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Abstract

In this note we characterize regular perturbations of finite state Markov chains in terms of
continuity properties of its fundamental matrix. A perturbation turns out to be regular if and only
if the fundamental matrix can be approximated by the discounted deviation from stationarity for
small perturbation parameters. We also give bounds to asses the quality of the approximation.
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1 Introduction

In the theory of Markov chains the fundamental matrix (denoted by Z) is a key notion that is often
used to establish identities for mean hitting and occupation times (see for instance, [9] and [1]). In
recent years a lot of work has been done on the analysis of perturbed Markov chains, a line of research
stemming from Schweitzer’s seminal paper [11]. In these works, the probability transition matrix
P is replaced by Pε, where ε is called the perturbation parameter and the asymptotic properties (as
ε → 0) of the resulting Markov chain are the subject of investigations. A recent survey of results
emerging from these studies - many of which concern the limit of Zε, the fundamental matrix of
the perturbed process as ε → 0 - can be found in Avrachenkov et al [2]. However, it is well-known
that the fundamental matrix can also be obtained as an “Abel limit” of powers of deviations of the
probability transition matrix and the stationary distribution matrix of the underlying Markov chain.
Here the discount factor α is the parameter of interest and the limit is as α → 1, from below.

In view of the above it is evident that the asymptotic analysis of Zε as ε → 0 actually constitutes
a study of an iterated limit of the matrix U(α, ε) =

∑
t≥0 αt(Pε − P ∗

ε )t, first as α → 1 and then
as ε → 0, where P ∗

ε is the stationary distribution matrix of the perturbed Markov chain. This
immediately raises the question of whether the latter is consistent with the reverse iterated limit of
U(α, ε). To the best of our knowledge, this question has not been studied up to now.

The fundamental matrix of a perturbed Markov chain is also used in applications of stochastic
analysis to combinatorial optimisation and control theory. For instance, in [7], [4] the [1, 1]-element of
the fundamental matrix of Markov chains associated with the Hamiltonian cycle problem embedded
in Markov decision processes provides the global minimum precisely for the chains corresponding
to Hamiltonian cycles. These Markov decision processes, in fact, constitute a family of perturbed
Markov chains. The problem is that they may be periodic and in general they allow a multichain
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structure. Thus the question of whether the corresponding fundamental matrices can be adequately
approximated by matrices of the form U(α, ε) becomes quite relevant. Of course, the interchange-
ability of the limits (with respect to α and ε) is a key requirement in this context.

Consequently, in this note we derive necessary and sufficient conditions for the above interchange-
ability of limits and, in the process, we characterise certain continuity properties of the fundamental
matrix in terms of the perturbation parameter, for perturbed Markov chains with a possibly periodic
and/or multichain structure.

Consider a Markov chain ξt, t = 0, 1, . . ., on a finite state space S with (stationary) transition
matrix P , which has entries pij = P{ξt+1 = j | ξt = i}. The Cesaro sum limit ([15])

P ∗ = lim
T→∞

1
T

T∑
t=1

P (t−1)

always exists and is also called the stationary matrix. Here P (0) = I and P (t) is the t-th iterate of
P . The fundamental matrix

Z = (I− P + P ∗)−1

exists as well and is given by

Z = lim
α↑1

∞∑
t=0

αt(P − P ∗)t = lim
T→∞

1
T

T∑
t=1

t∑
n=1

(P − P ∗)n−1. (1.1)

The stationary matrix P ∗ is a solution to

P ∗P = P P ∗ = P ∗ (1.2)

and the fundamental matrix Z is a solution to

ZP ∗ = P ∗Z = P ∗

P Z = ZP = Z + P ∗ − I.
(1.3)

Note that the stationary matrix is, generally, not the unique solution to (1.2). In contrast, the
fundamental matrix is the unique solution to (1.3). A less restricted system suffices: suppose that
the matrix A solves

P ∗X = P ∗ (1.4)
P X = X + P ∗ − I, (1.5)

then A = Z . Indeed, let A and Z be two solutions of (1.4)-(1.5). Then, by (1.5), A−Z = P (A−Z ).
Iterating this, we obtain A− Z = P (t)(A− Z ), t = 0, 1, 2, . . .. Hence

A− Z =
1
T

T−1∑
t=0

P (t)(A− Z ).

Taking the limit T → ∞ yields that A − Z = P ∗(A − Z ) = 0 by virtue of (1.4). We will need this
result later on.

Instead of the matrix P we consider a set of perturbed but stochastic matrices Pε, ε ∈ (0, ε0],
such that Pε is close P for ε sufficiently small. In other words, we assume that

lim
ε↓0

Pε = P .
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Example 1. Take any multichain Markov chain with transition matrix P . Define Pε = (1−ε)P +εI.

Example 2. Take the same multichain Markov chain. Define E by Eij = 1 for all i, j ∈ S. Define
Pε = (1− ε)P + ε

#SE.

