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PREFACE

This thesis consists of four articles which can be read independently. The first two
articles deal with arithmetic analogues of well-known geometric theorems. In the
correspondence between number fields and curves, the analogue of a geometric divisor
is a metrized line bundle. An analogue of the function l from algebraic geometry that
assigns to a divisor D the dimension l(D) of the vector space of functions with poles
prescribed by D is given by the size function h0. Clifford’s theorem says that for
divisors D with l(D) > 0 and l(K−D) > 0, where K is the canonical divisor, we have
l(D) ≤ 1

2 deg D + 1. In the first article we give an arithmetic analogue of Clifford’s
theorem. More precisely, let L be a line bundle over a number field of degree n over Q
and let L† be the (trace) dual. Assume that we have deg L ≥ 0 and deg L† ≥ 0. Then
we have h0(L) ≤ n log ω + n log n + 1

2 deg L, where ω = exp h0(Z) denotes a constant
smaller than 1.1. This article is published as

An arithmetic analogue of Clifford’s theorem, Journal de Théorie des Nom-
bres de Bordeaux 13 (2001), pp. 143–156.

Apart from some minor changes the published article is the same as the first chapter
in this thesis. For instance, the bold characters such as Z and Q have been replaced
by the blackboard bold characters Z and Q. Furthermore, information not present
at the time of publication has been added to the references between square brackets.

In the second article Torelli for number fields we give an arithmetic analogue of
Torelli’s theorem, which says that a curve is uniquely determined by its canonically
polarized Jacobian. We state and prove a precise theorem that says that a number
field is uniquely determined by its size function h0 as follows. Given two number
fields K and L with sets of infinite primes S∞K and S∞L, the size functions induce
maps h0

K :RS∞K → R and h0
L:RS∞L → R. When K and L are isomorphic, there is a

bijection S∞L → S∞K, respecting the degrees of the primes, such that h0
K and h0

L

are equal with respect to this bijection. We prove that this occurs only when K and L
are isomorphic. We also discuss in which ways the theorem might be generalized.

In the third article Minkowski for vector bundles we define metrized vector bundles.
Given a vector bundle P we are interested in finding line bundles L ⊂ P with small
determinant. One way to find such line bundles is to use Minkowski’s theorem which
gives a point x ∈ P with small length and hence a line bundle generated by x with
bounded determinant. We raise the question if the bound can be improved if we do
not restrict to cyclic line bundles.

The fourth article Bounds for computing the tame kernel is concerned with the cal-
culation of the tame kernel of a number field. We give a bound, used for finding
a set of generators for the tame kernel, that significantly improves the bounds that
were currently known. When F is a number field with discrimant ∆ and S is a set
of finite primes of F , we write US for the S-unit group. We show that when S con-
tains all primes with norm up to 4|∆|3/2, the image of US ⊗US in K2F contains the
tame kernel. Moreover, we prove that the tame kernel is computable. The article is
accepted for publication in the journal Mathematics of Computations.
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AN ARITHMETIC ANALOGUE

OF CLIFFORD’S THEOREM

Richard P. Groenewegen

Résumé — Nous considérons ici certains fibrés en droites métriques comme
analogues des diviseurs sur les courbes. Van der Geer et Schoof ont défini une
fonction h0 sur les fibrés métriques dont les propriétés ressemblent à celles de
la dimension de H0(X, L (D)), où D désigne un diviseur sur la courbe X. Ils
obtiennent en particulier un analogue du théorème de Riemann-Roch. Nous
proposons des analogues arithmétiques de trois théorèmes sur les courbes,
notamment du théorème de Clifford.

Abstract — Number fields can be viewed as analogues of curves over fields.
Here we use metrized line bundles as analogues of divisors on curves. Van der
Geer and Schoof gave a definition of a function h0 on metrized line bundles
that resembles properties of the dimension l(D) of H0(X, L (D)), where D is a
divisor on a curve X. In particular, they get a direct analogue of the Riemann-
Roch theorem. For three theorems of curves, notably Clifford’s theorem, we
will propose arithmetic analogues.

1. Introduction

A popular way to study number fields is to view them as analogues of curves over a
field. The primes of the number field correspond with points on the curve. Divisors
on curves find their analogue in Arakelov divisors for number fields or metrized line
bundles.

Given a divisor D on a curve X, we have an associated line bundle L (D) and an
integer l(D), which is the dimension of the vector space H0(X,L (D)). One of the
most well known theorems for curves is the Riemann-Roch theorem, which relates
l(D) to the degree deg D of a divisor. It states that there is a canonical divisor K
such that for each divisor D we have

l(D) − 1
2 deg D = l(D†) − 1

2 deg(D†), where D† = K − D.

Following Van der Geer and Schoof [3], this article presents a function h0 such
that for a metrized line bundle L of a number field, we have

h0(L) − 1
2 deg L = h0(L†) − 1

2 deg L†.

In this article we will find analogues for three theorems for curves, stated here.

1



2 An arithmetic analogue of Clifford’s theorem

1. Theorem.
(1) Let D be a divisor on a curve. If deg D < 0, then l(D) = 0.
(2) Let D be a divisor on a curve with deg D ≥ 0. Then l(D) ≤ 1 + deg D.
(3) (Clifford’s theorem) Let D be a divisor on a curve such that l(D) > 0 and

l(D†) > 0. Then l(D) ≤ 1
2 deg D + 1.

Proof. For (1) and (3), see Hartshorne [4, lemma IV.1.2 and IV.5.4]. For (2),
see Fulton [2, proposition 8.2.3].

Arithmetic analogues to the three theorems above are also considered in the
preprint of Van der Geer and Schoof [3]. As for the first one, they prove that h0(L)
tends doubly exponentially fast to 0 in terms of the degree of L when deg L becomes
negative. Our result is basically the same, although the bound that we will prove
is more explicit. As for the second statement, Van der Geer and Schoof have a
conjecture for number fields that are Galois over Q or over an quadratic imaginary
number field. The conjecture has been proven by P. Francini for quadratic number
fields [1].

2. Statement of Clifford’s theorem for number fields

We give a working definition of a metrized line bundle now, in order to state Clifford’s
theorem. For a full definition, see section 6.

Let K be a number field with ring of integers R. We can write R ⊗
Z

R as a
product

R ⊗
Z

R =
∏

v∈S∞

Kv,

where S∞ is the set of infinite primes of K. Each Kv is isomorphic to either R or C,
so it should be clear what it means to take the complex conjugate of an element
in Kv and hence of an element in R ⊗

Z

R. A metrized line bundle is a projective
R-module L of rank 1 together with an inner product 〈 · , · 〉 on L⊗

Z

R, such that for
x, y ∈ L ⊗

Z

R and a ∈ R ⊗
Z

R, we have

〈ax, y〉 = 〈x, a∗y〉,
where a∗ is the complex conjugate of a. The dual of a metrized line bundle L is given
by L† = Hom(L,Z). The elements of L† can be identified with the elements of L⊗ZR

that have integer valued inner product with every element of L. The degree of a line
bundle L is given by

deg L = log(
√

|∆|/ vol L),

where ∆ is the discriminant of K and volL is the covolume of the lattice L in L⊗
Z

R.
Finally we define

k0(L) =
∑

x∈L

e−π〈x,x〉 and h0(L) = log k0(L).

These definitions give rise to the Riemann-Roch theorem from section 1.
The main goal is to give an analogue of Clifford’s theorem, which we state here.
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2. Theorem (Clifford’s theorem). Let K be a number field of degree n over Q
and let L be a metrized line bundle with deg L ≥ 0 and deg L† ≥ 0. Then we have

h0(L) ≤ n log ω + n log n + 1
2 deg L,

where ω =
∑

n∈Z e−πn2

.

3. Riemann-Roch for lattices

A Euclidean space E is a finite dimensional vector space over R, equipped with a
positive definite symmetric R-bilinear map

〈 · , · 〉:E × E → R,

which we call the inner product or Euclidean structure. A norm ‖ · ‖ on E is con-
structed in the obvious way by setting ‖x‖ =

√

〈x, x〉 for x ∈ E. The norm uniquely
determines the inner product by

〈x, y〉 =
‖x + y‖2 − ‖x‖2 − ‖y‖2

2
.

If we have 〈x, y〉 = 0 for x, y ∈ E, then we say that x and y are perpendicular and
we write x ⊥ y. Given a subspace V of E we write V ⊥ = {x ∈ E : x ⊥ V } for the
orthogonal complement of V . Given a subset S ⊂ E we write span S for the smallest
linear subspace of E containing S.

A lattice in a Euclidean vector space is a discrete subgroup of E. A lattice has
a Z-basis and the rank is given by the cardinality of this basis. If the rank is equal
to the dimension of the vector space E, it is said to have full rank. If L is of full
rank and has basis b1, . . . , bn, then the volume volL of L is given by the volume of
parallelepiped

{λ1b1 + · · · + λnbn : λi ∈ R, 0 ≤ λi < 1 },
where the volume is measured by the Haar measure induced by the inner product.
A lattice L has a dual lattice L†, defined by

L† = {x ∈ span L : 〈x,L〉 ⊂ Z }.
The Riemann-Roch theorem for lattices is better known as the Poisson summa-

tion formula. If E is a Euclidean space and f is a C∞-function E → C such that
for all m the function x 7→ |x|mf(x) is bounded, we call such a function a rapidly
decreasing function. We can take the Fourier transform of of a rapidly decreasing
function f as follows. Let dx be the Haar measure on E induced by the inner product.
Furthermore, define the function [ · , · ]:E × E → T to the circle T by

[x, y] = e−2πi〈x,y〉.

Then the Fourier transform f̂ :E → C of f is defined by

f̂(y) =

∫

E

f(x)[x, y] dx.

We can now state the Poisson summation formula.
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3. Proposition. Let L be a lattice of full rank in a Euclidean vector space E
and let L† be the dual lattice. Let f be a rapidly decreasing function on E. Then we
have

∑

x∈L

f(x) =
1

vol L

∑

y∈L†

f̂(y).

Proof. See Neukirch [5, VII.3.2].

Given a subset S of a Euclidean space, we define k0(S) as

k0(S) =
∑

x∈S

e−π〈x,x〉

if the sum converges. In particular, k0 is well-defined on lattices and cosets of lattices.
An application of the Poisson summation formula gives a multiplicative version of
the Riemann-Roch theorem for lattices.

4. Theorem (Riemann-Roch). For every lattice L, we have

k0(L)
√

vol L = k0(L†)
√

volL†.

Proof. The function x 7→ e−π〈x,x〉 is self-dual with respect to taking Fourier
transforms (see [5, VII.3.1]). Furthermore, we have volL = (vol L†)−1. The theorem
now follows directly form the Poisson summation formula.

4. Estimates for k0

Let L be a lattice in a Euclidean space E. The minimum of L is the length of the
shortest nonzero vector in L. A minimal vector is a vector with length equal to the
minimum. We have the following lemma.

5. Lemma. Let L be a lattice with minimum λ. Define αt for t ∈ R≥0 as

αt = #{x ∈ L : 〈x, x〉 ≤ λ2t }.

Then we have

k0(L) =

∫ ∞

0

αtλ
2πe−πλ2t dt.

Proof. We can write

k0(L) =
∑

x∈L

e−π〈x,x〉 =
∑

x∈L

∫ ∞

〈x,x〉
πe−πt dt =

∫ ∞

0

#{x ∈ L : 〈x, x〉 ≤ t }πe−πt dt.
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A substitution of λ2t for t in the above expression yields the lemma.

6. Lemma. Let L be a lattice with minimum λ. Let αt be defined as in
lemma 5. Then we have

αt ≤ (2
√

t + 1)n.

Proof. Let t be any positive real number and let At be the set

At = {x ∈ L : 〈x, x〉 ≤ λ2t }.

The distance between any two points in At is at least λ. Hence, if x and y are two
different points of At, the open balls Bλ/2(x) and Bλ/2(y) with radius λ/2 and center
x and y are disjunct. The union of all balls Bλ/2(x) for all x ∈ At is a subset of a

large ball with radius λ
√

t + λ/2. Hence, by taking the quotient of the volume of the
large ball with radius λ

√
t + λ/2 and a small ball with radius λ/2 we get

αt = #At ≤
(λ

√
t + λ/2

λ/2

)n

= (2
√

t + 1)n.

7. Corollary. Let L be a lattice with minimum λ. Then we have

k0(L) ≤ 1 +

∫ ∞

1

(2
√

t + 1)nλ2πe−πλ2t dt.

8. Proposition. Let L be a lattice of rank n and with minimum λ ≥ √
n.

Then we have

k0(L) ≤ 1 +
3nπ

π − log 3
e−πλ2

.

Proof. We have 2
√

t + 1 ≤ 3t for t ≥ 1. Hence by corollary 7, we get

k0(L) − 1 ≤ πλ2

∫ ∞

1

3nte−πλ2t dt = πλ2

∫ ∞

1

e(−πλ2+n log 3)t dt

=
πλ2

πλ2 − n log 3
eπλ2+n log 3 =

3nπλ2

πλ2 − n log 3
e−πλ2 ≤ 3nπ

π − log 3
eπλ2

.

This proves the proposition.
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5. Clifford’s theorem for lattices

We write Z for the unit bundle of Q and we write ω = k0(Z). We have ω ≈ 1.086.

9. Lemma. For λ > 0, we have k0(λZ) ≤ ω max{1, λ−1}.
Proof. It is clear that for λ ≥ 1, we have k0(λZ) ≤ k0(Z) = ω. Now assume

λ ≤ 1. The dual lattice of λZ is equal to λ−1
Z and by Riemann-Roch for lattices,

we get k0(λZ) ≤ k0(λ−1
Z) vol(λ−1

Z) ≤ ωλ−1.

10. Lemma. Let L be a lattice of full rank in a Euclidean vector space E. The
function E/L → R that sends a coset Z of L to k0(Z) attains a unique maximum
in L.

Proof. Recall that for y, z ∈ E, we have defined [y, z] as [y, z] = e−2πi〈y,z〉.
Let f be a rapidly decreasing function E → C and for z ∈ E let g equal f , translated
over z, i.e., g(x) = f(x+z). Then we can express the Fourier transform of g in terms

of f̂ as

ĝ(y) =

∫

E

f(x + z)[x, y] dx =

∫

E

f(x)[x − z, y] dx

=

∫

E

f(x)[z, y]−1[x, y] dx = [z, y]−1f̂(y).

The Poisson summation formula gives us

∑

x∈z+L

f(x) =
∑

x∈L

g(x) =
1

vol L†

∑

y∈L†

[z, y]−1f̂(y).

We specialize for the case f(x) = f̂(x) = e−π〈x,x〉. Then this sum is maximal if [z, y]
equals 1 for all y, hence if z is in L.

11. Lemma. Let L be a lattice of full rank in a Euclidean vector space E. Let
π be an orthogonal projection on a subspace of E such that the image πL is discrete.
Let L′ ⊂ L be the kernel of π. This gives an exact sequence

0 −→ L′ −→ L
π−→ πL −→ 0.

Then we have
k0(L) ≤ k0(L′)k0(πL).

Equality holds if and only if L is equal to the direct sum L′ ⊕ πL.

Proof. As for x ∈ L′ and y ∈ πL, we have e−π〈x,x〉e−π〈y,y〉 = e−π〈y+x,y+x〉 we
have k0(L′⊕πL) = k0(L′)k0(πL). For each x ∈ πL choose an element l(x) ∈ π−1(x).
Then we have

k0(L′ ⊕ πL) =
∑

x∈πL

k0(x + L′) and k0(L) =
∑

x∈πL

k0(l(x) + L′).
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Let E′ be the subspace of E spanned by L′ and let x be an element of πL. For y ∈ E′

we have 〈x + y, x + y〉 = 〈x, x〉〈y, y〉 and hence

k0(x + L′) = e−π〈x,x〉k0(L′) and k0(l(x) + L′) = e−π〈x,x〉k0(l(x) − x + L′).

Hence, by lemma 10, we have k0(x + L′) ≥ k0(l(x) + L′), where we have equality
only if l(x) ∈ x + L′.

Given a lattice L, we want to have some way of bounding k0(L) in terms of its
minimum. By lemma 9, this is trivial if the rank of L is 1. For the higher rank case
we will use orthogonal projection and lemma 11 to reduce to the 1-dimensional case.

In order to give these bounds, we use Hermite constants, so here is a quick
reminder what they are. The ith Hermite constant γi is defined as the smallest
real number such that any lattice of rank i and with volume 1 has a vector with

length at most γ
1/2
i . In general, a lattice L of rank i has a vector of length at

most γ
1/2
i (vol L)1/2. It follows from the Minkowski bound that the inequality γi ≤ i

holds.

12. Proposition. Let L be a lattice of rank n with minimum λ. Then we
have

k0(L) ≤ ωn
n∏

i=1

max{1, γi/λ}.

Proof. Let L be contained in a Euclidean vector space E. We inductively
choose b1, . . . , bn ∈ E as follows. The element b1 is equal to a minimal vector of the
dual lattice L†. Then we project the lattice L orthogonally on b1R. The projection
map is given by

x 7−→ 〈x, b1〉
〈b1, b1〉

b1.

Let L1 be the kernel of the projection map. That is, L1 consists of all elements of L
perpendicular to b1. Then b2 is chosen as a minimal vector of L†

1. In general, bi is

chosen such that it is a minimal vector of the dual L†
i of the sublattice Li of L given

by all elements of L perpendicular to span{b1, . . . , bi−1}. The image of Li under
orthogonal projection on biR is

bi

〈bi, bi〉
Z

∼= 1

‖bi‖
Z.

Hence, by lemma 11 we have

k0(L) ≤
n∏

i=1

k0(‖bi‖−1
Z).
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We will now give bounds for k0(‖bi‖−1
Z). If M is a lattice of rank i with minimum

at most λ and if b is a minimal vector of the dual lattice M†, we have

‖b‖ ≤ γ
1/2
i (vol M†)1/i = γ

1/2
i (volM)−1/i ≤ γi/λ.

By lemma 9, we have

k0(‖bi‖−1
Z) ≤ ω max{1, ‖bi‖} ≤ max{1, γi/λ}.

This completes the proof.

13. Proposition. Let L be a lattice in E of rank n with minimum λ. Let
W be the smallest subspace of E such that all points of L that are not in W have
distance at least 1 to W . We write l = dimW . Then we have

k0(L) ≤ ωn max{1, n/λ}lnn−l

Proof. Let l be the dimension of W and define L′ as L′ = W ∩ L. Let π be
orthogonal projection on W⊥ and let the image of L be denoted πL. Then πL has
minimum greater or equal to 1. Hence, by lemma 11, we have

k0(L) ≤ k0(L′)k0(πL).

Applying proposition 12 twice yields

k0(L) ≤ ωn
l∏

i=1

max{1, γi/λ}
n−l∏

i=1

γi.

We use γi ≤ n to get the wanted inequality.

14. Lemma. Let L be a lattice contained in a Euclidean vector space E and
let W be the smallest subspace of E such that all points of L that are not in W have
distance at least 1 to W . Similarly, let W † be such a set for L†. Then W and W †

are perpendicular. In particular dim W + dim W † ≤ rank L.

Proof. Suppose W and W † are not perpendicular. Then there exists a y ∈
L† ∩ W † with y /∈ W † ∩ W⊥. By minimality of W † we can choose y with distance
to W † ∩ W⊥ smaller than 1. Hence, there is a y′ ∈ W † ∩ W⊥ with ‖y − y′‖ < 1.
Similarly, there is a z ∈ L ∩ W with z /∈ W ∩ (W †)⊥ and a z′ ∈ W ∩ (W †)⊥ such
that ‖z − z′‖ < 1. Hence we get

1 > ‖z − z′‖‖y − y′‖ ≥ |〈z − z′, y − y′〉| = |〈z, y〉|.
As 〈z, y〉 is an integer and z and y are not perpendicular, this is a contradiction.

Combining proposition 13 and lemma 14, we get the following corollary. In
section 7, Clifford’s theorem for number fields follows directly from this corollary.
Therefore, we see this corollary as an analogue of Clifford’s theorem for lattices.

15. Corollary. Let L be a lattice of rank n with minimum λ and let the dual
L† have minimum λ†. Then we have

k0(L) ≤ ωn max{1, 1/λ}n/2nn or k0(L†) ≤ ωn max{1, 1/λ†}n/2nn.
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6. Metrized line bundles

Now we turn to the number field case and prove arithmetic analogues of the geometric
theorems mentioned in the introduction. As we shall see, almost all of the work is
already done in the sections about lattices. We need a few facts about Euclidean
spaces and finite étale algebras over R in order to define hermitian modules and
metrized line bundles.

We state the following lemma without proof.

16. Lemma.
(1) If E1 and E2 are Euclidean spaces, the tensor product E1 ⊗ E2 has a unique

Euclidean structure such that for x, y ∈ E1 and x′, y′ ∈ E2, we have

〈x ⊗ x′, y ⊗ y′〉 = 〈x, y〉〈x′, y′〉.

(2) Every quotient space D of a Euclidean space E, given by φ:E → D, has an
induced Euclidean structure given by (kerφ)⊥ ∼= D such that ‖z‖ = infφ(x)=z ‖x‖
for z ∈ D.

(3) The Endomorphism End
R

(E) of a Euclidean space E has a natural involution
φ 7→ φ∗, where the adjoint φ∗ of φ is the unique element of End

R

(E) such that
the relation 〈φa, b〉 = 〈a, φ∗b〉 holds.

The category of finite étale algebras over R consists of the finite R-algebras A such
that the map φ:A → Hom

R

(A,R) given by φ(x)(y) = Tr(xy) is an isomorphism. Here
Tr is the trace map from A over R. If we let v range over the points of S = spec A,
we get a decomposition A =

∏

v Av, where Av is the residue class field. Every Av is
isomorphic to R or C. For every v ∈ spec A, we have a projection map φ:A → Av. We
contend that the identity functor on the category of the finite étale algebras over R
has exactly one nontrivial automorphism. Indeed, suppose we have a functorial
automorphism x 7→ x∗ on every finite étale algebra over R. Then for all projections
π:A → Av and all elements x ∈ A we have π(x∗) = φ(x)∗. Hence, on each étale
algebra our nontrivial automorphism is complex conjugation on the factors Av that
are isomorphic to C and is trivial on factors isomorphic to R. When we talk about
the involution of a finite étale algebra over R we mean this map.

Let M be a module over an étale algebra A over R, with a Euclidean structure.
Then M is called hermitian if the natural map A → End

R

(M) preserves involutions.
This is equivalent to the condition that for all a ∈ A and m1, m2 ∈ M we have

〈am1,m2〉 = 〈m1, a
∗m2〉.

If we are given two Hermitian modules M and N over A, then M ⊗
R

N is a Euclidean
space and the quotient space M⊗AN has a natural Euclidean structure. Furthermore,
we can view A as a module over itself and give it the unique Euclidean structure such
that the inner product on A and the induced inner product on A⊗A A is compatible
with the map A ⊗A A ∼−→ A. This is the canonical inner product for A. A trace of
the definitions results in the following lemma.
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17. Lemma.
(1) Let M and N be hermitian modules, free of rank 1 over a field A, algebraic

over R. For m ∈ M , n ∈ N and m ⊗ n ∈ M ⊗A N , we have

‖m ⊗ n‖ = [A : R]−1/2‖m‖ · ‖n‖.

(2) Let A be a finite étale algebra over R and let M and N be hermitian modules
over A, free of rank 1. Then, for v ∈ spec A, we have an isomorphism

(M ⊗A N)v
∼= Mv ⊗Av Nv

as hermitian modules.
(3) Let A be a finite étale algebra, viewed as a hermitian module over itself with

the canonical inner product. Let v be an element of spec A and let ‖ · ‖v be the
restriction of ‖ · ‖ to Av. Then we have ‖1‖v = [Av : R]1/2.

We are now ready to give the definition of a metrized line bundle. Let K be a number
field and let R be its ring of integers. A line bundle on R is a projective R-module
L of rank 1. Now R ⊗

Z

R is a finite étale algebra over R and L ⊗
Z

R is a module of
rank 1 over R ⊗

Z

R. We call L a metrized line bundle over R if L ⊗
Z

R is given a
Euclidean structure such that it becomes an hermitian module over R ⊗

Z

R.
Two metrized line bundles are isomorphic if there is an R-module isomorphism

that preserves the inner product. Given two metrized line bundles L1, L2 over R, their
product L1L2 is given by the module L1⊗RL2. The inner product on (L1⊗RL2)⊗Z

R

is given by the canonical isomorphism

(L1 ⊗R L2) ⊗Z

R

∼= (L1 ⊗Z

R) ⊗R⊗R (L2 ⊗Z

R).

The set of isomorphism classes of metrized line bundles over R is denoted PicK
and with this multiplication it is a group. The unit element is equal to R with the
canonical Euclidean structure on R ⊗

Z

R. We call R with this structure the unit
bundle.

Let L be a metrized line bundle over R and let S∞ be the set of infinite primes
of K. Then we have a decomposition L ⊗

Z

R =
∏

v∈S∞ Lv, where Lv = L ⊗ Kv is a
1-dimensional Kv-vector space. The factors Lv are perpendicular and we write ‖ · ‖v

for the restriction of the norm to Lv. For instance, if R is the unit bundle and ‖ · ‖v

is the restricted norm on Rv = Kv, we have

‖1‖v =
√

[Kv : R].

We define the norm of a metrized line bundle L as

N(L) =
vol R

vol L
=

√

|∆|
volL

,

where ∆ is the discriminant of K. The degree is defined as deg L = log N(L).
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18. Proposition.
(1) The norm function is a group homomorphism Pic K → R>0.
(2) If L is a metrized line bundle and t ∈ L is any nonzero element, then

N(L) = #(L/Rt)
/ ∏

v∈S∞

‖t‖[Kv :R]

[Kv : R]
.

Proof. Define Mt by

Mt =
∏

v∈S∞

‖t‖[Kv:R]
v

[Kv : R]
.

As we have ‖1‖v =
√

[Kv : R], we can also write

Mt =
∏

v∈S∞

( ‖t‖v

‖1‖v

)[Kv :R]

.

Consider the map R ⊗
Z

R→ L ⊗
Z

R given by multiplication with t. It blows up the
measure by a factor Mt. Hence, we have

Mt volR = vol Rt = (volL)/[L : Rt].

This proves (2). To prove (1) one uses (2) together with some explicit calculations.

Let L be a metrized line bundle over R. Then it can be viewed as a lattice in
L ⊗

Z

R. Hence, we have a definition for k0(L), given as

k0(L) =
∑

x∈L

e−π〈x,x〉.

Furthermore, we define h0(L) as

h0(L) = log k0(L).

Both k0 and h0 induce functions from PicK to R. In order to state the Riemann-
Roch theorem, we need the notion of the dual of a metrized line bundle L. Consider
the map

L ⊗
Z

R −→ Hom
R

(L ⊗
Z

R,R)

x 7−→ 〈x, · 〉.
This map is an isomorphism, giving

Hom
R

(L ⊗
Z

R,R) = Hom
Z

(L,Z) ⊗
Z

R

a canonical Euclidean structure. We let L† be Hom(L,Z) with this structure.

19. Proposition (Riemann-Roch). Let L be a metrized line bundle. Then
we have

h0(L) − 1
2 deg L = h0(L†) − 1

2 deg L†.

