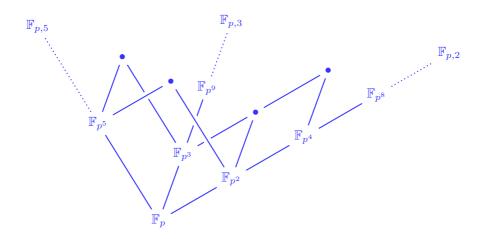
Standard models for finite fields: the definition

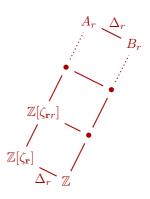
Bart de Smit and Hendrik W. Lenstra jr.

Mathematisch Instituut, Universiteit Leiden



Cyclotomic rings. Let r be a prime number and write $\mathbf{r} = r \cdot \gcd(r, 2)$. We write \mathbb{Z}_r for the ring of r-adic integers, \mathbb{Z}_r^* for its group of units, and Δ_r for the torsion subgroup of \mathbb{Z}_r^* ; the group Δ_r is cyclic of order $\varphi(\mathbf{r})$, where φ denotes the Euler φ -function.

The ring A_r is defined to be the polynomial ring $\mathbb{Z}[X_0, X_1, X_2, \ldots]$ modulo the ideal generated by $\{\sum_{j=0}^{r-1} X_0^{j\mathbf{r}/r}, \ X_{k+1}^r - X_k : k \geq 0\}$. For $k \in \mathbb{Z}_{\geq 0}$, we write $\zeta_{\mathbf{r}r^k}$ for the residue class of X_k in A_r , which is a unit of multiplicative order $\mathbf{r}r^k$. For each $u \in \mathbb{Z}_r^*$ there is a unique ring automorphism of A_r that maps each $\zeta_{\mathbf{r}r^k}$ to $\zeta_{\mathbf{r}r^k}^{\bar{u}}$, where $\bar{u} = (u \mod \mathbf{r}r^k)$; we denote this ring automorphism by σ_u .



The ring B_r is defined by $B_r = \{a \in A_r : \sigma_u(a) = a \text{ for all } u \in \Delta_r\}$. For $k \in \mathbb{Z}_{>0}$, $i \in \{0, 1, \dots, r-1\}$ the element $\eta_{r,k,i} \in B_r$ is defined by $\eta_{r,k,i} = \sum_{u \in \Delta_r} \sigma_u(\zeta_{\mathbf{r}r^k}^{1+i\mathbf{r}r^{k-1}})$.

Prime ideals. Let p, r be prime numbers with $p \neq r$, and let l be the number of factors r in the integer $(p^{\varphi(\mathbf{r})} - 1)/(\mathbf{r}^2/r)$. Denote by $S_{p,r}$ the set of prime ideals \mathfrak{p} of B_r that satisfy $p \in \mathfrak{p}$. This set is finite of cardinality r^l , and for each $\mathfrak{p} \in S_{p,r}$ there exists a unique system $(a_{\mathfrak{p},j})_{0 \leq j < lr}$ of integers $a_{\mathfrak{p},j} \in \{0,1,\ldots,p-1\}$ such that \mathfrak{p} is generated by p together with $\{\eta_{r,k+1,i} - a_{\mathfrak{p},i+kr} : 0 \leq k < l, 0 \leq i < r\}$. We define a total ordering

on $S_{p,r}$ by putting $\mathfrak{p} < \mathfrak{q}$ if there exists $h \in \{0, 1, \dots, lr - 1\}$ such that $a_{\mathfrak{p},j} = a_{\mathfrak{q},j}$ for all j < h and $a_{\mathfrak{p},h} < a_{\mathfrak{q},h}$. The smallest element of $S_{p,r}$ in this ordering is denoted by $\mathfrak{p}_{p,r}$.

We define $\mathbb{F}_{p,r}$ to be the ring $B_r/\mathfrak{p}_{p,r}$, and for $k \in \mathbb{Z}_{>0}$ we define $\alpha_{p,r,k} \in \mathbb{F}_{p,r}$ to be the residue class of $\eta_{r,k+l,0}$ modulo $\mathfrak{p}_{p,r}$.