All quantities associated with an ε-perturbation have a subscript ε. For notational convenience, we
indicate all operators associated with the original matrix by subscript 0, so that we write P0 instead
of P , and so on.

One might expect that Z0 can be approached by
∑∞

t=0 αt(Pε − P ∗
ε )t for α close to 1 and ε

sufficiently small. The latter expression may be computationally more tractable in some contexts.
Preferably, one would also wish to have bounds on the difference between the limit and its approxi-
mation.

In order to investigate this problem, we recall the definition of a regular perturbation. A collection
of ε-perturbations, (0, ε0], is called regular, if limε↓0 P ∗

ε = P ∗
0 . Schweitzer ([11], Theorem 5) showed

that limε↓0 P ∗
ε = P ∗

0 if and only if limε↓0 νε = ν0, where νε is the number of closed classes in the
ε-perturbed Markov chain. Since νε has only integer values, the latter holds if and only if there exists
ε1, 0 < ε1 < ε0, such that νε = ν0 for ε ≤ ε1.

As a consequence, Example 1 is a regular perturbation, whereas Example 2 is not. The latter is
called a singular perturbation.

2 Main Results

As before, we define
U(α, ε) =

∑
t≥0

αt(Pε − P ∗
ε )t.

By virtue of (1.1), limα↑1 U(α, ε) = Zε. The posed problem now reduces to investigating the following
two questions:
(i) Under what conditions

lim
α↑1

lim
ε↓0

U(α, ε) = lim
ε↓0

lim
α↑1

U(α, ε)? (2.1)

(ii) Under what conditions is this limit equal to Z0?

The following theorem supplies an essentially complete answer to the above questions.

Theorem 2.1 The limit on either side of (2.1) is finite if and only if the ε-perturbation is regular.
In that case we have

lim
α↑1

lim
ε↓0

U(α, ε) = Z0 = lim
ε↓0

lim
α↑1

U(α, ε).

While this result is not unexpected1 - to the best of our knowledge - it has not been formally stated
and proved, hitherto. Furthermore, its proof is not entirely straightforward and hence it has been
divided into a sequence of four lemmata that are proved in Sections 3-5, below. The latter also derive
some of the tools needed to establish an approximation result that is discussed next.

It is easy to see that (cf. Schweitzer[11], Theorem 5) there is an enumeration of the recurrent classes
Rn

0 of P0 (respectively, Rn
ε of Pε) for 0 < ε ≤ ε1, such that Rn

0 ⊂ Rn
ε , n = 1, . . . , ν0. Choose

bn ∈ Rn
0 , n = 1, . . . , ν0, and denote B = {b1, . . . , bν0}. We will call bn a reference state and B a set

1It may, indeed, be known to some experts.
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of reference states (for the chain ξ0,t associated with P0). Note that B is a set of reference states for
all ε-perturbations, with ε ≤ ε1. Let d denote the period of the Markov chain associated with P0.
One can choose ε1 small enough, so that the period of all ε-perturbations, ε ≤ ε1, is at most equal
to d.

Choose 0 < δ < 1, t0 and ε2, 0 < ε2 ≤ ε1, such that for all i ∈ S there exists k ∈ {0, . . . , d− 1}
for which ∑

b∈B

p
(t0−k)
ib,ε ≥ δ, for ε ≤ ε2. (2.2)

This is possible for δ small enough, that is, for δ < mini∈S,b∈B πib.
Furthermore, let

η = (1− d− 1
t0

)t0 , c = 2 · 1

(1− η2δ2)1−t−1
0

, β = (1− η2δ2)1/t0 . (2.3)

The main approximation result of this paper can now be summarized in the statement of the following
theorem.

Theorem 2.2 Let a set of regular ε-perturbations, be given, such that νε = ν0, ε ≤ ε1. Let 0 < δ < 1
and t0 be such that (2.2) holds. Choose constants c and β as in (2.3). Fix time N > 1 and let positive
constants γ and ε3 ≤ ε2, be such that

sup
i

∑
j

| p(t)
ij,ε − p

(t)
ij,0| ≤ γ, for ε ≤ ε3, t < N.

Then ∑
j

|Uij(α, ε)− Zij,0| ≤ 2cN
βN−1

1− β
+ 2Nγ + c · (1− α)

(1− β)2
, ε ≤ ε3.

As mentioned earlier, the proofs of these results are broken up into a number of components. One
reason is that the proof of Theorem 2.1 requires distinguishing between aperiodic and periodic
perturbations.

3 Characterizing regularity

In this section we prove a lemma that contains some useful conditions characterizing regular pertur-
bations. Note that to establish Theorem 2.1, we shall need to show that the existence of the limit
limα↑1 limε↓0 U(α, ε) implies the existence of the limit limε↓0 Zε.