Proof. This follows directly from the Riemann-Roch theorem for lattices.
This formula also appears in [3, Proposition 1] in a different form.
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7. Analogues of theorems for curves

We have set up everything to prove in quick succession the analogues of the geometric
theorems mentioned in section 1. The only lemma we need to tie the results for
lattices to metrized line bundles is the following lemma, that relates the minimum of
a lattice to the norm of the line bundle.

20. Lemma. Let n be the degree of a number field K, and let L be a metrized
line bundle. Then for all elements x ∈ L, we have

‖x‖2 ≥ nN(L)−2/n.

Proof. The geometric-arithmetic mean inequality and proposition 18 give for
nonzero x ∈ L the estimate

‖x‖2 =
∑

v∈S∞

‖x‖2
v =

∑

v∈S∞

[Kv : R]
‖x‖2

v

[Kv : R]
≥ n

(
∏

v∈S∞

( ‖x‖2
v

[Kv : R]

)[Kv :R]
)1/n

= n

(
∏

v∈S∞

‖x‖[Kv :R]

[Kv : R]

)2/n

≥ n
(#(L/Rx)

N(L)

)2/n

≥ nN(L)−2/n.

First, we will prove the analogue of the geometric fact that l(D) = 0 if the
degree of a divisor D is negative. The proposition states that h0(L) tends doubly
exponentially fast to zero in terms of the degree of L when the degree becomes
negative. This was already noted by Van der Geer and Schoof [3, Corollary 1 to
Proposition 2].

21. Proposition. Let K be a number field of degree n over Q and let L be a
metrized line bundle of degree at most 0. Then we have

h0(L) <
3nπ

π − log 3
e−πne− 2

n
deg L

.

Proof. Immediate from proposition 8 and lemma 20 and the fact that h0(L) ≤
k0(L) − 1.

Second, we prove the analogue of the geometric theorem that l(D) ≤ 1 + deg D
if D is effective.

22. Proposition. Let K be a number field of number field of degree n over Q
and let L be a metrized line bundle with deg L ≥ 0. Then we have

h0(L) ≤ n log ω + 1
2n log n + deg L.
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Proof. Let λ be the minimum of the lattice L. The assumption deg L ≥ 0
translates into N(L) ≥ 1. Using proposition 12, the fact that γi ≤ n and lemma 20,
we get

k0(L) ≤ ωn max{1,
(n

λ

)n

} ≤ ωn max{1,
nn

nn/2
N(L)} = ωnnn/2N(L).

Finally, take the logarithm to prove the proposition.

The third analogue is Clifford’s theorem for number fields, of which a sneak
preview was given in section 2, theorem 2.

23. Theorem (Clifford’s theorem). Let K be a number field of degree n over
Q and let L be a metrized line bundle with deg L ≥ 0 and deg L† ≥ 0. Then we have

h0(L) ≤ n log ω + n log n + 1
2 deg L.

Proof. By corollary 15, we have k0(M) ≤ ωnnn max{1, 1/µ}n/2, where M is
either L or L† and µ is the minimum of M . Using 1/µ ≤ N(M)1/n, we get

k0(M) ≤ ωnnnN(M)1/2.

and hence
h0(M) ≤ n log ω + n log n + 1

2 deg M.

Using Riemann-Roch, we also have

h0(M†) ≤ n log ω + n log n + 1
2 deg M†.

As we have L = M or L = M†, this proves the theorem.
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TORELLI FOR NUMBER FIELDS

Richard P. Groenewegen

Abstract — When we view number fields as analogues of curves, the analogue
of a line bundle on a curve is an Arakelov divisor or metrized line bundle over
the ring of integers. A metrized line bundle is a projective module of rank 1
over the ring of integers and it has an inner product on its tensor product with
the real numbers. Given a metrized line bundle L, we use the inner product
to produce a weighted sum h0(L) over the points in L. The function h0 was
proposed by Van der Geer and Schoof and they remarked that, when given
the metrized line bundles of certain degree together with this function h0,
one should be able to reconstruct the number field. This is the analogue of
Torelli’s theorem for curves. We make this remark precise and prove a weaker
form where we are given all metrized line bundles instead of just the ones of a
particular degree. We discuss in what ways the theorem might be generalized
and what problems occur in trying to prove the generalizations.

1. Introduction

It is well accepted to view number fields as analogues of curves. In the correspon-
dence between curves and number fields, the analogue of the divisor on a curve is an
Arakelov divisor. Van der Geer and Schoof introduced in [2] the notion of the size of
an Arakelov divisor. This is also related to earlier work of Iwasawa [4] and Tate [7].
Given an Arakelov divisor D, the size h0(D) can be interpreted as an analogue of the
dimension of the vector space of sections of the line bundle associated to a geometric
divisor on an algebraic curve. Using the size function h0, arithmetical analogues of
standard geometrical theorems like the Riemann-Roch theorem can be stated and
proved, as is done in [2]. In [3], the definition of the size function is repeated using
the language of metrized line bundles instead of Arakelov divisors and an arithmetic
analogue of Clifford’s theorem is given.

This article deals with an analogue of Torelli’s theorem. The interest for Torelli’s
theorem was raised by the following remark in [2]:

“Let d = 1
2 log |∆|. We view the restriction of the function h0 to Pic(d)(F )

as the analogue of the theta divisor Θ. The function h0 is a real analytic
function on the space Pic(d)(F ). It should be possible to reconstruct the

arithmetic of the number field F from Pic(d) together with this function.”

This remark refers to Torelli’s theorem that says that a curve is uniquely determined
by its canonically polarized Jacobian (see [6]). Part of the problem we face is making
the remark above precise and another part of the problem is proving our precise
statement. The two problems combined, however, have the virtue that we can cus-
tomize the precise statement to what we can prove. Consequently, there are some
conditions in our suggested analogue of Torelli’s theorem that we would like to relax.
For instance, contrary to what the remark above suggests, we will not restrict the

15
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function h0 to Pic(d), but use the function h0 on the entire Picard group. In the
last section of this article we discuss briefly what kind of problems arise when we use
weaker conditions.

Let K be a number field with ring of integers OK . Write SfinK for the set of
finite primes of K and S∞K for the set of infinite primes. The group of divisors Div K
is defined as the group

R

S∞K ×
⊕

p∈SfinK

Z.

A divisor D has a corresponding fractional ideal I defined by I =
∏

p∈SfinK p−Dp .
Furthermore, every element x ∈ I has an absolute value ‖x‖ given by

‖x‖2 =
∑

p∈S∞K

n(p)|x|2pe−2Dp/n(p),

where | · |p:Kp → R is the usual absolute value and n(p) is equal to the degree [Kp : R].
We will define metrized line bundles in section 2, but for now it is sufficient to know
that an isomorphism class of metrized line bundles can be represented by giving a
fractional ideal and an absolute value for every element in the ideal. The set of
isomorphism classes of metrized line bundles on K is called Pic K and we get a map

L : Div K −→ Pic K.

We have a natural map h0: PicK → R defined as follows. Given an element Λ
of PicK, represented by an ideal of K, which we will also call Λ, and an absolute
value ‖ · ‖, we have

h0(Λ) = log
∑

x∈Λ

e−π‖x‖2

.

Let L be another number field. We will prove a theorem that says that there is an
isomorphism K → L if and only if there exists a map λ:RS∞K → R

S∞L satisfying
certain conditions such that the diagram

R

S∞K

λ

Div K
L

Pic K
h0

R

R

S∞L Div L
L

Pic L

h0

is commutative. We will also check that the map λ is induced by the isomor-
phism K → L. The condition we impose on λ is that it is a ‘strongly monomial’
map. This terminology is invented specifically for this article and it is not used any-
where else in the literature. We call a map λ:RS∞K → R

S∞L monomial if it is a
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non-singular R-linear map which can be represented by a matrix with exactly one
nonzero entry in each row and in each column. We can state this more precisely
as follows. The map λ is monomial if there exists an element x ∈ (R∗)S∞K and a
bijection τ :S∞L → S∞K such that λ is equal to the composition of coordinate-wise
multiplication by x, followed by the map τ∗:RS∞K → R

S∞L induced by τ . If we
denote multiplication by x by mx:RS∞K → R

S∞K , we can write

λ = τ∗ ◦ mx.

We call the map λ strongly monomial if the underlying bijection τ respects the degree
of the primes. More precisely, λ is strongly monomial if there are x ∈ (R∗)S∞K and
a bijection τ :S∞L → S∞K such that λ is equal to τ∗ ◦ mx and we have

[Lp : R] = [Kτ(p) : R] for all p ∈ S∞L.

We write h0
K for the composition of the maps

R

S∞K −→ Div K
L−→ Pic K

h0

−→ R.

Using this notation, the statement that the diagram above commutes can be written
more succinctly as h0

K = h0
L ◦ λ.

We denote the set of field isomorphisms from K to L by Isom(K,L). When K
and L are not isomorphic, this set is empty. Suppose φ:K → L is an isomorphism.
Then this map induces a bijection φ∗:S∞L → S∞K and this induces a strongly
monomial map φ∗∗:RS∞K → R

S∞L such that we have h0
K = h0

L ◦ φ∗∗. The next
theorem says that all strongly monomial maps λ with h0

K = h0
L◦λ are of the form φ∗∗.

By a CM-field we mean a totally imaginary quadratic extension of a totally real field.

1. Theorem. Let K and L be number fields. Then the map

Isom(K,L) −→ {strongly monomial λ:RS∞K → R

S∞L : h0
K = h0

L ◦ λ }
given by φ 7→ φ∗∗ is surjective. The map is injective unless K and L are isomorphic
CM-fields. When K and L are isomorphic CM-fields the map is 2 to 1 and φ and φ′

in Isom(K,L) have the same image if and only if they are the same or each other’s
complex conjugate.

The bulk of this article is concerned with the proof of this theorem. The first and
easiest step in the proof shows that if a monomial map λ:RS∞K → R

S∞L satisfies
h0

K = h0
L ◦ λ, it is equal to τ∗ for some bijection τ :S∞L → S∞K. It is useful

however to allow (strongly) monomial maps. To see why, we note that the map
L : Div K → Pic K, we presented is not a canonical map. For x ∈ (R∗)S∞K we write
mx: Div K → Div K for the map that multiplies an Arakelov divisor coordinate-wise
with x and leaves the coordinates at the finite primes untouched. In lemma 4, we will
prove that every ‘reasonable’ map L ′: Div K → Pic K is of the form L ′ = L ◦ mx

for some x ∈ (R∗)S∞K . Say we do not agree with the scaling used in the definition
of L and we use another map L ′: Div K → Pic K of the form L ◦ mx instead
of L . Likewise, we may have preferred to use a map L ′′: Div L → Pic L of the form
L ′ = L ◦ my for an element y ∈ (R∗)S∞L. Now the following follows trivially from
theorem 1.
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2. Corollary. Let K, L, L ′, L ′′, x and y be given as above. Then the map

Isom(K,L) −→ {strongly monomial λ :

R

S∞K

λ

Div K
L

′

Pic K h0

R

R

S∞L Div L
L

′′

Pic L h0

commutes }

given by φ 7→ m−1
y ◦ φ∗∗ ◦mx is surjective. The map is injective unless K and L are

isomorphic CM-fields and the map is 2-to-1 if they are CM-fields, in the same way
as in theorem 1.

If there are values c and r ∈ R

∗ for which we have yp = xp = r for all real
primes p and yq = xq = c for all complex primes q, then m−1

y ◦ φ∗∗ ◦ mx is equal
to φ∗∗ and in that case corollary 2 has the same form as theorem 1.

The proof of theorem 1 is divided over three sections. In section 4 we prove
that every monomial λ:RS∞K → R

S∞L with h0
K = h0

L ◦ λ is of the form λ = τ∗ with
τ :S∞L → S∞K a bijection. This follows in just a few steps from the Riemann-Roch
theorem for number fields. In section 5, we write h0

K in terms of something which
we call the multi-length of K. The multi-length is a function RS∞K → Z given by

y 7−→ #{ a ∈ OK : yp = |a|2p for all p ∈ S∞K }.

We use standard analysis to prove that the multi-length of K and the multi-length
of L are ‘the same’ if we have h0

K = h0
L ◦ τ∗. In section 6, we embed K and L

in a number field M ⊂ C which is Galois over Q. We write G = Gal(M/Q) and
let S be the G-set of embeddings of K in M and T the G-set of embeddings of L
in M . Proving that K and L are isomorphic is the same as proving that S and T
are isomorphic G-sets. We take a prime q ∈ SfinM above a prime in Q that splits
completely. Using the bijection τ :S∞L → S∞K, identify S∞K = S∞ and S∞L and
assume the multi-length functions of K and L are the same. Consider the set

{ (|a|2p)p∈S∞
: a ∈ OK } = { (|a|2p)p∈S∞

: a ∈ OL }.

This set is actually contained in (OM ∩R)S∞ . Now, on each coordinate we can apply
the map v:OM r{0} → Z

G
≥0 given by x 7→ (ordq σx)σ∈G and in this way we get a

subset of ZG×S∞

≥0 on which we have a natural G-action. Assuming we are not in the
CM-case, it turns out that the elements in the subset with ‘minimal sum’ form a
G-set which is isomorphic to S and by symmetry also to T . Hence, the G-sets S
and T are isomorphic.

In section 7, we address possible improvements of theorem 1 and the kinds of
problems that arise when we try to prove them.
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2. Metrized line bundles and Arakelov divisors

The setting is the same as in the introduction. We have a number field K with ring
of integers O = OK . We write SfinK for the set of finite primes of K and S∞K for
the set of infinite primes. When there is no confusion possible about the number field
we are working in, we omit the K from the notation and simply write Sfin and S∞.
We define the group of divisors as

Div K = R

S∞ ×
⊕

p∈Sfin

Z.

For x ∈ R

S∞ we write mx: Div K −→ Div K for the map that multiplies a divisor
coordinate-wise with x at infinity and leaves the finite coordinates untouched.

Divisors are closely related to metrized line bundles, which we will define next.
It would have been possible to use Arakelov divisors exclusively in this article and
not mention metrized line bundles at all, but the language of metrized line bundles
makes it easier to justify the definitions and the theorems. For instance, there are
canonical definitions of h0 and degree on metrized line bundles, whereas on Div K it
depends on the scaling of the coordinates at the infinite primes. The proofs of the
properties stated here can be found in [3].

Let Λ be a projective module of rank 1 over O. Then Λ
R

= Λ ⊗
Z

R is a finite
étale algebra over R and we can write

Λ
R

=
∏

p∈S∞

Λp with Λp = Λ ⊗O Kp.

Each factor Λp is a 1-dimensional vector space over Kp. Clearly, Λ
R

is a module over

O
R

= O ⊗
Z

R =
∏

p∈S∞

Kp.

On each factor Kp, we have complex conjugation and this yields a convolution ∗
on O

R

, given by complex conjugation on each coordinate. A positive definite sym-
metric R-bilinear map

〈 · , · 〉: Λ
R

× Λ
R

−→ R

is called a hermitian structure if for all a, b ∈ Λ
R

and for all m ∈ O
R

, we have
〈a,mb〉 = 〈m∗a, b〉. A projective O-module Λ of rank 1 with a hermitian structure
on Λ

R

is called a metrized line bundle.
We call elements a and b perpendicular and write a⊥b if we have 〈a, b〉 = 0.

Two sets A and B are perpendicular if for all a ∈ A and b ∈ B, the elements a
and b are perpendicular. If Λ is a metrized line bundle and p is an infinite prime, we
view Λp as a subspace of Λ

R

. It follows from the definition that for any two infinite
primes p, q ∈ S∞ with p 6= q, the factors Λp and Λq are perpendicular. Also, when
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p is a complex prime and i ∈ Kp is an element with i2 = −1, we have ia⊥a for
all a ∈ Λp and we also have 〈a, a〉 = 〈ia, ia〉.

A metrized line bundle Λ has a norm map

‖ · ‖: Λ
R

−→ R≥0,

given by ‖x‖ = 〈x, x〉1/2 for x ∈ Λ
R

. The inner product is uniquely determined by
the norm map. For each infinite prime p, we have a local norm map

‖ · ‖p: Λp −→ R≥0

that is the restriction of the norm map to Λp ⊂ Λ
R

. Given a projective O-module Λ
of rank 1 and a nonzero element λ ∈ Λ, specifying a hermitian structure on Λ

R

is
equivalent to specifying a positive value ‖λ‖p for every p ∈ S∞. The norm map is
then given by

‖x‖2 =
∑

p∈S∞

‖xp‖2
p, for x ∈ Λ

R

.

We are using here that Λp is 1-dimensional over Kp, that iλ and λ are perpendicular
and have the same length and that for α ∈ R, we have ‖αλ‖p = |α|‖λ‖p.

Metrized line bundles can be multiplied in a natural way. Let Λ and M be two
metrized line bundles. The product ΛM is the module Λ ⊗O M with a hermitian
structure defined as follows. The R-module Λ

R

⊗
R

M
R

has a natural inner product
which is uniquely determined by

〈λ ⊗ µ, λ′ ⊗ µ′〉 = 〈λ, λ′〉〈µ, µ′〉 for all λ, λ′ ∈ Λ, µ, µ′ ∈ M.

Now (ΛM)
R

is a quotient of Λ
R

⊗
R

M
R

. This means that we have a natural surjective
homomorphism

φ: Λ
R

⊗
R

M
R

−→−→ Λ
R

⊗O
R

M
R

∼= (ΛM)
R

.

Hence, (ΛM)
R

is isomorphic to the orthogonal complement (kerφ)⊥ of the kernel of
this map. As a subspace of Λ

R

⊗
R

M
R

, the space (kerφ)⊥ is endowed with a natural
hermitian structure and (ΛM)

R

is given the induced hermitian structure.

3. Lemma. Let Λ and M be two metrized line bundles over O with norm maps
‖ · ‖Λ and ‖ · ‖M. Write ‖ · ‖ for the norm map of ΛM. Then for all p ∈ S∞ and
all λ ∈ Λ and µ ∈ M we have

‖λ ⊗ µ‖2
p =

1

[Kp : R]
‖λ‖2

Λ,p‖µ‖2
M,p.

Proof. The map φ: Λ
R

⊗
R

M
R

→ (ΛM)
R

factors as

Λ
R

⊗
R

M
R

=
∏

p,q∈S∞

Λp ⊗
R

Mq −→
∏

p∈S∞

Λp ⊗
R

Mp −→
∏

p∈S∞

Λp ⊗Kp
Mp = (ΛM)

R

.
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Let λ ∈ Λ and µ ∈ M be two nonzero elements. For a real prime p, the map φp: Λp⊗R

Mp → Λp ⊗Kp
Mp is the identity map and therefore λ⊗µ is an element in (kerφp)

⊥,
mapping to λ ⊗ µ ∈ Λp ⊗Kp

Mp. Hence, λ ⊗ µ ∈ Λp ⊗
R

Mp ⊂ Λ
R

⊗
R

M
R

is also
in (kerφ)⊥ and we clearly have ‖λ ⊗ µ‖2

p = ‖λ‖2
Λ,p‖µ‖2

M,p. A note of caution is in
order here. The element λ ⊗ µ ∈ Λp ⊗

R

Mp ⊂ Λ
R

⊗
R

M
R

is zero on all the factors
Λq ⊗

R

Mr with either q 6= p or r 6= p. This element is not equal to the element
λ ⊗ µ ∈ Λ

R

⊗
R

M
R

, which is equal to λ ⊗ µ on all the factors Λq ⊗
R

Mr. The local
norm at p is the same in both cases, however.

Although the proof for the case where we have a real prime p may seem a
bit intimidating, the point is that nothing is actually happening because φp is the
identity map. The map φp: Λp ⊗

R

Mp → Λp ⊗Kp
Mp is only interesting when p is

a complex prime. So, suppose p is complex. Then the kernel of φp is the R-vector
space generated by λ ⊗ µ + λi ⊗ µi and λi ⊗ µ − λ ⊗ µi. Because we have λi⊥λ and
µi⊥µ, the element

−λi ⊗ µi + λ ⊗ µ

2

is in (kerφp)
⊥ and it clearly maps to λ ⊗ µ ∈ Λp ⊗Kp

Mp. The square of the local
norm of (−λi ⊗ µi + λ ⊗ µ)/2 is equal to

‖λi‖2
Λ,p‖µi‖2

M,p + ‖λ‖2
Λ,p‖µ‖2

M,p

4
=

1

2
‖λ‖2

Λ,p‖µ‖2
M,p.

This proves our lemma in the same way as for the real case.

Two metrized line bundles are isomorphic if they are isomorphic as O-modules
and the isomorphism preserves the hermitian structure. The multiplication defined
above induces a group structure on the set of isomorphism classes of metrized line
bundles. This group is called the Picard group and is denoted PicK. The unit
element of this group is the ring of integers O and the hermitian structure is given
locally by ‖1‖2

p = [Kp : R].
A careful inspection of the definitions we gave so far, shows that we have an

exact sequence

0 −→ O∗ −→ R

S∞

>0 −→ Pic K −→ ClK −→ 0,

where ClK is the class group of K. The map R

S∞

>0 → Pic K sends an element

x ∈ R

S∞

>0 to the metrized line bundle O with hermitian structure given by ‖1‖2
p =

[Kp : R]x2
p for p ∈ S∞. The map O∗ → R

S∞

>0 sends an element η to (|η|p)p∈S∞
. As

every projective O-module of rank 1 is isomorphic to an ideal of O, this yields the
map PicK → Cl K. We give RS∞

>0 the usual Euclidean topology and give ClK the
discrete topology. This induces a natural topology on PicK.

Now, let D be an Arakelov divisor. Then the fractional ideal corresponding to D
is defined by

I =
∏

p∈Sfin

p−Dp .
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As are all nonzero fractional ideals, I is a projective O-module of rank 1. We are
going to use the coordinates at the infinite primes to define a hermitian structure
on I

R

. We use the exponential map to go from additive coordinates to multiplicative
coordinates. By lemma 3, we need a factor 2 in the complex case in order to get a
homomorphism. For λ ∈ I nonzero and p ∈ S∞, we define

‖λ‖2
p =

{

|λ|2p exp(−2Dp) if p is real;

2|λ|2p exp(−Dp) if p is complex.

Here, | · |p:Kp → R is the usual absolute value with |x|p = |x| for all x ∈ Q. The map
that assigns to a divisor D the line bundle I together with this hermitian structure
is called

L : Div K −→ Pic K.

It should be stressed however, that L is not the only possible map from Div K
to PicK. The scaling we used above is the same that appeared in [2] and is convenient
to use in this article. However, in many ways it would be better to use ‖λ‖2

p =
2|λ|2p exp(−2Dp) for complex primes p. But up to scaling of the coordinates, this
and any other feasible map Div K → Pic K is equal to L . In fact, if we supply a
topology on Div K by giving Z the discrete topology and R the Euclidean topology,
we have the following lemma.

4. Lemma. Let K be a number field and let

L
′: Div K −→ Pic K

be a continuous homomorphism such that for all D ∈ Div K the underlying module
of L ′(D) is equal to I =

∏

p∈Sfin
p−Dp and the local norm map ‖ · ‖p of L ′(D) at a

prime p ∈ S∞ only depends on Dp. Then there is an element x ∈ (R∗)S∞ with

L
′ = L ◦ mx.

Proof. This follows from lemma 3 and the fact that x 7→ ex is the only
continuous homomorphism R→ R>0 that maps 1 to e.

For a metrized line bundle Λ, we define the norm as

N(Λ) =

√

|∆|
detΛ

,

where ∆ is the discriminant of K. The degree is defined as deg Λ = log N(Λ).
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5. Lemma.
(1) The degree function is a group homomorphism Pic K → R.
(2) If Λ is metrized line bundle and t ∈ Λ is any nonzero element, then we have

deg Λ = log #(Λ/Ot) −
∑

p∈S∞

log
‖t‖[Kp:R]

p

[Kp : R]
.

(3) The map (deg ◦L ): Div K → R sends a divisor D to

deg L (D) =
∑

p∈Sfin

Dp log N(p) +
∑

p∈S∞

Dp.

Proof. The first two statements are proved in [3, proposition 6.3]. It is pos-
sible to derive the third statement from (2) but we choose to prove it directly. It
suffices to prove

N(L (D)) = N(I)−1
∏

p∈S∞

exp(Dp),

where I =
∏

p∈Sfin
p−Dp is the underlying ideal of L (D). When Dp is 0 for all p ∈

S∞, this formula is obviously correct. When Dp is nonzero at some real prime p, the
metrics are scaled with a factor exp(−Dp) at that prime and hence the determinant
is scaled with a factor exp(Dp). When Dp is nonzero at some complex prime p,
the metrics are scaled at that prime with a factor exp(−Dp/2), and therefore the
determinant is scaled with a factor exp(Dp) also.

3. The functions k0 and h0

Following Van der Geer and Schoof [2], we define a function k0: PicK −→ R>0 by

k0(Λ) =
∑

x∈Λ

e−π〈x,x〉.

Furthermore, we define h0: Pic K → R by h0(Λ) = log k0(Λ). Let Pic(0) K be the

kernel of the degree map deg: Pic K → R. We first prove that Pic(0) K is a com-
pact group and then we give a variant of the Riemann-Roch theorem, linking the
function h0 to the degree map.

6. Lemma. Let K be a number field. Then Pic(0) K is a compact group.

Proof. Let l:RS∞

>0 → R

S∞ be the map given by

x 7−→ ([Kp : R] log xp)p∈S∞
.
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The map l is an isomorphism of topological groups. We let O∗ → R

S∞ be the
composition of the maps O∗ → R

S∞

>0 and l and we get an exact sequence

0 −→ O∗ −→ R

S∞ −→ Pic K −→ ClK −→ 0.

When we apply the map RS∞

>0 → Pic K to an element x ∈ R

S∞

>0 , we see from lemma 5

that we get an element of degree 0 if and only if
∏

p∈S∞
x

[Kp:R]
p = 1 holds. Using

the map l, this corresponds to the elements of RS∞ with the sum of the coordinates
equal to 0. Let H be the hyperplane {x ∈ R

S∞ :
∑

p∈S∞
xp = 0 }. Then we have an

exact sequence
0 −→ H/ im O∗ −→ Pic(0) K −→ Cl K −→ 0.

By the Dirichlet unit theorem (see [5, section V.1]), the group imO∗ ⊂ H forms a
lattice of full rank. It follows that the topological group H/ imO∗ is compact. Hence,

Pic(0) K has a compact subgroup of finite index and is therefore itself compact.

7. Lemma. Let K be a number field. We have

lim
d→−∞

sup
Λ∈Pic K
deg Λ=d

h0(Λ) = 0.

Proof. This follows from some elementary estimates of the functions h0 and
this lemma is also a weak form of [3, proposition 7.2].

8. Theorem (Riemann-Roch). Let Λ be a metrized line bundle with non-
negative degree. Then we have

lim
n∈Z

n→∞

h0(Λn)

n
= deg Λ and lim

n∈Z
n→−∞

h0(Λn)

n
= 0.

