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Abstract

In the literature, on the numerical solution of nonlinear time dependent partial differential equations
attention has been paid to numerical processes which have the favourable property of being total variation
(TVB). A popular approach to guaranteeing the TVB property consists in demanding that the process
stronger property of being total variation diminishing (TVD).

For Runge–Kutta methods—applied to semi-discrete approximations of partial differential equations—
tions on the time step were established which guarantee the TVD property; see, e.g., [J. Comput. Phys. 7
439; Math. Comp. 67 (1998) 73; SIAM Rev. 43 (2001) 89; SIAM J. Numer. Anal. (2002), in press; Higu
Tech. Report, Universidad Pública de Navarra, 2002; SIAM J. Numer. Anal. 40 (2002) 469]. These con
were derived under the assumption that the simple explicit Euler time stepping process is TVD.

However, for various important semi-discrete approximations, the Euler process is TVB butnotTVD—see, e.g.,
[Math. Comp. 49 (1987) 105; Math. Comp. 52 (1989) 411]. Accordingly, the above stepsize conditions for R
Kutta methods are not directly relevant to such approximations, and there is a need for stepsize restrictio
wider range of applications.

In this paper, we propose a general theory yielding stepsize restrictions which cover a larger class
discrete approximations than covered thus far in the literature. In particular, our theory gives stepsize res
for general Runge–Kutta methods, which guarantee total-variation-boundedness in situations where t
process is TVB but not TVD.
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1. Introduction

1.1. The purpose of the paper

In this paper we deal with the numerical solution of initial value problems (IVPs), for system
ordinary differential equations (ODEs), which can be written in the form

d

dt
U(t) = F

(
U(t)

)
(t � 0), U(0) = u0. (1.1)

The general Runge–Kutta method, applied to problem (1.1), provides us with numerical approxim
un to U(n�t), where�t denotes a positive time step andn = 1,2,3, . . .; see, e.g., [8,9,1,15]. The a
proximationsun are defined in terms ofun−1 by the relations

yi = un−1 + �t

m∑
j=1

aijF (yj ) (1� i � m), (1.2a)

un = un−1 + �t

m∑
j=1

bjF (yj ). (1.2b)

Hereaij andbj are real parameters, specifying the Runge–Kutta method, andyi are intermediate approx
imations needed for computingun from un−1. As usual, we assume thatb1 + b2 + · · · + bm = 1, and we
call the Runge–Kutta methodexplicit if aij = 0 (for j � i). We define them × m matrix A by A = (aij )

and the column vectorb ∈ R
m by b = (b1, b2, b3, . . . , bm)T, so that we can identify the Runge–Ku

method with itscoefficient scheme(A,b).
In order to introduce the questions to be studied in this paper, we assume that (1.1) resu

applying the method of lines (MOL) to a Cauchy problem for a partial differential equation (PDE)
form

∂

∂t
u(x, t) + ∂

∂x
f

(
u(x, t)

) = 0 (t � 0, −∞ < x < ∞). (1.3)

Heref stands for a given (possibly nonlinear) scalar function, so that the PDE is a simple instan
conservation law. In this situation, the functionF occurring in (1.1) can be regarded as a function fro

R
∞ = {

y: y = (. . . , η−1, η0, η1, . . .) with ηj ∈ R for j = 0,±1,±2, . . .
}

into itself; it depends on the given functionf as well as on the process of semi-discretization be
used. Further,u0 ∈ R

∞ depends on the initial data of the original Cauchy problem. The solutionU(t) to
(1.1) now stands for a (time dependent) vector inR

∞ with componentsUj(t) which are to approximat
the desired true solution valuesu(xj , t) (or cell averages thereof) corresponding to grid pointsxj (j =
0,±1,±2, . . .). For detailed explanations of the MOL, see, e.g., [19,28,20,15].

In the situation just specified, where (1.1) stands for a semi-discrete version of a conservation
is desirable that the corresponding (fully discrete) process (1.2) has a property which is referred t
literature astotal variation boundedness(TVB). In discussing this property, we shall use below the t
variation seminorm‖ · ‖TV and the vector spaceR∞

TV, which are defined as follows:

‖y‖TV =
+∞∑

|ηj − ηj−1|
(
for y ∈ R

∞ with componentsηj

)
,

j=−∞
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y: y ∈ R
∞ and‖y‖TV < ∞}

.

Total variation boundedness of process (1.2) means that, for initial vectoru0 ∈ R
∞
TV andT > 0, there

is a positive constantB and value�t0 > 0 such that

‖un‖TV � B (for 0< �t � �t0 and 0< n�t � T ). (1.4)

For more details and an explanation of the importance of the TVB property in the numerical solu
nonlinear conservation laws, in particular in the context of convergence proofs, see, e.g., [10,22,
20].

