum taken over all maximal ideals of A that are distinct from m. One verifies

that mR = m ⊗A R, by checking each summand of R. Now m is projective of rank 1

as an A-module, so mR is a projective R-ideal of rank 1. Yet, it does not contain a

non-zero divisor, and in fact R = Q(R).

Proof of (2.6). We first note that ψB/A is compatible with base change. More pre-

cisely, for any A-algebra A′ one can put B′ = B ⊗A A′ and the composite map

B′
ψB′/A′
−→ HomA′(B′, A′) ∼−→ HomA(B,A)⊗A A′

is equal to the map ψB/A ⊗ 1. Taking A′ = Q(A) we see with (2.7) that B ⊗A Q(A) is

étale over Q(A) if and only if ψB/A is injective. This shows equivalence of (1) and (2).

To see that (2) and (3) are equivalent, note that ΩB⊗Q(A)/Q(A) = ΩB/A ⊗AQ(A).

Since ΩB/A is finitely generated as an A-module it follows that ΩB⊗Q(A)/Q(A) = 0 if

and only if (3) holds.

Since B is flat over A, multiplication on B by a non-zero divisor of A is injective, so

(3) implies (4). Now let us suppose that (4) holds and show (3). We may assume that B
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is of constant rank r ≥ 1 over A, so that A ⊂ B. We know that ΩB/A is annihilated by

some non-zero divisor x ∈ B. The norm N(x) of x is the unique element of A such that

multiplication by x on B induces multiplication by N(x) on
∧r
AB. With Lemma (2.7)

one sees that N(x) is a non-zero divisor of A. We claim that N(x) = xy for some y ∈ B,

so that N(x) also annihilates ΩB/A. To see this, write B′ = B ⊗A B, which we view

as a B-algebra via the first factor, and let ϕ be the B-algebra homomorphism B′ → B

given by a⊗ b 7→ ab. Multiplication by 1⊗ x on B′ now induces induces multiplication

by N(x) on
∧r
B B

′. Using the isomorphism
∧r
B B

′ ∼= (
∧r−1
B Kerϕ)⊗B (

∧1
B B), one then

sees that N(x) = yx, where y ∈ B is the element such that 1⊗x induces multiplication

by y on
∧r−1
B Kerϕ. �

3. Proof of the theorem

For any B-module M that can be generated by m elements we have

(3.1) AnnB(M)m ⊂ FitB(M) ⊂ AnnB(M).

See [8, Ch. XIX, Prop. 2.5] for a proof. Taking M = ΩB/A one sees that FitB(ΩB/A)

contains a non-zero divisor of B if and only if AnnB(ΩB/A) does. With (2.6) it follows

that (3) and (4) of Theorem (1.1) are equivalent.

By Lemma (2.7) one sees that (2) implies (3). In the case that m-dim(A) ≤ 1 the

converse follows from the observation that m-dim(B) ≤ m-dim(A) (see (2.1)) and the

following proposition, which was given by Lipman [10] for local rings.

(3.2) Lemma (Lipman). Let R be a noetherian ring with m-dim(R) ≤ 1 and let M

be a finitely generated R-module. Then FitR(M) is free of rank 1 as an R-module if

and only if for every n ≥ 0 and every R-module surjection Rn
ϕ−→ M the kernel of ϕ

is free of rank n.

Proof. “If” is clear, because by (2.7) the determinant of an injective endomorphism

of Rn is a non-zero divisor. So let us assume that FitR(M) is free of rank 1, and let

Rn
ϕ−→M be a surjection of R-modules. Let V be the kernel of ϕ, and view elements

of V as column vectors. We need to show that V is free of rank n over R.

Let us assume first that R is local. The Fitting ideal FitR(M) is generated by the

n×n determinants over R whose columns lie in V . Since R is local, and FitR(M) is prin-

cipal, we can pick v1, . . . , vn ∈ V so that ∆ = det(v1, . . . , vn) is a generator of FitR(M).

