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Abstract

In the literature, on the numerical solution of nonlinear time dependent partial differential equations, much
attention has been paid to numerical processes which have the favourable property of being total variation bounded
(TVB). A popular approach to guaranteeing the TVB property consists in demanding that the process has the
stronger property of being total variation diminishing (TVD).

For Runge—Kutta methods—applied to semi-discrete approximations of partial differential equations—condi-
tions on the time step were established which guarantee the TVD property; see, e.g., [J. Comput. Phys. 77 (1988)
439; Math. Comp. 67 (1998) 73; SIAM Rev. 43 (2001) 89; SIAM J. Numer. Anal. (2002), in press; Higueras,
Tech. Report, Universidad Publica de Navarra, 2002; SIAM J. Numer. Anal. 40 (2002) 469]. These conditions
were derived under the assumption that the simple explicit Euler time stepping process is TVD.

However, for various important semi-discrete approximations, the Euler process is TvBtBMD—see, e.g.,

[Math. Comp. 49 (1987) 105; Math. Comp. 52 (1989) 411]. Accordingly, the above stepsize conditions for Runge—
Kutta methods are not directly relevant to such approximations, and there is a need for stepsize restrictions with a
wider range of applications.

In this paper, we propose a general theory yielding stepsize restrictions which cover a larger class of semi-
discrete approximations than covered thus far in the literature. In particular, our theory gives stepsize restrictions,
for general Runge—Kutta methods, which guarantee total-variation-boundedness in situations where the Euler
process is TVB but not TVD.
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1. Introduction
1.1. The purpose of the paper

In this paper we deal with the numerical solution of initial value problems (IVPs), for systems of
ordinary differential equations (ODES), which can be written in the form

%U(z):F(U(t)) (t>0, U0 =uo. (1.2)

The general Runge—Kutta method, applied to problem (1.1), provides us with numerical approximations
u, to U(nAr), whereAr denotes a positive time step and=1, 2, 3, ...; see, e.g., [8,9,1,15]. The ap-
proximationsu, are defined in terms of,_; by the relations

yi=”nfl+AfZaijF()7j) A<i<m), (1.2a)
j=1

u,,:u,,_l—i-AthjF(yj). (1.2b)
j=1

Hereq;; andb; are real parameters, specifying the Runge—Kutta methody;aare intermediate approx-
imations needed for computing from u,_;. As usual, we assume theat+ b, + --- + b,, = 1, and we
call the Runge—Kutta methaekplicitif a;; = 0 (for j > i). We define then x m matrix A by A = (a;;)
and the column vectab € R” by b = (b1, by, bs, ..., b,)", so that we can identify the Runge—Kutta
method with itscoefficient schem@i, b).

In order to introduce the questions to be studied in this paper, we assume that (1.1) results from
applying the method of lines (MOL) to a Cauchy problem for a partial differential equation (PDE) of the
form

%u(x, 1)+ %f(u(x, 1)=0 (t>0, —o0<x <o0). (1.3)

Here f stands for a given (possibly nonlinear) scalar function, so that the PDE is a simple instance of a
conservation law. In this situation, the functiéhoccurring in (1.1) can be regarded as a function from

R‘X’:{y: y:(...,r]_l,no,nl,...)withnjeRforjzo,jzl,:I:Z,...}

into itself; it depends on the given functigh as well as on the process of semi-discretization being
used. Furtheryy € R* depends on the initial data of the original Cauchy problem. The soltfiohto
(1.1) now stands for a (time dependent) vectoRi with componentd/;(t) which are to approximate
the desired true solution valuasx;, ¢) (or cell averages thereof) corresponding to grid points; =
0,+£1,£2,...). For detailed explanations of the MOL, see, e.g., [19,28,20,15].

In the situation just specified, where (1.1) stands for a semi-discrete version of a conservation law, it
is desirable that the corresponding (fully discrete) process (1.2) has a property which is referred to in the
literature agotal variation boundedneq3VB). In discussing this property, we shall use below the total
variation seminornj - ||ty and the vector spadey,, which are defined as follows:

+00
Iyllrv = Z In; —nj-1l (for y e R*® with components;),

j==o0
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R = {y: y e R¥ and|lyllrv < oo}.

Total variation boundedness of process (1.2) means that, for initial vegtoRY, andT > 0, there
is a positive constan® and valueAr, > 0 such that

lunlltv < B (forO< At < Argand O<nAr < T). (1.4)

For more details and an explanation of the importance of the TVB property in the numerical solution of
nonlinear conservation laws, in particular in the context of convergence proofs, see, e.g., [10,22,2,17,19,
20].