A popular approach to guaranteeing the TVB property, consists in demanding that the total va
be nonincreasing as time evolves, so that, at any positive time level, the total variation of the appro
solutionun is bounded by the total variation of the initial vectoru0. Following the terminology in the
literature, we will say that process (1.2) istotal variation diminishing(TVD) if

‖un‖TV � ‖un−1‖TV, for un andun−1 satisfying (1.2). (1.5)

In the literature, crucial stepsize restrictions of the form

0 < �t � �t0 (1.6)

were given ensuring the TVD property (1.5); see, e.g., [23,25,6,7,4,11,27] and Section 2.2 below
stepsize restrictions were derived under the assumption that, for some positiveτ0,

F :R∞
TV → R

∞
TV satisfies

∥∥v + τ0F(v)
∥∥

TV � ‖v‖TV
(
v ∈ R

∞
TV

)
. (1.7)

Clearly, (1.7) amounts to assuming that the semi-discretization of equation (1.3) has been perfo
such a manner that the simple forward Euler method, applied to problem (1.1), is TVD for some s
chosen stepsizeτ0.

Unfortunately, for important semi-discrete versions (1.1) of (1.3), condition (1.7) isnot fulfilled see,
e.g., [22,2]. Clearly, in such cases the above stepsize restrictions (1.6), which are relevant to the
(1.7), do not allow us to conclude that a Runge–Kutta procedure is TVD (and therefore TVB).

We note that a notorious weakness, of most TVD schemes, is that their accuracy degenerates t
der at smooth extrema of the solution—see, e.g., [21]. The semi-discretizations just mentioned, p
by Shu [22], Cockburn and Shu [2] and others, were introduced to overcome this weakness. Al
for these semi-discretizations, condition (1.7) is violated, the following weaker condition is fulfilled

F :R∞
TV → R

∞
TV satisfies

∥∥v + τ0F(v)
∥∥

TV � (1+ α0τ0)‖v‖TV + β0τ0
(
v ∈ R

∞
TV

)
. (1.8)

Hereτ0 is again positive, andα0, β0 are nonnegative constants. Condition (1.8) can be interpreted,
ogously to (1.7), as a bound on the increase of the total variation, when the explicit Euler time st
is applied to (1.1) with time stepτ0.

In the situation where property (1.8) is present, it is natural to look for an analogous property
general Runge–Kutta process (1.2), namely

‖un‖TV � (1+ α�t)‖un−1‖TV + β�t, for un andun−1 satisfying (1.2). (1.9)

Hereα, β denote nonnegative constants.
Suppose (1.9) would hold under a stepsize restriction of the form (1.6). By applying (1.9) recu

and noting that(1+ α�t)n � exp(αn�t), we then would obtain

‖u ‖ � eαT ‖u ‖ + β (
eαT − 1

)
(for 0< �t � �t and 0< n�t � T ). (1.10)
n TV 0 TV

α
0
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Hence,property(1.9) (for 0< �t � �t0) amounts to total variation boundedness, in that (1.4) is fulfilled
with B = eαT ‖u0‖TV + β

α
(eαT −1). The last expression stands for‖u0‖TV +βT , in the special case whe

α = 0.
Since (1.8) and (1.9) reduce to (1.7) and (1.5), respectively, whenα0 = β0 = α = β = 0, it is natural

to look for extensions, to the TVB context, of the results in the literature pertinent to the TVD pro
More specifically, the natural question arises of whether stepsize restrictions of the form (1.6)
established which guarantee property (1.9) when condition (1.8) is fulfilled.

Partial results related to the last question, but no complete answers, were indicated, for specia
Runge–Kutta methods, by Gottlieb et al. [7] and Shu [24].

The purpose of this paper is to propose a general theory by means of which the above question
as related ones, can completely be clarified.

1.2. Outline of the rest of the paper

In Section 2, we recall some concepts which are basic for the rest of the paper, and we give
review of relevant results from the literature.

Section 2.1 deals with the concept of irreducibility of Runge–Kutta methods(A,b) and with Kraai-
jevanger’s coefficientR(A,b). Theorem 2.3 gives a condition which is necessary and sufficient in
thatR(A,b) is positive. This theorem will be used later in Sections 3–5.

Theorem 2.4, in Section 2.2, gives a stepsize condition of the form (1.6) which is known to be
sary and sufficient for the TVD property (1.5) under assumption (1.7). This condition is also known
relevant to versions of properties (1.5), (1.7) which are more general than the original properties
they involve an arbitrary vector spaceV with seminorm‖ · ‖, rather thanR∞

TV and‖ · ‖TV. Theorem 2.4
serves as a preparation and motivation for the material in Section 3.

In Section 3, we propose an extension of the theory reviewed in Section 2.2. Our extension is a
ble in the situation where (a generalized version of) condition (1.8) is fulfilled.

In Section 3.1, we consider versions of (1.8), (1.9) in the context of arbitrary vector spacesV with
seminorm‖ · ‖. Further, we introduce, for arbitrary Runge–Kutta methods(A,b), an important charac
teristic quantity, which we denote byS(A,b). This quantity will play, together withR(A,b), a prominent
part in Section 3.2.

The latter section contains our main result, Theorem 3.2. This theorem is relevant to arbitrary R
Kutta methods (notnecessarily explicit). It can be viewed as a convenient variant of Theorem 2.4 ad
to the situation where (1.5) and (1.7) are replaced by (1.9) and (1.8), respectively. Theorem 3.2
answers the question mentioned above at the end of Section 1.1. The proof of the theorem requi
ments different from those underlying Theorem 2.4. In fact, our proof of Theorem 3.2 relies substa
on the use of Lemma 3.6. This lemma, which is of independent interest, gives general upper bou
the seminorms of vectorsun, yi satisfying (1.2). In order not to interrupt the presentation of our res
we have postponed the proof of the lemma to the last section of the paper.