Lemma 3.1 i) Suppose that either limit
lim
ε↓0

Zε = A

or
lim
α↑1

lim
ε↓0

U(α, ε) = A

exists for some finite S ×S-matrix A. Then, A = Z0 and the set of ε-perturbations is regular,
that is, limε↓0 P ∗

ε = P ∗
0 .

ii) If the set of ε-perturbations is regular, then limα↑1 limε↓0 U(α, ε) = Z0.
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Proof. Assume that the limit limε↓0 Zε = A exists for some finite matrix A. We adapt an argument
from Spieksma ([13], p.72). Consider the set of matrix limit points of P ∗

ε as ε ↓ 0: these are also
stochastic matrices. Take any limit point B and a sequence {εn}n ↓ 0 such that P ∗

εn
→ B, n →∞.

First note that Pεn
P ∗

εn
= P ∗

εn
Pεn

= P ∗
εn

(1.2) implies

P0B = BP0 = B, (3.1)

by taking the limit n → ∞ and using that all matrices are finite matrices. Similarly, (1.4) for εn

implies that
BA = B. (3.2)

By (1.5),
A = lim

n→∞
Zεn

= lim
n→∞

(Pεn
Zεn

+ I− P ∗
εn

) = P0A + I−B.

Hence,
A = I−B + P0A, (3.3)

whence by subtracting zP0A from both sides, z ∈ C,

(I− zP0)A = I−B + (1− z)P0A. (3.4)

For z, with |z| < 1, the inverse matrix (I− zP0)
−1 exists and equals

(I− zP0)
−1 =

∑
t≥0

ztP
(t)
0 .

Multiplying both sides of (3.4) by this inverse matrix yields

A =

∑
t≥0

ztP
(t)
0

 (I−B) + (1− z)

∑
t≥0

ztP
(t)
0

 P0A

=
∑
t≥0

zt(P (t)
0 −B) + (1− z)

∑
t≥0

ztP
(t)
0

 P0A, (3.5)

since P
(t)
0 B = B, for each t = 0, 1, · · ·, by virtue of (3.1). Now, putting z = x ∈ R+ and taking the

limit as x ↑ 1 in (3.5) implies

A = lim
x↑1

∑
t≥1

xt(P (t)
0 −B) + P ∗

0 A,

because

lim
x↑1

(1− x)

∑
t≥0

xtP
(t)
0

 P0A = P ∗
0 P0A = P ∗

0 A,

where the first equality above follows from finiteness of the state space and the fact that limx↑1(1−
x)

∑
t≥0 xtP

(t)
0 = P ∗

0 by a now classical result due to Blackwell [5]. Next, for x < 1∑
t≥0

xt(P (t)
0 −B) =

∑
t≥0

xt(P (t)
0 − P ∗

0 ) +
∑
t≥0

xt(P ∗
0 −B), (3.6)
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because
∑

t xt converges. Since limx↑1
∑

t≥0 xt(P (t)
0 − B) and limx↑1

∑
t≥0 xt(P (t)

0 − P ∗
0 ) both exist

as finite limits, necessarily the limit limx↑1
∑

t≥0 xt(P ∗
0 −B) exists. However, P ∗

0 −B is independent
of t, and so this limit can only exist if P ∗

0 = B.
Any limit point of the sequence P ∗

εn
must henceforth be equal to P ∗

0 and so we have limε↓0 P ∗
ε =

P ∗
0 .

As a consequence, the limit matrix A is a solution to (3.3) and (3.2) for B = P ∗
0 . This is the

determining set of equations (1.4), (1.5) for the fundamental matrix Z0, so that A = Z0.
Next, we assume that

lim
α↑1

lim
ε↓0

U(α, ε) = A

for some finite matrix A.
Again we consider the set of matrix limit points of the sequence {P ∗

ε }ε↓0. Take any limit point
B and a sequence εn such that limn→∞ P ∗

εn
= B. As before, BP0 = P0B = B.

By dominated convergence

lim
n→∞

U(α, εn) = lim
n→∞

∑
t≥0

αt(Pεn
− P ∗

εn
)t

=
∑
t≥0

αt(P0 −B)t

=
∑
t≥0

αt(P (t)
0 −B) + B. (3.7)

One can now follow the argument from (3.6) onwards to obtain that B = P ∗
0 = limε↓0 P ∗

ε . Taking
the limit α ↑ 1, yields limα↑1 limn→∞ U(α, εn) = Z0.

In order to prove (ii), we assume that the set of ε-perturbations is regular. Then

lim
ε↓0

U(α, ε) = lim
ε↓0

∑
t≥0

αt(Pε − P ∗
ε )t

=
∑
t≥0

αt(P0 − P ∗
0 )t,

by dominated convergence, regularity and the fact that |(P0 − P ∗
0 )t

ij | ≤ 2 for i, j ∈ S and t ≥ 0.
Taking the limit α ↑ 1 yields the required result. QED

4 Analysis of aperiodic perturbations

For completing the proof of Theorem 2.1, it suffices to show that regularity of the ε-perturbations
implies the existence of the limit limε↓0 Zε or, equivalently, of the second iterated limit
limε↓0 limα↑1 U(α, ε).