Proof. If the degree of Λ is zero then for each n ∈ Z, we have Λn ∈ Pic(0) K.
Because Pic(0) K is a compact group by lemma 6, and h0: Pic K → R is continuous,
the set {h0(Λn) : n ∈ Z } is bounded. Consequently, the two limits above are both
equal to 0 and of course also both equal to deg Λ.

Now assume deg Λ > 0. The second limit follows directly from lemma 7. Write
Λ† = Hom(L,Z). Consider the map

Λ
R

−→ Hom
R

(Λ
R

,R) = Λ†
R

,

given by x 7−→ 〈x, · 〉. This map is an isomorphism, giving Λ†
R

a canonical hermitian
structure. The Riemann-Roch theorem (see [3, proposition 19]) says that we have

h0(Λ) − 1

2
deg Λ = h0(Λ†) − 1

2
deg Λ†,
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We have detΛ† = (detΛ)−1 and therefore we have deg Λ† = −deg Λ + log |∆|. When
we do the same for Λn instead of Λ, we get

deg(Λn)† = −deg Λn + log |∆| = −ndeg Λ + log |∆|.

We substitute this in the Riemann-Roch formula and we obtain

h0(Λn) = ndeg Λ − 1

2
log |∆| + h0((Λn)†).

As the degree of (Λn)† goes to minus infinity when n goes to infinity, the value
of h0((Λn)†) tends to 0 by lemma 7. Dividing by n and taking the limit for n to
infinity yields the theorem.

4. The monomial map is induced by a bijection

In this section we handle the first step in the proof of theorem 1. We prove that
if λ = τ∗ ◦ mx is a monomial map R

S∞K → R

S∞L with h0
K = h0

L ◦ λ, the element x
is equal to 1 and λ is actually equal to τ∗. This turns out to follow quite easily from
the Riemann-Roch theorem. We use a lemma.

9. Lemma. Let K and L be number fields and let G be a group. Suppose that
f :G → Pic K and g:G → Pic L are homomorphisms such that the diagram

Pic K
h0

G

f

g

R

Pic L
h0

commutes. Then we have deg ◦f = deg ◦g.
Proof. Let x be an element of G. By theorem 8, we have

max
{

lim
n∈Z

n→∞

h0(f(xn))

n
, lim

n∈Z
n→∞

h0(f(x−n))

n

}

= |deg f(x)|.

The commutativity of the diagram now ensures that we have |deg f(x)| = |deg g(x)|.
Furthermore, we have

deg f(x) > 0 ⇐⇒ lim
n∈Z

n→∞

h0(f(xn))

n
> 0

⇐⇒ lim
n∈Z

n→∞

h0(g(xn))

n
> 0 ⇐⇒ deg g(x) > 0.
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It follows that deg g(x) is equal to deg f(x).

10. Proposition. Let K and L be number fields and let λ:RS∞K → R

S∞L be
a monomial map with h0

K = h0
L ◦ λ. Then there is a bijection τ :S∞L → S∞K such

that λ is equal to τ∗.

Proof. Write Σ:RS∞K → R for the map y 7→ ∑

p∈S∞K yp and also write

Σ:RS∞L → R for the corresponding map for L. Using lemma 5 part (2) and lemma 9,
we see that the diagram

R

S∞K

λ

Σ

Div K
L

Pic K
h0

deg

R R

R

S∞L

Σ

Div L
L

Pic L

h0
deg

commutes. In other words, we have Σ(y) = Σ(λ(y)) for all y ∈ S∞K. Because
λ is monomial, by definition there is a bijection τ :S∞L → S∞K and an element
x ∈ (R∗)S∞K with λ = τ∗ ◦ mx. Let p be any element of S∞K and let y be the
element of RS∞K with yp = 1 and yq = 0 for all q ∈ S∞Kr{p}. Then we have
1 = Σ(y) = Σ(λ(y)) = xp · 1 and we conclude that xp is equal to 1. As p was chosen
arbitrarily, we conclude that λ is equal to τ∗.

5. Finding the multi-length function

Let K be a number field and write S∞ = S∞K and O = OK . We define the map
cK :RS∞ → Z by sending y ∈ R

S∞ to

cK(y) = #{ a ∈ O : yp = |a|2p for all p ∈ S∞ }.

We call cK the multi-length of K. Furthermore, let n = nK :S∞ → {1, 2} be the
function sending a prime p ∈ S∞ to the degree n(p) = [Kp : R]. It is easy to
express h0 and k0 in terms of the multi-length function and the degree function n,
but we choose to work with a transformation of k0. The short-term goal is to get rid
of as much ugly notation as possible. We define k0

K as the composition of the maps

R

S∞K −→ Div K
L−→ Pic K

k0

−→ R≥0.

Furthermore, we write − log:RS∞

>0 → R

S∞ for the map

t 7−→ (− log tp)p∈S∞
.
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Let d = dK :RS∞

>0 → R

S∞

>0 be the map given on the p-th coordinate by

d(t)p =
t
n(p)/2
p

πn(p)
.

For y and t in R

S∞ , we define the dot-product of y and t by y · t =
∑

p∈S∞
yptp.

Then the map (k0
K ◦ − log ◦ d):RS∞

>0 → R>0 can be written as

t 7−→
∑

y∈RS∞

cK(y)e−y·t.

Let L be another number field and assume there is a strongly monomial map λ
with h0

K = h0
L ◦λ. By proposition 10, the map λ is induced by a bijection τ :S∞L →

S∞K. Using this bijection, we can identify S∞L with S∞K = S∞ and view k0
L

and dL as a functions on RS∞

>0 and the multi-length function cL as a function on RS∞ .
Because the underlying permutation of λ respects the degree of the primes, the
maps dK and dL are the same and therefore we have

0 = (k0
K ◦ − log ◦ d)(t) − (k0

L ◦ − log ◦ d)(t) =
∑

y∈RS∞

(cK(y) − cL(y))e−y·t

for all t in RS∞

>0 . In this section we prove that this implies that cK is equal to cL.

11. Lemma. Let S be a finite set with #S > 0 and let Y ⊂ R

S
>0 be a non-

empty such that Y is closed and discrete in R

S. Then there is an element t ∈ R

S
>0

and an element z ∈ Y with y · t > z · t for all y ∈ Y r{z}.
Proof. For every t ∈ R

S
>0, let Yt be the set

Yt = { z ∈ Y : z · t ≤ y · t for all y ∈ Y }.

Because Y is closed and discrete in RS , every set set Yt is finite. It is also non-empty
and we need to prove there exists an element t for which Yt contains exactly one
element z. Let t be an element for which the cardinality of Yt is minimal. In other
words, we have

#Yt = min
t′∈RS

>0

#Yt′ .

We assume that #Yt is at least 2 and derive a contradiction. In this case, there is
an element p ∈ S and two elements z and y ∈ Yt with zp < yp. Without loss of
generality we can and will assume that for all y′ ∈ Yt we have zp ≤ y′

p. For ε > 0,

we write tε for the element RS
>0 given by

(tε)q =

{
tp + ε if p = q;

tq otherwise.
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For every ε > 0 and all y′ ∈ Yt we have z · tε ≤ y′ · tε and we have z · tε < y · tε. The
number of points y′ ∈ Y rYt with y′ · tε ≤ z · tε is finite and for small enough values
of ε this number is 0. Hence, for such an ε, we have

Ytε ⊂ Ytr{y}.

But this is a contradiction, because we assumed that #Yt was minimal.

12. Proposition. Let K and L be two number fields with multi-length func-
tions cK and cL and let λ:RS∞K → R

S∞L be a strongly monomial map with h0
K =

h0
L ◦ λ. Then cK and cL ◦ λ are equal.

Proof. As λ is induced by a bijection S∞L → S∞K, we identify S∞L
and S∞K = S∞. As we have seen before, the map κ given by

t 7−→
∑

y∈RS∞

(cK(y) − cL(y))e−y·t

is the zero map. Write Y = { y ∈ R

S∞ : cK(y) − cL(y) 6= 0 }. We want to prove
that Y is empty. Assume it is not empty and let z ∈ Y and t ∈ R

S∞

>0 be elements
such that y · t > z · t for all y ∈ Y r{z}, as provided by lemma 11. For u ∈ R>0, write
gy(u) = (cK(y) − cL(y))eu(z·t−y·t) and consider the function R>0 → R, given by

u 7−→ euz·tκ(ut) = cK(z) − cL(z) +
∑

y∈Y r{z}
gy(u).

For any u ∈ R>0, the sum
∑

y∈Y r{z}
|gy(u)|

is convergent. The terms |gy(u)| tend to 0 when u goes to infinity and the derivative
of u 7→ |gy(u)| is negative for all u and every y ∈ Y r{z}. It follows that the sum
tends to zero when u goes to infinity and we conclude that we have

lim
u→∞

euz·tκ(ut) = cK(z) − cL(z) 6= 0.

On the other hand, we also concluded that κ was the zero function and hence the
limit should be 0. This contradiction leads to the conclusion that Y is empty and cK

and cL are equal.
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6. Finding the field from the multi-length

Let K and L be two number fields and let M ⊂ C be a totally complex number field
which is Galois over Q such that there are embeddings K → M and L → M . Let
G = Gal(M/Q) be the Galois group of M over Q and write S = Hom

Q

(K,M) for
the set of embeddings of K in M and let T = Hom

Q

(L,M) be the set of embeddings
of L in M . The set S has a natural left action from G and becomes a transitive G-
set. Write M+ = M ∩ R and write ρ ∈ Gal(M/M+) for the complex conjugation
map. We identify S∞K with 〈ρ〉\S, the orbits of S under the action of ρ, and we
identify S∞L with 〈ρ〉\T . This notation is fixed for the remainder of this section and
all lemmas and propositions in this section assume that the fields and sets above are
given, without explicitly mentioning that. After lemma 15, a prime q of M and a
corresponding map v are chosen. Apart from that, all statements are self-contained
and do not contain hidden assumptions. In particular, a statement such as lemma 14,
which deals only with K ⊂ M and S, is also true when we replace K by L and S
by T .

There are many G-sets appearing in this section and we feel that defining the G-
action when they appear distracts too much from the flow of the argument. Moreover,
for easy reference it is better to have all the sets with their G-action collected in one
place. Therefore, we give a table of the G-sets we use here after we spend a few
words on notation. For instance, we have a choice of writing elements f in Z

G
≥0 as

maps f :G → Z≥0 or in the coordinate notation f = (fg)g∈G. We use both notations,
depending on which one is most convenient at the moment. Also, we will often write
elements in Map(S,ZG

≥0) as maps S ×G → Z≥0. For the next table, let the notation
be as above and let σ be an element of G.

set element f in set σf

S ∋ f σ ◦ f

M ∋ f σ(f)

Z

G
≥0 ∋ f :G → Z≥0 g 7→ f(gσ)

Z

S
≥0 ∋ f :S → Z≥0 s 7→ f(σ−1s)

MapG(S,ZG
≥0) ∋ f :S × G → Z≥0 (s, g) 7→ f(s, σ−1g)

Z

G×S∞K
≥0 ∋ f :G × S∞K → Z≥0 (g, p) 7→ f(σ−1g, p)

13. Lemma. The set of G-maps MapG(S,M) from S to M is a field and
it is naturally isomorphic to K. The isomorphism K → MapG(S,M) sends an
element x ∈ K to the map s 7→ s(x). There is a bijective correspondence

Hom
Q

(K,L) −→ MapG(T, S),

mapping φ ∈ Hom
Q

(K,L) to the element φ∗ ∈ MapG(T, S) given by φ∗(t) = t ◦ φ.
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Proof. It is clear that sending x ∈ K to the map s 7→ s(x) gives a well-
defined, injective homomorphism K → MapG(S,M). We shall prove that the map
is surjective. Let x be an element of MapG(S,M) and choose s ∈ S. Let H = Gs

be the point stabilizer of s in G. Then we have H = Gal(M/s(K)). Because x is a
G-map, the element x(s) is stable under the action of H. In other words, we have
x(s) ∈ MH and by standard Galois theory we have MH = s(K). Let y ∈ K be an
element with s(y) = x(s). Then for all g ∈ G we have

(gs)(y) = g(s(y)) = g(x(s)) = x(gs).

Hence, y is an element that maps to x.
Next, let another number field L and a corresponding non-empty G-set T be

given. Write i:K → MapG(S,M) for the isomorphism between K and MapG(S,M)
and let j:L → MapG(T,M) be the corresponding map for L. For an element f :T →
S in MapG(T, S) we write f∗:MapG(S,M) → MapG(T,M) for the map x 7→ x ◦ f .
By abuse of notation we will also write f∗:K → L for the map j−1◦f∗◦i. This yields
a map MapG(T, S) → Hom

Q

(K,L) given by f 7→ f∗ and we will prove that it is the
inverse of the map stated in the lemma. For s ∈ S we write evs:MapG(S,M) → s(K)
for the map that sends x ∈ MapG(S,M) to x(s). The inverse of the map i is equal
to s−1 ◦ evs for every s ∈ S. Likewise, the inverse of j is equal to t−1 ◦ evt for
every t ∈ T . Let φ be an element of Hom

Q

(K,L). Then for x ∈ K, we have

φ∗∗(x) = (j−1 ◦ φ∗∗ ◦ i−1)(x) = (j−1 ◦ φ∗∗)(s 7→ s(x))

= j−1(t 7→ φ∗(t)(x)) = j−1(t 7→ t(φ(x))) = φ(x).

Hence, φ is equal to φ∗∗. Now, let f be an element of MapG(T, S), let t be an element
of T and let x be an element of K. Then we have

f∗∗(t)(x) = (t ◦ f∗)(x) = t
(
(j−1 ◦ f∗ ◦ i)(x)

)

= t
(
(t−1 ◦ evt ◦ f∗)(s 7→ s(x))

)
= evt

(
t′ 7→ f(t′)(x)

)
= f(t)(x),

which shows that f is equal to f∗∗. This is what we needed to prove.

The lemma shows that all information we want to know about K is already
encoded in the G-set S. The next lemma shows what it means in terms of S and G
that K is a CM-field. Recall that our definition of a CM-field is a totally complex
number field of degree 2 over a totally real field.

14. Lemma. The following three statements are equivalent.
(1) The field K is a CM-field.
(2) For all s ∈ S and all g ∈ G we have ρs 6= s and gρs = ρgs.
(3) There is an element s ∈ S with ρs 6= s such that for all g ∈ G we have gρs = ρgs.

Proof. Assume K is a CM-field and let K+ ⊂ K be a totally real field with
[K : K+] = 2. Let α be an element in K of degree 2 over K+ with α2 = a ∈ K+.
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Let s ∈ S and g ∈ G be arbitrary elements. Then we have ρs 6= s and ρgs 6= gs,
for otherwise s or gs would be a real embedding. It also follows that gρs is not
equal to gs. On the other hand, because every embedding of K+ into M has a real
image, we do have gρs|K+ = gs|K+ = ρgs|K+ . Hence, we also have (gρs(α))2 =
gρs(a) = gs(a) = gs(α)2. Because gρs(α) cannot be equal to gs(α), this shows that
we have gρs(α) = −gs(α). In the same way we prove that ρgs(α) is equal to −gs(α).
We conclude that ρgs and gρs are the same on α and on K+, which shows they are
equal. This proves (1) ⇒ (2).

Now suppose s ∈ S is an element with ρs 6= s and such that for all g ∈ G we
have gρs = ρgs. Let s′ ∈ S be any element and write s′ = g′s for some g′ ∈ G. Then
we have ρgs′ = ρgg′s = gg′ρs = gρg′s = gρs′. We also have ρs′ = ρg′s = g′ρs 6=
g′s = s′. This proves (2) ⇔ (3).

Now assume (2) holds. Let s be an element of S and write H = Gs =
Gal(M/s(K)). Let H ′ be the group generated by ρ and the elements of H. By
assumption, for h ∈ H the commutator [ρ, h] = ρhρ−1h−1 is in H and therefore H ′

is equal to H ∪ ρH. Hence, the index of H in H ′ is 2. Write K+ = s−1MH′

. Then
K is of degree 2 over K+. Because ρs′ 6= s′ for all s′ ∈ S it is clear that K is totally
imaginary. It suffices to prove that K+ is totally real. Let s′ be any element of S
and write s′ = g′s. Then we have ρs′|K+ = ρgs|K+ = gρs|K+ = gs|K+ = s′|K+ , and
hence ρ is the identity on s′(K+).

In light of lemma 13, we will simply identify K with MapG(S,M) and L with
MapG(T,M). We write evs:MapG(S,M) → s(K) for the map evaluating an element
x:S → M in s and we obtain a commutative diagram

K
s

s(K).

MapG(S,M)
evs

The map s:K → s(K) sends an element x ∈ K to s(x). Identifying x with a G-map
S → M , we see it is sent to evs(x) = x(s). We choose to write x(s) instead of s(x),
which allows us to think of S as just a set of elements with a G-action, instead of a
set of embeddings.

15. Lemma. Let q be a finite prime of M above a prime of Q that splits com-
pletely. Let

v:OM r{0} −→ Z

G
≥0

be the map given by x 7→ (ordq gx)g∈G. Then v is surjective.

Proof. Let σ be an element of G and let π be an element with ordσ−1q π = 1.
Such an element exists because every element in σ−1q with valuation at σ−1q at
least 2 is in (σ−1q)2 and not every element of σ−1q is in (σ−1q)2. For g ∈ Gr{σ−1},
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let yg be an element with ordgp yg = 0 and write yσ−1 = π. Because q lies above
a splitting prime, the set { gp : g ∈ G } consists of #G different primes. Hence,
the ideals (gp)2 for g ∈ G are pairwise coprime. By the Chinese remainder theorem
there exists an element x ∈ OM with x ≡ yg mod (gp)2. In other words, we have
ordgp(x − yg) ≥ 2 and it follows that x is an element of OM r{0} that maps to the
element in ZG

≥0 that is 1 at the σ-coordinate and 0 everywhere else. It follows that v
is surjective.

We fix a prime q of M as in lemma 15 and let v:OM r{0} → Z

G
≥0 be the

corresponding map. For an element s ∈ S we denote the ρ-orbit by 〈ρ〉s ∈ S∞K.
Given an element x ∈ K = MapG(S,M) and a prime 〈ρ〉s ∈ S∞K, the square of the
length of x at that prime is equal to x(s) · x(ρs) ∈ M+ ⊂ R. We write

µ:OK r{0} −→ (OM+ r{0})S∞K

for the map sending x ∈ OK r{0} to (x(s) ·x(ρs))〈ρ〉s∈S∞K . The corresponding map

for L is also called µ. We are interested in the image of the map OK r{0} → Z

G×S∞K
≥0 ,

given by the composition of the maps

OK r{0} µ−→ (OM+ r{0})S∞K
vS∞K

−−−→ Z

G×S∞K
≥0 .

The idea is that if K is not a CM-field, the set S is encoded in Z

G×S∞K
≥0 . Because

the image of µ is basically the image of the multi-length function, it will follow that
if K and L have ‘the same’ multi-length functions then the G-sets S and T are also
‘the same’.

16. Lemma. Let τ :S∞L → S∞K be a bijection and assume that the multi-
length of K and the multi-length of L are the same with respect to this bijection.
Then the image of the map (τ∗ ◦ vS∞K ◦µ):OK → Z

G×S∞L
≥0 is the same as the image

of the map (vS∞L ◦ µ):OL → Z

G×S∞L
≥0 .

Proof. Let cK be the multi-length of K. Then the image of the map µ in
(OM+ r{0})S∞K ⊂ R

S∞K consists exactly of the elements y ∈ R

S∞K with cK(y) 6= 0.
Hence, we have (τ∗ ◦ µ)(OK) = µ(OL) and therefore also (τ∗ ◦ vS∞K ◦ µ)(OK) =
(vS∞L ◦ µ)(OL).

We factorize the map vS∞K ◦ µ over the set MapG(S,ZG
≥0). Write

v:OK r{0} −→ MapG(S,ZG
≥0)

for the map sending a nonzero x ∈ OK = MapG(S,OM ) to v ◦ x. Furthermore, let

m:MapG(S,ZG
≥0) −→ Z

G×S∞K
≥0

be the map sending f :S × G → Z≥0 to the map (g, 〈ρ〉s) 7→ f(s, g) + f(ρs, g). We
will prove that the map vS∞K ◦ µ is equal to m ◦ v, but first we give a lemma that
gives a simpler representation of MapG(S,ZG

≥0).
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17. Lemma. The map

Z

S
≥0

∼−→ MapG(S,ZG
≥0)

that sends f ∈ Z

S to the map (s, g) 7→ f(gs) is an isomorphism of G-sets. The inverse
is given by sending an element f :S → Z

G
≥0 to its composition with the projection map

Z

G
≥0 → Z≥0 on the coordinate 1 ∈ G.

Proof. Obvious.

The G-set ZS
≥0 is also a monoid with a natural basis S ⊂ Z

S
≥0. Here, the inclusion

is given by identifying s ∈ S with a map χs:S → Z≥0 with χs(s) = 1 and χs(s
′) = 0

for every s′ 6= s. It is easily checked that this inclusion respects the G-action.

18. Lemma. The diagram

(OM+ r{0})S∞K

vS∞K

OK r{0}

µ

v

Z

G×S∞K
≥0

MapG(S,ZG
≥0)

m

commutes. The map v:OK r{0} → MapG(S,ZG
≥0) is surjective and m is a G-map.

Proof. We only prove surjectivity because the rest is obvious. We write
ṽ:OK r{0} → Z

S
≥0 for the map v:OK r{0} → MapG(S,ZG

≥0) composed with the

map MapG(S,ZG
≥0) → Z

S
≥0 from lemma 17. We prove that ṽ is surjective. As ṽ is a

monoid-homomorphism it suffices to prove that ṽ hits every element of the basis S.
Let s be an element of S and let χs:S → Z≥0 be the corresponding map. Let π ∈ M
be an element with v(π)1 = 1 and v(π)g = 0 for g 6= 1. Write H = Gs = { g ∈ G :
gs = s } for the stabilizer of the point s. Let a be the element

a =
∏

h∈H

hπ.

Because a is stable under the action of H, it is in s(K) and it follows that there is a
unique x ∈ OK with x(s) = a. We have

ṽ(x)(s) =
(
(v ◦ x)(s)

)

1
=

(
v(

∏

h∈H

hπ)
)

1
=

∑

h∈H

(
hv(π)

)

1
=

∑

h∈H

(v(π))h−1 = 1.

Likewise, we have ṽ(x)(gs) = 0 for g /∈ H. Hence, we have ṽ(x) = χs.

19. Proposition. Let S′ ⊂ Z

G×S∞K
≥0 be the set of elements in the image

m(MapG(S,ZG
≥0)) with the sum of the coordinates equal to 2 · #G · #S∞K/#S.
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Then the pre-image m−1(S′) is the same as the image of S in MapG(S,ZG
≥0). The

map S → Z

G×S∞K
≥0 is injective if K is not a CM-field. If K is a CM-field, the map

is 2 to 1 and for every s ∈ S the elements s and ρs have the same image.

Proof. Let s be an element in S and let (s, g) 7→ χs(gs) be the corresponding
map in MapG(S,ZG

≥0). Let s′ be an element of S and write s′ = g′s for g′ ∈ G. We
have

∑

g∈G

χs(gs′) = #{ g ∈ G : gs′ = s } = #Gsg
′−1 = #Gs = #G/#Gs = #G/#S.

Let χ̃s:G × S∞K → Z≥0 be the image of (s, g) 7→ χs(gs) under m. Then for any
fixed prime 〈ρ〉s′ ∈ S∞K we have

∑

g∈G

χ̃s(g, 〈ρ〉s′) =
∑

g∈G

χs(gs′) +
∑

g∈G

χs(gρs′) = 2#G/#S.

Hence, the sum of the coordinates of χ̃s is indeed equal to

∑

g∈G
p∈S∞K

χ̃s(g, p) =
2 · #G · S∞K

#S
.

Every other nonzero element in the image of m in ZG×S∞K
≥0 can be written as a sum

of elements coming from S and will consequently have a larger coordinate sum. This
proves that m−1(S′) is exactly the image of S in MapG(S,ZG

≥0).

Denote the image of an element s ∈ S under the map S → Z

G×S∞K
≥0 by χ̃s. Let

s 6= s′ be two elements in S and suppose that χ̃s is equal to χ̃s′ . We have

1+χs(ρs) = χs(s)+χs(ρs) = χ̃s(1, 〈ρ〉s) = χ̃s′(1, 〈ρ〉s) = χs′(s)+χs′(ρs) = χs′(ρs).

This shows that we have χs(ρs) = 0 and χs′(ρs) = 1. In other words, 〈ρ〉s is a
complex prime and s′ is equal to ρs. Now, let g ∈ G be arbitrary and write t = gs.
Then we have χ̃s(g

−1, 〈ρ〉t) = 1 and hence

1 = χ̃s′(g−1, 〈ρ〉t) = χs′(g−1t) + χs′(g−1ρt) = χgρs(gs) + χgρs(ρgs).

Because gρs = gs′ is not equal to gs, we conclude that χgρs(ρgs) is equal to 1 and
that gρs is equal to ρgs. As g was arbitrary, it follows from lemma 14 that K is a
CM-field.

20. Lemma. Let the notation be as in proposition 19. Let χ:G×S∞K → Z≥0

be an element in S′ and let s ∈ S be an element that maps to χ. Let p be a prime
in S∞K. Then we have χ(1, p) 6= 0 if and only if p is equal to 〈ρ〉s.
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Proof. Let χs be the element of ZS
≥0 corresponding to s. Write p = 〈ρ〉s′ for

some s′ ∈ S. Then we have

χ(1, p) = χs(s
′) + χs(ρs′) = χs(s

′) + χρs(s
′),

which is nonzero only when s′ is equal to s or to ρs.

The set S′ from proposition 19 contains a lot of information. For instance, by
comparing the cardinality with the cardinality of S we immediately see whether K
is CM-field. And in the case that K is not a CM-field, the set S′ is isomorphic as a
G-set to S. Hence, in this case we can construct MapG(S′,M) which is isomorphic
to K. Before we formulate this in a theorem we first turn to the CM-field case.

21. Lemma. Let τ :S∞L → S∞K be a bijection and assume that the multi-
length of K and the multi-length of L are the same with respect to this bijection.
Then the following statements are true.
(1) The field K is a CM-field if and only if L is a CM-field.
(2) Assume K and L are CM-fields and let K+ and L+ be the real subfields of K

and L. Then there is a unique isomorphism φ:K+ → L+ such that the diagram

S∞L
τ

S∞K

S∞L+
φ∗

S∞K+

commutes.

Proof. Let S′ be the set from proposition 19 and let T ′ ⊂ Z

G×S∞L
≥0 be the

corresponding set for L. By lemma 16, the set S′ is G-isomorphic to T ′. From
proposition 19 we see that we have

K is a CM-field ⇐⇒ 2#S′ = #S ⇐⇒ 2#T ′ = #T ⇐⇒ L is a CM-field.