In Section 4 we shortly present some applications and illustrations of Theorem 3.2 and Lemm
In Section 5 we prove Lemma 3.6. Our proof is based on a convenient representation of

Runge–Kutta methods, which is of a similar type as considered recently by Ferracina and Spijker
Higueras [12].
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2. Kraaijevanger’s coefficient and the TVD property

2.1. Irreducible Runge–Kutta methods and the coefficientR(A,b)

The following definition is of fundamental importance in the rest of our paper.

Definition 2.1 (Reducibility and irreducibility). An m-stage Runge–Kutta scheme(A,b) is called re-
ducible if (at least) one of the following two statements (i), (ii) is true; it is called irreducible if ne
(i) nor (ii) is true.

(i) There exist nonempty, disjoint index setsM,N with M ∪ N = {1,2, . . . ,m} such thatbj = 0 (for
j ∈ N ) andaij = 0 (for i ∈ M , j ∈ N );

(ii) there exist nonempty, pairwise disjoint index setsM1,M2, . . . ,Mr , with 1� r < m andM1 ∪ M2 ∪
· · · ∪ Mr = {1,2, . . . ,m}, such that

∑
k∈Mq

aik = ∑
k∈Mq

ajk whenever 1� p � r , 1 � q � r and
i, j ∈ Mp.

In case the above statement (i) is true, the vectorsyj in (1.2) with j ∈ N have no influence onun,
and the Runge–Kutta method is equivalent to a method with less thanm stages. Also in case of (ii), th
Runge–Kutta method essentially reduces to a method with less thenm stages, see, e.g., [3,9]. Clearly, f
all practical purposes, it is enough to consider only Runge–Kutta schemes which are irreducible.

Next, we turn to a very useful coefficient for arbitrary Runge–Kutta schemes(A,b) introduced by
Kraaijevanger [16]. Following this author, we shall denote his coefficient byR(A,b), and in defining it,
we shall use, for realξ , the following notations:

A(ξ) = A(I − ξA)−1, b(ξ) = (I − ξA)−Tb,

e(ξ) = (I − ξA)−1e, ϕ(ξ) = 1+ ξbT(I − ξA)−1e. (2.1)

Here−T stands for transposition after inversion,I denotes the identity matrix of orderm, ande stands
for the column vector inRm all of whose components are equal to 1. We shall focus on valuesξ � 0 for
which

I − ξA is invertible, A(ξ) � 0, b(ξ) � 0, e(ξ) � 0 andϕ(ξ) � 0. (2.2)

The first inequality in (2.2) should be interpreted entry-wise; the second and the third ones com
wise. Similarly, all inequalities for matrices and vectors occurring below are to be interpreted entr
and component-wise, respectively.

Definition 2.2 (The coefficientR(A,b)). Let (A,b) be a given Runge–Kutta scheme. In caseA � 0 and
b � 0, we define

R(A,b) = sup
{
r: r � 0 and (2.2) holds for allξ ∈ [−r,0]}.

In case (at least) one of the inequalitiesA � 0, b � 0 is violated, we defineR(A,b) = 0.

Definition 2.2 may suggest that it is difficult to determineR(A,b) for given Runge–Kutta scheme
(A,b). But, Kraaijevanger [16] showed that it is relatively simple to decide whetherR(A,b) = 0 or
R(A,b) = ∞ and to compute numerically the value ofR(A,b) in the intermediate cases—see also [5



270 L. Ferracina, M.N. Spijker / Applied Numerical Mathematics 53 (2005) 265–279

he
ulate

alized

l

operty
].
1.7), as

i-

hat the
ent (ii)
We give below a criterion for positivity ofR(A,b) due to Kraaijevanger [16, Theorem 4.2]. T
criterion will be used later in proving Theorem 3.2, Lemma 3.6 and Theorem 4.1. In order to form
the criterion concisely, we define for anym × m matrix B = (bij ), the correspondingm × m incidence
matrix by

Inc(B) = (cij ), with cij = 1 (if bij �= 0) andcij = 0 (if bij = 0).

Theorem 2.3 (Kraaijevanger’s criterion for positivity ofR(A,b)). Let (A,b) be a given irreducible
coefficient scheme. ThenR(A,b) > 0 if and only if

A � 0, b > 0 and Inc
(
A2

)
� Inc(A). (2.3)

2.2. Stepsize restrictions from the literature for the TVD property

In this subsection, we will review a known stepsize restriction, for property (1.5) and for a gener
version thereof.