This follows largely from results by Dekker and Hordijk [6] on denumerable state Markov deci-
sion chains with compact action spaces. One can view the perturbation parameter ε as a control
parameter. Their conditions translated to the finite state space case, reduce to: (i) continuity of the
one-step transition probabilities and the one-step rewards as a function of the control parameter, and
(ii) continuity of the number of closed classes as a function of the stationary, deterministic policies.
A consequence of their theory is, that the fundamental matrix is a continuous matrix function of the
stationary, deterministic policies.

Here we would have the same situation, if we would allow to ‘mix’ the perturbation parameters
across initial states. However, this is merely a formal matter. The proofs in Dekker and Hordijk for
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deriving continuity of the fundamental matrix, apply in the general setting of a compact parameter
space, the parameter indexing policies or a perturbation parameter, etc.

However, these proofs do not yield any bounds. We prefer to give an alternative proof using
coupling techniques, that does allow us to obtain the bounds as in Theorem 2.2. For the bounds we
do not use any prior knowledge of the stationary distributions at play.

However, to achieve this we have to reduce the problem to the case of aperiodic ε-perturbations,
that is, that all transition matrices Pε correspond to aperiodic Markov chains, for ε sufficiently small.
Assuming this, one has (cf. [1])

Zε =
∑
t≥0

(Pε − P ∗
ε )t =

∑
t≥0

(P (t)
ε − P ∗

ε ) + P ∗
ε . (4.1)

The proof for the general case (allowing periodicity) will follow from a transformation trick.
In order to obtain bounds, we will need a result on uniform exponentially quick convergence of

the marginal distributions to the stationary matrix. To this end we will use a standard coupling
argument (cf. Thorisson [14]), that we will describe first.

Let {Xt, X
′
t}t=0,1,... be a bivariate stochastic process on S×S and let τ be a stopping time, such

that P{Xt = X ′
t, t ≥ τ} = 1, that is, from stage τ on the chains coincide. Then we have the following

bound:∑
j

|P{Xt = j} − P{X ′
t = j}| ≤

∑
j

E|{1{Xt=j} − 1{X′
t=j}|

≤
∑

j

E|1{Xt=j,τ≤t} − 1{X′
t=j,τ≤t}|+

∑
j

E|1{Xt=j,τ>t} − 1{X′
t=j,τ>t}|

=
∑

j

E|1{Xt=j,τ>t} − 1{X′
t=j,τ>t}|

≤ 2E1{τ>t} = 2P{τ > t}. (4.2)

We aim to apply this by constructing a bivariate stochastic process in such a way that P{Xt =
j} = p

(t)
ij,ε and P{X ′

t = j} = p∗ij,ε. Then the distance of marginal and stationary probabilities will
be bounded by tail distribution of the coupling time.

Let us now be given a Markov chain with transition matrix P . Let R1, . . . , Rν be the recurrent
classes of this chain, R = ∪ν

n=1Rn and T = S \ R is the set of transient states. Choose a set of
reference states B = {b1, . . . , bν}, bn ∈ Rn.

Fix i ∈ Rn. Let {Xt}t and {X̃t}t be two independent Markov chains with the same transition
probabilities, but different, independent, initial distributions: P{X0 = j} = δij and P{X̃0 = j} =
p∗bnj , j ∈ S. Let τ = min{t ≥ 1 |Xt = X̃t = bn}. Define a third Markov chain {X ′

t}t by

X ′
t =

{
X̃t, t ≤ τ
Xt, t > τ.

(4.3)

This is essentially the usual coupling described in Thorisson ([14]), Chapter 2.4. Now, (4.2) implies
that ∑

j

| p(t)
ij − p∗ij | ≤ 2P{τ > t}. (4.4)

In the case of initial states that are transient, we have to couple the two processes somewhat dif-
ferently. One has to ensure that the two processes are absorbed, with probability 1, in the same
recurrent class.
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So let i ∈ T . Let an
i denote the absorption probability in the class Rn:

an
i = P{∪t≥1{Xt ∈ Rn} |X0 = i}.

Then p∗ij = an
i p∗bnj , j ∈ S,

∑
j∈Rn

p∗ij = an
i and

∑ν
n=1 an

i = 1.
Divide the unit interval (0, 1] up into ν left open, right closed intervals Ii(n) of length an

i . Each
of these intervals we further partition into denumerably many left open, right closed intervals I(t, j)
of length |I(t, j)| = P{Xt = j, Xk 6∈ Rn, k < t|X0 = i}, t = 1, . . ., j ∈ Rn. Additionally, we
partition each interval I(t, j) into (#T )t−1 left open, right closed intervals I(t, j, i1, . . . , it−1), with
i1, . . . , it−1 ∈ T , of length

|I(t, j, i1, . . . , it−1)| = P{X1 = i1, . . . , Xt−1 = it−1 |X0 = i,Xt = j}|I(t, j)|.