A popular approach to guaranteeing the TVB property, consists in demanding that the total variation
be nonincreasing as time evolves, so that, at any positive time level, the total variation of the approximate
solutionu,, is bounded by the total variation of the initial vectay. Following the terminology in the
literature, we will say that process (1.2)tatal variation diminishing(TVD) if

lunlltv < llup_alltv, foru, andu,_, satisfying (1.2) (1.5)
In the literature, crucial stepsize restrictions of the form
0< Ar < Ar (1.6)

were given ensuring the TVD property (1.5); see, e.g., [23,25,6,7,4,11,27] and Section 2.2 below. These
stepsize restrictions were derived under the assumption that, for some pagitive

F:RY, — Ry, satisfies [v+10F )|, < lvlv  (veRY). (1.7)

Clearly, (1.7) amounts to assuming that the semi-discretization of equation (1.3) has been performed in
such a manner that the simple forward Euler method, applied to problem (1.1), is TVD for some suitably
chosen stepsizg.

Unfortunately, for important semi-discrete versions (1.1) of (1.3), condition (1mtifulfilled see,

e.g., [22,2]. Clearly, in such cases the above stepsize restrictions (1.6), which are relevant to the situation
(1.7), do not allow us to conclude that a Runge—Kutta procedure is TVD (and therefore TVB).

We note that a notorious weakness, of most TVD schemes, is that their accuracy degenerates to first or-
der at smooth extrema of the solution—see, e.g., [21]. The semi-discretizations just mentioned, proposed
by Shu [22], Cockburn and Shu [2] and others, were introduced to overcome this weakness. Although,
for these semi-discretizations, condition (1.7) is violated, the following weaker condition is fulfilled:

F:RY, — Ry, satisfies ||v+ 10F (v)|q, < 1+ aomo)llvlitv + Boto (v e RY). (1.8)

Heretg is again positive, andgp, By are nonnegative constants. Condition (1.8) can be interpreted, anal-
ogously to (1.7), as a bound on the increase of the total variation, when the explicit Euler time stepping
is applied to (1.1) with time stef.

In the situation where property (1.8) is present, it is natural to look for an analogous property in the
general Runge—Kutta process (1.2), namely

lunlltv < QA+ aAb)||u,_1ll7v + BAE, foru, andu,_; satisfying (1.2) (2.9)

Herea, B denote nonnegative constants.
Suppose (1.9) would hold under a stepsize restriction of the form (1.6). By applying (1.9) recursively
and noting thatl + a Ar)" < explanAt), we then would obtain

lunlltv < €T |luolltv + g(e“T —1) (for0< At < Agand O<nAr <T). (1.10)



268 L. Ferracina, M.N. Spijker / Applied Numerical Mathematics 53 (2005) 265-279

Hence property(1.9) (for 0 < Ar < Atg) amounts to total variation boundednessthat (1.4) is fulfilled
with B = e*T |Juq|Tv + g(e” —1). The last expression stands forg || v + BT, in the special case where
a=0.

Since (1.8) and (1.9) reduce to (1.7) and (1.5), respectively, whenpfy =« = g =0, it is natural
to look for extensions, to the TVB context, of the results in the literature pertinent to the TVD property.
More specifically, the natural question arises of whether stepsize restrictions of the form (1.6) can be
established which guarantee property (1.9) when condition (1.8) is fulfilled.

Partial results related to the last question, but no complete answers, were indicated, for special explicit
Runge—Kutta methods, by Gottlieb et al. [7] and Shu [24].

The purpose of this paper is to propose a general theory by means of which the above question, as well
as related ones, can completely be clarified.

1.2. Outline of the rest of the paper

In Section 2, we recall some concepts which are basic for the rest of the paper, and we give a short
review of relevant results from the literature.

Section 2.1 deals with the concept of irreducibility of Runge—Kutta metliads) and with Kraai-
jevanger’s coefficienR(A, b). Theorem 2.3 gives a condition which is necessary and sufficient in order
thatR(A, b) is positive. This theorem will be used later in Sections 3-5.

Theorem 2.4, in Section 2.2, gives a stepsize condition of the form (1.6) which is known to be neces-
sary and sufficient for the TVD property (1.5) under assumption (1.7). This condition is also known to be
relevant to versions of properties (1.5), (1.7) which are more general than the original properties, in that
they involve an arbitrary vector spaewith seminorm| - ||, rather tharR¥, and|| - |ltv. Theorem 2.4
serves as a preparation and motivation for the material in Section 3.

In Section 3, we propose an extension of the theory reviewed in Section 2.2. Our extension is applica-
ble in the situation where (a generalized version of) condition (1.8) is fulfilled.

In Section 3.1, we consider versions of (1.8), (1.9) in the context of arbitrary vector spgaeih
seminorm|| - ||. Further, we introduce, for arbitrary Runge—Kutta meth@dish), an important charac-
teristic quantity, which we denote I$( A, b). This quantity will play, together witlR (A, b), a prominent
part in Section 3.2.