In order to formulate this generalized version, we consider an arbitrary real vector spaceV with semi-
norm‖ · ‖ (i.e., ‖u + v‖ � ‖u‖ + ‖v‖ and‖λv‖ = |λ| · ‖v‖ for all realλ andu,v ∈ V). In this genera
setting, the following property (2.4) replaces (1.5):

‖un‖ � ‖un−1‖, for un andun−1 satisfying (1.2). (2.4)

The above property (2.4) is important, also with seminorms‖ · ‖ different from‖ · ‖TV, and also when
solving certain differential equations different from conservation laws. In the recent literature, pr
(2.4) was studied extensively and referred to asstrong stabilityor monotonicity, see, e.g., [7,27,4,14,15

The following theorem gives a stepsize condition guaranteeing (1.5) under the assumption (
well as a stepsize condition for property (2.4) under the assumption that, forτ0 > 0,

F :V → V satisfies
∥∥v + τ0F(v)

∥∥ � ‖v‖ (v ∈ V). (2.5)

The theorem deals with stepsize restrictions of the form

0 < �t � ρ · τ0, (2.6)

whereρ denotes a positive factor. The following condition will play a prominent part:

ρ � R(A,b). (2.7)

Theorem 2.4.Consider an arbitrary irreducible Runge–Kutta method(A,b), and letρ be any given
positive factor. Then each of the following statements(i) and (ii) is equivalent to(2.7).

(i) The stepsize restriction(2.6) implies property(2.4), wheneverV is real vector space, with sem
norm‖ · ‖, andF satisfies(2.5).

(ii) The stepsize restriction(2.6) implies the TVD property(1.5)wheneverF satisfies(1.7).

The above theorem is an immediate consequence of Ferracina and Spijker [4, Theorem 2.5].
Clearly, (i) is a priori a stronger statement that (ii). Accordingly, the essence of Theorem 2.4 is t

(algebraic) property (2.7) implies the (strong) statement (i), whereas already the (weaker) statem
implies (2.7).
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3. TVB Runge–Kutta processes

3.1. Preliminaries

In the present Section 3 we shall focus on stepsize conditions for property (1.9) and for a gene
version thereof.

In formulating this generalized version, we deal, similarly as in Section 2.2, with an arbitrar
vector spaceV with seminorm‖ · ‖. In this setting, the following property (3.1) corresponds to the T
property (1.9):

‖un‖ � (1+ α�t)‖un−1‖ + β�t for un andun−1 satisfying (1.2). (3.1)

Hereα andβ denote again nonnegative constants.
The following condition (3.2) amounts to a natural generalization of (1.8) to the situation at han

F :V → V satisfies
∥∥v + τ0F(v)

∥∥ � (1+ α0τ0)‖v‖ + β0τ0 (v ∈ V). (3.2)

Here τ0 is again positive, andα0, β0 are nonnegative constants. This condition was also consid
recently by Hundsdorfer and Ruuth [13], in connection to boundedness properties of linear m
methods. Clearly, (3.1) and (3.2) reduce to (2.4) and (2.5), respectively, in caseα = β = α0 = β0 = 0.

The above Theorem 2.4 shows that, in the situations (i) and (ii) of the theorem, the crucial s
restriction is of the form (2.6), withρ satisfying (2.7). In the situation, where (3.2) or (1.8) is in for
the crucial stepsize restriction for property (3.1) or (1.9), respectively, will turn out to be less sim
fact, not only the coefficientR(A,b) will play a role, but also the quantityS(A,b) defined below.

Definition 3.1 (The coefficientS(A,b)). Let (A,b) be a given Runge–Kutta scheme. Then

S(A,b) = sup
{
r: r > 0 andI − ξA is invertible for allξ ∈ [0, r]}.

We note that the quantityS(A,b) allows of a simple interpretation by looking at the special func
F(v) = α0v, with α0 > 0: for this function, the system (1.2a) has a proper solution, when 0< �t � �t0,
if and only if the productα0�t0 is smaller than the above valueS(A,b).

3.2. Formulation and proof of the main result

The following Theorem 3.2 constitutes the main result of this paper. It can be viewed as a con
variant of Theorem 2.4 which is applicable in the situations (1.8), (3.2), which were not yet co
by the latter theorem. Theorem 3.2 gives stepsize restrictions guaranteeing (1.9) and (3.1), resp
under the assumptions (1.8) and (3.2). These restrictions are of the form

0 < �t � min{ρ · τ0, σ/α0}, (3.3)

whereρ andσ are positive factors andτ0, α0 are as in (1.8), (3.2). Note that, in caseα0 = 0, condition
(3.3) neatly reduces to (2.6). The following conditions onρ andσ will play a crucial role:

ρ � R(A,b) and σ < S(A,b). (3.4)

Theorem 3.2(Main Theorem). Consider an arbitrary irreducible Runge–Kutta method(A,b), and letρ,
σ be any given positive values. Then each of the following statements(I) and (II) is equivalent to(3.4).
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(I) There exists a finiteγ such that the stepsize restriction(3.3) implies property(3.1) with α = γα0,
β = γβ0, wheneverV is a real vector space with seminorm‖ · ‖ andF satisfies(3.2).

(II) There exists a finiteγ such that the stepsize restriction(3.3) implies the TVB property(1.9) with
α = γα0, β = γβ0, wheneverF satisfies(1.8).

The proof of Theorem 3.2 will be given at the end of this section, by using the important Lemm
to be formulated below.