Now consider the map Rn
α−→ Rn that sends (ai)ni=1 to a1v1 + · · · + anvn. This map

is injective, because its determinant ∆ is a non-zero divisor. By Cramer’s rule, every

x ∈ Rn satisfies ∆x = ∆1v1 + · · ·+ ∆nvn where ∆i = det(v1, . . . , vi−1, x, vi+1, . . . , vn).
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If x ∈ V then ∆i ∈ FitR(M) = ∆R, and since ∆ is a non-zero divisor it then follows

that x ∈ Rv1 + · · ·+Rvn. Thus, α is an isomorphism Rn
∼−→V .

Now let us drop the assumption that R is local. We know by the local case that V

is locally free of rank n, and since R is noetherian this means that V is a projective R-

module. Assume that n ≥ 1. By Serre’s theorem (2.1) we can write V as a direct sum of

a free submodule F of rank n−1 and a projective submodule P of rank 1. If w1, . . . , wn−1

is an R-basis of F , then the map P → FitR(M), sending x to det(w1, . . . , wn−1, x), is

surjective. By Nakayama’s lemma this map must be an isomorphism locally, so it is an

isomorphism. Thus, P is free of rank 1, and V is free of rank n. �

Note that the noetherian condition was not used in the proof of the local case.

It remains to show that (1) and (2) in Theorem (1.1) are equivalent. For sufficiently

large n we can write B = R/I with R = A[X1, . . . , Xn] and I an R-ideal. By the

“second fundamental exact sequence” [11, Th. 25.2] we then have an exact sequence of

B-modules

(3.3) I/I2 → ΩR/A ⊗R B → ΩB/A → 0.

Since ΩR/A is a free R-module of rank n, the B-module ΩR/A ⊗R B is free of rank n.

Suppose that statement (1) of (1.1) holds. Then we can choose our presentation

of B as an A-algebra in such a way that I is an R-ideal generated by n elements.

This means that we have a B-module surjection Bn → I/I2. Thus one gets an exact

sequence

Bn
ϕ−→ Bn −→ ΩB/A −→ 0

and we have FitB(ΩB/A) = (detϕ)B. Since B is generically étale over A, the B-ideal

AnnB(ΩB/A) contains a non-zero divisor of B, and by (3.1) it follows that detϕ is a

non-zero divisor of B. Therefore, ϕ is injective and (2) follows.

Let us now assume (2) and show (1). By tensoring the sequence in (2) with Q(A)

we see with (2.7) that ΩB/A ⊗A Q(A) = 0, so that B is generically étale over A.

Let X be the image of I/I2 in B ⊗R ΩR/A ∼= Bn under the map in sequence (3.3)

above. With the sequence in (2) Schanuel’s lemma [8, Ch. XXI, Lemma 2.4] implies

that X ⊕ F ∼= F ⊕Bn. Therefore X is projective over B of rank n.

If αi denotes the image of Xi in B then the Koszul complex of the regular sequence

X1 − α1, . . . , Xn − αn in B[X1, . . . , Xn] is a finite resolution of B with projective R-

modules; see [8, Ch. XXI, Th. 4.6]. An R-module M that has such a resolution is said

to be of finite projective dimension. We will need two basic properties of this notion: a

direct summand of a module of finite projective dimension is again of finite projective
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dimension, and secondly, if two out of three modules in a short exact sequence are of

finite projective dimension, then so is the third. One can see this from the fact that

a module M over a ring R is of finite projective dimension if and only if there is an

integer d such that for all k > d and all R-modules N we have ExtkR(M,N) = 0; see [11,

Appendix B]. By considering the exact sequence 0 → I → R → B → 0 of R-modules,

we conclude that I is an R-ideal of finite projective dimension.

In order to show that the map I/I2 → X is an isomorphism we will use a result

of Vasconcelos [14], which we now state in the form that is most convenient for our

application.

(3.4) Proposition (Vasconcelos). Let R be a noetherian local ring and let I be an

R-ideal of finite projective dimension over R. Put S = R/I, and suppose that we have

an S-linear surjection I/I2 ϕ−→ V for some free S-module V of rank n = dimR−dimS.

Then ϕ is an isomorphism.