The latter section contains our main result, Theorem 3.2. This theorem is relevant to arbitrary Runge—
Kutta methodsr{ot necessarily explicit). It can be viewed as a convenient variant of Theorem 2.4 adapted
to the situation where (1.5) and (1.7) are replaced by (1.9) and (1.8), respectively. Theorem 3.2 amply
answers the question mentioned above at the end of Section 1.1. The proof of the theorem requires argu
ments different from those underlying Theorem 2.4. In fact, our proof of Theorem 3.2 relies substantially
on the use of Lemma 3.6. This lemma, which is of independent interest, gives general upper bounds for
the seminorms of vectots,, y; satisfying (1.2). In order not to interrupt the presentation of our results,
we have postponed the proof of the lemma to the last section of the paper.

In Section 4 we shortly present some applications and illustrations of Theorem 3.2 and Lemma 3.6.

In Section 5 we prove Lemma 3.6. Our proof is based on a convenient representation of general
Runge—Kutta methods, which is of a similar type as considered recently by Ferracina and Spijker [5] and
Higueras [12].
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2. Kraaijevanger’s coefficient and the TVD property
2.1. Irreducible Runge—Kutta methods and the coeffickaat, b)
The following definition is of fundamental importance in the rest of our paper.

Definition 2.1 (Reducibility and irreducibility. An m-stage Runge—Kutta schenig, b) is called re-
ducible if (at least) one of the following two statements (i), (ii) is true; it is called irreducible if neither
(i) nor (ii) is true.

(i) There exist nonempty, disjoint index se¥s, N with M UN = {1,2,...,m} such thatb; = O (for
j€N)anda;; =0 (fori e M, j e N);
(i) there exist nonempty, pairwise disjoint index séfs, M, ..., M,, with 1 <r <m and M, U M, U
UM, ={1,2,...,m}, such thatZkqu ajx = Zkqu ajx whenever I< p <r, 1< g <r and
i,jeM,.

In case the above statement (i) is true, the vectors (1.2) with j € N have no influence on,,
and the Runge—Kutta method is equivalent to a method with less#ilgtages. Also in case of (ii), the
Runge—Kutta method essentially reduces to a method with lesgitlséages, see, e.g., [3,9]. Clearly, for
all practical purposes, it is enough to consider only Runge—Kutta schemes which are irreducible.

Next, we turn to a very useful coefficient for arbitrary Runge—Kutta schemes) introduced by
Kraaijevanger [16]. Following this author, we shall denote his coefficierR ¥, b), and in defining it,
we shall use, for red, the following notations:

AE) =AU —EA™Y, bE) =T —EA) D,
e@)=U—-EA)"e, @& =1+&b"(I—EA) e, (2.1)

Here T stands for transposition after inversiahdenotes the identity matrix of order, ande stands
for the column vector iiR™ all of whose components are equal to 1. We shall focus on vglue8 for
which

I —&Aisinvertible A() >0, b(&) >0, e(¢) >0andp(§) > 0. (2.2)

The first inequality in (2.2) should be interpreted entry-wise; the second and the third ones component-
wise. Similarly, all inequalities for matrices and vectors occurring below are to be interpreted entry-wise
and component-wise, respectively.

Definition 2.2 (The coefficien (A, b)). Let (A, b) be a given Runge—Kutta scheme. In casg 0 and
b > 0, we define
R(A,b) =sup|{r: r >0 and (2.2) holds for af € [-r, 0]}.
In case (at least) one of the inequaliti&s= 0, » > 0 is violated, we defin® (A, b) = 0.
Definition 2.2 may suggest that it is difficult to determiR¢A, b) for given Runge—Kutta schemes

(A, b). But, Kraaijevanger [16] showed that it is relatively simple to decide wheRier, ) = 0 or
R(A, b) = oo and to compute numerically the valueR{A, b) in the intermediate cases—see also [5,4].
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We give below a criterion for positivity oR(A, b) due to Kraaijevanger [16, Theorem 4.2]. The
criterion will be used later in proving Theorem 3.2, Lemma 3.6 and Theorem 4.1. In order to formulate
the criterion concisely, we define for any x m matrix B = (b;;), the corresponding: x m incidence
matrix by

Inc(B) = (C,‘j), with Cij = 1 (if bij #0) andC,'j =0 (if bij =0).

Theorem 2.3 (Kraaijevanger’s criterion for positivity oR(A, b)). Let (A, b) be a given irreducible
coefficient scheme. Th&R(A, b) > 0if and only if

A>0, b>0 and Inc(A?) <Inc(A). (2.3)
2.2. Stepsize restrictions from the literature for the TVD property

In this subsection, we will review a known stepsize restriction, for property (1.5) and for a generalized
version thereof.