Finally, we partition each interval I(t, j, i1, . . . , it−1) into left open, right closed intervals
I(t, j, i1, . . . , it−1, j

′) of length p∗bnj′ |I(t, j, i1, . . . , it−1)|, j′ ∈ Rn.
At time 0, we select a random number u from the unit interval (0, 1]. The interpretation is that

- if u ∈ Ii(n) - this selects the recurrent class that the two chains to be constructed, will be absorbed
in. Furthermore, if u is also in I(t, j), then this selects the time t and the particular entrance state j
into that recurrent class, for the chain starting at i ∈ T . If, additionally, u ∈ I(t, j, i1, . . . , it−1), then
this selects the sequence of transient states that leads to hitting Rn at time t in state j. Finally, if
u ∈ I(t, j, i1, . . . , it−1, j

′), then j′ is the initial state for the chain starting with initial distribution
p∗i·, with j, j′ belonging to to the same recurrent class.

Suppose now that the randomly sampled number from (0, 1] is u ∈ I(t0, j0, i1, . . . , it0−1, j
′
0), with

j0, j
′
0 ∈ Rn. Run two independent Markov chains {Xt0+t}t≥0 and {X̃t}t≥0, with the same transition

matrix P , and initial states P{Xt0 = j} = δj0j and P{X̃0 = j} = δj′0j .
This whole construction forces both chains {Xt}t≥0 and {X̃t}t≥0 to absorb in the same recurrent

class with probability 1, while preserving the marginal probabilities of the states.
Moreover, given that both processes enter recurrent class Rn, the distributions of the two pro-

cesses upto the entrance time, are independent. And last, but not least, conditioning on Xt = i′,
yields a bivariate stochastic process, the (conditional) distribution of which at time t+ s is the same
as the distribution at time s of the bivariate process starting with initial state X0 = i′. This is
important in deriving a bound on the tail distribution of the coupling time.

Define τ = min{t ≥ 0 |Xt = X̃t, Xt ∈ {b1, . . . , bν}}. For the processes to couple, it is necessary
for the first process Xt to have entered the set of recurrent states. Again, define a third chain {X ′

t}t≥0

by (4.3). Then (4.4) holds. In the aperiodic case d = 1, so that (2.2) reduces to

inf
i

∑
b∈B

p
(t0)
ib,ε ≥ δ, ε ≤ ε2,

and in (2.3) we have η = 1.

Lemma 4.1 Assume the existence of ε′ ≤ ε0, such that the collection of ε-perturbations, 0 < ε ≤ ε′,
is regular. Assume that all transition matrices Pε, 0 ≤ ε′ ≤ ε are aperiodic. Let ε1 ≤ ε′ be such
νε = ν0 for ε ≤ ε1. Then for the constants δ, ε2, c and β given by (2.2) and (2.3) with constant
η = 1, we have

sup
i

∑
j

| p(t)
ij,ε − p∗ij,ε| ≤ c · βt, t = 1, 2, . . . , ε ≤ ε2. (4.5)

Proof. Fix ε ≤ ε2. We consider the ‘embedded’ transition matrices P
(tt0)
ε , at times 0, t0, 2t0, . . ..

The embedded chain {Xt}t has the same stationary matrix as the original one. Define a coupling as
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described above, for the embedded chains. Note that given that X0 ∈ Rn
ε , the stopping time τ is a

coupling time only since νε = ν0!
For i, i′ ∈ Rn

ε , n = 1, . . . , ν, one can show by a standard induction argument that

P{τ > t |X0 = i,X ′
0 = i′} ≤ (1− δ2)t. (4.6)

Indeed,
P{τ ≤ 1 |X0 = i,X ′

0 = i′} = p
(t0)
ibn,ε p∗i′bn,ε ≥ δ2,

since p∗i′bn,ε =
∑

j∈Rn
ε

p∗bnj,ε p
(t0)
jbn,ε ≥ δ. Now assume that (4.6) holds for t = 1, . . . , t0. Then

P{τ > t0 + 1 |X0 = i,X ′
0 = i′}

=
∑

j,j′∈Rn
ε ,j 6=bn

P{τ > t0 |X0 = j,X ′
0 = j′}P{X1 = j,X ′

1 = j′ |X0 = i,X ′
0 = i′}

+
∑

j′∈Rn
ε ,j′ 6=bn

P{τ > t0 |X1 = bn, X ′
1 = j′}P{X1 = bn, X ′

1 = j′ |X0 = i, X ′
0 = i′}

≤ (1− δ2)t0P{(X1, X
′
1) 6= (bn, bn) |X0 = i,X ′

0 = i′}
= (1− δ2)t0P{τ > 1 |X0 = i,X ′

0 = i′} ≤ (1− δ2)t0+1.

Hence, for i ∈ Rn
ε , n = 1, . . . , ν,

P{τ > t |X0 = i} ≤ (1− δ2)t. (4.7)

If i is transient for the ε-perturbed chain, one has

P{τ ≤ 1 |X0 = i} =
ν∑

n=1

P{I(1, bn, bn) |X0 = i}

=
ν∑

n=1

p
(t0)
ibn,ε p∗bnbn,ε

≥ δ

ν∑
n=1

p
(t0)
ibn,ε ≥ δ2.