Proof. We will use two basic facts: first, if x is neither a zero divisor nor a unit in a

noetherian local ring R then dimR/xR = dimR − 1; see [1, 11.18]. Secondly, such an

element x can often be shown to exist with a proposition of Auslander and Buchsbaum

[2, Prop. 3.9]: in a noetherian ring every non-zero ideal of finite projective dimension

contains a non-zero divisor. A short proof of this fact can also be found in Matsumura

[11, Th. 19.8].

It is clear that (3.4) holds if I = 0, so assume that I 6= 0. We may also assume

that I 6= R. By Auslander-Buchsbaum, I contains a non-zero divisor x of R. Putting

R′ = R/xR and I ′ = I/xR ⊂ R′, we then have S = R′/I ′ and dimR′− dimS = n− 1.

If n = 0 then we get a contradiction, so (3.4) holds for n = 0.

For n ≥ 1 we proceed with induction to n. Write V ∼= S⊕V ′ and let π be projection

on the first factor. Let f be the composition of surjections I −→ I/I2 ϕ−→ V
π−→ S.

Consider the collection S = Ass(R)∪{f−1(mS)} of R-ideals, where mS is the maximal

ideal of S. By (2.8) our non-zero divisor x in I can be chosen in such a way that

f(x) 6∈ mS . The restriction of f to xR then induces an isomorphism xR/xI
∼−→S.

It follows that the short exact sequence 0 → xR/xI → I/xI → I ′ → 0 splits, with

the splitting map I/xI
f−→ S

∼−→xR/xI. This implies that I ′ is a direct summand of

I/xI = I ⊗RR′, so it has finite projective dimension over R′. Tensoring the split exact

sequence over R with S we get an exact sequence 0 → xR/xI → I/I2 → I ′/(I ′)2 → 0.

By the induction hypothesis the map I ′/(I ′)2 = I/(xR + I2) → V/ϕ(xR) = V ′ is an

isomorphism. It follows that ϕ is an isomorphism too. �

We continue the proof of the implication (2) ⇒ (1) of Theorem (1.1). Suppose that
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m is a maximal ideal of R containing I. Then the localization Im is an ideal of finite

projective dimension in Rm. The pull-back mA of m to A is a maximal ideal of A because

B is integral over A; see [1, 5.8]. Since both R and B are flat over A one sees with [11,

Th. 15.1] that

dimRm = dimAmA
+ dimRm/mARm;

dimBm = dimAmA
+ dimBm/mABm.

Putting k = A/mA one sees that B ⊗A k is artinian so its localization Bm/mABm

has dimension zero. The ring Rm/mARm = k[X1, . . . , Xn]m has dimension n; see [11,

Ex. 5.1] or [4, §13]. We are now in the situation that dimRm = n + dimRm/Im and

we know that Xm is free of rank n over Rm/Im. This means that we can apply (3.4)

and conclude that the surjection Im/I
2
m → Xm is an isomorphism. Since this holds for

all maximal ideals m of R that contain I, it follows that the map I/I2 → X is an

isomorphism.

We now proceed as in Mohan Kumar [7]. Let m be the B-rank of F and consider

the ring R′ = R[Y1, . . . , Ym] with the ideal I ′ = IR′ + (Y1, . . . , Ym) then R′/I ′ = B

and I ′/(I ′)2 ∼= X ⊕ F ∼= F ⊕Bn ∼= Bn+m. Take n+m elements fi in I ′ that generate

I ′/I ′2 as a B-module and let J be the R′-ideal generated by the fi. Now I ′/J is

an ideal in R′/J that is equal to its own square. With the determinant trick [1, 2.5]

it follows that it is generated by an idempotent emod J with e ∈ R′, so that we

have a product-decomposition of rings R′/J = R′/I ′ × I ′/J . But then B = R′/I ′ =

R′[Z]/(J, (1 − e)Z − 1), so we have now written B as an A-algebra with the same

number of generators and relations. This finishes the proof of Theorem (1.1). �

(3.5) Remark. In the proof of the implication (2) ⇒ (1) we needed n + m + 1

generators to write B as a complete intersection algebra over A, where n is the minimal

number of algebra generators of B over A and m is the rank of the module F in (2). If

m-dim(A) ≤ 1 then m-dim(B) ≤ 1, so by (2.1) the B-module I/I2 in the proof is free,

and we need only n+ 1 generators.
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