Remark 3.3. Clearly, (I) is a priori a stronger statement than (II). The essence of Theorem 3.2
lies in the fact that the (algebraic) property (3.4) implies the (strong) statement (I), whereas alre
(weaker) statement (II) implies (3.4). The fact that (3.4) implies (II) answers the natural questio
was considered at the end of Section 1.1: we see that condition (1.6) with�t0 = min{R(A,b) · τ0, σ/α0},
0< σ < S(A,b), guarantees property (1.9) whenever condition (1.8) is fulfilled.

Remark 3.4.The coefficientγ in (I) and (II), whose existence under condition (3.4) is insured by T
orem 3.2, can be chosen independently ofρ. In fact, an explicit value forγ is given in the proof of the
theorem; see (3.7). This value depends only on the Runge–Kutta method(A,b) and onσ .

Remark 3.5.Consider an arbitrary irreducible Runge–Kutta method(A,b) that isexplicit. We then have
S(A,b) = ∞, so that (3.4) is equivalent to (2.7). Condition (3.3), withρ = R(A,b) andσ/α0 � ρ · τ0,
reduces to

0 < �t � R(A,b) · τ0. (3.5)

According to Theorem 3.2, condition (3.5) guarantees the TVB property (1.9), withα = γα0, β = γβ0,
for F satisfying (1.8). Moreover, it can be seen (from Theorem 2.4) that (3.5) is anoptimal stepsize
restriction in that property (1.9) can no longer be guaranteed, in the same fashion, if the factorR(A,b)

in (3.5) would be replaced by any factorρ > R(A,b).

The following lemma gives upper bounds for‖yi‖ and‖un‖, in the situation where the basic assum
tions (3.2)–(3.4), occurring in Theorem 3.2, are fulfilled. In order not to interrupt our presentatio
postpone the proof of the lemma to Section 5.

Lemma 3.6. Consider an arbitrary irreducible Runge–Kutta method(A,b), and letρ,σ ∈ (0,+∞)

satisfy(3.4). Then, for any vector spaceV with seminorm‖ · ‖, the conditions(3.2), (3.3) imply[‖yi‖
]
� e(α0�t)‖un−1‖ + β0�t(I − α0�tA)−1Ae, (3.6a)

‖un‖ � ϕ(α0�t)‖un−1‖ + β0
ϕ(α0�t) − 1

α0
, (3.6b)

wheneverun−1, un andyi are related to each other as in(1.2). Here [‖yi‖] = (‖y1‖,‖y2‖, . . . ,‖ym‖)T

belongs toRm, ande(ξ), ϕ(ξ) are defined in(2.1). Further, the right-hand member of(3.6b)stands for
‖un−1‖ + β0�t in caseα0 = 0.

Remark 3.7. Consider thelinear scalar function F(v) = α0v + β0 (for v ∈ R), with α0 � 0, β0 � 0.
Clearly, this function satisfies (3.2) withV = R and‖ · ‖ = | · |. Further, it is easy to verify that, fo
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this simpleF , theupper bounds(3.6) of Lemma3.6 are sharp, in that the vectorse(α0�t), β0�t(I −
α0�tA)−1Ae and the scalarsϕ(α0�t), β0

ϕ(α0�t)−1
α0

in (3.6) cannot be replaced by any smaller quantit
Lemma 3.6 tells us that—in the situation (3.3), (3.4)—the upper bounds which are best possible
above simpleF , are also literally valid for anynonlinear vector-valuedF satisfying (3.2).

We note that upper bounds, closely related to (3.6b), were given earlier by Spijker [26, Theore
for the special case whereF is a linear operator fromV to V (satisfying (3.2) withβ0 = 0).

Proof of Theorem 3.2. The proof will be given by showing that the following three implications
valid: (3.4)⇒ (I); (I) ⇒ (II) and (II) ⇒ (3.4). The first implication will be proved in step 1; the seco
implication is trivial; the third one will be proved in step 2.

Step1. Assume (3.4). For proving statement (I), it is (in view of Lemma 3.6) sufficient to spec
suitable factorγ such that

ϕ(α0�t) � 1+ γα0�t (for all �t satisfying (3.3)).

We define

γ = sup
0<x�σ

ϕ(x) − 1

x
. (3.7)

Sinceϕ(x) is a differentiable for 0� x � σ with ϕ′(0) = ϕ(0) = 1, we see thatγ ∈ [1,∞) is as required
This proves (I).

Step2. Assume (II); we shall prove (3.4).
In order to obtain the inequalityρ � R(A,b), we consider an arbitrary functionF satisfying (1.7),

i.e., (1.8) withα0 = β0 = 0. From (II) it follows that, for 0< �t � ρ · τ0, property (1.9) is present wit
α = β = 0, which is the same as (1.5). An application of Theorem 2.4 (statement (ii) implies (2.7))
thatρ � R(A,b).

The second inequality in (3.4) will be proved by reductio ad absurdum. With no loss of general
assumeS(A,b) < ∞, 0< ρ � R(A,b) and we supposeσ � S(A,b).