This implies (4.7) for t = 1.
Assume that (4.7) holds for t = 1, . . . , t0 and all states i. Then

P{τ > t0 + 1 |X0 = i}
=

∑
i′ 6∈B

P{τ > t0 + 1 |X0 = i,X1 = i′}P{X1 = i′ |X0 = i}

+
ν∑

n=1

∑
j′∈Rn

ε , 6=bn

P{τ > t0 + 1 |X0 = i, X1 = bn, X ′
1 = j′}P{X1 = bn, X ′

1 = j′ |X0 = i}

=
∑
i′ 6∈B

P{τ > t0 |X1 = i′}P{X1 = i′ |X0 = i}

+
ν∑

n=1

∑
j′∈Rn

ε , 6=bn

P{τ > t0 |X0 = bn, X ′
0 = j′}P{X1 = bn, X ′

1 = j′ |X0 = i}

≤ (1− δ2)t0P{τ > 1 |X0 = i} ≤ (1− δ2)t0+1.

9



Hence, by (4.4) ∑
j

| p(tt0)
ij,ε − p∗ij,ε| ≤ 2(1− δ2)t.

Moreover, for k = tt0 + r, 0 < r < t0,∑
j

| p(k)
ij,ε − p∗ij,ε| =

∑
j

|
∑

v

p
(r)
iv,ε( p

(tt0)
vj,ε − p∗vj,ε)|

≤
∑

v

p
(r)
iv,ε

∑
j

| p(tt0)
vj,ε − p∗vj,ε|

≤ 2(1− δ2)t.

Combining yields ∑
j

| p(t)
ij,ε − p∗ij,ε| ≤ 2 · (1− δ2)bt/t0c ≤ c · βt.

QED

Lemma 4.2 Assume the existence of ε′ ≤ ε0, such that the collection of ε-perturbations, 0 < ε ≤ ε′,
is regular. Assume that all transition matrices Pε, 0 ≤ ε ≤ ε′ are aperiodic. Then

lim
ε↓0

Zε = Z0.

Proof. By Lemma 4.1, there exist ε2 > 0, ε2 < ε′, and positive constants β < 1 and c such that (4.5)
holds for ε ≤ ε2. Hence, by dominated convergence and regularity,∑

t

( p
(t)
ij,εn

− p∗ij,εn
) →

∑
t

( p
(t)
ij,0 − p∗ij,0), n →∞,

for any sequence εn → 0, n →∞. By regularity and (4.1), we obtain that limn→∞ Zεn
= Z0. QED

5 The aperiodic transformation

This section discusses a data-transformation (cf. Schweitzer [12]), showing that is sufficient to restrict
to the aperiodic case.

Following the construction of Example 1, let λ ∈ (0, 1) and put Pε,λ = λI + (1 − λ)Pε. All
previous notation with subscript λ added, denotes the corresponding quantity for the transformed
chains. By inspection one has P ∗

ε,λ = P ∗
ε . First, we note that

Uλ(α, ε) =
∞∑

t=0

αt(Pε,λ − P ∗
ε,λ)t

=
∞∑

t=0

αtP
(t)
ε,λ −

α

1− α
P ∗

ε,λ.

Next, we rewrite the first term on the right side of the last equality in terms powers of Pε:

∞∑
t=0

αtP
(t)
ε,λ =

∞∑
t=0

αt(λI + (1− λ)Pε)
t

10



=
∞∑

t=0

( t∑
n=0

(
t

n

)
λt−n(1− λ)nP (n)

ε

)
αt

=
∞∑

n=0

αn(1− λ)nP (n)
ε

∑
t≥n

(
t

n

)
(λα)t−n

=
1

1− λα

∞∑
n=0

[(1− λ)α
1− λα

]n
P (n)

ε .

Putting α′ = (1− λ)α/(1− λα), yields the relation

Uλ(α, ε) =
1

1− λα
U(α′, ε)− λα

1− λα
P ∗

ε . (5.1)

Note that α → 1 ⇐⇒ α′ → 1. In view of (5.1), the fundamental matrices Z̃ ε and Zε are related by

Z ε,λ =
1

1− λ
Zε −

λ

1− λ
P ∗

ε . (5.2)

We may now prove Lemma 4.2 for a general collection of ε-perturbations, n = 1, 2, . . ..

Lemma 5.1 Assume the existence of ε′ ≤ ε0, such that the collection of ε-perturbations is regular
for ε ≤ ε′. Then limε↓0 Zε = Z0.

Proof. Regularity of the ε-perturbations implies regularity of the transformed ε-perturbations.
Hence, Lemma 4.2 applies to the transformed set of ε-perturbations, so that

lim
ε↓0

Z ε,λ = Z 0,λ =
1

1− λ
Z0 −

λ

1− λ
P ∗

0 .