Now assume that K and L are CM-fields. In this case S∞K and S∞L are G-sets
and the maps S → S∞K = 〈ρ〉\S and T → S∞L = 〈ρ〉\T are G-maps. From
proposition 19 we see that the map S → S′ factorizes over S∞K and this gives
a G-isomorphism S∞K → S′ and a G-isomorphism S∞L → T ′. The map τ in-
duces a G-map τ∗:ZG×S∞K

≥0 → Z

G×S∞L
≥0 as in lemma 16 and by restriction a G-map

τ∗:S′ → T ′. We claim that the diagram

S∞K
τ−1

S∞L

S′ τ∗

T ′
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commutes. Let 〈ρ〉s be a prime in S∞K and write 〈ρ〉t = τ−1(〈ρ〉s). Let χ̃s be the
image of s in S′ and let χ̃t be the image of t in T ′. Then we have τ∗χ̃s(1, 〈ρ〉t) =
χ̃s(1, 〈ρ〉s) = 1 = χ̃t(1, 〈ρ〉t). But χ̃t is the unique element of T ′ that is 1 when
evaluated in (1, 〈ρ〉t) by lemma 20 and proposition 19. Hence τ∗χ̃s and χ̃t are the
same and the diagram commutes. It follows that τ−1 and also τ is a G-map.

Write S+ = Hom
Q

(K+,M) and T+ = Hom
Q

(L+,M). There are natural identi-
fications S+ = S∞K+ = S∞K and T+ = S∞L+ = S∞L and hence τ induces a G-
isomorphism T+ → S+. By lemma 13, we get an induced isomorphism φ:K+ → L+

and it is now clear that the diagram in this lemma commutes.

22. Lemma. Assume K and L are of of degree 2 over a number field Q. Let
NK

Q :K → Q and NL
Q:L → Q be the norm maps. Suppose NK

Q (K) is equal to NL
Q(L).

Then K and L are isomorphic over Q.

Proof. Let p be a finite prime of Q which does not ramify in K or L. Sup-
pose p splits in K and is inert in L. Let P and Q be the two primes of K lying
above p. By a similar argument as used in lemma 15, there is an element π ∈ K
with ordP π = 1 and ordQ π = 0. Hence, we have ordp NK

Q (π) = 1. However, for

every element x ∈ L we have ordpOL x ∈ Z and thus ordp NL
Q(x) ∈ 2Z. This is in

contradiction with the assumption NK
Q (K) = NL

Q(L). We conclude that, aside from
a finite set of ramifying primes, the set of primes of Q that split in K is the same as
the set of primes of Q that split in L. From [5, theorem VIII.4.9], we know that the
splitting behavior of the primes in a Galois extension determines the extension. In
our case, it follows that K and L are isomorphic over Q.

We are now ready to prove the main theorem, which we will restate here.

23. Theorem. Let K and L be number fields. Then the map

Isom(K,L) −→ {strongly monomial λ:RS∞K → R

S∞L : h0
K = h0

L ◦ λ }

given by φ 7→ φ∗∗ is surjective. The map is injective unless K and L are isomorphic
CM-fields. When K and L are isomorphic CM-fields the map is 2 to 1 and φ and φ′

in Isom(K,L) have the same image if and only if they are the same or each other’s
complex conjugate.

Proof. If there are no strongly monomial maps λ with h0
K = h0

L ◦ λ, the
fields K and L are not isomorphic and then there is nothing to prove. Suppose
λ:RS∞K → R

S∞L is a strongly monomial map with h0
K = h0

L ◦ λ. By proposition 10,
we can write λ = τ∗ for a bijection τ :S∞L → S∞K, respecting the degree of the
primes. Let cK be the multi-length of K and let cL be the multi-length of L. By
proposition 12, we have cK = cL ◦ τ∗. Using lemma 16, we see that τ∗ ◦ vS∞K ◦ µ
and vS∞L ◦µ have the same image in ZG×S∞L

≥0 . Let S′ be the set from proposition 19

and let T ′ ⊂ Z

G×S∞L
≥0 be the corresponding set for L. The map τ∗:ZG×S∞K

≥0 →
Z

G×S∞L
≥0 induces an isomorphism τ∗:S′ → T ′ of G-sets. Now, suppose that K and L
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are not CM-fields. Then by proposition 19, the set S maps bijectively to S′ and T
maps bijectively to T ′. Hence, we get an induced isomorphism τ∗:S → T . By
lemma 20, the diagram

T
(τ∗)−1

S

S∞L
τ

S∞K

commutes. We now apply lemma 13 and conclude that (τ∗)−1:T → S induces an
isomorphism φ:K → L with φ∗:T → S equal to (τ∗)−1 and therefore φ∗:S∞L →
S∞K equal to τ . This shows that φ 7→ φ∗∗ is surjective when K and L are not
CM-fields.

From lemma 21, we know that K and L are either both CM-fields or they both
are not. We assume now that they are both CM-fields. Let K+ and L+ be the
real subfields of K and L and let φ:K+ → L+ be the unique isomorphism from
lemma 21, inducing τ :S∞L → S∞K. Let s be an element of S. Let Y ⊂ R

S∞K be
the set of elements y with cK(y) 6= 0. Furthermore, let N be the set { y〈ρ〉s : y ∈ Y }.
Then N is a subset of s(K+) and in fact it is equal to the image of the norm map

N
s(K)
s(K+). Hence, the norm maps NK

K+ and NL
L+ have the same image with respect to

the isomorphism φ. By lemma 22, we see that φ can be extended to an isomorphism
φ:K → L and of course φ∗ is still equal to τ . This shows that φ 7→ φ∗∗ is surjective
in the CM-case.

Now assume that K and L are (not necessarily CM) isomorphic fields. Suppose
φ1 and φ2 are two different elements in Isom(K,L) with φ∗

1 = φ∗
2. For all t ∈ T , we

have t ◦φ1 = ρ ◦ t ◦φ2. This is easy to see, because t ◦φ1 and t ◦φ2 are not the same
on K and the prime 〈ρ〉tφ1 is equal to the prime 〈ρ〉tφ2 by assumption. Let s be an
element of S and let g be an element of G. Furthermore, let t ∈ T be an element with
tφ1 = gs. It follows that we have g−1tφ1 = s. When we replace φ1 by φ2, we have to
multiply with ρ and this yields ρgs = tφ2 = g(g−1tφ2) = g(ρs) = gρs. We conclude
that K is a CM-field and that φ1 and φ2 are each other’s complex conjugate.

7. Relaxing the conditions of the main theorem

So far, we have spent all our efforts on the proof that the map

Isom(K,L) −→ {strongly monomial λ:RS∞K → R

S∞L : h0
K = h0

L ◦ λ }

is surjective for any two number fields K and L. In all honesty, we should admit that
it would desirable to have a theorem that is stronger in a number of ways. First of all,
it would be interesting to relax the condition ‘strongly monomial’ to just ‘monomial’
or even ‘non-singular’. In proposition 25, we prove that K and L are number fields



38 Torelli for number fields

of the same degree over Q if there exists a monomial map λ with h0
K = h0

L ◦ λ. In
example 27, we show what obstacles arise when we try to prove that a monomial
map λ with h0

K = h0
L ◦λ is automatically strongly monomial. Secondly, it would also

be interesting to relax the condition h0
K = h0

L ◦λ to equality on just the part of fixed
degree, for instance degree 0. More precisely, if H ⊂ S∞K is the hyperplane of all
points with coordinate-wise sum equal to 0, we could relax the condition h0

K = h0
L ◦λ

to h0
K |H = (h0

L ◦ λ)|H . In example 29, we discuss obstacles that arise when we try
to reconstruct the arithmetic of the number field using that h0

K |H is periodic on the
image of the unit-lattice in H.

24. Lemma. Let K be a number field with multi-length c = cK :RS∞ → Z.
Then the following statements are true.
(1) If y ∈ R

S∞ is a point with c(y) 6= 0 then we have yp > 0 for all p ∈ S∞ and

∏

p∈S∞

y
n(p)
p ≥ 1.

(2) Call an element y ∈ R

S∞ a unit if we have c(y) 6= 0 and
∏

p y
n(p)
p = 1. For all

M > 0 and all δ > 1 and all p ∈ S∞, there is a unit y such that for all q, r ∈
S∞r{p} the quotient yq/yr is in the interval [δ−1, δ] and for all q ∈ S∞r{p}
we have yq/yp ≥ M .

Proof. Every element y ∈ R

S∞

>0 with c(y) 6= 0 comes from an element in the

ring of integers. The expression
∏

p y
n(p)
p is equal to the norm of this element and

this is at least 1. This proves statement (1). Statement (2) is trivially true when
the cardinality of S∞ is 1. Hence, assume S∞ has at least 2 elements. Let p be an
element of S∞ and write S′

∞ = S∞r{p}. For notational convenience later in the
proof, we assume that M is at least 1. Write O for the ring of integers of K. We
have an inclusion map ψ:O∗ → R

S′
∞ , sending an element η ∈ O∗ to (log |η|q)q∈S′

∞
.

This way, ψ(O∗) becomes a lattice in R

S′
∞ . Let q be an element of S′

∞. We write
ε = log δ and for t ∈ R, we define

Ft = { z ∈ R

S′
∞ : |zq| ≤ t and for all r, s ∈ S′

∞ : zr − zs ∈ [−ε, ε] }.

The set Ft is symmetric around the origin, convex and closed. For positive t, the
volume of Ft is linear in t. By the Minkowski lattice theorem, the number of points
of ψ(O∗) in Ft becomes arbitrarily large when we let t go to infinity. Let z be a point
in ψ(O∗)∩⋃

t∈R>0
Ft with zq ≥ log M +ε. Let y ∈ R

S∞ be the element corresponding

to ψ−1(z). Then for all r, s ∈ S′
∞, we have

yr

ys

= elog yr−log ys ∈ [e−ε, eε] = [δ−1, δ].

Hence, for all r ∈ S′
∞, we have yr ≥ δ−1yq ≥ δ−1eεM = M . It follows that yp is

smaller than 1 and we have yr/yp ≥ yr ≥ M . This proves (4).
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In section 5, we used the transformation k0
K◦− log◦d of the function k0. The idea

was that if K and L have the same h0 with respect to a strongly monomial map, they
also have the same transformation of k0. Because the map d uses information about
degrees, we cannot use this map if we only consider equality with respect to monomial
maps. We write m1/π:RS∞

>0 → R

S∞

>0 for the map multiplying each coordinate with 1/π
and we use the transformation k0

K ◦ − log ◦ m1/π.

25. Proposition. Let K be a number field of degree n over Q and let p ∈ S∞
be a prime. Let R>0 → R

S∞

>0 be the inclusion map, sending an element t ∈ R>0 to

the element of RS∞

>0 that is t at the p-coordinate and 1 at all other coordinates. Let
κ:R>0 → R>0 be the composition of the maps

R>0 −→ R

S∞

>0

m1/π−→ R

S∞

>0

− log−→ R

S∞
k0

K−→ R>0.

Then for all ε > 0, we have

lim sup
t→∞

exp(t2/n+ε)κ(t) = ∞ and lim
t→∞

exp(t2/n−ε)κ(t) = 0.

Proof. Let c be the multi-length of K. Define d = 2/n(p) and for y ∈ R

S∞

and t ∈ R write y ∗ t for

y ∗ t = ypt
d +

∑

q∈S∞r{p}
yq.

For all t ∈ R>0, we have

exp(t2/n+ε)κ(t) ≥
∑

y∈RS∞

c(y) exp(t2/n+ε − 2y ∗ t).

Let M > 0 be an arbitrarily large number and write δ = 1/(2n). Now apply
lemma 24(2) to find a unit y such that for all q, r ∈ S∞r{p} we have yq/yr ∈ [δ−1, δ]
and yq/yp ≥ M . Let q be any prime in S∞r{p} and let t ∈ R>0 be such that we
have td = yq/yp. For any r ∈ S∞r{p}, we write zr = yr and we write zp = tdyp. For
each two elements in the set Z = { zr : r ∈ S∞}, the quotient is in [δ−1, δ]. Moreover,
we have ∏

r∈S∞

z
n(r)
r = tdn(p)

∏

r∈S∞

y
n(r)
r = t2.

Hence, each element in the set Z is at most δt2/n. We conclude that we have

t2/n+ε − 2y ∗ t = t2/n+ε −
∑

r∈S∞

2zr ≥ t2/n+ε − 2δt2/n#S∞ ≥ t2/n+ε − t2/n.

Hence, for arbitrarily large M > 0 there is an element t with t ≥ M such that
exp(t2/n+ε)κ(t) ≥ exp(t2/n+ε − t2/n). This proves the first limit of this proposition.



40 Torelli for number fields

For the second limit, note that for all t ∈ R>0 we also have

exp(t2/n−ε)κ(t) ≤
∑

y∈RS∞

c(y) exp(t2/n−ε − y ∗ t).

If y ∈ R

S∞

>0 is a point with yp ≥ 1, the function t 7→ t2/n−ε − y ∗ t has a negative
derivative for t ≥ 1 and we conclude

lim
t→∞

∑

y∈RS∞

yp≥1

c(y) exp(t2/n−ε − y ∗ t) = 0.

We call the set X = {x ∈ R

S∞

>0 : xp < 1 } the ‘critical strip.’ For y ranging over the
points in the critical strips, the sum

∑

y c(y) exp(−1
2y ∗ 0) converges and we call the

sum s. For fixed t ∈ R>0 and y ∈ R

S∞

>0 , the geometric-arithmetic mean inequality
gives us

ypt
d +

1

2

∑

q∈S∞r{p}
yq ≥ n

4
n

√

(yptd)n(p)
∏

q∈S∞r{p}
y

n(q)
q ≥ n

4
t2/n.

For fixed t ∈ R>0, we get

∑

y∈X

c(y) exp(t2/n−ε − y ∗ t)

≤
∑

y∈X

c(y) exp(t2/n−ε − 1

2
y ∗ 0 − n

4
t2/n) = exp(t2/n−ε − n

4
t2/n)s.

When t goes to infinity, this goes to 0.

26. Corollary. Let K and L be number fields and let λ:RS∞K → R

S∞L be
a monomial map with h0

K = h0
L ◦ λ. Then we have [K : Q] = [L : Q].

The technique we used in proposition 25 and also in proposition 12 was to take
the function k0

K :RS∞ → R>0 and deduce information about K from the behavior
of k0

K(x) when x goes to infinity in some way. In the next example we show that
this technique cannot easily be employed to deduce which coordinates belong to real
primes and which ones belong to complex primes.

27. Example. Let K be any number field of degree 3 over Q with one complex
prime and one real prime. For instance, K = Q( 3

√
2) will do nicely. We assume the

function k0
K is given as a function R

2 → R>0 and we are not told which coordinate
corresponds to the real prime. Let R be the regulator of K. The function k0

K is
periodic modulo (R,−R). In particular, the function k0

K is the same on the lines
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obtained from the diagonal in R2 shifted by multiples of (R,−R), as depicted in the
next graph.

A path in R2 that goes to infinity either stays between two of these lines eventually,
or it keeps crossing these lines. Let k̄0

K be the map given by x 7→ k0
K(x2, x1). For

every point on one of the lines above, we have k0
K(x) = k̄0

K(x). Hence, for every
path that keeps crossing these lines we keep running into points x for which we
have k0

K(x) = k̄0
K(x). Hence, in this case we get no information from the limit

behavior about which coordinate belongs to the real prime. We do not know how to
exploit the limit behavior to deduce information from going to infinity by staying on
a path between two lines.

It is reasonable to try to use the fact that h0
K is periodic modulo the image of

the unit lattice in RS∞ to our advantage. In particular, let K and L be two number
fields with the same number of primes and let λ:RS∞K → R

S∞L be a monomial map
with h0

K = h0
L ◦ λ. By corollary 26, the fields K and L have the same degree. If

both fields are totally complex, the map λ is strongly monomial and we can apply
theorem 23 to see that K and L are isomorphic. Hence, we can assume that both fields
have a real prime. Write S∞ = S∞K and let H ⊂ R

S∞ be the hyperplane consisting
of the points of which the coordinates sum to zero. Furthermore, assume that h0

K

is not constant on lines through the origin. It follows that h0
K |H has a periodicity

lattice of finite index in the image of U = O∗
K . For simplicity, assume that K is

embedded in R. We take the projection of the periodicity lattice of h0
K |H on the real

coordinate corresponding to the embedding K ⊂ R and we take the exponential of
the resulting elements. We call the set of elements we get this way E. Let ‖U‖ be the
set of squares of absolute values of U . We clearly have ‖U‖ ⊂ E. For every set V ⊂ C

such that Q(V ) is a number field, we write V k = { vk : v ∈ V } for k ∈ Z>0. We
write Q{V } for the field

⋂

k∈Z>0
Q(V k). For k ∈ Z>0 sufficiently close to 0 in Ẑ, we

have Q{V } = Q(V k). We claim that we have Q{‖U‖} = K. Indeed, write r1 for
the number of real primes and r2 for the number of complex primes. Then ‖U‖k has
rank r1 +r2−1. The degree of a subfield of K is at most 1

2 (r1 +2r2) and hence, when
Q{U} is a subfield of K, the unit-rank is at most 1

2r1+r2−1, which is a contradiction.
Hence, we have Q{‖U‖} = K. Because there is a k ∈ Z>0 with Ek ⊂ ‖U‖ and we
have ‖U‖ ⊂ E, we also have Q{E} = K. We conclude that, given a real coordinate,
we can construct E and we can construct a field isomorphic to K. If we know this real
coordinate corresponds to a real coordinate of L, we could conclude that K and L
are isomorphic.

Of course, the whole point is that we do not know which coordinates belong to
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real primes. However, it might pay to just pick any coordinate and treat it as if it
were a real coordinate. We construct the set E corresponding to this randomly chosen
coordinate and construct the field Q{E}. Hopefully, this field is either isomorphic
to the field K we started with, or there is something wrong with it. For instance, it
might have the wrong degree or signature.

28. Example. Let K ⊂ C be a number field of degree 3 with one complex
prime and write U for the group of units of K. Let ‖U‖ be the set of squares of
absolute values of K with respect to the embedding K ⊂ C. Then we have K ∼=
Q{‖U‖}, even when K ⊂ C is not a real embedding. Hence, when k0

K is not constant
on lines through the origin and we let E be the exponential of projection of the
periodicity lattice of k0

K on any of the two coordinates, we have K ∼= Q{E}.
In the next example we give an example of a field L with an embedding L ⊂ C

and unit group U such that Q{‖U‖} is a field of the same signature as L, but not
isomorphic. This shows that our strategy of using the periodicity lattice of k0

L and
taking the projection on just any coordinate does not work.

29. Example. Write x = 1 +
√

3 ∈ R>0 and write K = Q( 4
√

x) ⊂ R and L =
Q( 4

√
−4x) ⊂ C. Both fields have two real primes and three complex primes. Write

U for the group of units of L and write ‖U‖ for the set of squares of the absolute
values of the elements in U using the suggested embedding L ⊂ C. Then we have
Q{‖U‖} = K. To see this let M = K(i) be the normal closure of K/Q(x) in C with
Galois group G = Gal(M/Q(x)) and write σ for the generator of DK = Gal(M/K).
It is easy to see that L is contained in M and we denote Gal(M/L) by DL. The
field Q(x) has two real primes and we identify the primes of M above the first prime
with G/DK and the other primes of M with G/DL. We claim there is a Q[G]-module
isomorphism

f :O∗
M ⊗

Z

Q⊕ Q

∼−→ Q[G/DK ] ⊕ Q[G/DL].

When we tensor both sides with R, we get an R[G]-module homomorphism by the
Dirichlet unit theorem and by [1, lemma after proposition 12], this proves the exis-
tence of the isomorphism of Q[G]-modules. Taking DL-invariants gives f(U⊗Q⊕Q) =
Q[G/DK ]DL ⊕ Q[G/DL]DL . There is a natural embedding Q[G/DK ] ⊂ Q[G] and
Q[G/DL] ⊂ Q[G] and when we apply 1 + σ, we get

f(‖U‖ ⊗ Q⊕ Q) = (1 + σ)Q[G/DK ]DL ⊕ (1 + σ)Q[G/DL]DL .

Let H be the subgroup of G given by

H = {h ∈ G : h is the identity on ‖U‖ ⊗ Q }.

We clearly have σ ∈ H and we claim that H is equal to 〈σ〉. We prove this claim by
showing there are no elements outside 〈σ〉 that are the identity on f(‖U‖ ⊗ Q⊕ Q).
The group G is isomorphic to D4. It is generated by σ and an element ρ of order 4 for
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which we have ρ 4
√

x = −i 4
√

x and ρ(i) = i. It follows that DL is equal to 〈σρ〉. For i ∈
{0, 1, 2, 3}, we write ∞i = {ρi, σρ−i} ∈ G and we have G/DK = {∞0,∞1,∞2,∞3}.
An easy calculation shows that we have σρ(∞i) = ∞3−i for i ∈ {0, 1, 2, 3} and hence
elements of Q[G/DK ]DL are of the form x∞0 + y∞1 + y∞2 + x∞3 with x, y ∈ Q.
We apply 1 + σ and get

(1 + σ)(x∞0 + y∞1 + y∞2 + x∞3) = 2x∞0 + (x + y)∞1 + 2y∞2 + (x + y)∞3.

When we take x = 1 and y = 0, we see that the only elements of G that act trivially
on the element above are 1 and σ. As every element in H acts trivially on the element
above, we conclude that H is equal to 〈σ〉. It follows that ‖U‖ is contained in K and
not in a strict subfield of K and Q(x) and the same is true for ‖U‖k for every k ∈ Z>0.
For every k ∈ Z>0, we have Q(x) ⊂ Q(‖U‖k), because 2 +

√
3 = 1 + x is in ‖U‖.

This proves that Q{‖U‖} is equal to K. On the other hand, the fields K and L are
not isomorphic because they have a different splitting behavior at the prime 11 of Q.
The two fields do have the same discriminant, however!
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MINKOWSKI FOR VECTOR BUNDLES

Richard P. Groenewegen

Abstract — In this article we define vector bundles over the ring of integers
of a number field. Given a vector bundle P we are interested in finding a
line bundle L ⊂ P such that L has a small determinant. One way to find
such line bundles is to find a short nonzero element in P using the Minkowski
lattice theorem and then let L be the line bundle generated by this element.
In this way, we see that for every P there is a line bundle L in P with det L ≤
rn/2|∆|1/2(det P )1/r, where n is the degree of the number field, ∆ is the
discriminant and r is the rank of P . The line bundles generated by one element
are called cyclic. In this article we raise the question if we would get a better
result if we did not restrict to cyclic line bundles. In particular, can the
exponent 1/2 of |∆| be lowered in favor of a larger constant than rn/2? We
show that, given any r and any positive constant C, there is a number field
of degree 2 and a vector bundle P over this field of rank r such that for all
line bundles L ⊂ P , we have det L > C|∆|1/2−1/(2r)(det P )1/r. Hence, the

exponent cannot be lowered below 1
2
(1 − 1/r). We have not been able to close

the gap between 1
2
(1 − 1/r) and 1/2.

1. Introduction

Finding short nonzero elements in lattices is both of practical and theoretical use.
Given the determinant and rank of a lattice, the Minkowski theorem provides an
upper bound on the length of the shortest nonzero element. In this article, by a
lattice, or a lattice over Z, we mean a free Z-module P of finite rank r, together
with an inner product on the r-dimensional R-vector space P

R

= P ⊗
Z

R. Later
in this section, we will define (metrized) vector bundles over a ring of integers of
a number field. For Z however, the definition of lattice and vector bundle over Z
coincide. Given a nonzero element x in a vector bundle P over Z, we get a vector
bundle xZ, where the inner product on (xZ)

R

is given by taking the restriction of
the inner product on P

R

with respect to the inclusion (xZ)
R

⊂ P
R

. Because xZ has
rank 1, this is called a line bundle and for obvious reasons it is a sub-bundle of P .
Finding a short nonzero element in P is equivalent to finding a sub-bundle of rank 1
of P with small determinant.

Let K be a number field of degree n with ring of integers O. A (metrized) vector
bundle over O is a projective O-module P of finite rank r over O together with a
hermitian inner product on P

R

. We will give an elaborate introduction to vector
bundles in the next sections. For now it suffices to define hermitian inner products.
The R-vector space P

R

is naturally an O
R

-module. Writing S∞ for the set of infinite
primes of K, we have a decomposition

O
R

=
∏

v∈S∞

Kv,

45
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where each of the completions Kv is either isomorphic to R or C. Given an ele-
ment a ∈ O

R

, we write av for its coordinate in Kv. On Kv we have the notion of
complex conjugation—which is trivial if Kv is isomorphic to R—and the complex
conjugation a∗ of a is given by taking the complex conjugation on every coordinate.
A hermitian inner product on P

R

is an R-bilinear symmetric positive definite map

〈 · , · 〉:P
R

× P
R

−→ R,

such that for all x1, x2 ∈ P
R

and a ∈ O
R

, we have 〈ax1, x2〉 = 〈x1, a
∗x2〉. Given an

inner product, there is an induced norm map ‖ · ‖:P
R

→ R≥0, given by ‖x‖ = 〈x, x〉1/2

for x ∈ P
R

. A vector bundle P is naturally a lattice over Z and by the determinant
detP we mean the determinant of P as a lattice. Vector bundles of rank 1 over O
are called line bundles.

Instead of finding short elements in a vector bundle, we are interested in finding
sub-bundles of rank 1 with small determinant. More precisely, we want to find an
upper bound for the determinant of the smallest line bundle in terms of the rank
and determinant of the vector bundle and the degree, the discriminant and the class
number of K. We get a ‘trivial’ upper bound when we view the vector bundle as a
lattice over Z, use Minkowski to find a short nonzero element and consider what line
bundle this element generates.

1. Theorem. Let K be a number field of degree n over Q, with ring of inte-
gers O and discriminant ∆. Let P be a vector bundle of rank r over O. Then there
exists a sub-bundle L of P of rank 1 with

detL ≤ rn/2|∆|1/2(det P )1/r.

Although the proof is quite short and elementary, we postpone the proof until theo-
rem 23. The appearance of the discriminant in the formula above is disturbing. When
the rank of P is equal to 1, it says there is a sub-bundle L with detL ≤ |∆|1/2 det P .
However, in this case we can trivially take L equal to P and the upper bound in the
rank 1 case is a factor |∆|1/2 too large.

Given a set F of vector bundles with the same rank r, we write δ(F ) for the
infimum of all δ ∈ R such that there is a constant c ∈ R such that for all vector
bundles P in F there is a sub-bundle L ⊂ P of rank 1 with

det L ≤ c|∆|δ(det P )1/r.

Given the rank r and degree n, we write Pn,r for a set of representatives for the
set of isomorphism classes of all vector bundles of rank r over a ring of integers of a
number field of degree n. We also write δ(n, r) = δ(Pn,r). By theorem 1, we have
δ(n, r) ≤ 1/2 for all n, r ∈ Z≥1. Trivially, we have δ(n, 1) = 0 for all n ∈ Z≥1. In
this article, we prove the following theorem.
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2. Theorem. For all r ∈ Z>0 we have δ(2, r) ≥ 1
2 (1 − 1/r).

The theorem says that, given any r ∈ Z>0, an element δ ≤ 1
2 (1 − 1/r) and any

positive constant C, there is a number field of degree 2 and a vector bundle P over
this number field such that for all line bundles L ⊂ P , we have

det L > C|∆|δ(detP )1/r.