In proving that this supposition leads to a contradiction, we will make use of a vectorx =
(ξ1, ξ2, . . . , ξm)T ∈ R

m satisfying

(I − σ0A)x = 0, with σ0 = S(A,b) > 0, (3.8a)

b1ξ1 + b2ξ2 + · · · + bmξm > 0. (3.8b)

In order to prove the existence of such anx, we note thatλ0 = 1/σ0 is a eigenvalue ofA and, by definition
of S(A,b), there is no real eigenvalueλ > λ0. Theorem 2.3 shows thatA � 0 andb > 0. From the
Perron–Frobenius theory (see, e.g., [18, p. 543]), it thus follows that there exists a vectorx ∈ R

m, with
(λ0I − A)x = 0, x � 0, x �= 0. Consequently, (3.8a) holds, and because allbi > 0, we also have (3.8b).

Let α0 > 0 be given, and let the linear functionF , from R
∞
TV into itself, be defined byF(v) = α0v. It

satisfies condition (1.8) withβ0 = 0 and any positiveτ0. We chooseτ0 = σ0/(α0ρ), so that the stepsiz
�t = σ0/α0 satisfies condition (3.3). Letw ∈ R

∞
TV, with ‖w‖TV > 0. From (3.8), it follows immediately

that, for the aboveF and�t , the Runge–Kutta relations (1.2) are fulfilled, withun−1 = 0, yi = ξiw and
un = σ0(b

Tx)w, so that

‖un−1‖TV = 0, ‖un‖TV = σ0b
Tx‖w‖TV > 0.

Statement (II) implies that there exists a finiteγ such that‖un‖TV � (1 + γ σ0)‖un−1‖TV + γ σ0β0/α0.
Since‖un−1‖TV = β0 = 0, it follows that‖un‖TV = 0, which is impossible. �
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4. Applications and illustrations of Theorem 3.2 and Lemma 3.6

4.1. TVB preserving Runge–Kutta methods

Consider an arbitrary Runge–Kutta method(A,b). If there exist positive factorsρ, σ for which State-
ment (II) (of Theorem 3.2) is valid, the Runge–Kutta method will be said to beTVB preserving. Clearly,
in this situation the TVB property of the explicit Euler method, (1.8), is carried over to the Runge–
method (see (1.9)) for�t > 0 sufficiently small. The following theorem gives a characterization of T
preserving Runge–Kutta methods.

Theorem 4.1 (Criterion for TVB preserving Runge–Kutta methods). Let (A,b) specify an arbitrary
irreducible Runge–Kutta method. Then the method is TVB preserving if and only if(2.3)holds.

Proof of Theorem 4.1. From Theorem 3.2 we see that the method(A,b) is TVB preserving if and
only if R(A,b) > 0 andS(A,b) > 0. In view of Definition 3.1, we haveS(A,b) > 0. Moreover, by
Theorem 2.3 the inequalityR(A,b) > 0 is equivalent to (2.3). �

We note that a characterization related to the one in Theorem 4.1 was given by Ferracina and Sp
Theorem 3.6]. In that paper the same class of Runge–Kutta methods satisfying (2.3) was found in
for so-calledstrong stability preservingRunge–Kutta methods.

4.2. Two examples

In the following we will give two simple examples, illustrating the theory of Section 3.2 with
implicit and an explicit Runge–Kutta method, respectively.

Example 4.2(An implicit Runge–Kutta method). Consider the 1-stage second order Runge–Kutta me
given byA = (1/2) andb = (1) (implicit midpoint rule). A simple calculation shows thatR(A,b) =
S(A,b) = 2.

Let 0< σ < 2. Then, according to Theorem 3.2 and Remark 3.4, there is a factorγ such that (1.9)
holds with α = γα0, β = γβ0, wheneverF satisfies (1.8) and 0< �t � min{2τ0, σ/α0}. Using for-
mula (3.7), we arrive at the following actual value forγ :

γ = 2

(2− σ)
.

Example 4.3 (An explicit Runge–Kutta method). Consider the explicit Runge–Kutta method, with
stages, specified by

A =
( 0 0 0

1 0 0
1/4 1/4 0

)
and bT = (1/6,1/6,2/3).

This method was studied earlier, notably in Refs. [25,16,6,7,27,4]. In Kraaijevanger [16, Theore
it was proved that this method is of third order, withR(A,b) = 1, whereas there exists no other expl
third order method withm = 3 andR(A,b) � 1. Obviously, for the above method,S(A,b) = ∞.
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Choosingρ = R(A,b) = 1 and 0< σ < S(A,b) = ∞, condition (3.4) is fulfilled, and the stepsiz
restriction (3.3) reduces to

0 < �t � min{τ0, σ/α0}. (4.1)

According to Theorem 3.2, there is a factorγ such that (1.8), (4.1) imply (1.9) withα = γα0, β = γβ0.
In view of Remark 3.4, we can apply (3.7) so as to arrive at the value

γ = 1+ σ

2
+ σ 2

6
. (4.2)

Moreover, using Lemma 3.6 directly, we can get a bound on‖un‖TV which is more complicated tha
(1.9) but more refined. For the Runge–Kutta method under consideration, relation (3.6b), with‖ · ‖ =
‖ · ‖TV, reduces to

‖un‖TV �
[
1+ α0�t + 1

2
(α0�t)2 + 1

6
(α0�t)3

]
‖un‖TV +

[
1+ 1

2
α0�t + 1

6
(α0�t)2

]
β0�t. (4.3)

From Lemma 3.6 it can be seen that (4.3) is valid, wheneverF satisfies (1.8) and 0< �t � τ0.