By (5.2) and regularity of the set of ε-perturbations we obtain

lim
ε↓0

Zε = lim
ε↓0

(1− λ)Z ε,λ + λP ∗
ε = (1− λ)Z 0,λ + λP ∗

0 = Z0.

QED

Theorem 2.1 now follows immediately from Lemmas 3.1 and 5.1.

6 Bounds

To establish a bound on the difference
U(α, ε)− Z0,

as in Theorem 2.2, we can now employ the result of Lemma 4.1.

Proof of Theorem 2.2. First assume that for some ε′ ≤ ε3 all ε-perturbations are aperiodic. Note
that ∑

j

∑
t≥N

αt|(Pε − P ∗
ε )t

ij | ≤ c · βN

1− β
,

11



where β = (1 − δ2)1/t0 and c = 2 · (1 − δ2)t−1
0 −1, i.e. the constants β and c are given by (2.2) for

η = 1. Hence,∑
j

|Uij(α, ε)− Zij,0|

≤
∑

j

{
|
∑
t≥N

αt(Pε − P ∗
ε )t

ij |+ |
∑
t≥N

(P0 − P ∗
0 )t

ij |+ |
N∑

t=1

(αt( p
(t)
ij,ε − p∗ij,ε)− p

(t)
ij,0 + p∗ij,0)|

}

≤ 2c · βN

1− β
+

∑
j

{
|

N∑
t=1

(
( p

(t)
ij,ε − p

(t)
ij,0)− ( p∗ij,ε − p∗ij,0)− (1− αt)( p

(t)
ij,ε − p∗ij,ε)

)
|
}

≤ 2c · βN

1− β
+

N−1∑
t=1

∑
j

| p(t)
ij,ε − p

(t)
ij,0|+ (N − 1)

∑
j

| p∗ij,ε − p∗ij,0|+

+
N−1∑
t=1

(1− αt)
∑

j

| p(t)
ij,ε − p∗ij,ε|. (6.1)

By assumption, the first summation is at most (N − 1)γ, and the last one is at most

N−1∑
t=1

(1− αt)cβt = c(1− α)
N−1∑
t=1

t−1∑
k=0

αkβt

= c(1− α)
N−2∑
k=0

αk
N−1∑

t=k+1

βt ≤ c(1− α)
1− β

∑
k≥1

αkβk+1

≤ c(1− α)
(1− β)2

.

We have to bound the difference
∑

j | p∗ij,ε − p∗ij,0|:∑
j

| p∗ij,ε − p∗ij,0| ≤
∑

j

| p∗ij,ε − p
(N−1)
ij,ε |+

∑
j

| p∗ij,0 − p
(N−1)
ij,0 |+

∑
j

| p(N−1)
ij,ε − p

(N−1)
ij,0 |

≤ 2cβN−1 + γ.

Combination with (6.1) yields

∑
j

|Uij(α, ε)− Zij,0| ≤ 2cN
βN−1

1− β
+ 2Nγ + c

1− α

(1− β)2
. (6.2)

This proves the theorem for the aperiodic case.
Next we turn to the general case. Fix λ ∈ (0, 1). We use the notation from Section 5, but we

interchange the roles of α and α′, so that now

α =
(1− λ)α′

1− λα′ and α′ =
α

λα + 1− λ
> α.

Rewriting yields

U(α, ε)− Z0 = (1− λ)(Uλ(α′, ε)− Z 0,λ) + λ(P ∗
ε − P ∗

0 ) + λ(1− α′)(Uλ(α′, ε)− P ∗
ε ).
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Fix initial state i ∈ S. Then p
(t0−k)
iB,ε ≥ δ implies that

p
(t0)
iB,ε,λ ≥

(
t0

t0 − k

)
(1− λ)t0−kλk · δ.

Put λ = (d− 1)/t0, then

p
(t0)
iB,ε,λ ≥

(
t0

t0 − k

)(
1− d− 1

t0

)t0( d− 1
t0 − d + 1

)k
· δ

≥
(
1− d− 1

t0

)t0
· δ = ηδ,

where η is defined in (2.3). Moreover,
∑

j | p
(t)
ij,ε − p

(t)
ij,0| ≤ γ, t ≤ N − 1, implies

∑
j

| p(t)
ij,ε,λ − p

(t)
ij,0,λ| ≤

t∑
n=0

(
t

n

)
λn(1− λ)t−n

∑
j

| p(n)
ij,ε − p

(n)
ij,0|

≤ γ, t ≤ N − 1.

Now, the assertion for the aperiodic case, applies to the transformed ε-perturbation, ε ≤ ε3, with
constants

δ̃ = ηδ,

c̃ = 2 · (1 − η2δ2)t−1
0 −1, β̃ = (1 − η2δ2)1/t0 and discount factor α′ > α. Note that δ̃, β̃ and c̃ are

precisely the constants from (2.3).
Putting this together, by virtue of (6.2), we get for λ = (d− 1)/t0∑

j

|Uij(α, ε)− Zij,0| ≤ (1− λ)
(
2c̃N

β̃N−1

1− β̃
+ 2Nγ + c̃

1− α′

(1− β̃)2

)
+λ

(
2c̃β̃N−1 + γ + (1− α′)c̃

1
1− β̃

)
≤ 2c̃N

β̃N−1

1− β̃
+ 2Nγ + c̃

1− α′

(1− β̃)2
.