In order to formulate this generalized version, we consider an arbitrary real vector\épattesemi-
norm| - | (i.e., lu + v|| < |lu]l + |lv|| and || v|| = |A] - |Jv]| for all real» andu, v € V). In this general
setting, the following property (2.4) replaces (1.5):

llotn |l < Nutn—all, foru, andu,_, satisfying (1.2) (2.4)

The above property (2.4) is important, also with seminofimg different from| - |lv, and also when
solving certain differential equations different from conservation laws. In the recent literature, property
(2.4) was studied extensively and referred t@tasng stabilityor monotonicity see, e.g., [7,27,4,14,15].

The following theorem gives a stepsize condition guaranteeing (1.5) under the assumption (1.7), as
well as a stepsize condition for property (2.4) under the assumption thag, $00,

F:V—V satisfies [v+1F@)| <[vl (@eV). (2.5)
The theorem deals with stepsize restrictions of the form

O< At < p- 10, (2.6)
wherep denotes a positive factor. The following condition will play a prominent part:

o < R(A,Db). (2.7)

Theorem 2.4.Consider an arbitrary irreducible Runge—Kutta methedl, ), and letp be any given
positive factor. Then each of the following stateméntand (ii) is equivalent tq2.7).

(i) The stepsize restrictio(2.6) implies property(2.4), wheneverV is real vector space, with semi-
norm|| - ||, and F satisfieq2.5).
(i) The stepsize restrictiof2.6)implies the TVD propertyl.5)wheneverF satisfieq1.7).

The above theorem is an immediate consequence of Ferracina and Spijker [4, Theorem 2.5].

Clearly, (i) is a priori a stronger statement that (ii). Accordingly, the essence of Theorem 2.4 is that the
(algebraic) property (2.7) implies the (strong) statement (i), whereas already the (weaker) statement (ii)
implies (2.7).
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3. TVB Runge—Kutta processes
3.1. Preliminaries
In the present Section 3 we shall focus on stepsize conditions for property (1.9) and for a generalized

version thereof.
In formulating this generalized version, we deal, similarly as in Section 2.2, with an arbitrary real

vector spacé&/ with seminorm|| - ||. In this setting, the following property (3.1) corresponds to the TVB
property (1.9):
lunll < A+ aAb)|lu,—1]| + BAt  for u, andu,_, satisfying (1.2) (3.2)

Herea andg denote again honnegative constants.
The following condition (3.2) amounts to a natural generalization of (1.8) to the situation at hand:

F:V—V satisfies |v+0F )| <A+ aoto)lvll+ foro (v EV). (3.2)

Here 1y is again positive, andg, Bo are nonnegative constants. This condition was also considered
recently by Hundsdorfer and Ruuth [13], in connection to boundedness properties of linear multistep
methods. Clearly, (3.1) and (3.2) reduce to (2.4) and (2.5), respectively, ikcage= oo = o = 0.

The above Theorem 2.4 shows that, in the situations (i) and (ii) of the theorem, the crucial stepsize
restriction is of the form (2.6), withy satisfying (2.7). In the situation, where (3.2) or (1.8) is in force,
the crucial stepsize restriction for property (3.1) or (1.9), respectively, will turn out to be less simple. In
fact, not only the coefficienk (A, b) will play a role, but also the quantity(A, ») defined below.

Definition 3.1 (The coefficien§(A, b)). Let (A, b) be a given Runge—Kutta scheme. Then
S(A,b) =sup{r: r > 0andl — £A is invertible for all§ € [0, r]}.
We note that the quantity(A, b) allows of a simple interpretation by looking at the special function

F (v) = agu, with o > 0: for this function, the system (1.2a) has a proper solution, whem@ < Afo,
if and only if the productyyAtg is smaller than the above valiséA, b).

3.2. Formulation and proof of the main result

The following Theorem 3.2 constitutes the main result of this paper. It can be viewed as a convenient
variant of Theorem 2.4 which is applicable in the situations (1.8), (3.2), which were not yet covered
by the latter theorem. Theorem 3.2 gives stepsize restrictions guaranteeing (1.9) and (3.1), respectively,
under the assumptions (1.8) and (3.2). These restrictions are of the form

0 < Ar <min{p - 79, o /ag}, (3.3)

wherep ando are positive factors ang, ag are as in (1.8), (3.2). Note that, in cagg= 0, condition
(3.3) neatly reduces to (2.6). The following conditions@ando will play a crucial role:

p<R(A,b) and o < S(A,b). (3.4)

Theorem 3.2(Main Theorem)Consider an arbitrary irreducible Runge—Kutta methed 4), and letp,
o be any given positive values. Then each of the following staterfipatsd (1) is equivalent td3.4).
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() There exists a finiter such that the stepsize restricti¢®.3) implies property(3.1) with « = y ay,
B = vBo, wheneveW is a real vector space with seminofm || and F satisfieq3.2).

(I There exists a finitey such that the stepsize restricti¢®.3) implies the TVB property1.9) with
o = yag, B = yPo, whenevelF satisfieq1.8).