4.3. A special semi-discretization given by Shu (1987)

Applying the special semi-discretization devised by Shu [22] to Eq. (1.3), we obtain a semi-d
system of equations which can be modeled asd

dt
U(t) = F(U(t)) where

F :R∞
TV → R

∞
TV satisfies

∥∥v + τ0F(v)
∥∥

TV � ‖v‖TV + β0τ0
(
v ∈ R

∞
TV

)
. (4.4)

Here τ0 > 0 andβ0 > 0. The basic assumption (1.7) of the TVD theory, reviewed in Section 2.
not fulfilled here. On the other hand, the above situation (4.4) is nicely covered by Theorem 3
Lemma 3.6 (withα0 = 0).

We consider the application of an arbitrary irreducible Runge–Kutta method(A,b), in the situation
(4.4), with a stepsize�t satisfying

0 < �t � R(A,b) · τ0. (4.5)

Using Theorem 3.2 or Lemma 3.6 (withα0 = 0), one sees that (4.4), (4.5) imply

‖un‖TV � ‖un−1‖TV + β0�t, for un andun−1 satisfying (1.2). (4.6)

Hence, in the situation (4.4), the Runge–Kutta approximationsun satisfy (1.4), withB = ‖u0‖TV + β0T

and�t0 = R(A,b) · τ0.
It is worthwhile to note that the last value�t0 is positive if and only if the Runge–Kutta method(A,b)

satisfies (2.3)—this is evident from Theorem 2.3.

5. The proof of Lemma 3.6

In our following proof of Lemma 3.6, we shall make use of the subsequent Lemmas 5.1 and 5.
Lemma 5.1 deals with the situation where
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B � 0, (5.1a)

I − tB is invertible fort0 � t � t1, (5.1b)

(I − t0B)−1 � 0. (5.1c)

HereB stands for anm × m matrix andI denotes them × m identity matrix.

Lemma 5.1.The assumptions(5.1) imply that

(I − tB)−1 � 0, for t0 � t � t1. (5.2)

Proof of Lemma 5.1. Assume (5.1) and suppose (5.2) is not true. LetT be the greatest lower boun
of the valuest ∈ [t0, t1] where the inequality(I − tB)−1 � 0 is violated. One easily sees (by continu
arguments) that(I − T B)−1 � 0 andt0 � T < t1. For all sufficient smallε > 0, we have

I − (T + ε)B = I − T B − εB = (I − T B)
(
I − (I − T B)−1εB

)
,

so that

[
I − (T + ε)B

]−1 =
{ ∞∑

k=0

[
ε(I − T B)−1B

]k

}
(I − T B)−1 � 0.

This contradicts the definition ofT . Hence (5.2) must be true.�
In the actual proof of Lemma 3.6, the Runge–Kutta process (1.2) will be represented in the fol

form:

yi =
(

1−
m∑

j=1

λij

)
un−1 +

m∑
j=1

[
λijyj + �t · µijF (yj )

]
(1� i � m), (5.3a)

un =
(

1−
m∑

j=1

λm+1,j

)
un−1 +

m∑
j=1

[
λm+1,j yj + �t · µm+1,jF (yj )

]
. (5.3b)

Hereλij andµij denote real parameters. We define corresponding matricesL, M by

L =
(

L0

L1

)
, L0 =


 λ11 . . . λ1m

...
...

λm1 . . . λmm


 , L1 = (λm+1,1, . . . , λm+1,m), (5.4a)

M =
(

M0

M1

)
, M0 =


 µ11 . . . µ1m

...
...

µm1 . . . µmm


 , M1 = (µm+1,1, . . . ,µm+1,m). (5.4b)

Lemma 5.2, to be given below, gives a condition under which the processes (1.2) and (5.3) are
alent.

In the lemma the following relation will play a crucial role:

M0 = A − L0A, M1 = bT − L1A. (5.5)

Further, the following hypothesis will be used:

I − L0 is invertible. (5.6)
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Lemma 5.2.Let (A,b) specify an arbitrary Runge–Kutta method(1.2). LetL = (λij ) be any paramete
matrix satisfying(5.4a)and (5.6). Consider the corresponding matrix M defined by(5.4b), (5.5). Then
the Runge–Kutta relations(1.2)are equivalent to(5.3).

This lemma was proved by Ferracina and Spijker [5, Theorem 2.2] and Higueras [12, Section
proof is easy and involves only simple algebraic manipulations. Therefore, we do not repeat it h
refer to the papers just mentioned for details.

For matricesL andM of the form (5.4), we define the coefficientc(L,M) by

c(L,M) = min{cij : 1� i � m + 1, 1� j � m}, (5.7)

cij =




λij/µij if µij > 0 andi �= j,

∞ if µij > 0 andi = j,

∞ if µij = 0,

0 if µij < 0.