Equal characteristic. Let p be a prime number and put $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Let the element f = f(X,Y) of the polynomial ring $\mathbb{F}_p[X,Y]$ be defined by $f = X^p - 1 - Y \cdot \sum_{i=1}^{p-1} X^i$. We define $\mathbb{F}_{p,p}$ to be the polynomial ring $\mathbb{F}_p[X_1, X_2, X_3, \ldots]$ modulo the ideal generated by $\{f(X_1, 1), f(X_{k+1}, X_k) : k > 0\}$. For $k \in \mathbb{Z}_{>0}$ we denote the image of X_k in $\mathbb{F}_{p,p}$ by $\alpha_{p,p,k}$.

An algebraic closure. Let p be a prime number. Then for any prime number r it is true that the ring $\mathbb{F}_{p,r}$ is a field containing \mathbb{F}_p ; that for each $k \in \mathbb{Z}_{>0}$, the element $\alpha_{p,r,k}$ of $\mathbb{F}_{p,r}$ is algebraic of degree r^k over \mathbb{F}_p ; and that one has $\mathbb{F}_{p,r} = \mathbb{F}_p(\alpha_{p,r,1}, \alpha_{p,r,2}, \ldots)$.

We write \mathbb{F}_p for the tensor product, over \mathbb{F}_p , of the rings $\mathbb{F}_{p,r}$, with r ranging over the set of all prime numbers. For any prime number r and $k \in \mathbb{Z}_{>0}$, the image of $\alpha_{p,r,k}$ under the natural ring homomorphism $\mathbb{F}_{p,r} \to \overline{\mathbb{F}}_p$ is again denoted by $\alpha_{p,r,k}$.

The ring \mathbb{F}_p is a field containing \mathbb{F}_p , and it is an algebraic closure of \mathbb{F}_p . We have $\bar{\mathbb{F}}_p = \mathbb{F}_p(\alpha_{p,r,k} : r \text{ prime}, k \in \mathbb{Z}_{>0})$, each $\alpha_{p,r,k}$ being algebraic of degree r^k over \mathbb{F}_p .

A vector space basis. Let p be a prime number. For each $s \in \mathbb{Q}/\mathbb{Z}$, the element $\epsilon_s \in \mathbb{F}_p$ is defined as follows. There exists a unique system of integers $(c_{r,k})_{r,k}$, with r ranging over the set of prime numbers and k over $\mathbb{Z}_{>0}$, such that each $c_{r,k}$ belongs to $\{0,1,\ldots,r-1\}$ and s equals the residue class of $\sum_{r,k} c_{r,k}/r^k$ modulo \mathbb{Z} , the sum being finite in the sense that $c_{r,k} = 0$ for all but finitely many pairs r, k. With that notation, ϵ_s is defined to be the finite product $\prod_{r,k} \alpha_{p,r,k}^{c_{r,k}}$.

The system $(\epsilon_s)_{s\in\mathbb{Q}/\mathbb{Z}}$ is a vector space basis of $\overline{\mathbb{F}}_p$ over \mathbb{F}_p . In addition, for each $s\in\mathbb{Q}/\mathbb{Z}$ the degree of ϵ_s over \mathbb{F}_p equals the order of s in the additive group \mathbb{Q}/\mathbb{Z} .

For any $n \in \mathbb{Z}_{>0}$, the \mathbb{F}_p -span of $\{\epsilon_s : s \in \mathbb{Q}/\mathbb{Z}, ns = 0\}$ is the unique subfield of $\overline{\mathbb{F}}_p$ of cardinality p^n ; it is denoted by \mathbb{F}_{p^n} .

Standard models for finite fields. Let p be a prime number and let n be a positive integer. Denote by $e_0, e_1, \ldots, e_{n-1}$ the standard basis of \mathbb{F}_p^n over \mathbb{F}_p , and write ψ for the unique \mathbb{F}_p -vector space isomorphism $\mathbb{F}_p^n \to \mathbb{F}_{p^n}$ sending e_i to $\epsilon_{i/n \mod \mathbb{Z}}$, for $0 \le i < n$. Define a multiplication map on \mathbb{F}_p^n by $v \cdot w = \psi^{-1}(\psi(v) \cdot \psi(w))$, for $v, w \in \mathbb{F}_p^n$. Together with vector addition, this multiplication makes \mathbb{F}_p^n into a field with unit element e_0 . This field is defined to be the standard model for a finite field of cardinality p^n .