The proof of Theorem 3.2 will be given at the end of this section, by using the important Lemma 3.6
to be formulated below.

Remark 3.3. Clearly, (l) is a priori a stronger statement than (ll). The essence of Theorem 3.2 thus
lies in the fact that the (algebraic) property (3.4) implies the (strong) statement (1), whereas already the
(weaker) statement (ll) implies (3.4). The fact that (3.4) implies (II) answers the natural question that
was considered at the end of Section 1.1: we see that condition (1.6Awita min{R(A, b) - 19, o/ a0},

0 <o < S(A, b), guarantees property (1.9) whenever condition (1.8) is fulfilled.

Remark 3.4.The coefficienty in (I) and (II), whose existence under condition (3.4) is insured by The-
orem 3.2, can be chosen independently ofn fact, an explicit value fol is given in the proof of the
theorem; see (3.7). This value depends only on the Runge—Kutta megthbgand ono .

Remark 3.5.Consider an arbitrary irreducible Runge—Kutta methadb) that isexplicit We then have
S(A, b) = 00, so that (3.4) is equivalent to (2.7). Condition (3.3), with= R(A, b) ando/ag > p - 10,
reduces to

0< At < R(A,b) - 0. (3.5)

According to Theorem 3.2, condition (3.5) guarantees the TVB property (1.9) owithy g, 8 = ¥ Bo,
for F satisfying (1.8). Moreover, it can be seen (from Theorem 2.4) that (3.5) aptimal stepsize
restrictionin that property (1.9) can no longer be guaranteed, in the same fashion, if the Radtob)
in (3.5) would be replaced by any factor> R(A, b).

The following lemma gives upper bounds for; | and||«, ||, in the situation where the basic assump-
tions (3.2)—(3.4), occurring in Theorem 3.2, are fulfilled. In order not to interrupt our presentation, we
postpone the proof of the lemma to Section 5.

Lemma 3.6. Consider an arbitrary irreducible Runge—Kutta meth@dl, ), and letp, o € (0, +00)
satisfy(3.4). Then, for any vector spacé with seminorm| - ||, the conditiong3.2), (3.3)imply

[1yill] < e(aoAr) un-1]l + BoAL (I — apArA)*Ae, (3.6a)
p(opAt) — 1

il < @ (@oAN it -l + Bo=—_ . (3.6b)

whenevern,_3, u, andy; are related to each other as i{1.2). Here[||y:|I1= (ly1ll, ly2ll, -, ymlDT

belongs taR™, ande(§), ¢ (&) are defined in(2.1). Further, the right-hand member ¢8.6b)stands for
llu,—1]l + BoAt in casexg = 0.

Remark 3.7. Consider thdinear scalarfunction F(v) = agv + Bo (for v € R), with ag > 0, o > 0.
Clearly, this function satisfies (3.2) wiff =R and | - || = | - |. Further, it is easy to verify that, for
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this simpleF, the upper boundg$3.6) of Lemma3.6 are sharp in that the vectorg(aoAt), BoAt(I —
apoAtA)~tAe and the scalarg(agAt), ﬂo% in (3.6) cannot be replaced by any smaller quantities.
Lemma 3.6 tells us that—in the situation (%.3), (3.4)—the upper bounds which are best possible for the
above simpleF, are also literally valid for anponlinear vector-valued” satisfying (3.2).

We note that upper bounds, closely related to (3.6b), were given earlier by Spijker [26, Theorem 3.3]

for the special case whergis a linear operator fror¥ to V (satisfying (3.2) withg, = 0).

Proof of Theorem 3.2. The proof will be given by showing that the following three implications are
valid: (3.4)= (I); (I) = (II) and (II) = (3.4). The first implication will be proved in step 1; the second
implication is trivial; the third one will be proved in step 2.

Stepl. Assume (3.4). For proving statement (1), it is (in view of Lemma 3.6) sufficient to specify a
suitable factoy such that

@(apAr) <1+ yapAtr  (for all Ar satisfying (3.3).
We define
y = sup #() 1. 3.7)
O<x<o X
Sincegp(x) is a differentiable for &X x < o with ¢’'(0) = ¢(0) = 1, we see thay € [1, co) is as required.
This proves (1).
Step2. Assume (l); we shall prove (3.4).
In order to obtain the inequality < R(A, b), we consider an arbitrary functiof satisfying (1.7),
i.e., (1.8) withag = Bo = 0. From (I1) it follows that, for O< At < p - 19, property (1.9) is present with
a = B =0, which is the same as (1.5). An application of Theorem 2.4 (statement (ii) implies (2.7)) shows
thatp < R(A, b).
The second inequality in (3.4) will be proved by reductio ad absurdum. With no loss of generality, we
assumeS(A, b) < oo, 0< p < R(A, b) and we suppose > S(A, b).
In proving that this supposition leads to a contradiction, we will make use of a vecter
(&1, &, ..., &,)" € R™ satisfying

(I —ogA)x =0, withog=S(A,b) >0, (3.8a)
bi&1+ b2+ -+ + byubm > 0. (3.8b)

In order to prove the existence of suchianve note thako = 1/09 is a eigenvalue oA and, by definition
of S(A, b), there is no real eigenvalue > Aq. Theorem 2.3 shows that > 0 andb > 0. From the
Perron—Frobenius theory (see, e.g., [18, p. 543)), it thus follows that there exists awvediit, with
(Mol — A)x =0,x > 0,x #0. Consequently, (3.8a) holds, and becausg;all 0, we also have (3.8b).