The result follows since α′ > α. QED

7 Conclusion and open problems

In this paper we have characterised regular perturbations by means of the existence of finite limits
in both sides of (2.1). For singular perturbations it is not clear whether either limit exists and if so,
under which conditions they are equal.

Notice however, that the limit

lim
α↑1

lim
ε↓0

U(α, ε) = lim
α↑1

∑
t≥0

αt(P0 − P l
0)

t

= Z0 + lim
α↑1

α

1− α
(P ∗

0 − P l
0) (7.1)
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always exists componentwise in the extended reals, provided that the limit P l
0 := limε↓0 P ∗

ε ex-
ists. Haviv and Ritov [10] (see also Avrachenkov and Lasserre [3]) studied the the case of analytic
perturbations, i.e.

Pε = P0 +
∞∑

k=1

εkGk,

where Gk are S×S matrices. Under the assumption that all perturbed Markov chains are unichain,
they showed that the fundamental matrix Zε admits a Laurent expansion in a neighbourhood of
ε = 0. This implies that also limε↓0 Zε exists in the extended reals.

The question is whether limε↓0 Zε = limα↑1 limε↓0 U(α, ε). We will give two examples, one of a
linearly perturbed Markov chain and one of an analytically perturbed one, where this is not the case.
In fact, the examples show that in general there does not seem to be much of a connection between
the values of either limit for singularly perturbed Markov chains.

Example 1 The first example is a three state, linearly perturbed Markov chain. More particularly,
S = {1, 2, 3} and

Pε = I + ε

−1 1 0
0 −1 1
1 0 −1

 .

Then P ∗
0 = I and Z0 = I, but

P ∗
ε =

 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 , ε > 0.

Denote P l
0 = limε↓0 P ∗

ε . By virtue of (7.1) we have

lim
ε↓0

U(α, ε) = I +
α

1− α

 2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3

 →

 ∞ −∞ −∞
−∞ ∞ −∞
−∞ −∞ ∞

 , α ↑ 1.

Note that ±∞ occurs precisely in those entries where P l
0 and P ∗

0 differ! This is consistent with the
bounds in the previous section.

However,

Zε = P ∗
ε +

 1
3ε 0 − 1

3ε

− 1
3ε

1
3ε 0

0 − 1
3ε

1
3ε

 →

 ∞ 1
3 −∞

−∞ ∞ 1
3

1
3 −∞ ∞

 , ε ↓ 0.

Here we have the situation where limε↓0 Z12,ε = 1/3 is finite and positive, whereas
limα↑1 limε↓0 U12(α, ε) = −∞. The next example shows, that the reverse situation may happen
as well.

Example 2 Again we consider a three state Markov chain, but now we have an analytically perturbed
one of the following form

Pε = I + ε

−1 1 0
0 0 0
0 0 0

 + ε2

 0 0 0
0 −1 1
0 0 0

 + ε3

 0 0 0
0 0 0
1 0 −1


Then, again, P ∗

0 = I = Z0. However,

P ∗
ε =

1
1 + ε + ε2

 ε2 ε 1
ε2 ε 1
ε2 ε 1

 → P l
0 =

 0 0 1
0 0 1
0 0 1

 , ε ↓ 0.
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By (7.1), one has

lim
ε↓0

U(α, ε) = I +
α

1− α
(P ∗

0 − P l
0) = I +

α

1− α

 1 0 −1
0 1 −1
0 0 0

 →

∞ 0 −∞
0 ∞ −∞
0 0 1

 , α ↑ 1.

On the other hand,

Zε =
1

ε2(1 + ε + ε2)

 ε + ε4 1− ε + ε3 −1 + ε2

−ε2 + ε4 1− ε + ε2 + ε3 −1 + ε + ε2

ε4 −ε + ε3 ε + ε2

 →

 ∞ ∞ −∞
−1 ∞ −∞
0 −∞ ∞

 , ε ↓ 0.

Structured cases, when the discount factor is of the form α = 1 − εk, for a rational number k and
ε ↓ 0, may yield further insights as they did in a related analysis of the Cesaro sum limit reported
in Filar et al [8]. This is potentially important for the application to the Hamiltonian cycle problem
considered in [4] and [7].

One can also consider to extend our results to the denumerable state space case. In this case the
fundamental matrix need not always exist, even if the stationary matrix exists. However, even when
it exists, it is not clear under what conditions it can be approximated by a discounted deviation
from stationarity of a perturbation for a small perturbation parameter. It would be interesting to
find sufficient regularity conditions for the validity of such an approximation.
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