This theorem is restated and proved in theorem 33. This still leaves a gap 1
2 (1−1/r) ≤

δ(2, r) ≤ 1
2 and we did not succeed in closing the gap, or even narrowing it. In

section 6, we give an example of an explicit family F of vector bundles of rank r
over rings of integers of imaginary quadratic fields. Even for this specific family F ,
we do not know more than 1

2 (1 − 1/r) ≤ δ(F ) ≤ 1
2 .

2. Hermitian modules

The category of finite étale algebras over R consists of finite R-algebras A such that
the map

A −→ Hom
R

(A,R)

sending x ∈ A to the R-linear map y 7→ Tr(xy) is an isomorphism of R-vector spaces.
Here Tr is the trace map from A over R. If we let v range over the points of S = spec A,
we have a decomposition A =

∏

v Av, where Av is the residue class field. Every Av

is isomorphic to R or C. In the next section, we will specifically look at the situation
with A equal to O

R

, where O is the ring of integers of a number field K. In that case,
S is identified with the set S∞ of infinite primes and Av is equal to the completion Kv.
That is why we will call S the set of primes of A. The identity functor on the category
of the finite étale algebras over R has exactly one nontrivial automorphism x 7→ x∗.
Given a finite étale R-algebra A and an element x ∈ A, the element x∗ is given by
complex conjugation on all factors Av. When we talk about the involution of a finite
étale algebra over R we mean this map.

Let M be a free module of finite rank r over an étale R-algebra A. An inner
product or Euclidean structure on M is an R-bilinear symmetric positive definite
map 〈 · , · 〉:M × M → R. When M is endowed with a Euclidean structure, the
endomorphism group End

R

(M) has a natural involution φ 7→ φ∗, where the adjoint φ∗

of φ is the unique element of End
R

(M) such that the relation 〈φa, b〉 = 〈a, φ∗b〉 holds.
The Euclidean structure on M is called hermitian if the natural map A → End

R

(M)
preserves involutions. This is equivalent to the condition that for all a ∈ A and
m1,m2 ∈ M we have 〈am1,m2〉 = 〈m1, a

∗m2〉. A module with a hermitian structure
is called a hermitian module. The module M has a decomposition M =

∏

v Mv,
where v ranges over the elements of S and Mv is defined as Mv = M ⊗A Av. Given
an element m ∈ M and an element v ∈ S, we denote the image of m in Mv by mv.
Using the decomposition M =

∏

v Mv we see that there is an injective A-module
homomorphism Mv → M and we identify Mv with its image in M . In particular,
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for an element m ∈ Mv, we have mw = 0 for all w /∈ Sr{v}. Consequently, the
image of the element 1 of A in Av is denoted 1v and we have mv = 1vm. Each
of the factors Mv is an r-dimensional vector space over Av. For v ∈ S, we write
〈 · , · 〉v:Mv × Mv → R for the restriction of the inner product to Mv × Mv and for
m1,m2 ∈ M we also write 〈m1,m2〉v for 〈(m1)v, (m2)v〉v = 〈(m1)v, (m2)v〉.

The following lemma says that the factors Mv ⊂ M are perpendicular if M is
endowed with a hermitian structure. Given two elements m1, m2 ∈ M , we write
m1⊥m2 when m1 and m2 are perpendicular, meaning that we have 〈m1,m2〉 = 0.
For two sets X,Y ⊂ M we write X⊥Y when we have x⊥y for all x ∈ X and y ∈ Y .

3. Lemma. Let M be a free module of finite rank r over an étale R-algebra
A and let S be the set of primes of A. Furthermore, suppose M is endowed with a
hermitian structure. Then for all v, w ∈ S with v 6= w, we have Mv⊥Mw. Suppose
v is an element of S for which Av is isomorphic to C and let i ∈ Av be an element
with i2 = −1. Then for all m ∈ Mv, we have m⊥im and 〈m,m〉 = 〈im, im〉.

Proof. Let v and w be two different elements from S. For m1 ∈ Mv ⊂ M
and m2 ∈ Mw ⊂ M , we have

〈m1,m2〉 = 〈1vm1, 1wm2〉 = 〈m1, 1
∗
v1wm2〉 = 〈m1, 0m2〉 = 0.

This proves Mv⊥Mw. Now suppose v ∈ S is an element for which Av is isomorphic
to C and suppose m is an element of Mv. We have

〈im,m〉 = 〈m,−im〉 = 〈−im,m〉 = −〈im,m〉

and hence 〈im,m〉 is zero. Finally, we have 〈im, im〉 = 〈m,−i2m〉 = 〈m,m〉.

We now present a way of specifying a hermitian structure on a module M by
choosing a basis of M over A. A basis is a sequence (mi)1≤i≤r of elements in M
with r = rankA M such that we have M = Am1 + · · · + Amr. We usually write
m = (mi) for a basis, where it is understood that i runs from 1 to the rank of M .
Finally, we use the notation m ∈ m as shorthand for m ∈ {m1, . . . ,mr}.

Suppose A is isomorphic to R or C. Choosing a basis of Ar over A is equivalent to
giving an element of GLr(A), the group of non-singular r×r-matrices with coefficients
in A. We write Or(A) ⊂ GLr(A) for the subgroup of orthonormal matrices with
respect to the inner product 〈x, y〉 = [A : R]−1

∑r
i=1 Tr(xiy

∗
i ) on Ar. There is a

correspondence between the set of hermitian structures on Ar and GLr(A)/Or(A).
Given an element m ∈ GLr(A), the corresponding basis of Ar over A consists of
the columns m1, . . . ,mr of the matrix m. Let d ∈ {1, 2} be the degree [A : R].
Given this basis, we define a hermitian structure on Ar by setting 〈mi,mi〉 = d for
all i ∈ {1, . . . , r} and by requiring that the basis-elements are pairwise perpendicular.
In the complex case, it follows from lemma 3 above that the Euclidean structure is
uniquely determined. For the real case, this is trivial. Now let M be a finite free
module over A. Given a basis of M over A, we have an isomorphism of M with Ar

and hence there is an induced correspondence between GLr(A)/Or(A) and M . We
record our observations in the lemma below.
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4. Lemma. Let A be isomorphic to R or C and let d be the degree of A over R.
Let M be a vector space of finite dimension over A. Given a basis m of M over A,
we have an induced hermitian structure on M , uniquely determined by

〈m,m〉 = d for all m ∈ m

and the requirement m⊥m′ for m,m′ ∈ m with m 6= m′. Given a basis, there is an
induced correspondence between GLr(A)/Or(A) and the set of hermitian structures
on M .

When A is any finite étale R-algebra and M is a finite free A-module of rank r, spec-
ifying a hermitian structure on M is equivalent to specifying a hermitian structure
on each factor Mv over Av. This gives a corollary to lemma 4 above.

5. Proposition. Let A be a finite étale R-algebra and M a finite free A-
module. Let S be the set of primes of A and for v ∈ S, let dv be equal to the
degree [Av : R]. Given a basis m of M over A, we have an induced hermitian structure
on M , uniquely determined by

〈m,m〉v = dv for all v ∈ S and m ∈ m

and the requirement mv⊥m′
v for v ∈ S and m,m′ ∈ m with m 6= m′. Given a basis,

there is an induced correspondence between
⊕

v∈S GLr(Av)/Or(Av) and the set of
hermitian structures on M .

Proof. Let r be the rank of M over A. Given a basis m = (mi) of M over A
and an element v ∈ S, the sequence ( (mi)v )1≤i≤r forms a basis of Mv over Av.
Conversely, given a basis (mi,v)1≤i≤r of Mv over Av for every v ∈ S, we get an
induced basis (mi) of M over A by setting mi =

∑

v∈S mi,v for all i. The proposition
thus reduces to the local case, which was already done in lemma 4.

When M is a hermitian module, a basis m for M is called orthonormal if it
induces the hermitian structure as in proposition 5.

Let M be a finite free module over a finite étale R-algebra A. Let M be the
module with the same underlying group as M , but such that the action of an ele-
ment a ∈ A on an element m ∈ M is given by a∗m. Then a hermitian inner product
on M becomes a map M×M → R which factorizes over the tensor product M⊗A M .
In fact, the set of hermitian inner products on M is in this way identified with a subset
of Hom

R

(M ⊗A M,R).

6. Proposition. Let M be a module over a finite étale R-algebra A. There is
an isomorphism

HomA(M ⊗A M,A) −→ Hom
R

(M ⊗A M,R),

given by φ 7→ Tr ◦φ.
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Proof. We use two ingredients. First of all, we use that A → Hom
R

(A,R)
given by x 7→ Tr(x · ) is an isomorphism. It follows that HomA(M ⊗A M,A) is
isomorphic to HomA(M⊗AM,Hom

R

(A,R)). The second ingredient we use is lemma 7
below, which implies that this module is isomorphic to Hom

R

((M ⊗A M)⊗A A,R) =
Hom

R

(M ⊗A M,R).

7. Lemma. Let R be a commutative ring with 1 and let A be an R-module. Let
B and C be A-modules and let D be an R-module. Then we have an isomorphism

HomA(B,HomR(C,D)) −→ HomR(B ⊗A C,D),

given by φ 7−→ [b ⊗ c 7→ φ(b)(c)].

Proof. It is easily checked that, given φ ∈ HomA(B,HomR(C,D)), the map
b ⊗ c 7→ φ(b)(c) is well-defined and R-linear. The inverse is given by sending ψ ∈
HomR(B ⊗A C,D) to the map b 7→ [c 7→ ψ(b ⊗ c)] in HomA(B,HomR(C,D)).

8. Proposition. Let M be a finite free module over a finite étale R-algebra A
with set of primes S. Let Ψ ⊂ Hom

R

(M ⊗A M,R) be the set of hermitian inner
products on M and let Φ ⊂ HomA(M ⊗A M,A) the corresponding set under the
isomorphism from proposition 6. The set Φ consists of the elements φ such that for
all m1,m2 ∈ M we have φ(m1 ⊗m2) = φ(m2 ⊗m1)

∗ and for all nonzero m ∈ M we
have φ(m ⊗ m) 6= 0 and φ(m ⊗ m)v ∈ R≥0 for all v ∈ S.

Proof. Let ψ be an element of Hom
R

(M⊗AM,R) and assume ψ is symmetric.
Let φ ∈ HomA(M ⊗A M,A) be an element with Tr ◦φ = ψ. For every element a ∈ A,
we have Tr(a) = Tr(a∗). Hence, the image of the map M × M → A given by

(a, b) 7−→ φ(a ⊗ b) − φ(b ⊗ a)∗

is contained in the kernel of Tr. Actually, because the map is A-bilinear, the image
is contained in a subset of the kernel of Tr which is stable under the action of A. We
conclude that this image is zero and we have φ(a⊗ b) = φ(b⊗ a)∗. Now assume that
ψ is not only symmetric but also positive definite. Using the equality φ(a ⊗ a) =
φ(a⊗a)∗, we see that we have φ(a⊗a) ∈ ∏

v∈S R. Suppose there is an element v ∈ S
for which φ(a ⊗ a)v is negative. Then we have

ψ(1va ⊗ 1va) = Tr 1v1vφ(a ⊗ a) = TrAv/R φ(a ⊗ a)v = [Av : R]φ(a ⊗ a)v < 0.

This is a contradiction. Hence, we have φ(a ⊗ a)v ≥ 0 for all v ∈ S.

9. Proposition. Let A be a finite étale R-algebra and M a finite free A-
module. Given a basis m of M over A, there is an A-sesquilinear map ( · , · ):M ×
M → A, given by

(
∑

m∈m

amm,
∑

m∈m

a′
mm) =

∑

m∈m

ama′∗
m
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for a, a′ ∈ Am. The map Tr ◦( · , · ) is the inner product from proposition 5.

Proof. Let S be the set of primes of A and let v be an element of S. Let m
be an element of m. We have

Tr (mv,mv) = Tr (1vm, 1vm) = Tr 1v = TrAv/R 1 = dv,

where dv is the degree of Av over R. Let m′ be another element of m. Then we have

Tr (mv,m
′
v) = Tr (1vm, 1vm′) = Tr 0 = 0.

Hence, Tr ◦( · , · ) satisfies the same requirements as the inner product from proposi-
tion 5.

Let M and N be two hermitian modules over a finite étale R-algebra A. Then
M ⊗A N is a finite free A-module and it has a natural hermitian structure. Let
( · , · )M :M × M → A be the map corresponding to the inner product 〈 · , · 〉M :M ×
M → R of M , as provided by proposition 6. In other words, we have 〈m1,m2〉M =
Tr (m1,m2)M for m1,m2 ∈ M . Likewise, let ( · , · )N :N × N → A be the map
corresponding to the inner product 〈 · , · 〉N of N . We define an A-sesquilinear map

( · , · ): (M ⊗A N) × (M ⊗A N) −→ A

by (m1 ⊗ n1,m2 ⊗ n2) = (m1,m2)M (n1, n2)N . The canonical inner product on
M ⊗A N is given by taking the composition with the trace map. This shows how to
multiply hermitian modules. Given bases m = (mi)1≤i≤r and n = (nj)1≤j≤s of M
and N respectively, we write mn for the basis of M ⊗A N given by (ek)1≤k≤rs with
e(i−1)s+j = mi⊗nj . The following two propositions give alternative ways of deriving
the hermitian structure on the tensor product.

10. Proposition. Let M and N be hermitian modules over a finite étale R-
algebra A with orthonormal bases m and n respectively (as defined below proposi-
tion 5). Then the set mn is an orthonormal basis of M ⊗A N .

Proof. Let S be the set of primes of A. It suffices to check that 〈x, x〉v is
equal to dv = [Av : R] for x ∈ mn and that 〈x, y〉v equals 0 for x, y ∈ mn with x 6= y.
Both checks are routine and follow easily from proposition 9.

When M and N are hermitian modules with inner products 〈 · , · 〉M and 〈 · , · 〉N ,
the R-vector space M ⊗

R

N has an inner product uniquely determined by

〈m1 ⊗ n1,m2 ⊗ n2〉 = 〈m1,m2〉M 〈n1, n2〉N

for m1,m2 ∈ M and n1, n2 ∈ N . Let φ:M⊗
R

N → M⊗AN be the natural projection
map. The orthogonal complement (kerφ)⊥ of the kernel has a natural inner product
inherited from the inner product on M ⊗

R

N .
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11. Proposition. Let M and N be hermitian modules over a finite étale R-
algebra A and let φ:M ⊗

R

N → M ⊗A N be the projection map. The isomorphism
(kerφ)⊥ → M ⊗A N preserves the inner product.

Proof. The proof is easily reduced to the local case where A is isomorphic
to either R or C. The case A ∼= R is completely trivial, so we will assume that A is
isomorphic to C. Let i ∈ A be an element with i2 = −1. Let r be the rank of M
over A and let s be the rank of N over A. Furthermore, let m and n be orthonormal
bases for M and N . The kernel of the map φ:M ⊗

R

N → M ⊗A N has R-dimension
2rs and an R-basis is given by the elements of the set

⋃

m∈m
n∈n

{im ⊗ in + m ⊗ n, im ⊗ n − m ⊗ in}.

Let mn be the basis for M ⊗A N , defined before proposition 10, and let m ⊗ n be
an element from mn. Clearly, x = 1

2 (−im ⊗ in + m ⊗ n) is an element of (kerφ)⊥,
mapping to m ⊗ n. Write 〈 · , · 〉M⊗

R

N for the inner product on M ⊗
R

N , and write
〈 · , · 〉 for the inner product on M ⊗A N . We have

〈x, x〉M⊗
R

N = 1
4 (2〈m,m〉〈n, n〉) = 2 = 〈m ⊗ n,m ⊗ n〉.

It follows from a similar calculation that the elements in the inverse image of mn

in (kerφ)⊥ are pairwise perpendicular.

We have now seen several ways to multiply hermitian modules. The A-module
A with hermitian structure induced by the basis (1) is a neutral element for multi-
plication. By this we mean that for a hermitian A-module M , the induced hermitian
structure on M ⊗A A is the same as the one induced by the natural isomorphism
M → M ⊗A A. When we talk about the hermitian module A without specifying the
hermitian structure explicitly, we will always mean this structure.

Given two hermitian modules M and N , the canonical hermitian structure
on M ⊕N is given by 〈(m,n), (m′, n′)〉 = 〈m,m′〉+ 〈n, n′〉 for m,m′ ∈ M and n, n′ ∈
N . For k ∈ Z>0, we write Mk for the direct sum of k copies of M . When
m = (mi)1≤i≤r is a basis of M over A, inducing the inner product, the isomorphism
Ar → M , sending (ai)1≤i≤r to

∑r
i=1 aimi preserves the hermitian structure.

We have shown what the canonical hermitian structure is on the tensor product
and the direct sum of two hermitian modules. Finally, we also define a canonical
structure on exterior powers of hermitian modules. Given a commutative ring R
with 1, a module E over R and a positive integer k, the k-th exterior power of E
over R is the R-module

∧k
E = E⊗k/Jk,

where Jk is the submodule of E⊗k generated by tensors of the form x1 ⊗ · · · ⊗ xk

with xi = xj for some i 6= j. The image of an element x1 ⊗ · · · ⊗ xk of E⊗k in
∧k

E
is denoted x1 ∧ · · · ∧ xk. When F is another R-module and f :E → F is an R-linear



2. Hermitian modules 53

map, we have an induced map
∧k

f :
∧k

E → ∧k
F such that for x1, . . . , xk ∈ E, we

have
(
∧k

f)(x1 ∧ · · · ∧ xk) = f(x1) ∧ · · · ∧ f(xk).

When E is a free R-module of rank r, we have
∧k

E = 0 for k > r and for 1 ≤ k ≤ r,
we have

rankR

∧k
E =

(
r

k

)

.

For a proof of this statement, see [4, proposition XIX.1.1]. In particular, the module
∧r

E has rank 1 and if (ei) is a basis of E over R then (e1 ∧ · · · ∧ er) is a basis of
∧r

E
over R.

Let M be a hermitian module over A and let ( · , · ):M × M → A be the A-
sesquilinear map corresponding to the inner product. Let k be a positive integer. We
define an A-sesquilinear map ( · , · ):∧k

M × ∧k
M → A by

(m1 ∧ · · · ∧ mk,m′
1 ∧ · · · ∧ m′

k) = det ((mi,m
′
j))

k
i,j=1,

for mi,m
′
j ∈ M . Taking the composition with the trace map yields the inner product

on
∧k

M .

12. Proposition. Let M be a hermitian module of rank r with orthonormal
basis (mi). Then

∧r
M has orthonormal basis (m1 ∧ · · · ∧ mr).

Proof. Let A be the étale R-algebra over which M is a hermitian module and
let S be the set of primes of A. Let v be an element of S. There is a canonical
isomorphism

∧r
Mv

∼= (
∧r

M)v, where the first exterior power is taken over Av.
Explicitly, for x1, . . . , xr ∈ M and a1, . . . , ar ∈ Av, the element x1⊗a1∧· · ·∧xr⊗ar ∈
∧r

Mv is sent to (x1 ∧ · · · ∧xr)⊗ a1a2 . . . ar. The element (m1 ∧ · · · ∧mr)v ∈ (
∧r

M)v

corresponds to the element

1vm1 ∧ m2 ∧ · · · ∧ mr = 1vm1 ∧ 1vm2 ∧ · · · ∧ 1vmr = (m1)v ∧ · · · ∧ (mr)v

in M . The matrix Iv with (i, j)-th coordinate equal to ((mi)v, (mj)v) is equal to the
identity matrix over Av and we have

〈m1 ∧ · · · ∧ mr,m1 ∧ · · · ∧ mr〉v = Tr det Iv = Tr 1v = [Av : R].

Hence, (m1 ∧ · · · ∧ mr) is indeed an orthonormal basis.

Remark. One might wonder if there is an analogue of proposition 11 for exterior
powers. To be more precise, if M is a hermitian module of rank r, the exterior power
∧rM is a quotient of M⊗r and as such is isomorphic as an A-module to the orthogonal
complement of the kernel of the quotient map φ:M⊗r → ∧r

M . However, if (mi) is
a basis for M , the element of (kerφ)⊥ that is sent to the element m1 ∧ · · · ∧ mr is

x =
1

r!

∑

σ∈Sr

sign(σ)mσ(1) ⊗ · · · ⊗ mσ(r).

For v in the set of primes of A, we have 〈x, x〉v = [Av : R]/r! and this differs by a
factor r! from 〈φ(x), φ(x)〉v.
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3. Vector bundles

Let K be a number field with ring of integers O. A metrized vector bundle over O
is a projective O-module P of finite rank together with an inner product on P

R

such
that P

R

becomes a hermitian module over O
R

. In this article we drop the annotation
‘metrized’ and just talk about vector bundles. We write 〈 · , · 〉 for the inner product
on P

R

and we have a norm function ‖ · ‖:P
R

→ R≥0, given by ‖x‖ = 〈x, x〉1/2 for x ∈
P
R

. Given two vector bundles P and Q, the product P ⊗ Q is given by the O-
module P ⊗O Q with the canonical structure on (P ⊗O Q)

R

= P
R

⊗O
R

Q
R

. Likewise,
the direct sum P ⊕Q is naturally a vector bundle. A vector bundle of rank 1 is called
a line bundle. When P is of rank r, the projective module

∧r
P is in a natural way

a line bundle, because we have (
∧r

P )
R

=
∧r

P
R

.
The set of isomorphism classes of metrized line bundles with multiplication forms

a group which is called the Picard group PicK. The isomorphism class of the line
bundle O, where the orthonormal basis of O

R

over O
R

is (1), is the neutral element
for the multiplication in the Picard group.

Given a vector bundle P , the inner product induces a measure on P
R

—the Haar
measure that gives a box spanned by an orthonormal R-basis measure 1—and hence
it is clear what we mean by the determinant detP of P ⊂ P

R

as a lattice. The norm
of a line bundle L is defined by

N(L) =
detO

det L
=

|∆|1/2

det L
,

where ∆ is the discriminant of K. For a vector bundle P of rank r, we define the
norm by the formula

N(P ) = N(
∧r

P ).

The degree of a vector bundle is defined by deg P = log N(P ).
For r ∈ Z>0, the module Or has rank r over O and an orthonormal basis is given

by the r elements that have one coordinate equal to 1 and all other coordinates equal
to 0. The induced orthonormal basis of (

∧r
Or)

R

over O
R

is also a basis of
∧r

Or

over O and hence
∧r

Or is isomorphic to O as a line bundle. We conclude that
for P = Or, we have det P = |∆|(r−1)/2 det

∧r
P . We will prove that this formula

holds for all vector bundles of degree r. First, we give a few definitions and lemmas
concerning exterior powers and determinants.

Let R be a commutative ring with 1 and let V be a finite free module of rank r
over R. Let φ be an element of EndR(V ). Then

∧r
φ is a linear map

∧r
V → ∧r

V
and hence it is given by multiplication with an element a of R. We define detR φ = a.
Equivalent definitions of the determinant can be found in [1, III §8]. When we have
two linear maps φ and ψ, we have detR(φ ◦ ψ) = (detR φ)(detR ψ). When R is equal
to R, we write det φ instead of det

R

φ.

13. Lemma. Let P be a lattice in R

k for k ∈ Z>0 with a Haar measure on R

k

and let φ ∈ End
R

(Rk) be a linear map. Then we have

det φP

det P
= |det φ|.
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Proof. Let (ei)1≤i≤k be the basis of Rk such that the i-th coordinate of ei

is 1 and all other coordinates are 0. By the box spanned by the basis (ei), we mean
the set { a1e1 + · · ·+ akek : a1, . . . , ak ∈ [0, 1] }. Because the statement of the lemma
does not depend on the choice of the Haar measure, we will assume without loss of
generality that a box spanned by the basis (ei) has volume 1. Let φ ∈ End

R

(Rk) be
an elementary linear map. That is, the matrix corresponding to φ is obtained from
the identity matrix by either swapping two columns or adding a column to another
column. When a column is added to another column we have e1∧· · ·∧ek = φe1∧· · ·∧
φek and hence detφ = 1. When two rows are swapped we have det φ = −1. Clearly,
the volume of the box given by (φei) is the same as the volume of the box given
by (ei). Hence, we have det φZk/detZk = |det φ|. It is easy to see that this formula
also holds when the matrix corresponding to φ is a diagonal matrix. Because every
matrix can be made into diagonal form by multiplying with elementary matrices, we
use the multiplicity of the determinant to see that we have detφZk/detZk = |det φ|
for all maps φ ∈ End

R

(Rk). Now let ψ ∈ End
R

(Rk) be a map with ψZk = P . Then
we have

det φP

detP
=

det(φψZk)

detZk

detZk

det ψZk
= |det(φ ◦ ψ)| 1

|det ψ| = |det φ|.

This concludes the proof.

The following lemma is not used in this section, but this is the most obvious
place to state it.

14. Lemma. Let P be a lattice in Rk for k ∈ Z>0 with an inner product on Rk.
Let (pi) be an R-basis for P . Then we have

det P = |det(〈pi, pj〉)i,j |1/2

Proof. Let (ei) be an orthonormal basis and let A = (aij)i,j be the matrix
corresponding to the linear map sending ei to pi. Then we have

(〈pi, pj〉)i,j =
(∑

k,l

aikajl〈ek, el〉
)

i,j
=

(∑

k

aikajk

)

i,j
= AAT ,

where AT is the transposed of A. Hence, by lemma 13, we have |det(〈pi, pj〉)i,j | =
|det A|2 = ((det P )/(det

∑

i eiZ))2 = (det P )2.

15. Lemma. Let R be a commutative ring with 1 and let A be an R-algebra
which is finite free as an R-module. Let V be a finite free module over A. For
φ ∈ EndA(V ) ⊂ EndR(V ), we have detR φ = NA/R(detA φ), where NA/R denotes the
norm of A over R.

Proof. This is proved in [2, theorem A.1].
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16. Proposition. Let P be a vector bundle over O such that P is free of
rank r as a module over O. Then we have det P = |∆|(r−1)/2 det

∧r
P .

Proof. We write A = O
R

and we denote the hermitian A-module (Or)
R

by V .
Let (vi) be an orthonormal basis for V and let (pi) be an orthonormal basis for P

R

.
We let φ:V → P

R

be the A-linear map which sends vi to pi for 1 ≤ i ≤ r. The map φ
preserves the inner product. Because P is free of rank r over O, we have an O-module
isomorphism P → Or and this induces an A-module isomorphism i:P

R

→ V . We
identify P with its pre-image φ−1(P ) in V and we identify φ with the endomor-
phism i ◦ φ ∈ EndA(V ). We have φP = Or and we have already calculated

detφP

det
∧r

φP
=

det Or

det
∧r

Or
=

det Or

detO
= |∆|(r−1)/2.

From lemma 13, we know that (det φP )/(det P ) is equal to |det φ|. We claim that
we also have

det
∧r

φP

det
∧r

P
= |det φ|

and once we have proven that, we can conclude

det P

det
∧r

P
=

detP

det
∧r

P

detφP

detP

det
∧r

P

det
∧r

φP
=

det φP

det
∧r

φP
= |∆|(r−1)/2.

Write a = detA φ ∈ A. Then we have

∧r
φP = (

∧r
φ)

∧r
P = a

∧r
P.

Multiplication by a is an R-linear map and by definition the determinant is equal
to N(a). Hence, by lemma 13, we have

det a
∧r

P

det
∧r

P
= |N(a)|.