Let o > O be given, and let the linear functidn, from R$, into itself, be defined by (v) = agv. It
satisfies condition (1.8) witjg; = 0 and any positiveg. We choosey = oo/ (agp), SO that the stepsize
At = op/ag satisfies condition (3.3). Leb € RY,, with ||w|ltv > 0. From (3.8), it follows immediately
that, for the above” and At, the Runge—Kautta relations (1.2) are fulfilled, with 1 =0, y; = &w and
u, = oo(b"x)w, so that

.
lup—1llTv =0, lu,llrv = oob x||lw|tv > O.

Statement (1) implies that there exists a finjtesuch that|u, ||[tv < (14 yoo)llun—1lltv + Y 00Bo/o-
Since||lu,_1|ltv = Bo = 0, it follows that||u, || +v = 0, which is impossible. O
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4. Applications and illustrations of Theorem 3.2 and Lemma 3.6
4.1. TVB preserving Runge—Kutta methods

Consider an arbitrary Runge—Kutta methed b). If there exist positive factors, o for which State-
ment (1) (of Theorem 3.2) is valid, the Runge—Kutta method will be said to\#8 preservingClearly,
in this situation the TVB property of the explicit Euler method, (1.8), is carried over to the Runge—Kutta
method (see (1.9)) foir > 0 sufficiently small. The following theorem gives a characterization of TVB
preserving Runge—Kutta methods.

Theorem 4.1 (Criterion for TVB preserving Runge—Kutta methodkgt (A, b) specify an arbitrary
irreducible Runge—Kutta method. Then the method is TVB preserving if and ¢alg)jholds.

Proof of Theorem 4.1. From Theorem 3.2 we see that the methi@d ») is TVB preserving if and
only if R(A,b) > 0 andS(A, b) > 0. In view of Definition 3.1, we haveS(A, b) > 0. Moreover, by
Theorem 2.3 the inequalit® (A, b) > 0 is equivalent to (2.3). O

We note that a characterization related to the one in Theorem 4.1 was given by Ferracina and Spijker [4,
Theorem 3.6]. In that paper the same class of Runge—Kutta methods satisfying (2.3) was found in a searct
for so-calledstrong stability preservinjRunge—Kutta methods.

4.2. Two examples

In the following we will give two simple examples, illustrating the theory of Section 3.2 with an
implicit and an explicit Runge—Kutta method, respectively.

Example 4.2(An implicit Runge—Kutta methpdConsider the 1-stage second order Runge—Kutta method
given by A = (1/2) andb = (1) (implicit midpoint rule). A simple calculation shows th&(A, b) =
S(A,b) =2.

Let 0< o < 2. Then, according to Theorem 3.2 and Remark 3.4, there is a facdach that (1.9)
holds witha = yag, B8 = yBo, WheneverF satisfies (1.8) and & Ar < min{2ty, o/ap}. Using for-
mula (3.7), we arrive at the following actual value for

2
C2-o0)

v

Example 4.3 (An explicit Runge—Kutta methpdConsider the explicit Runge—Kutta method, with 3
stages, specified by

0 0 O

A:(l 0 Q and b' =(1/6,1/6,2/3).
1/4 1/4 0

This method was studied earlier, notably in Refs. [25,16,6,7,27,4]. In Kraaijevanger [16, Theorem 9.4]

it was proved that this method is of third order, wiliA, b) = 1, whereas there exists no other explicit

third order method withn = 3 andR (A, b) > 1. Obviously, for the above metho8l(A, b) = cc.
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Choosingp = R(A,b) =1 and O< o < S(A, b) = oo, condition (3.4) is fulfilled, and the stepsize
restriction (3.3) reduces to

0 < At < min{tg, o/ap}. (4.2)
According to Theorem 3.2, there is a facjosuch that (1.8), (4.1) imply (1.9) with = yao, B = ¥ Bo.