The actual proof of Lemma 3.6, to be given below, consists of two parts. In the first part we
consider the situation where

λij � 0 and
m∑

k=1

λik � 1 (for 1� i � m + 1, 1� j � m), (5.8)

and

0 < �t � c(L,M) · τ0. (5.9)

It will be shown that (3.2), (5.3), (5.8), (5.9) imply

(I − L0 − α0�tM0)
[‖yi‖

]
� ‖un−1‖(I − L0)e + β0�tM0e, (5.10a)

‖un‖ � (1− L1e)‖un−1‖ + (L1 + α0�tM1)
[‖yi‖

] + β0�tM1e. (5.10b)

The above relation (5.10a) stands for an inequality between two vectors inR
m, which should be inter

preted component-wise. Further, we denote again bye the vector inR
m all of whose components ar

equal to 1.
In the second part of the actual proof, we shall choose a special parameter matrixL and defineM by

(5.4b), (5.5). It will be seen thatI − L0 is invertible so that, by Lemma 5.2, the process (5.3) under
sideration is equivalent to (1.2). Moreover, the conditions (5.8) are fulfilled andc(L,M) = R(A,b). The
proof of Lemma 3.6 will be completed by showing that, in the situation (5.5), (3.3), (3.4), the inequ
(5.10) imply (3.6).

The actual proof of Lemma 3.6. (Part 1) Assume (3.2), (5.3), (5.8), (5.9). We shall prove (5.10).
Condition (5.9) implies that, for alli, j ,

0 < cij � ∞ and 0� µij < ∞.

From (5.3a), we obtain for 1� i � m

∥∥yi − �tµiiF (yi)
∥∥ �

(
1−

m∑
λij

)
‖un−1‖ + λii‖yi‖ +

∑
λij

∥∥yj + �tc−1
ij F (yj )

∥∥, (5.11)

j=1 j �=i
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wherec−1
ij stands for 0 in casecij = ∞.

Using the relation(1+ µii�t/τ0)yi = (yi − �tµiiF (yi)) + (µii�t/τ0)(yi + τ0F(yi)) we obtain(1+
µii�t/τ0)‖yi‖ � ‖yi − �tµiiF (yi)‖ + {(1+ α0τ0)‖yi‖ + β0τ0}µii�t/τ0. Hence

(1− µiiα0�t)‖yi‖ − β0µii�t �
∥∥yi − �tµiiF (yi)

∥∥. (5.12)

Similarly, by using the relation

yj + �tc−1
ij F (yj ) = (

1− �t(τ0cij )
−1

)
yj + �t(τ0cij )

−1
(
yj + τ0F(yj )

)
, (5.13)

we see that∥∥yj + �tc−1
ij F (yj )

∥∥ �
{
1+ α0�tc−1

ij

}‖yj‖ + β0�tc−1
ij . (5.14)

Combining the inequalities (5.11), (5.12) and (5.14), we obtain a bound for‖yi‖ (1 � i � m) which can
be written compactly in the form (5.10a).

In order to prove (5.10b), we note that (5.3b) implies

‖un‖ �
(

1−
m∑

j=1

λm+1,j

)
‖un−1‖ +

m∑
j=1

λm+1,j

∥∥yj + �t · c−1
m+1,jF (yj )

∥∥.

Applying (5.14) withi = m + 1, we obtain (5.10b).

(Part 2) Assume (3.2), (1.2), (3.3), (3.4). We shall prove (3.6).
In case 0� R(A,b) < ∞, we know from Kraaijevanger [16, Lemma 4.4] that the matrix(I + ηA),

with η = R(A,b), is invertible. Moreover, in caseR(A,b) = ∞, it follows from Kraaijevanger [16
Theorem 4.7] that the inverseA−1 exists, and that the diagonal elements of this inverse are pos
Therefore, we can define a matrixL of the form (5.4a) in the following way:

L0 = ηA(I + ηA)−1, L1 = ηbT(I + ηA)−1, whereη = R(A,b)

(if 0 � R(A,b) < ∞), (5.15a)

L0 = I − ηP, L1 = bTP, η =
(
max

i
pii

)−1
, whereP = (pij ) = A−1

(if R(A,b) = ∞). (5.15b)

Similar matrices were introduced and analyzed earlier in [5,12]. One easily sees that condition
fulfilled. We defineM by (5.4b), (5.5), so that, according to Lemma 5.2, the relations (1.2) imply (5

For the matricesL, M under consideration, it is known that (5.8) holds and thatc(L,M) = R(A,b)—
see Ferracina and Spijker [5, Theorem 3.4] and Higueras [12, Section 2]. Therefore, our assu
(3.3), (3.4) imply (5.9) and, according to the above Part 1, we can conclude that (5.10) holds. Be
shall prove (3.6) by using (5.10), (5.5), (3.3), (3.4).

Using the equalityI − L0 − α0�tM = (I − L0)(I − α0�tA), one sees that (5.10a) implies (3.6
provided the inverses(I − L0)

−1, (I − α0�tA)−1 exist and have only nonnegative entries. The existe
of (I − L0)

−1 was proved above, and its nonnegativity follows from an application of Lemma 5.1,
B = L0, t0 = 0, t1 = 1 (note that, in view of (5.8), the eigenvalues ofI − tL0 are different from zero
for 0 � t < 1). The existence of(I − α0�tA)−1 is a consequence of (3.3), (3.4), and its nonnegat
follows by applying Theorem 2.3 and Lemma 5.1, withB = A, t0 = 0, t1 = α0�t . Finally, (3.6b) follows
by straightforward calculations using (3.6a), (5.5).�
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