Furthermore, by lemma 15, this is equal to |det φ|. This proves our claim.

Next, we will show that when P and Q are projective O-modules of finite rank r
with P ⊂ Q of finite index, the index [Q : P ] is the same as [

∧r
Q :

∧r
P ]. Actually, we

will prove something stronger: Q/P and
∧r

Q/
∧r

P are the same in the Grothendieck
group. Let A be a Noetherian integrally closed domain and let CA be the category
of A-modules of finite length. Given a module M of length m there is a composition
series 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M such that each quotient Mi/Mi−1 is isomor-
phic to a non-zero prime ideal pi of A. We put χA(M) =

∏

i pi. The Grothendieck
group is CA, where modules with the same χA are identified. For exact sequences

0 −→ M ′ −→ M −→ M ′′ −→ 0,

we have χA(M) = χA(M ′)χ(M ′′). For more information, we refer to [7, §I.6]. The
following lemma comes directly from this reference.
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17. Lemma. Let A be a principal ideal domain and u:An → An a linear map
with det(u) 6= 0. Then det(u)A = χA(cokeru).

Proof. This is [7, lemma I.6.3].

18. Proposition. Let P and Q be projective modules of rank r over O with
P ⊂ Q. Then we have χO(Q/P ) = χO(

∧r
Q/

∧r
P ). In particular, we have [Q : P ] =

[
∧r

Q :
∧r

P ].

Proof. Let p be a prime ideal of O. The localizations Qp and Pp are free
Op-modules. We write A = Op and we fix isomorphisms Pp = Ar and Qp = Ar. The
inclusion map Pp → Qp becomes an A-linear map u:Ar → Ar. Hence, by lemma 17,
we have χA(Q/P ) = χA(cokeru) = det(u)A. We also have

χA(
∧r

Qp/
∧r

Pp) = χA(A/(
∧r

u)A) = χA(A/det(u)A) = det(u)A.

It now follows that we have

χO(Q/P )p = χA(Qp/Pp) = χA(
∧r

Qp/
∧r

Pp)

= χA((
∧r

Q)p/(
∧r

P )p) = χO(
∧r

Q/
∧r

P )p.

Because p was arbitrary, we can now conclude χO(Q/P ) = χO(
∧r

Q/
∧r

P ).

19. Proposition. Let P be a vector bundle of rank r over O. Then we have
detP = |∆|(r−1)/2 det

∧r
P .

Proof. Let Q be a free O-module of rank r with P ⊂ Q and give Q
R

the inner
product induced by the map P

R

→ Q
R

. Let k be the index [Q : P ] = [
∧r

Q :
∧r

P ].
Then by proposition 16, we have

detP = k−1 det Q = |∆|(r−1)/2k−1 det
∧r

Q = |∆|(r−1)/2 det
∧r

P.

This proves the proposition.

20. Proposition. Let P and Q be two vector bundles over O with rank P = r
and rank Q = s. Then the vector bundle P ⊗ Q had rank rs and we have

∧rs
(P ⊗ Q) = (

∧r
P )⊗s ⊗ (

∧s
Q)⊗r.

Proof. First, let P and Q be two finite free modules of rank r and s over a
commutative ring A with 1. Then there is a canonical isomorphism

∧rs
(P ⊗ Q) →

(
∧r

P )⊗s⊗ (
∧s

Q)⊗r given as follows. Choose a basis (pi) for P and a basis (qi) for Q.
Then

p1 ⊗ q1 ∧ · · · ∧ p1 ⊗ qs ∧ p2 ⊗ q1 ∧ · · · ∧ pr ⊗ qs

is a basis for
∧rs

(P ⊗ Q). The canonical homomorphism sends this basis element to
the basis element

(p1 ∧ · · · ∧ pr) ⊗ · · · ⊗ (p1 ∧ · · · ∧ pr)
︸ ︷︷ ︸

s times

⊗ (q1 ∧ · · · ∧ qs) ⊗ · · · ⊗ (q1 ∧ · · · ∧ qs)
︸ ︷︷ ︸

r times
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of (
∧r

P )⊗s ⊗ (
∧s

Q)⊗r. Given another basis (p′i) of P there is a matrix g ∈ GLr(A)
with (p′i) = g · (pi). When we replace the basis (pi) by (p′i), the basis for

∧rs
(P ⊗Q)

is multiplied with a factor (detA g)s. To see this, we first note that this is easy
to check for elementary matrices g—the ones corresponding to swapping two basis
vectors or adding one to another. Hence, we can assume that g is a diagonal matrix.
Furthermore, a diagonal matrix can be decomposed as a product of diagonal matrices
where at most one entry on the diagonal is not equal to 1. But for these matrices
the statement is also trivial. Likewise, when we replace (pi) by (p′i), the basis for
(
∧r

P )⊗s ⊗ (
∧s

Q)⊗r also changes with a factor (detA g)s. By symmetry, a similar
statement holds when we replace the basis (qi). We conclude that the canonical
homomorphism does not depend on the choice of the basis.

Now, let P and Q be vector bundles over O as in the statement of this proposi-
tion. Then PK = P ⊗O K and QK = Q ⊗O K are free K modules of rank r and s
and we have shown there is a canonical K-module isomorphism

φK :
∧rs

(PK ⊗ QK) −→ (
∧r

PK)⊗s ⊗ (
∧s

QK)⊗r.

Given a finite prime p of O, the modules Pp and Qp are free over Op. Localiza-
tion commutes with taking exterior powers and tensor products. A basis of Pp

over Op is also a basis of PK over OK . Hence, we get an isomorphism φp:
∧rs

(Pp ⊗
Qp) → (

∧r
Pp)

⊗s ⊗ (
∧s

Qp)
⊗r that extends to φK . Taking the intersection over all

finite primes, shows that the restriction φ of φK to
∧rs

(P ⊗ Q) is an isomorphism
with (

∧r
P )⊗s ⊗ (

∧s
Q)⊗r.

When we tensor with R, we get an isomorphism φ
R

:
∧rs

(P
R

⊗Q
R

) −→ (
∧r

P
R

)⊗s⊗
(
∧s

Q
R

)⊗r of hermitian modules by propositions 10 and 12. The restriction of φ
R

to
∧rs

(P ⊗ Q) is still φ. This can be seen by embedding PK in P
R

= PK ⊗
Z

R and
QK in Q

R

, which shows that φK is a restriction of φ
R

and hence φ is a restriction
of φ

R

.

21. Corollary. Let P and Q be vector bundles over O with rank P = r
and rank Q = s. Then the vector bundle P ⊗ Q has rank rs and we have

N(P ⊗ Q)1/(rs) = N(P )1/rN(Q)1/s.

4. Finding small line bundles

We now give a proof of theorem 1, which was stated in the introduction. We use
the Minkowski lattice theorem and the following lemma, which relates the norm of
a line bundle to the length of the shortest nonzero element in the line bundle. In
this section, K is a number field of degree n over Q with ring of integers O and
discriminant ∆.
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22. Lemma. Let L be a line bundle over O. Then for all nonzero elements
x ∈ L, we have

‖x‖2 ≥ nN(L)−2/n.

Proof. This is [3, lemma 20].

23. Theorem. Let P be a vector bundle of rank r > 0 over O. Then there
exists a sub-bundle L of P of rank 1 with

detL ≤ rn/2|∆|1/2(det P )1/r.

Proof. Let B ⊂ P
R

be a box with side 2 det(P )1/(nr) with respect to the inner
product on P

R

, centered around the origin. The volume of B equals 2dim
R

P
R det P

and it follows from the Minkowski lattice theorem that there is a nonzero element
x ∈ P ∩ B. Let L be the line bundle generated by x. Because x is in B, we
have ‖x‖ ≤ √

rn det(P )2/(nr). On the other hand, we have lemma 22, which says
nN(L)−2/n ≤ ‖x‖2. When we tie the inequalities together, we get

nN(L)−2/n ≤ rndet(P )2/(nr).

Considering that N(L) is equal to |∆|1/2/det L, the theorem follows immediately
from this inequality.

Using the notation δ(n, r) from the introduction, we have the following corollary.

24. Corollary. We have δ(n, r) ≤ 1/2 for all n, r ∈ Z>0.

5. Vector bundles with not so small sub-bundles

Let K be an imaginary quadratic field with ring of integers O and discriminant ∆,
class number h and number of roots of unity w = #µK . Let r be a positive integer.
We are going to construct so many vector bundles of rank r in Or that they cannot
all have small sub-bundles of rank 1. A precise statement is given in proposition 31.
After that proposition, we will vary the field K and prove theorem 2. Until we state
otherwise the field K is fixed and the propositions and lemmas implicitly refer to it.

Let p be a prime of O of degree 1. We are going to vary p later. Given an
element α ∈ P

r−1(O/p) of the (r− 1)-dimensional projective space over O/p, we can
write α = (a1 : a2 : · · · : ar) for some elements ai ∈ O with reductions ai ∈ O/p. We
define

Pα = { (x1, . . . , xr) ∈ Or : aixj ≡ ajxi mod p }
Clearly, Pα does not depend on the choice of the elements ai ∈ O. The hermitian
structure on P

R

is given by the inclusion P
R

⊂ (Or)
R

and hence we have a well-
defined vector bundle. We write p = Np and we write P = P

r−1(O/p). We have the
following lemma.
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25. Lemma. For α ∈ P, we have [Pα : pr] = p. For all vector bundles P with
pr ⊂ P ⊂ Or and [P : pr] = p, there is a unique α ∈ P with P = Pα. Finally, the
cardinality of P is pr−1 + pr−2 + · · · + 1.

Proof. Let α ∈ P be given. Let i ∈ {1, . . . , r} be one of the indices for
which α at i is nonzero. The map Pα → O/p given by the projection on the i-th
coordinate, followed by reduction modulo p is a surjective map and the kernel is
equal to pr. Hence, we have Pα/pr ∼= O/p and therefore the index [Pα : pr] is equal
to #(O/p) = Np = p.

Now, let P be a vector bundle with pr ⊂ P ⊂ Or and [P : pr] = p. Let a be
an element in P rpr. Let α = (a1 : · · · : ar) be the element in P corresponding to a.
We claim that Pα is contained in P . Let x be an element in Pα. Let i be an index
with ai 6= 0 and let y ∈ O be an element with y = xi/ai ∈ O/p. Let 1 ≤ j ≤ r be an
arbitrary index. Then we have

yaj ≡ xiaj

ai
≡ xjai

ai
≡ xj mod p.

In other words, we have ya ≡ x mod pr and hence x is in P . We have shown that
we have Pα ⊂ P and because the index [P : pr] is equal to [Pα : pr] we conclude
that Pα is equal to P . Because every element in P = Pα outside pr induces the same
element in P, uniqueness of α follows. The statement about the cardinality of P is
easy combinatorics.

We now know what vector bundles P with pr ⊂ P ⊂ Or and [P : pr] = p look
like and how many there are. We are now going to examine line bundles in Or and
count how many ‘small’ ones there are. Given a line bundle L ⊂ Or and an index
1 ≤ i ≤ r, we write πi:LR → O

R

for the projection on the i-th coordinate.

26. Proposition. Let L ⊂ Or be a line bundle. Then we have

det L =
r∑

i=1

detπiL.

Proof. Let π = πi be one of the projection maps. Then π is either the
zero map on L

R

, or it is injective. Indeed, suppose a, a′ ∈ L
R

are two different
elements with π(a) = π(a′). Then a − a′ is a nonzero element of L

R

and we have
(a− a′)O

R

⊂ L
R

. In fact, because the O
R

-rank of L
R

is 1, we have (a − a′)O
R

= L
R

.
Thus, we have πL

R

= π((a − a′)O
R

) = 0, which is what we had to show.
Now suppose that the proposition is true for a specific line bundle L and let

L′ be a line bundle with L ⊂ L′ of finite index. Let Π be the set of projections πi

for i ∈ {1, . . . , r} with πi not the zero map. Then we have for all π ∈ Π an equality
[L′ : L] = [πL′ : πL]. Hence, using our assumption on L, we can conclude

detL′ = [L′ : L]−1 detL =
∑

π∈Π

[πL′ : πL]−1 det πL =
r∑

i=1

πiL
′.
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Let L′ ⊂ Or be any line bundle and let a ∈ L′ be a nonzero element. Then
L = aO is of finite index in L′. In light of the remarks above it suffices to prove the
proposition for L and the corresponding statement for L′ follows. Let (e1, e2) be a
Z-basis for O. By lemma 14, we have

detL =

∣
∣
∣
∣
det

(
〈ae1, ae1〉 〈ae1, ae2〉
〈ae2, ae1〉 〈ae2, ae2〉

)∣
∣
∣
∣

1/2

.

Each of the entries of the matrix can be expanded as

〈aei, aej〉 =
r∑

k=1

〈akei, akej〉 = 〈ei, ej〉
r∑

k=1

|ak|2.

It follows that the determinant of L is equal to

detL = (det O)
r∑

i=1

|ai|2.

A similar calculation shows that for πiL = aiO, we have

detπiL = (det O)|ai|2.

The formula det L =
∑

i detπiL now follows immediately.

27. Lemma. Given ideals I1, . . . , Ir ⊂ O, there are at most wr−1 = (#µK)r−1

line bundles L ⊂ Or with Ii = πiL for 1 ≤ i ≤ r.

Proof. Suppose L is a line bundle satisfying the conditions. Without loss of
generality we will assume that I1 is nonzero. For every k for which Ik is nonzero, we
have an O-isomorphism

I1
π−1
1−→ L

πk−→ Ik.

Any other isomorphism I1 → Ik is given by the map πk ◦ π−1
1 followed by multi-

plication with a unit η ∈ µK . Let L′ be another line bundle satisfying the same
conditions from the lemma with L replaced by L′. Let ηk ∈ µK be the unit such that
the isomorphism I1 → Ik induced by L followed by multiplication by ηk is the iso-
morphism I1 → Ik induced by L′. When we let J ⊂ {2, . . . , r} be the set of indices k
with Ik nonzero, we claim that, given L, the line bundle L′ is uniquely determined by
(ηk)k∈J . Indeed, when we define ηk = 0 for k /∈ J , the isomorphism I1 → L′ is given
by the isomorphism I1 → L followed by multiplication by (ηk)1≤k≤r coordinate-wise.
Hence, the number of line bundles fitting the requirements of the lemma is bounded
by #(µK)J ≤ wr−1.

For t ∈ R, we write Lt for the set of line bundles L ⊂ Or with detL ≤ t. We
want to estimate the number of elements of Lt. We use an estimate on the number
of ideals of O with bounded norm.
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28. Theorem. The number of ideals in O in one specific ideal class and with
norm at most t is equal to

2π

w|∆|1/2
t + O(t1−1/n),

Proof. This is a weak form of the formula given in [5, theorem VI.3.3].

It is important to note that the norm in the previous theorem refers to the ideal
norm and not to the norm of the ideal viewed as a line bundle in O. In particular,
the determinant of an ideal with ideal norm t is equal to tdet O = t|∆|1/2.

29. Proposition. For large enough t ∈ R, we have #Lt ≤ (2π)rh|∆|−rtr.

Proof. For every L ∈ Lt the projections πiL have determinant at most t by
proposition 26. Moreover, all the projections that are nonzero are in the same class
of the class group. Let c be an element of the class group. Using theorem 28, we
have

#{ I ⊂ O : det I ≤ t and [I] = c } =
2π

w|∆| t + O(t1−1/n).

Hence, when we also use lemma 27 and sum over the h elements in the class group,
we get

#Lt ≤ h
( 2π

w|∆| t + O(t1−1/n)
)r

wr−1.

For t large, the term

hwr−1
( 2π

w|∆| t
)r

=
1

w

h(2π)r

|∆|r tr

dominates and because w is at least 2 we have

#Lt ≤
h(2π)r

|∆|r tr

for t large enough.

30. Lemma. For all line bundles L ⊂ Or with L 6⊂ pr, there is a unique α ∈ P

with L ⊂ Pα. For t < p|∆|1/2, we have L 6⊂ pr for all L ∈ Lt.

Proof. Let L be a line bundle with L 6⊂ pr. Let π be a projection map
with πL 6⊂ p. Then the map L → O/p induced by p is surjective. Moreover, the
kernel is contained in pr. Hence, we have [L+pr : pr] = p and hence there is an α ∈ P

with L + pr = Pα by lemma 25. This is the unique α for which we have L ⊂ Pα.
Let t be smaller than p|∆|1/2 and let L be in Lt. Let π be a projection with πL

nonzero. By proposition 26, we have detπL ≤ t. Therefore πL cannot be contained
in p. It follows that L is not contained in pr.
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31. Proposition. There exists a vector bundle P of rank r such that for all
line bundles L ⊂ P , we have

det L > (detP )1/r |∆|1/2

h1/r
.

Proof. We keep the field K fixed, but we are going to vary the prime ideal p.
Given a p of degree 1, we write p = Np and

t = p(r−1)/r |∆|
h1/r2π

.

We take the norm of the prime p so large that t is smaller than p|∆|1/2 and such
that t is large enough such that proposition 29 applies. By lemma 30, every line
bundle L ∈ Lt is contained in exactly one vector bundle Pα. By proposition 29,
the number of line bundles in Lt is at most pr−1, which by lemma 25 is smaller
than #P. Hence, there is an α ∈ P such that the line bundle L in Pα with the
smallest determinant is not contained in Lt. Hence, for the determinant of L we
have

det L > t > p(r−1)/r |∆|
h1/r

= (detPα)1/r |∆|1/2

h1/r
.

We take P = Pα and the proposition follows.

We are now going to vary the number field K. First we state a result that the
class number is bounded in terms of the discriminant.

32. Lemma. For all ε > 0, there is a positive constant c ∈ R such that for all
imaginary quadratic fields K with discriminant ∆ and class number h, we have h ≤
c|∆|1/2+ε.

Proof. This is a weak form of the ‘trivial’ inequality of the Brauer-Siegel
theorem [5, chapter XVI]. It also follows from the explicit bound

h ≤ d(1 + log d), with d =
2

π
|∆|1/2,

which is given in [6, theorem 6.5].

We can now prove theorem 2 from the introduction.

33. Theorem. For all r ∈ Z>0 we have δ(2, r) ≥ 1
2 (1 − 1/r).

Proof. Let r ∈ Z>0 be given and write y = 1
2 (1 − 1/r). Let δ be any value

smaller than y and let C be any positive number. Write ε = 1
2r(y − δ) and let c be

the constant from lemma 32 with h ≤ c|∆|1/2+ε for all imaginary quadratic fields.
For imaginary quadratic field with |∆| large enough, we have

|∆|1/2

h1/r
≥ |∆|1/2

(c|∆|1/2+ε)1/r
=

1

c1/r
|∆|δ+(y−δ)/2 ≥ C|∆|δ.
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Hence, there is an imaginary quadratic number field with discriminant ∆ such that
by proposition 31, there exists a vector bundle P of rank r such that for all line
bundles L ⊂ P , we have det L > C|∆|δ(det P )1/r. As C was arbitrary, this shows
that δ is smaller than δ(2, r).

6. An example family

When given a vector bundle with a particularly small nonzero vector relative to the
determinant, the strategy of finding a small sub-bundle of rank 1 by looking what is
generated by the smallest nonzero vector obviously works. Hence, when we want to
construct a vector bundle without small sub-bundles, it is a good idea to make sure
that the successive minima are roughly equal. We give a family of vector bundles
that satisfies this requirement.

Let d ≡ 1 mod 4 be a positive square-free integer and write K = Q(
√
−d ) with

ring of integers O = Z[
√
−d ]. We identify the completion of K at the infinite prime

with C and we give C⊕C orthonormal basis
(
(2−1/2, 0), (0, 2−1/2)

)
over C in the sense

of lemma 4. Hence, we have ‖(1, 0)‖2 = ‖(0, 1)‖2 = 1. We write i for a primitive 4-th
root of unity in C, we define ε = 1/

√
d and let F be the vector bundle

F = (1, 0)O + (i, ε)O ⊂ C⊕ C.

A Z-basis for F is given by the elements e1 = (1, 0), e2 = (i
√

d, 0), e3 = (i, ε),
e4 = (

√
d, iε

√
d ). For a1, . . . , a4 ∈ Z, we have

‖a1e1 + · · · + a4e4‖2 = (a1 + a4

√
d )2 + (a3 + a2

√
d )2 + a2

3d
−1 + a2

4.

Either e1 or e2 − ⌊
√

d⌋e3 is a smallest nonzero vector. When d goes to infinity, the
length of the shortest nonzero vector converges to 1. Another Z-basis of F is given
by the elements e1 and e2 − ⌊

√
d⌋e3 together with the elements e3 and e4 − ⌊

√
d⌋e1.

When d goes to infinity, the lengths of all these vectors tend to 1. Moreover, this
new basis is roughly orthogonal. Hence, one would expect the determinant of F to
be about 14 = 1. This is precisely the case.

34. Lemma. For every d, the determinant of F is equal to 1.

Proof. By lemma 14, the determinant of F is equal to |det(〈ei, ej〉)i,j |1/2

which by calculation is equal to

∣
∣
∣
∣
∣
∣
∣

det






1 0 0
√

d
0 d

√
d 0

0
√

d 1 + 1/d 0√
d 0 0 d + 1






∣
∣
∣
∣
∣
∣
∣

1/2

= 1.
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This proves the lemma.

Let F be the set of all F for all positive square-free d ≡ 1 mod 4. Theo-
rem 23 only states that for each F ∈ F there is a sub-bundle L of rank 1 with
detL ≤ 2|∆|1/2. In fact by taking L = e1O, we have a line bundle L ⊂ F with
detL = 1

2 |∆|1/2. Using the notation from the introduction, this is nothing more
than δ(F ) ≤ 1

2 . For every line bundle L ⊂ F there is a line bundle M of degree 0
such that L⊗M ⊂ F ⊗M is cyclic, i.e., generated over O by one element. For every
line bundle M of degree 0, we write λM (F ) for the shortest nonzero vector in the
twist F ⊗M of F . Of course, the determinant of F ⊗M is still 1. If δ(F ) is smaller
than 1

2 , this would mean in particular that minM λM (F ) tends to 0 when d goes to
infinity. However, we have not succeeded in proving anything more than what can
already be derived from theorem 23 and theorem 33, namely: 1

4 ≤ δ(F ) ≤ 1
2 .
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BOUNDS FOR COMPUTING THE TAME KERNEL

Richard P. Groenewegen

Abstract — The tame kernel of the K2 of a number field F is the kernel
of some explicit map K2F →

⊕
k∗

v , where the product runs over all finite
primes v of F and kv is the residue class field at v. When S is a set of primes
of F , containing the infinite ones, we can consider the S-unit group US of F .
Then US⊗US has a natural image in K2F . The tame kernel is contained in this
image if S contains all finite primes of F up to some bound. This is a theorem
due to Bass and Tate. An explicit bound for imaginary quadratic fields was
given by Browkin. In this article we give a bound, valid for any number field,
that is smaller than Browkin’s bound in the imaginary quadratic case and has
better asymptotics. A simplified version of this bound says that we only have
to include in S all primes with norm up to 4|∆|3/2, where ∆ is the discriminant
of F . Using this bound, one can find explicit generators for the tame kernel,
and a ‘long enough’ search would also yield all relations. Unfortunately, we
have no explicit formula to describe what ‘long enough’ means. However, using
theorems from Keune we can show that the tame kernel is computable.

1. Introduction and statement of the main theorem

The explicit determination of the tame kernel of a number field is similar to the
determination of class groups. As a consequence of a suitable Minkowski bound, the
computations are restricted to a finite set of primes with small norms. Using these
primes one searches for relations until finally one can prove, or at least conjecture,
that the found generators and relations yield the whole group. It is useful to have a
small upper bound on the norm of the primes used.

In order to make the above discussion more explicit, we give some definitions.
Let F be a number field, with ring of integers O and discriminant ∆. We define the
group K2F as

K2F = (F ∗ ⊗ F ∗)/〈 a ⊗ b : a, b ∈ F ∗, a + b = 1〉.

All tensor products in this article are taken over Z. The class belonging to a ⊗ b is
written as {a, b} and the group operation is written multiplicatively. There is a more
general definition of the K2 of a ring, as a group of non-obvious matrix relations, but
we do not need it here. It can be found in [12].

For v:F → Z ∪ {∞} a non-archimedean valuation corresponding to the prime
ideal pv of O with residue class field kv = O/pv, we define a map tv:K2F → k∗

v by

{a, b} 7−→ (−1)v(a)v(b) av(b)

bv(a)
mod pv.

2000 Mathematics Subject Classification. Primary 11R70; Secondary 11Y40, 19C20.
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We will often refer to valuations as primes. The tame kernel is defined as the kernel
of the map

(tv)v<∞:K2F −→
⊕

v<∞
k∗

v .

Using the more general definition of the K2, one can show that the tame kernel is
equal to K2O (see [13, §5, corollary to theorem 5]). It is a finite group (see [6])
and when we talk about determining it explicitly, we mean giving a finite number of
generators and relations for the group.

The determination of the tame kernel is made manageable with the use of a
filtration of K2F . For any set S of primes of F that contains the set S∞ of infinite
primes, we define US as the group of S-units of F , i.e., US = {x ∈ F ∗ : v(x) =
0 for all v /∈ S }. For every positive integer m, we write

Um = USm , where Sm = S∞ ∪ {all finite primes v with Nv ≤ m}.

Here, the norm Nv denotes the order #kv of the residue class field. Now we can
define

K(m) = (Um ⊗ Um)/〈a ⊗ b : a, b ∈ Um, a + b = 1 or a + b = 0〉.

In K2F , we have {−a, a} = 1 for all a ∈ F ∗. For a 6= 1 we see this from the
computation {−a, a} = {−a, a}{1 − a−1, a−1}−1 = {−a + 1, a} = 1. That is why
there is a natural map K(m) → K2F . We write Km for the image of K(m) in K2F .
The maps Km−1 → Km are injective, whereas the maps K(m−1) → K(m) may not

be. For every m we have an ‘approximation’ K
(m)
2 O of the tame kernel, defined by

K
(m)
2 O = ker

[
K(m) −→

⊕

Nv≤m

k∗
v

]
,

where the direct sum is taken over all finite primes with norm up to m. The groups

K
(m)
2 O have two important virtues. As we will see, K

(m)
2 O is computable as a

function of m and F , meaning that there is an algorithm that, given m and F in
some explicit way, computes the group in a finite number of steps. Furthermore,

when m is large enough, the group K
(m)
2 O is equal to the tame kernel.

We can now state a simplified version of the main theorem of this article.

1. Theorem. For every number field F , there are constants cF , c′F such that
(1) for all m > cF , the map K(m)/ im K(m−1) → ⊕

Nv=m k∗
v induced by the

maps tv is an isomorphism. The direct sum is taken over all finite primes
with norm equal to m.

(2) for all m > c′F , the map K(m) → Km is an isomorphism.

For m > cF , the image of K
(m)
2 O in K2F is equal to the tame kernel. For m >

max{cF , c′F }, the natural map K
(m)
2 O → K2O is an isomorphism. We can take

cF = 4|∆|3/2. The group K
(m)
2 O is computable as a function of m and F .
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This theorem is a consequence of theorem 15, in which we give a different cF ,
which is smaller by proposition 21. Anyone who wants to use our theorem for calcu-
lations should use the results in section 8.