In view of Remark 3.4, we can apply (3.7) so as to arrive at the value

o2

y:1+%+€. 4.2)

Moreover, using Lemma 3.6 directly, we can get a bound:n+, which is more complicated than
(1.9) but more refined. For the Runge—Kutta method under consideration, relation (3.6h)),- With
| - ITv, reduces to

1 , 1 ; 1 1 )
lunlltv < | 14+ oAt + E(OloAt) + é(aoAl) lu,llrv + | 1+ éaoAl + é(aoAI) BoAt. (4.3)

From Lemma 3.6 it can be seen that (4.3) is valid, whenéveatisfies (1.8) and @ At < 1.
4.3. A special semi-discretization given by Shu (1987)
Applying the special semi-discretization devised by Shu [22] to Eq. (1.3), we obtain a semi-discrete
system of equations which can be modele%&é(t) = F(U(t)) where
F:RY, — Ry, satisfies [v+10F ()|, < vl + Boto (v €REY)). (4.4)

Here 1o > 0 and 8y > 0. The basic assumption (1.7) of the TVD theory, reviewed in Section 2.2, is
not fulfilled here. On the other hand, the above situation (4.4) is nicely covered by Theorem 3.2 and
Lemma 3.6 (witheg = 0).

We consider the application of an arbitrary irreducible Runge—Kutta method), in the situation
(4.4), with a stepsizé\r satisfying

0< Ar < R(A,b) - 1. (4.5)
Using Theorem 3.2 or Lemma 3.6 (witly = 0), one sees that (4.4), (4.5) imply
lunlltv < lup—1llrv + PoAt,  foru, andu,_; satisfying (1.2) (4.6)

Hence, in the situation (4.4), the Runge—Kutta approximatiqreatisfy (1.4), withB = ||uo|ltv + BoT
andArf = R(A,b) - 1.

It is worthwhile to note that the last valugr, is positive if and only if the Runge—Kutta method, b)
satisfies (2.3)—this is evident from Theorem 2.3.

5. The proof of Lemma 3.6

In our following proof of Lemma 3.6, we shall make use of the subsequent Lemmas 5.1 and 5.2.
Lemma 5.1 deals with the situation where
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B >0, (5.1a)
I —tB isinvertible forrg <r <1, (5.1b)
(I -nB)t>0. (5.1¢)

Here B stands for am: x m matrix and/ denotes the: x m identity matrix.

Lemma 5.1.The assumption&.1)imply that
(I—tB)1>0, forrp<r<m. (5.2)
Proof of Lemma 5.1. Assume (5.1) and suppose (5.2) is not true. Lebe the greatest lower bound

of the values € [, t1] where the inequality/ — tB)~! > 0 is violated. One easily sees (by continuity
arguments) that/ — TB)~! > 0 andy < T < t,. For all sufficient smalk > 0, we have

I—(T+&)B=1-TB—¢B=(I—-TB)(I—(I—TB) '¢B),
so that
[1—(T+e)B] " = {2[8(1 —TB)*B]"}(1-TB)™*>0.
k=0
This contradicts the definition &f. Hence (5.2) must be true.O

In the actual proof of Lemma 3.6, the Runge—Kutta process (1.2) will be represented in the following
form:

" (1 B Zk”) wnt+ Y [y + A g o] A< <m), (5.33)
j=1 j=1
Up = (1 - kaﬂ,]’)un—l + Z[)\-m-i-l,jyj + AL w1 F(y))]- (5.3b)
j=1 j=1
Herei;; andu;; denote real parameters. We define corresponding matticksby
I3 A1 Am
L= <L2> s Lo= s Li= ()\m+l,l, ceey )\-m+1,m)a (54a)
Aml oo Amm
MHi1 ... Haim
Mo ; ]
M = (Ml) 5 MO = : . s Ml = (Mm+l,la ey ,um+l,m)- (54b)
/"Lml LIRS //l/mm

Lemma 5.2, to be given below, gives a condition under which the processes (1.2) and (5.3) are equiv-
alent.
In the lemma the following relation will play a crucial role:

Mo= A — LoA, My=b" — LiA. (5.5)
Further, the following hypothesis will be used:
I — Ly isinvertible. (5.6)
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Lemma 5.2.Let (A, b) specify an arbitrary Runge—Kutta meth@?2). Let L = (};;) be any parameter
matrix satisfying(5.4a)and (5.6). Consider the corresponding matrix M defined(by4b), (5.5). Then
the Runge—Kutta relationd..2) are equivalent t¢5.3).

This lemma was proved by Ferracina and Spijker [5, Theorem 2.2] and Higueras [12, Section 2]. The
proof is easy and involves only simple algebraic manipulations. Therefore, we do not repeat it here but
refer to the papers just mentioned for details.

For matricesL. andM of the form (5.4), we define the coefficiestL, M) by

c(L,M)=min{¢c;;: 1<i<m+1 1< j<m]}, (5.7)
)\.lj/,bl,lj if /,l,l] >0 andl ;é.],
_J oo if w;j >0andi = j,
Cij = o0 if /,l,,'j:O,
0 if Mij <0.