Part 1 of the theorem, without an explicit cF , is a reformulation of theorem
II.3.1 in an article of Bass and Tate [1]. Careful inspection of their arguments led to
explicit bounds, and for imaginary quadratic number fields the best bound so far was
given by Browkin [2]. He proves that we can take cF = 26π−10/3|∆|5/3 when F is
imaginary quadratic and |∆| is at least 15. Clearly, the bound in our theorem above
is asymptotically better. In section 8, we work out what the bound in theorem 15
amounts to in the imaginary quadratic case. It turns out our bound outperforms
Browkin’s bound for small discriminants also. Our results are compared to those of
Browkin in section 8.

One can find explicit generators for the tame kernel by finding generators for

K
(m)
2 O, where we have m > cF . Unfortunately, we have no explicit formula for c′F .

However, using theorems from Keune [8] that allow us to determine the order of
the p-primary part of the tame kernel, we can compute the tame kernel and hence
also c′F .

2. Theorem. The smallest feasible value of c′F and the tame kernel K2O are
computable as a function of the number field F .

This theorem is a combination of theorem 19 and theorem 20 from section 8.
Basically, we take an m > cF that is large enough such that the kernel of the map
K(m) → ⊕

Nv≤m k∗
v is finite. Then the tame kernel is a quotient of this kernel, which

gives a bound on the order of the tame kernel and allows us to use Keune’s theorems.
The first calculations of tame kernels were done by Tate, who computed the

tame kernels for the six imaginary quadratic fields with |∆| ≤ 15 in the appendix
of [1]. Recent, but currently unpublished, calculations using the bound in this article
are done by K. Belabas and H. Gangl. They have independently been using Keune’s
theorems to prove correctness of their results. Some of their results are stated in the
appendix of [2].

While proving the main theorem, we need to find ‘small’ generators of S-unit
groups. In section 5, we prove the following theorem.

3. Theorem. Let s be the number of complex primes of F and let T be a
finite set of primes of F containing S∞ and all finite primes with norm at most
(2/π)s|∆|1/2. Write mT = max({1} ∪ {Nv : v ∈ T − S∞ }). Then UT is generated
by the set of all a ∈ O ∩ UT with |av|v ≤ (2/π)2s|∆|mT for all v ∈ S∞.

Remark. By saying the tame kernel K2O is computable as a function of F ,
we mean that the function that sends a number field F to the tame kernel K2O is
computable. More generally, we say f(x) is computable as a function of x, when we
actually mean that f is computable. Furthermore, our statements about computabil-
ity depend on how the input of the function is represented. We feel it is not necessary
to be very precise about this, because any non-contrived representation usually works
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well. For instance, a natural number can be represented as a finite bit-string, giving
the binary representation. A number field is represented by a generating element and
this element itself is represented by a fundamental polynomial with coefficients in Z.
For the representation of other objects, we refer to [4], particularly chapter 4. In [4]
one can also find algorithms to compute the maximal order and the class group of a
number field.

2. Notation and outline of the article

This section is mainly concerned with setting the notation and explaining the strategy
we use to prove the main theorem. At the end of this section, we give an outline of
the remainder of the article.

The setting is the same as in the introduction: we have a number field F with
ring of integers O and discriminant ∆. Let n = r + 2s be the degree of F , where r is
the number of real primes and s is the number of complex primes. In the introduction
we constructed groups K(m) which gave a filtration of K2F . Here, we will make the
filtration even finer. Let v1, v2, v3, . . . be an ordering of all the finite primes with
non-decreasing norms. Let v be a finite prime. Then there is an index j with vj = v.
We define the sets S = S∞ ∪ {v1, v2, . . . , vj−1} and S′ = S ∪ {v} and we write

U = US , K = (U ⊗ U)/〈a ⊗ b : a, b ∈ U : a + b = 1 or a + b = 0〉,
U ′ = US′ , K ′ = (U ′ ⊗ U ′)/〈a ⊗ b : a, b ∈ U ′ : a + b = 1 or a + b = 0〉.

Hence, S, S′, U , U ′, K, K ′ depend on v and on the numbering of the primes, although
this is not visible in the notation. We will prove that under certain conditions on the
norm of v, the map K ′/ im K → k∗

v is an isomorphism and deduce the main theorem
from that.

It is crucial for the remainder of this article that the sequence

0 −→ U −→ U ′ v−→ Z −→ 0

is exact. It is, however, not true in general that the valuation map is surjective when
the norm of v is very small.

4. Lemma. Define

d =
2nΓ(n/2 + 1)

(πn)n/2
|∆|1/2

and let ρ = ρn be the packing density of an n-dimensional sphere. Then the valuation
map U ′ v−→ Z is surjective as long as Nv > ρd. We have ρd ≥ 1.

Before we give the proof, we want to give some definitions and explain the constant ρ.
First we explain packing densities. Let K0 be a measurable, bounded subset of Rn

with nonempty interior. A packing of K0 in R

n is a collection K of translates of K0
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such that the interiors do not meet pairwise. Let Cr (for r ∈ R>0) be the hypercube
in R

n consisting of points with each of the coordinates in absolute value at most r.
Then we define the density of K as

ρ+(K) = lim sup
r→∞

(
vol(Cr)

−1
∑

K′
0∈K

K′
0∩Cr 6=∅

vol(K ′
0)

)
,

where ‘vol’ is the volume given by the Lebesgue measure on R

n. Intuitively, ρ+(K)
is the proportion of the entire space covered by the union of the elements in K. The
packing density of K0 is defined as

ρ(K0) = sup
K

ρ+(K),

where the supremum is taken over all packings K of K0. In the case K0 is an n-
dimensional sphere, we have

ρ = ρn = ρ(K0) ≤
n + 2

2

( 1√
2

)n

, and ρn = π/
√

12 if n = 2.

Asymptotically stronger is the Kabatiansky-Levenshtein bound, which says

ρn ≤ 2−0.599n+o(n) for n → ∞.

For references and more information about packings, we refer to Rogers [14] and
Conway and Sloane [5].

5. Lemma (Minkowski). Let L be a lattice of Rn of full rank, with determinant
det(L). Let K0 be a closed, convex, symmetric subset of Rn such that volK0 ≥
2nρ(K0) det(L). Then there is a nonzero point in L ∩ K0.

Proof. This is a trivial adaptation from [10, V.3.theorem 3].

The R-vector space we will be working in, is F
R

= F ⊗ R. The additive group
of F

R

is naturally equivalent to its own character group by sending x ∈ F
R

to the
character y 7→ e−2πi Tr(xy), where Tr denotes the trace from F

R

to R. Using this
equivalence we let the measure on F

R

be the self-dual one. This means we take the
measure dx such that we have

f(x) =
ˆ̂
f(−x)

for continuous complex valued functions f ∈ L1FR for which the Fourier transform
f̂(y) =

∫
f(x)e2πi Tr(xy)dx is also continuous and in L1FR (see [15]). Consequently,

the determinant of O is equal to |∆|1/2.
In order to apply Minkowski, we need a supply of closed, convex, symmetric

sets. We will mainly use balls, cubes and diamonds. We define these shapes in terms
of three corresponding metrics. Write F

R

as the product

F
R

=
∏

v∈S∞

Fv.



72 Bounds for computing the tame kernel

An element x ∈ F
R

has coordinates xv ∈ Fv. Each factor in the product has an
absolute value | · |v by embedding Fv into C. For t ∈ R>0, we define

balls: Bt = {x ∈ F
R

: ‖x‖2 ≤ t1/n }, with ‖x‖2 = ( 1
n

∑

w∈S∞
nw|xw|2w)1/2,

cubes: Ct = {x ∈ F
R

: ‖x‖∞ ≤ t1/n }, with ‖x‖∞ = maxw∈S∞
|xw|w,

diamonds: Dt = {x ∈ F
R

: ‖x‖1 ≤ t1/n }, with ‖x‖1 = 1
n

∑

w∈S∞
nw|xw|w,

where nw is equal to the degree [Kw : R].
The basic properties that we use of these sets are listed in the lemma below.

6. Lemma. Let d be defined as in lemma 4 and define d̃ = (2/π)s|∆|1/2. When
x is an element of F , we write N(x) for the absolute value of the norm of x to Q.
For t ∈ R>0, the norm N(x) of an element x in either Bt, Ct or Dt is at most t.
The volumes of Bdt and Cd̃t are given by

vol Bdt = vol Cd̃t = 2n|∆|1/2t.

For t, t′ ∈ R>0, we have

BtBt′ ⊂ Dtt′ , BtCt′ ⊂ Btt′ .

Remarks and proof. The volume of an n-dimensional sphere with radius 1
in Rn is

πn/2

Γ(n/2 + 1)
.

We have Γ(1/2) =
√

π and Γ satisfies the functional relation Γ(x) = (x− 1)Γ(x− 1).
The measure on F

R

induced by ‖ · ‖2 and the canonical measure on F
R

we use to
calculate volumes differ a factor nn/2. From this, the formula for the volume of Bdt

follows.
The statement that norms of elements in Bt, Ct and Dt are bounded by t is an

easy application of the inequality of the means. By BtBt′ we mean the set {xy : x ∈
Bt, y ∈ Bt′} and BtBt′ ⊂ Dtt′ follows from the Cauchy-Schwarz inequality.

We are now ready to prove lemma 4.

Proof of lemma 4. Let d and ρ be defined as in the lemma. We have

vol Bdρ = 2nρ|∆|1/2 = 2nρdet(O).

Hence, by Minkowski there is a nonzero point in O ∩Bdρ. The norm of this element
is at least 1 because it is in O, and is at most dρ because it is in Bdρ. Hence, dρ is
at least 1.

Now let p = pv be the prime ideal corresponding to v and set t = dρNv. We have
volBt = 2nρ|∆|1/2Nv = 2nρdet(p) and therefore there exists a nonzero point π in
p∩Bt, for which we clearly have v(π) ≥ 1. Because π is an integral element, v(π) can
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only be greater than 1 if Nπ is at least (Nv)2. But we have Nπ ≤ t = dρNv < (Nv)2.
Hence, we have v(π) = 1 and π ∈ U ′, which proves the surjectivity of the valuation
map.

We adopt the notation for d and ρ from the lemma and we will make the following
assumption:

Assumption 1: Nv > ρd.

With this assumption, the set

Π = {π ∈ U ′ : v(π) = 1 }

is not empty. Let π be any element from Π and consider the map

U −→ K ′/ im K, given by u 7−→ {u, π}.

By abuse of notation, {u, π} denotes both an element in K ′ and in the quotient.

7. Lemma. The map U → K ′/ im K does not depend on the choice of π ∈ Π.
The map is surjective and the kernel contains U ∩ (1 + Π).

Proof. For any π′ ∈ Π we can write π′ = u′π for some u′ ∈ U and we have

{u, π′}/{u, π} = {u, u′} ∈ imK.

Hence, the map does not depend on π. To see that the map is surjective, first notice
that K ′/ im K is certainly generated by elements of the form {u, π}, {π, u}, {π, π},
for u ∈ U . It follows from the definitions that { · , · } is anti-symmetric: for all
a, b ∈ U ′, we have

{a, b}{b, a} = {a, b}{−b, b}{b, a}{−a, a} = {−ab, ab} = 1.

So, we can omit the generators {π, u} in favor of {u, π}. We rewrite

{π, π} = {π, π}/{−π, π} = {−1, π},

so this element is also covered by elements of the form {u, π}. Finally, if π′ ∈ Π is
an element with 1 + π′ ∈ U , we have −π′ ∈ Π and {1 + π′, π} = {1 + π′,−π′} = 1.
Hence, U ∩ (1 + Π) is in the kernel.

The reduction map ∂:U → k∗
v also has U ∩ (1 + Π) in the kernel. Abusing

notation, we write ∂ for the induced map

∂:U/〈U ∩ (1 + Π)〉 −→ k∗
v ,
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where by 〈U ∩ (1 + Π)〉 we mean the subgroup of U generated by the elements in the
set U ∩ (1 + Π). By the previous lemma we have a well-defined and commutative
triangle

U/〈U ∩ (1 + Π)〉
∂

K ′/ im K k∗
v

and we see that if ∂ is an isomorphism, all maps are isomorphisms. This allows us to
divert all attention to the map ∂ and forget about K-theory, tame kernels, symbols
and even the newly defined K ′ and K.

We shall prove that ∂ is an isomorphism if Nv exceeds a constant depending
on F . How large we want Nv to be gradually becomes clear. At several points in
the argument we need a lower bound on Nv, and we keep track of these bounds by
means of boxed assumptions, an example being assumption 1 above.

In section 3, we define a set-theoretical map γ: k∗
v → U/〈U ∩ (1 + Π)〉 for which

∂ ◦ γ is the identity. In sections 4 and 6 we show that γ ◦ ∂ is the identity on a
set of generators for U/〈U ∩ (1 + Π)〉. In the course of doing that we find a set of
small generators for the group U0 = {x ∈ U : v′(x) = 0 for all v′ with Nv′ > d} in
section 5. In section 7 we prove that γ is a homomorphism. The definition of γ
together with the proofs that γ ◦ ∂ is the identity on a set of generators and that
γ is a homomorphism all rely on assumptions on the norm of v. Combining these
assumptions, we have proved that K ′/ im K → k∗

v is a isomorphism. In section 8, we
formulate this as a theorem and deduce the main theorem from it. We also discuss
the results for quadratic fields and give asymptotic results.

3. A candidate inverse map

In this section, we give a candidate inverse map γ for ∂. In order to define the map,
we will make a stronger assumption on the norm of v.

In section 6, we will use balls that are somewhat stretched in one direction and
squeezed in another direction. We want the following lemma to be applicable in that
situation too, so we need some notation for these stretched and squeezed balls. Let
X be the set

X = { ξ ∈
∏

w∈S∞

R>0 :
∏

w∈S∞

ξnw
w = 1 }, nw = [Kw : R].

The set X is a group under pointwise multiplication. By ξA for A ⊂ F
R

and ξ ∈ X
we mean the set

ξA = { (ξwaw)w∈S∞
: a ∈ A }.
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Multiplication with ξ preserves volumes of measurable sets and norms of elements.
Hence, the norm of an element of ξBt or ξCt is still at most t.

Apart from these squeezed balls we also use cross products of balls. The following
lemma relates the packing density of products of balls to the packing densities of balls.
For a proof, see [7].

8. Lemma (Hlawka). If K0 ⊂ R

m and K ′
0 ⊂ R

n are bounded symmetric, convex
subsets then the packing density of K0 ×K ′

0 in Rm+n is at most min{ρ(K0), ρ(K ′
0)}.

9. Lemma. If t ∈ R>0 satisfies t2 ≥ ρd2Nv and t < Nv then for each u ∈ k∗
v

and ξ ∈ X, there are x, y ∈ ξBt ∩ U ∩ O with ∂(x/y) = u.

Proof. Let u be an element of k∗
v and let L be the kernel of the map O×O →

kv, given by
(x, y) 7−→ x̄ − uȳ.

The determinant of L is equal to |∆|Nv. Let t satisfy the premises of the lemma.
The volume of ξBt × ξBt is equal to 22nd−2t2|∆| and by assumption this is at least
22nρNv|∆| = 22nρdet(L). As ξBt × ξBt has packing density at most ρ by lemma 8,
we conclude that there is a nonzero element (x, y) in (ξBt × ξBt) ∩L. The elements
x and y have norm smaller than Nv and therefore they are either 0 or in U . As at
least one of them is nonzero, the relation x̄ = uȳ tells us that the other element is
also nonzero. Hence, they are both in U and we have ∂(x/y) = u.

Whenever we have Nv > ρd2, we see that t = ρ1/2d(Nv)1/2 satisfies the premises
of lemma 9 and hence the map ∂ is surjective. We need Nv a little bigger in order
to ensure that choosing a ‘random section’ gives a well-defined map.

10. Proposition. Suppose t, t′ ∈ R>0 satisfy the inequality 2ntt′ < (Nv)2

and let ξ and ξ′ be elements of X. Assume

x, y ∈ ξBt ∩ U ∩ O, x′, y′ ∈ ξ′Bt′ ∩ U ∩ O

are elements with ∂(x/y) = ∂(x′/y′). Then x/y and x′/y′ have the same image
in U/〈U ∩ (1 + Π)〉.

Proof. It is certainly sufficient to prove that xy′ and x′y have the same image
in U/〈U ∩ (1 + Π)〉. By lemma 6, we know that xy′ and x′y are in ξξ′Dtt′ and we
have

xy′ − x′y ∈ ξξ′D2ntt′ .

Write π = xy′ − x′y. It is clear that the valuation of π is at least 1. As we have
N(π) ≤ 2ntt′ < (Nv)2, we see that π is either 0 or in Π. When π is 0, the elements
x/y and x′/y′ are equal in U and therefore also in U/〈U ∩ (1 + Π)〉. When π is in Π,
we just write

xy′

x′y
= 1 +

π

x′y
∈ 1 + Π
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and we are done.

The existence of a t that satisfies both the requirements in lemma 9 and the
inequality 2nt2 < (Nv)2 from proposition 10 is assured by assumption 2:

Assumption 2: Nv > 2nρd2.

We use this assumption in the definition of γ.

Definition of γ. We define a map

γ: k∗
v −→ U/〈U ∩ (1 + Π)〉

as follows. Let u in k∗
v be given. Write t = ρ1/2d(Nv)1/2. We can find x, y ∈ Bt∩U∩O

with ∂(x/y) = u by lemma 9. We define

γ(u) = x/y ∈ U/〈U ∩ (1 + Π)〉.

By proposition 10 and assumption 2, the map γ is well defined.

It is clear that ∂ ◦ γ is the identity on k∗
v . In order to prove that γ ◦ ∂ is the

identity on U/〈U ∩ (1 + Π)〉 we shall use more assumptions.

4. γ ◦ ∂ on a set of generators (part 1)

Recall that S is the set of primes of F such that U = US . Let v′ be a finite prime in
S with

Nv′ > d̃, with d̃ =
( 2

π

)s

|∆|1/2.

Let p′ = pv′ be the corresponding prime ideal. The determinant det(p′−1) is equal
to |∆|1/2(Nv′)−1. Using Minkowski, we see that there exists a nonzero element

π′ ∈ p′−1 ∩ Cd̃/Nv′ .

Now π′p′ is an integral ideal and we have

N(π′p′) ≤ (d̃/Nv′)Nv′ = d̃ < Nv′.

Therefore, the prime ideal factorization of (π′) is p′−1 times prime ideals of norm
smaller than Nv′. In particular, we have v′(π′) = −1 and π′ ∈ U . Let π′ be
the image of π′ in U/〈U ∩ (1 + Π)〉. We prove that γ ◦ ∂ is the identity on π′.
Define t = ρ1/2d(Nv)1/2 and let x, y ∈ Bt ∩U ∩O be elements with ∂(π′) = ∂(x/y).
By lemma 6, we have

π′y ∈ Btd̃/Nv′ ⊂ Bt
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and therefore also
π′y − x ∈ B2nt.

This means that the norm of π′y − x is bounded by 2nt = 2nρ1/2d(Nv)1/2. We want
this to be smaller than Nv, so we need another assumption:

Assumption 3: Nv > 22nρd2.

Now we can conclude

N(p′(π′y − x)) < Nv′Nv ≤ (Nv)2.

If π′y − x is nonzero, this tells us that π′y − x is in Π. Then we have π′/(x/y) =
π′y/x ∈ 1 + Π, which proves (γ ◦ ∂)(π′) = x/y = π′.

Let U0 be the group

U0 = {x ∈ U : v′(x) = 0 for all v′ with Nv′ > d̃ }.

Then U is generated by the set

{all π′ for all finite v′ ∈ S with Nv′ > d̃ } ∪ U0.

In the next section we find a set of generators for U0 and in section 6 we show that
γ ◦ ∂ is the identity on the image of this set in U/〈U ∩ (1 + Π)〉.

5. Finding good generators for U0

Finding ‘good’ generators for U0 is almost completely worked out in section 6 of an
article by Lenstra [11]. However, we do have to refer to one of the proofs in this
article. While we are at it, we give a refinement of theorem 6.2 in [11].

Let T be any finite set of primes from F , containing S∞ and all finite primes
with norm at most d̃. Write mT = max({1} ∪ {Nv : v ∈ T − S∞ }). According
to the proof of theorem 6.2 in [11], the group UT (which is written there as KS) is
generated by the set

⋃

b⊂O
Nb≤d̃

{
a ∈ b−1 ∩ UT :

∏

w∈S∞

max{1, |aw|nw
w } ≤ d̃mT

Nb

}
. (∗)

Although we will not use it, it does not take too much effort to state and prove
the next theorem, which is a nice improvement of theorem 6.2 in [11]. Apart from
formulation this is identical to theorem 3.



78 Bounds for computing the tame kernel

11. Theorem. The group UT is generated by the set Cd̃2mT
∩ O ∩ UT .

Proof. Let a and b be as in (∗). Write

t = d̃Nb
∏

w∈S∞

max{1, |aw|nw
w }.

Then by Minkowski, there is a nonzero b′ ∈ b with

|b′w|w ≤ t1/n/max{1, |aw|w} (w ∈ S∞).

Because b′ is in the integral ideal b and the norm of b is at most d̃, we have b′ ∈ O∩UT .
From a ∈ b−1 ∩ UT it follows that b′a is in b′(b−1 ∩ UT ) ⊂ O ∩ UT . Because t is at
most d̃2mT , we have b′, b′a ∈ Cd̃2mT

. We use these elements as generators instead
of a. This finishes the proof of the theorem.

If we let T be the set {finite v′ : Nv′ ≤ d̃ } ∪ S∞, we have U0 = UT . The
generators we use for U0 are the ones given in (∗).

6. γ ◦ ∂ on a set of generators (part 2)

By Minkowski, the set Cd̃ contains a nonzero element of O and this implies that d̃ is

at least 1. Hence, in our case we can bound mT by d̃. Let b ⊂ O be an ideal with
Nb ≤ d̃ and let a ∈ b−1 be an element with

∏

w max{1, |aw|nw
w } ≤ d̃2/Nb. We prove

that γ ◦ ∂ is the identity on the image a of a in U/〈U ∩ (1+Π)〉 and we can conclude
that γ ◦∂ is the identity on the image of a set of generators of U0 in U/〈U ∩ (1+Π)〉.

Now is the time we are going to use the ξ’s mentioned in lemma 9 and proposi-
tion 10. Let ξ ∈ X be the element such that for w′ ∈ S∞ we have

ξw′ =

(
∏

w∈S∞
max{1, |aw|nw

w }
)1/n

max{1, |aw′ |w′} .

We have chosen ξ in such a way that a is an element of ξ−1Cd̃2/Nb. Define t =

ρ1/2d(Nv)1/2 and let x, y ∈ ξBt ∩ U ∩ O be elements with ∂(x/y) = ∂(a) as in
lemma 9. As usual, we want to prove that ay/x is in {1} ∪ (1 + Π). It would be
sufficient if N(b(ay − x)) is smaller than (Nv)2. Indeed, in this case π = ay − x is
either 0 or in Π and in the latter case we can write ay/x = 1 + π/x ∈ 1 + Π.

Clearly, we have

ay ∈ Btd̃2/Nb and x ∈ ξBt ⊂ Btd̃2/Nb and hence ay − x ∈ B2ntd̃2/Nb.

Therefore, we have N(b(ay−x)) ≤ 2ntd̃2 = 2nρ1/2dd̃2(Nv)1/2. For this to be smaller
than (Nv)2, we need assumption 4:

Assumption 4: Nv > 22n/3ρ1/3(dd̃2)2/3.
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7. When is γ a homomorphism?

Now that we know that γ ◦ ∂ is the identity on a set of generators—at least, under
assumptions 3 and 4—and ∂ ◦ γ is the identity everywhere, it suffices to prove that
γ is a homomorphism. The following lemma is inspired by [1, II.3.2.c].

12. Lemma (denominator-trick). If t ∈ R satisfies t3 ≥ ρd3(Nv)2 and t <
Nv, then for each u, u′ ∈ k∗

v, there are x, y, z ∈ Bt ∩ U ∩ O with ∂(x/z) = u
and ∂(y/z) = u′.

Proof. This is almost completely identical to lemma 9. Let u and u′ be
elements from k∗

v and let L be the kernel of the map O×O×O → kv × kv, given by

(x, y, z) 7−→ (x̄ − uz̄, ȳ − u′z̄).

The determinant of L is equal to |∆|3/2(Nv)2. The packing density of the cross
product of three spheres, each of dimension n, is at most ρ. Therefore, there is a
nonzero element in (x, y, z) in (Bt ×Bt ×Bt)∩L. The details can easily be adapted
from the proof of lemma 9.

The existence of a t as in lemma 12 is assured by assumption 5:

Assumption 5: Nv > ρd3.

For the next proposition, we also use

Assumption 6: Nv > 26n/5ρd12/5.

13. Proposition. Under assumptions 2, 5 and 6, the map γ is an homomor-
phism.

Proof. Let u, u′, u′′ ∈ k∗
v be given with uu′ = u′′. Write t = ρ1/3d(Nv)2/3

and t′ = ρ1/2d(Nv)1/2 and choose x, y, z ∈ Bt ∩ U ∩ O according to lemma 12 and
x′, z′ ∈ Bt′ ∩ U ∩ O according to lemma 9 with

u = ∂(x/z), u′ = ∂(x′/z′), u′′ = ∂(y/z).

Assumption 6 is chosen precisely to make sure that we have

2ntt′ < (Nv)2.

Hence by proposition 10, we have γ(u) = x/z and γ(u′′) = y/z in U/〈U ∩ (1 + Π)〉.
We want xx′ and yz′ to have the same image in U/〈U∩(1+Π)〉. As usual, this follows
from the fact that xx′−yz′ is in D2ntt′ and hence, the norm is smaller than (Nv)2.
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Remark. For specific calculations, the bounds can probably be improved, by
not considering all u′ ∈ k∗

v in proposition 13, but only generators for k∗
v . For many v’s,

the group k∗
v is generated by the images of elements in small balls. To use this,

it is probably necessary to use a different ordering on the primes—not necessarily
with non-decreasing norms—where the v’s with ‘large’ generators appear later in the
ordering.

8. Discussion

For the main theorem of this article, we only have to reap what we have sowed.
Under assumptions 1 to 6, the map γ is the inverse map of ∂ and as we explained in
section 2, it follows that K ′/ im K → k∗

v is an isomorphism. We define

cF = max
{
22nρd2, 22n/3ρ1/3(dd̃2)2/3, ρd3

}
(∗∗)

and for easy reference, we recall the definitions

d =
2nΓ(n/2 + 1)

(πn)n/2
|∆|1/2 and d̃ =

( 2

π

)s

|∆|1/2.

Furthermore, ρ is the packing density of an n-dimensional sphere.

14. Theorem. The map K ′/ im K → k∗
v is an isomorphism if we have Nv > cF .

Proof. It suffices to show that assumptions 1 to 6 follow from Nv > cF .
Assumptions 1 and 2 clearly follow from Nv > 22nρd2. We see that

22nρd2, 26n/5ρd12/5 and ρd3

are equal when we have d = 22n. Hence 26n/5ρd12/5 is smaller than either 22nρd2 or
ρd3. Therefore, assumption 6 follows.

15. Theorem. For every number field F , there are constants cF , c′F such that
(1) for all m > cF , the map K(m)/ im K(m−1) → ⊕

Nv=m k∗
v induced by the

maps tv is an isomorphism. The direct sum is taken over all finite primes
with norm equal to m.

(2) for all m > c′F , the map K(m) → Km is an isomorphism.

For m > cF , the image of K
(m)
2 O in K2F is equal to the tame kernel. For m >

max{cF , c′F }, the natural map K
(m)
2 O → K2O is an isomorphism. We can take cF

as defined by (∗∗). The group K
(m)
2 O is computable as a function of m and F .

Proof. Let m be larger than cF and suppose we are in the nontrivial case
where there exists a prime with norm equal to m. Impose an ordering on the finite
primes of F and suppose w1, w2, . . . , wk are all primes with norm m, appearing in
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this order. Let v one of the these primes and define K ′ and K as in section 2.
In the case v = wk, we have K ′ = K(m) and by theorem 14, we know that the
map K(m)/ im K → k∗

v is an isomorphism. If v = wj for an arbitrary index j

we assume K(m)/ im K ′ → ⊕k
i=j+1 k∗

wi
is an isomorphism and we use this to show

that K(m)/ im K → ⊕k
i=j k∗

wi
is an isomorphism. Consider the diagram below:

K ′/ im K

∼=

K(m)/ im K K(m)/ imK ′

∼=

0

0 kwj

⊕k
i=j k∗

wi

⊕k
i=j+1 k∗

wi
0 .

The diagram has exact rows and all maps are compatible. With the snake lemma
‘without the snake’ we see that the middle vertical arrow is in fact an isomorphism.
Using induction, we have now proved (1).

As for (2), let kerm be the kernel of the map K(m) → Km. Suppose m > cF

and consider the commutative and exact diagram

kerm−1 kerm 0

K(m−1) K(m)
⊕

k∗
v 0

0 Km−1 Km
⊕

k∗
v 0 .

By applying the snake lemma to the diagram, we see that the map kerm−1 → kerm

is surjective. In fact, for every M ≥ m, the map kerm → kerM is surjective. Because
K2F is equal to the direct limit lim K(m), for each element x ∈ kerm there is an M ≥
m such that x maps to 1 in kerM . Because of the surjectivity of the maps kerm →
kerM and the fact that kerm is finitely generated, this means there is an M such that
kerM = 0.

In order to prove that the groups K
(m)
2 O are computable, we show that we

can compute K(m). We can determine K(m), because there are only finitely many
solutions to the equation a + b = 1 with a, b ∈ Um and we can find them all [3].
Furthermore, factoring out by all elements a ⊗ −a for all a ∈ Um is the same as
factoring out by all elements a ⊗ −a and (a ⊗ b)(b ⊗ a) for a and b in a set of
generators of Um.

It is clear that for m > cF , the image of K
(m)
2 O in K2F is equal to the tame

kernel and that for m > c′F , the map K
(m)
2 O → K2O is an isomorphism.

It follows from theorem 15 that the tame kernel is computable if we know its
order. We use theorems from Keune to find the order of the p-primary part of the
tame kernel.
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16. Lemma (Keune). The function (p, F ) 7→ #(K2O)2 that maps a prime
number p and a number field F to the order of the p-primary part of the tame kernel
of F is computable if we either restrict to odd primes or to number fields containing i.

Proof. By [8, theorem 6.6], we can compute the p-primary part W (F )p of the
wild kernel W (F ) when p is an odd prime or F contains i, using the isomorphism

(

µq ⊗ Cl
(
OF (ζq)[

1
p ]

)
/q

)

Γ

∼−→ W (F )p,

where we have Γ = Gal(F (ζq)/F ) and q is a high enough power of p such that
µ(Fp)p ⊂ µq for all p | p and q kills the p-primary part of K2OF . Still for an odd
prime p, we have a sequence

0 → W (F )p → (K2OF )p →
⊕

p|p
µ(Fp)p → µ(F )p → 0

from [8, (1.10)], which we use to calculate the order of the p-primary part of K2OF .
All maps are explicitly given in [8].

17. Lemma. The tame kernel K2O is computable as a function of number
fields F containing i.

Proof. By theorem 15, there exists a value of m > cF such that K
(m)
2 O is

isomorphic to the tame kernel and in particular we can find a value of m > cF such

that K
(m)
2 O is finite. The tame kernel is a quotient of this group and that implies

we have an upper bound on the primes occurring in the order. By lemma 16, we can
calculate the order of the tame kernel and by theorem 15, we can compute the tame
kernel.

18. Lemma. The order #(K2O)2 of the 2-primary part of the tame kernel is
computable as a function of the number field F .

Proof. We define E = F (i) and write OF and OE for the ring of integers
of F and E respectively. By lemma 17 we can compute K2OE . Let S be the set
of infinite primes of F and let T be the set of infinite primes of E. Then we can
apply [8, proposition 6.2], which says that the transfer map K2E → K2F induces
an isomorphism (K+

2 OE,T )Γ → K+
2 OF,S , where Γ is the Galois group Gal(E/F ).

In our case, K+
2 OE,T is equal to K2OE and K+

2 OF,S is equal to the kernel of the
surjective map K2OF → ⊕

p real infinite µ2 induced by Hilbert symbols. We can now

compute (K+
2 OF,S)2 ∼= ((K2OE)Γ)2 = ((K2OE)2)Γ and hence we can compute the

order of (K2OF )2.

19. Theorem. The tame kernel is computable as a function of the number
field.

Proof. As in the proof of lemma 17, we can find an upper bound on the
primes occurring in the order of the tame kernel. By lemma 16 and lemma 18, we
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can calculate the order of the tame kernel. It follows from theorem 15 that we can
now calculate the tame kernel.

20. Theorem. The smallest feasible value of c′F is computable as a function
of the number field F .

Proof. If for some m > cF , the map K(m) → Km is an isomorphism, then the
map K(m+1) → Km+1 is also an isomorphism. If, given any m, we can check whether
the map K(m) → Km is injective, or equivalently, whether the map K(m) → K2F
is injective, it follows that we can find a smallest feasible value of c′F . We use that
we can write K(m) and K2O with a finite number of generators and relations. First,
find explicit generators for the kernel A of the map K(m) → ⊕

v<∞ k∗
v . The images

of these generators in K2F are actually in K2O. By a finite search, we can find a
representation for these elements in K2O and we can calculate the kernel of A to K2O
and check if this kernel is 0 in K(m).

21. Proposition. For every number field F , we have cF ≤ 4|∆|3/2.

Proof. For n = 1, we have cF = 4. A numerical approximation shows that
the proposition holds for n = 2. Hence, we assume n ≥ 3.

Writing c = 2nΓ(n/2 + 1)/(πn)n/2, we have d = c|∆|1/2. Using d ≥ 1 and
d̃ ≤ |∆|1/2 and ρ ≤ 1, we get

cF ≤ max{22nd3, 22n/3d5/3d̃4/3} ≤ |∆|3/2 max{22nc3, 22n/3c5/3}.

It is enough to prove the inequality 22nc3 ≤ 4, because that proves that c is smaller
than 1 and therefore we have 22n/3c5/3 ≤ (22nc3)1/3 ≤ 4. Stirling’s formula says that
for every y > 0 we have Γ(y + 1) =

√
2πy(y/e)yeR(y), where R(y) ≤ 1/(12y) holds

(see [9, XIV §64.B]). Hence, using n ≥ 3, we have

c2 ≤ nπ1−n2ne−n+1/9.

It follows that log(24nc6) is at most n(7 log 2− 3 log π− 3)+3 log π +1/3+3 log n. A
numerical approximation shows that for n = 3 this is smaller than log(42) and that
the derivative is smaller than 0 for n ≥ 3.

If we specialize to the quadratic case, we have n = 2, s ≤ 1, ρ = π/
√

12. We get
the following corollary.

22. Corollary. Let F be a quadratic field with discriminant ∆. Then the
cF from theorem 14 is equal to

cF =

{
253−1/2π−1|∆| < 5.8809|∆| if |∆| ≤ 631;

223−1/2π−2|∆|3/2 < 0.2340|∆|3/2 if |∆| > 631.

Proof. In the quadratic case 22n/3ρ1/3(dd̃2)2/3 is smaller than 22nρd2, no
matter if s is 1 or 0. We have 22nρd2 = ρd3 for |∆| = 64π2 .

= 631.6.
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The best bounds we have found in the literature are given by Browkin [2]. He
proves for imaginary quadratic number fields F that the map K(m)/ imK(m−1) →
⊕

Nv=m k∗
v is an isomorphism when we have Nv > 26π−10/3|∆|5/3 .

= 1.41|∆|5/3 and
|∆| ≥ 15. It is clear that our results are better asymptotically. But also for small
discriminants, our bound competes well, as the small table below shows.

Discriminant −15 −19 −20 −23 . . . −148 −151 . . . −871
Browkin’s bound 128.5 190.6 207.6 262.1 . . . 5836.0 6034.5 . . . 111955.1
cF 88.2 111.7 117.6 135.2 . . . 870.3 888.0 . . . 6014.8

The following theorem gives the asymptotic results.

23. Theorem. There are constants cn and an such that for every number
field F of degree n with discriminant ∆, we have cF < cn|∆|3/2 whenever we have
|∆| ≥ an. We can take cn < (2−0.59923/2e−3/2π−3/2)n+o(n) < 0.0749n+o(n) and
an < (2−120.599·4/3π7/3e7/3)n+o(n) < 129.65n+o(n) for n → ∞.

Proof. First of all, the magic ‘0.599’ comes from the Kabatiansky and Lev-
enshtein bound on packing densities of the sphere. They proved that the packing
density of an n-dimensional sphere is at most 2−0.599n+o(n). This is described in [5,
Ch. 9]. An application of Stirling’s formula on the bounds in theorem 14 yields the
formulas above.
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SAMENVATTING

Vectorbundels en meetkunde der getallen

In dit proefschrift nemen roosters een belangrijke plaats in. Een voorbeeld van
een rooster in het platte vlak krijgen we door twee vectoren te kiezen die niet in
elkaars verlengde liggen en alle punten te nemen die te schrijven zijn als som van
veelvouden van deze vectoren. Bijvoorbeeld, als we de vectoren (1, 1) en (

√
3,−

√
3 )

kiezen, krijgen we het rooster in figuur 1. De twee vectoren heten de basisvectoren

(1;1)

(

p

3;�

p

3)

figuur 1: rooster voortgebracht
door (1, 1) en (

√
3,−

√
3 ).

en samen vormen ze een basis voor het rooster. Het
platte vlak kunnen we voorzien van een inproduct en
daarmee meten we hoeken en lengtes. Als we gebruik
maken van het standaard inproduct, staan de twee
basisvectoren loodrecht op elkaar en heeft de vector
(1, 1) lengte

√
2. We kunnen het inproduct echter ook

een beetje aanpassen. Wanneer we bijvoorbeeld de
assen loodrecht op elkaar houden, maar de lengtes in de
horizontale richting met een factor 3 vergroten, krijgen
we het plaatje in figuur 2. De twee basisvectoren zijn
nu niet meer loodrecht en de vector (1, 1) heeft ten
opzichte van dit inproduct lengte

√
12 + 32 =

√
10. In

het algemeen is een rooster een verzameling punten in een reële vectorruimte, voort-
gebracht door een R-lineair onafhankelijke basis, met een inproduct op de vector-
ruimte dat zorgt voor hoek- en lengtebegrip.

(1;1)

(

p

3;�

p

3)

figuur 2: zelfde rooster als in figuur
1, maar met lengtes in horizontale
richting 3 keer zo groot.

Voordat we de inhoud van dit proefschrift kun-
nen beschrijven, moeten we ook vertellen wat getal-
lenlichamen zijn. Het eenvoudigste getallenlichaam
is het lichaam Q der rationale getallen, bestaande uit
alle getallen die geschreven kunnen worden als een
quotiënt van twee gehele getallen. Andere getallen-
lichamen krijgen we door aan Q een eindig aantal
wortels van polynomen toe te voegen. Als voorbeeld
nemen we het lichaam Q(

√
3 ) dat bestaat uit alle

getallen die geschreven kunnen worden in de vorm
a+b

√
3 met a en b in Q. Dus 1

2 + 3
7

√
3 zit in Q(

√
3 ),

maar
√

2 niet. De ring van gehelen van Q(
√

3 ) is dan
Z[
√

3 ], bestaande uit getallen van de vorm a + b
√

3
met a en b geheel. De ring van gehelen Z[

√
3 ] heeft

een basis over Z gegeven door 1 en
√

3. Als we 1 in het platte vlak tekenen met
coördinaten (1, 1) en

√
3 met coördinaten (

√
3,−

√
3 ) en we nemen het standaard

inproduct, krijgen we precies het rooster uit figuur 1. Elk getallenlichaam heeft een
ring van gehelen en elke ring van gehelen kan op een vergelijkbare manier worden
voorgesteld als een rooster. We hoeven natuurlijk niet het standaard inproduct
te gebruiken. We staan in dit proefschrift hermitese inproducten toe, wat in ons
voorbeeld erop neerkomt dat alles is toegestaan zolang de assen loodrecht op elkaar

87
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staan. Wanneer we een ring van gehelen geven, tezamen met een interpretatie als
rooster met een hermites inproduct, geven we eigenlijk een gemetriseerde lijnbundel.
Er zijn ook andere gemetriseerde lijnbundels, maar voorlopig voldoet het om hieraan
te denken. De figuren 1 en 2 zijn twee grafische weergaven van twee verschillende
gemetriseerde lijnbundels.

Gegeven een gemetriseerde lijnbundel—dus in het bijzonder een rooster—kunnen
we aan alle roosterpunten een waarde toekennen. Als x een punt in het rooster is
en ‖x‖ is zijn lengte, dan kennen we de waarde e−π‖x‖2

toe. Als we kijken naar
het voorbeeld in figuur 1, dan zien we dat het punt (0, 0) de waarde e−π·0 = 1

toegekend krijgt en dat (1, 1) de waarde e−π(
√

2 )2 = e−2π krijgt. Die laatste waar-

1;0

0;0018674427317

0;0000000065124

0;0000000000121

figuur 3: waarde e−π‖x‖2
die wordt toege-

kend aan een roosterpunt x. Punten op één
cirkel hebben dezelfde lengte en dus dezelfde
waarde.

de is afgerond op 4 decimalen gelijk aan
0,0019. Voor langere vectoren wordt deze
toegekende waarde al snel klein. Bijvoor-
beeld, de waarde die aan (

√
3,−

√
3 ) wordt

toegekend is al kleiner dan 0,66 × 10−8 en
de waarde die bij (10, 10) wordt gegeven is
minder dan 0,14 × 10−272. Het toekennen
van deze waarden aan de roosterpunten is
weergegeven in figuur 3. Als we alle waar-
den bij elkaar optellen, krijgen we afgerond
1,00373489 en als we daarvan de logaritme
nemen, geeft dat 0,0037279. Die laatste
waarde is de h0 van de gemetriseerde lijn-
bundel uit figuur 1. In het algemeen is de h0(L) van een gemetriseerde lijnbundel L

gelijk aan de logaritme van de som van alle getallen e−π‖x‖2

, genomen over alle punten
x in het rooster van L. Het eerste artikel in dit proefschrift betreft de functie h0.

De functie h0 is gëıntroduceerd door de wiskundigen Van der Geer en Schoof als
analogon van een belangrijke functie l uit de algebräısche meetkunde. De functie l
is het makkelijkst uit te leggen aan de hand van een voorbeeld. In figuur 4 is

P

1

P

2

P

3

figuur 4: de kromme
y2 = (x + 1)(x − 1)(x − 2).
De functie y die aan een
punt de y-coördinaat toe-
kent heeft nulpunten
P1 = (−1, 0), P2 = (1, 0),
P3 = (2, 0) en 1/y heeft
daar polen.

plaatje getekend van de algebräısche kromme gegeven door
de vergelijking y2 = (x + 1)(x − 1)(x − 2). Een divisor
op de kromme is een som van punten op de kromme. Bij-
voorbeeld, P1 = (−1, 0), P2 = (1, 0) en P3 = (2, 0) zijn
drie punten op de kromme en D = P1 + P2 + P3 is een
voorbeeld van een divisor. Nu bestaat L(D) uit (rationale)
functies zonder polen buiten de drie punten P1, P2 en P3

en ten hoogste enkelvoudige polen in deze drie punten. Een
functie heeft een pool in een punt als haar inverse daar een
nulpunt heeft. Bijvoorbeeld, de functie y die aan een punt
op de kromme de y-coördinaat toekent, heeft nulpunten P1,
P2 en P3 en dus heeft 1/y daar (enkelvoudige) polen. Er
geldt dat 1/y een functie is in L(D). De functieruimte
L(D) is een vectorruimte en l(D) is per definitie de dimensie
van L(D). Voor deze D is de dimensie l(D) gelijk aan 3,
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wat precies het aantal punten is waarover D een som is. We zeggen dat D graad n
heeft als die een som is van n punten en we schrijven n = deg D. De stelling van
Riemann-Roch zegt dat er, gegeven een kromme, een geheel getal g bestaat zodat
voor alle divisoren D met deg D > 2g−2 geldt l(D) = deg D+1−g. Voor de kromme
uit figuur 4 geldt g = 1. Dit getal g heet het geslacht van de kromme.

Het analogon van een algebräısche kromme is een getallenlichaam. Het een-
voudigste voorbeeld daarvan is Q. Het analogon van een punt op de kromme is
dan een priemgetal. Dus 5 is een ‘punt’ op de ‘kromme’ Q. Het analogon van een
functie op de kromme is een getal uit het lichaam. Dus 21

5 is een voorbeeld van een
een functie. We kunnen dit getal factoriseren als 21

5 = 3·7
5 en we zeggen dat deze

functie nulpunten heeft bij 3 en 7 en een pool bij 5. De getallen in Z zijn precies
de getallen zonder noemers en
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figuur 5: de gemetriseerde lijnbundels Z en 1
5
Z. De ele-

menten in 1
5
Z zijn de functies uit Q met ten hoogste een

pool in het punt 5. De graad van Z is log(1) = 0 en de

graad van 1
5
Z is log(5).

dus de functies zonder polen.
De getallen in de verzameling
1
5Z (zie figuur 5) zijn de func-
ties met op zijn hoogst een
pool in 5. In het meetkunde-
geval kregen we een vectorruimte van functies en konden we de grootte meten door
de dimensie te nemen. In onze getaltheoriesituatie krijgen we geen vectorruimte
maar een gemetriseerde lijnbundel en in plaats van de dimensie nemen we de h0. We
kunnen ook een graad aan een gemetriseerde lijnbundel toekennen. De graad van de
lijnbundel uit figuur 1 is log(1) = 0 en de graad van de lijnbundel uit figuur 2 is log(1

3 )
omdat daar 1

3 keer zoveel punten in liggen. De graad van de lijnbundel Z uit figuur 5
is log(1) = 0 en de graad van 1

5Z is log(5) omdat daar 5 keer zoveel punten in liggen.
Op deze manier krijgen we een analogon van de stelling van Riemann-Roch: er is een
getal g zodat voor gemetriseerde lijnbundels L geldt h0(L) ≈ deg L+1−g. Het teken
‘≈’ kan nu niet als gelijkheid worden gelezen, maar het quotiënt van beide kanten
gaat naar 1 als de graad naar oneindig gaat. In het eerste artikel in dit proefschrift
geven we een analogon van de stelling van Clifford:

Stelling (Clifford). Zij D een divisor met l(D) > 0 en l(D†) > 0. Dan
geldt l(D) ≤ 1

2 deg D + 1.

De D† staat voor de duale van D, maar daar zullen we hier geen definitie van geven.
Als g het geslacht is van de kromme, zegt de stelling van Clifford dat voor divisoren D
met deg D grofweg tussen 0 en g geldt l(D) ≤ 1

2 deg D + 1. Dus terwijl de stelling
van Riemann-Roch met name wat zegt over divisoren met grote graad, gaat Clifford
over divisoren met kleine graad. Het arithmetisch analogon dat we bewijzen is het
volgende:

Stelling. Er is een constante c die alleen van de graad van het getallen-
lichaam afhangt, zodat voor gemetriseerde lijnbundels L met deg L ≥ 0 en
deg L† ≥ 0 geldt h0(L) ≤ 1

2 deg L + c.

De constante c wordt in het proefschrift volledig expliciet gegeven.
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In het tweede artikel houden we ons bezig met de vraag in hoeverre twee verschil-
lende getallenlichamen dezelfde h0 kunnen hebben. Laten we eerst kijken naar
lichamen van de vorm Q(

√
d ) met d positief. Als voorbeeld nemen we Q(

√
129 ). De
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figuur 6: de grafiek van de h0 van Q(
√

129 )
op het graad 0 stuk.
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figuur 7: de grafiek van een geschaalde versie
van de h0 van Q(

√
129 ).

ring van gehelen is Z[
√

129 ] en deze kan
als gemetriseerde lijnbundel worden voor-
gesteld met basis (1, 1) en (

√
129,−

√
129 )

met het standaard inproduct. Deze geme-
triseerde lijnbundel heeft graad 0. Laat nu
x een reëel getal zijn en schrijf y = e2x. Als
we het inproduct in de horizontale richting
vermenigvuldigen met een factor y en in
de verticale richting met een factor 1/y,
krijgen we een andere gemetriseerde lijn-
bundel die ook graad 0 heeft. Hiervan kun-
nen we weer de h0 nemen. Zo kunnen we
een functie maken die aan een reële x de h0

van de geschaalde lijnbundel toekent. In
figuur 6 is deze grafiek getekend. Helaas
is aan die grafiek met het blote oog niet
zoveel te zien. Een geschaalde, interessan-
tere versie is gegeven in figuur 7. We krij-
gen zo een functie R→ R en als we toestaan
dat we in de horizontale richting een totaal
andere factor gebruiken dan in de verticale
richting, krijgen we een functie R2 → R. De
hoofdstelling uit het tweede artikel zegt dat

geen twee lichamen aanleiding geven tot dezelfde functie R2 → R. Een vergelijkbare
stelling wordt gegeven voor willekeurige getallenlichamen, niet noodzakelijk van de
vorm Q(

√
d ).

Het derde artikel gaat over vectorbundels en het vinden van ‘kleine’ punten.
We leggen eerst uit wat de stelling van Minkowski zegt. Als we een rooster hebben
met basis b1, b2, dan is het volume van het rooster gelijk aan de oppervlakte van

b

1

b

2

figuur 8: het volume van het roos-
ter is de oppervlakte van het grij-
ze vlakje.

het parallellogram opgespannen door b1 en b2 (zie
figuur 8). Als we nu een cirkel nemen, gecentreerd
om de oorsprong, met oppervlakte 4 keer zo groot
als de volume van het rooster, dan zegt de stelling
van Minkowski dat er afgezien van de oorsprong nog
een ander punt van het rooster in de cirkel zit. De
stelling van Minkowski geeft dus een punt ongelijk
aan de oorsprong, waarvan de lengte ‘klein’ is.

We gaan nu het begrip rooster vervangen door
vectorbundel . Over Q is een vectorbundel hetzelfde
als een rooster. De definitie van vectorbundel over
willekeurige getallenlichamen is wat ingewikkelder. Voor ingewijden: het betreft
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hier een projectief moduul P van eindige rang over de ring van gehelen met een
inproduct op P ⊗ R. Even afgezien van het inproduct is een vectorbundel over Q

figuur 9: de Möbius band
onder is een ‘twist’ van de
band boven.

gelijk aan Z

r voor een positief geheel getal r. Voor een
willekeurig getallenlichamen met ring van gehelen Z is
het niet per se zo dat vectorbundels van de vorm Zr zijn,
om dezelfde reden dat een lijnbundel niet altijd gelijk
is aan Z met een inproduct. Een lijnbundel is soms
een verdraaide versie van de ring van gehelen: Z met
een twist . Een manier om daar een voorstelling van te
maken, is te denken aan een Möbius band (zie figuur 9).
Een Möbius band krijg je uit een gewone band door
die door te knippen, vervolgens één van de eindjes een
halve slag te draaien en de eindjes weer aan elkaar te
plakken. Locaal zijn de gewone band en de Möbius band

gelijk aan elkaar: als we een stukje uit een van de twee banden knippen is niet te
zien uit welke band dit stukje is gekomen. Alleen globaal zijn ze verschillend. In
het algemeen is een lijnbundel een getwiste versie van de ring van gehelen met een
inproduct. Locaal ziet die er hetzelfde uit als de ring van gehelen, maar globaal niet.
Een vectorbundel is een som van getwiste ringen van gehelen met een inproduct. Van
een vectorbundel kunnen we ook twists nemen. Voor wie dit wat zegt, betekent dit
dat we het tensorproduct nemen met een lijnbundel van graad 0.

Gegeven een vectorbundel, geeft de stelling van Minkowski een klein punt. In
het derde artikel gaan we in op de vraag of in het algemeen het minimum van alle
kleinste punten over alle twists van een vectorbundel kleiner is dan we op grond van
Minkowski zouden mogen verwachten.

Het vierde artikel betreft een onderwerp uit de K-theorie. Dit heeft niet direct
te maken met vectorbundels of lijnbundels, hoewel de stelling van Minkowski een
veelgebruikt gereedschap is. We geven in dit artikel een grens die gebruikt wordt
om de tamme kern van een getallenlichaam uit te rekenen. Bovendien tonen we aan
dat de tamme kern berekenbaar is. De tamme kern van een getallenlichaam is een
eindige groep en het uitrekenen ervan betekent dat je een eindig aantal voortbrengers
opschrijft en een eindig aantal relaties. Wanneer we met de computer een tamme
kern uitrekenen, zoeken we eerst naar voortbrengers totdat we zekerheid hebben dat
we er voldoende hebben gevonden. De grens die we geven, geeft aan tot hoever we
moeten zoeken. Vervolgens zoeken we naar de relaties. Daarvoor hebben we geen
grens gegeven, maar we kunnen wel bewijzen dat na een eindige zoektocht alle relaties
zijn gevonden en ook met zekerheid kan worden gezegd dat ze allemaal gevonden zijn.

De grens uit het vierde artikel verbetert andere grenzen die al in de literatuur
in omloop waren. Voor imaginair kwadratische lichamen is de grens omlaag gebracht
van 1,41|∆|5/3 naar 0,234|∆|3/2, waarbij |∆| ≥ 631 de discriminant is van het lichaam.
Voor algemene getallenlichamen is 4|∆|3/2 een vereenvoudigde, maar geldige grens.
Vóór dit artikel was er voor algemene getallenlichamen nog geen bruikbare grens.
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en werd begeleid door Peter Stevenhagen. In januari 1999 behaalde hij het doctoraal-
examen wiskunde, opnieuw cum laude.

Drie dagen na zijn afstuderen begon hij als Assistent in Opleiding aan het Mathe-
matisch Instituut aan de Universiteit Leiden. Daar werkte hij aan zijn promotie-
onderzoek onder begeleiding van Hendrik Lenstra en Bart de Smit. Richard bezocht
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