The actual proof of Lemma 3.6, to be given below, consists of two parts. In the first part we shall
consider the situation where

m

%20 and > A<l (forl<i<m+1, 1<j<m), (5.8)
k=1
and
O<Ar<ce(L,M) - 1. (5.9)
It will be shown that (3.2), (5.3), (5.8), (5.9) imply
(I — Lo — aoAtMo)[1yil] < llun—1ll(I — Lo)e + BoAt Moe, (5.10q)
lunll < (1= L1e)llup—all + (L1 + oAt M) [l |I] + BoAr Mie. (5.10b)

The above relation (5.10a) stands for an inequality between two vect®%,iwhich should be inter-
preted component-wise. Further, we denote agaia thye vector inR™” all of whose components are
equalto 1.

In the second part of the actual proof, we shall choose a special parameter inatrikdefineM by
(5.4b), (5.5). It will be seen thdt— Ly is invertible so that, by Lemma 5.2, the process (5.3) under con-
sideration is equivalent to (1.2). Moreover, the conditions (5.8) are fulfilledahdM) = R(A, b). The
proof of Lemma 3.6 will be completed by showing that, in the situation (5.5), (3.3), (3.4), the inequalities
(5.10) imply (3.6).

The actual proof of Lemma 3.6. (Part 1) Assume (3.2), (5.3), (5.8), (5.9). We shall prove (5.10).
Condition (5.9) implies that, for all j,
0<Cij<OO and Og,uij<oo.

From (5.3a), we obtain for £ i <m

lyi = At F () || < (1— Z)\ij> Ntn—all + Aiillyill + Z)\ij ly; + Atci;lF(yj) ; (5.11)

j=1 J#i
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wherec;1 stands for O in case; = co.
Using the relation(1 + w;; At /7o)y = (vi — At F(y;)) + (i At /70) (yi + 0F (y;)) we obtain(1 +
wii At /o) [ yill < llyi = At F(yi) | + {(1+ aoto) | yill 4 BoTo} i At/ 70. Hence

(L — pisooAD) || yill = Bowii At < || yi — At F(v) .- (5.12)
Similarly, by using the relation
v+ Atci F(y) = (1= At(tocij) ™ )y; + At (toci)) (v + ToF () (5.13)
we see that
|yj + At F(yp) | < {14 aohic; il + BoArci; . (5.14)

Combining the inequalities (5.11), (5.12) and (5.14), we obtain a bounigyfér(1 < i < m) which can
be written compactly in the form (5.10a).
In order to prove (5.10b), we note that (5.3b) implies

leea | < (1 - mem) letnall + Y Amsrs|yj + A0  F O

j=t j=1

Applying (5.14) withi =m + 1, we obtain (5.10b).

(Part 2) Assume (3.2), (1.2), (3.3), (3.4). We shall prove (3.6).

In case 0K R(A, b) < oo, we know from Kraaijevanger [16, Lemma 4.4] that the matdix- nA),
with n = R(A, b), is invertible. Moreover, in cas&(A, b) = oo, it follows from Kraaijevanger [16,
Theorem 4.7] that the inversé—! exists, and that the diagonal elements of this inverse are positive.
Therefore, we can define a matiixof the form (5.4a) in the following way:

Lo=nA(l +nA)71, Li=nb"(I +nA)~Y, wheren=R(A,b)
(if 0 < R(A, b) < 00), (5.15a)

Lo=I—nP, Li=b"P, 5= (maXp[i) . whereP = (p;j) = A"
(if R(A, b) = 00). (5.15b)

Similar matrices were introduced and analyzed earlier in [5,12]. One easily sees that condition (5.6) is
fulfilled. We defineM by (5.4b), (5.5), so that, according to Lemma 5.2, the relations (1.2) imply (5.3).
For the matriced., M under consideration, it is known that (5.8) holds and #iat M) = R(A, b)—
see Ferracina and Spijker [5, Theorem 3.4] and Higueras [12, Section 2]. Therefore, our assumptions
(3.3), (3.4) imply (5.9) and, according to the above Part 1, we can conclude that (5.10) holds. Below, we
shall prove (3.6) by using (5.10), (5.5), (3.3), (3.4).
Using the equalityl — Lo — aoAtM = (I — Lo)(I — apAtA), one sees that (5.10a) implies (3.6a),
provided the inversed — Lo) %, (I —apAtA)~t exist and have only nonnegative entries. The existence
of (I — Lo)~! was proved above, and its nonnegativity follows from an application of Lemma 5.1, with
B = Lo, to =0, 1 = 1 (note that, in view of (5.8), the eigenvaluesiof- ¢ L, are different from zero,
for 0<t < 1). The existence ofl — agArA)~ ! is a consequence of (3.3), (3.4), and its nonnegativity
follows by applying Theorem 2.3 and Lemma 5.1, with= A, 1o = 0, 11 = apAt. Finally, (3.6b) follows
by straightforward calculations using (3.6a), (5.511
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