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ABSTRACT. It occurs frequently in algorithmic number theory that a problem
has both a discrete and a continuous component. A typical example is the
search for a system of integers that satisfies certain inequalities. A problem of
this nature can often be successfully approached by means of the algorithmic
theory of lattices, a lattice being a discrete subgroup of a Euclidean vector
space. This article provides an introduction to this theory, including a generous
sample of applications.
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1. Introduction

A lattice is a discrete subgroup of a Euclidean vector space, and geometry of
numbers is the theory that occupies itself with lattices. Since the publication of
Hermann Minkowski’s Geometrie der Zahlen in 1896, lattices have become a
standard tool in number theory, especially in the areas of diophantine approxi-
mation, algebraic number theory, and the arithmetic theory of quadratic forms.

The theory of continued fractions, principally developed by Leonhard Euler
(1707–1783), is in substance concerned with algorithmic aspects of lattices of
rank 2. A significant advance in the algorithmic theory of lattices of general
rank occurred in the early 1980’s, with the development of the powerful lattice
basis reduction algorithm that came to be called the LLL algorithm [Lenstra
et al. 1982]. The LLL algorithm has found numerous applications in both pure
and applied mathematics.

In algorithmic number theory, geometry of numbers now plays a role that is
comparable to the role that linear programming plays in optimization theory,
and that linear algebra plays throughout mathematics. This is due to a similar
combination of circumstances: good algorithms are available for solving the ba-
sic problems, and many commonly encountered problems reduce to those basic
problems. Just as a multitude of problems in mathematics can be linearized, so
can many others be addressed by the introduction of a suitable lattice. Typically,
this applies to problems that have both a discrete and a continuous component,
such as the search for a system of integers that satisfies certain inequalities.
Algorithmic number theory abounds in such problems.

The main purpose of the present introduction to the subject is to impart to
the reader the ability to recognize situations in which a lattice basis reduction
algorithm is useful. For this reason, all definitions and algorithms have been
formulated in conceptual terms, appealing to the geometric rather than the al-
gebraic intuition. At the same time, coordinates will be chosen when they have
an actual role to play, which is unavoidably the case whenever the algorithms
are to be translated into genuine computer programs. A generous sample of
applications of lattice basis reduction to algorithmic number theory has been
included; in many cases, the main point consists of recognizing a lattice behind
a problem. For applications to integer programming, one may consult [Aardal
and Eisenbrand 2005].

Complete proofs have not been provided for all results mentioned, though
in many cases one will find a sketch of a proof or a ‘convincing argument’.
Generally, the subject matter is elementary enough that the readers can supply
the details themselves, and in any case they can turn to the references at the end.
The same applies to running time estimates of algorithms.
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2. Lattices

Euclidean vector spaces. A Euclidean vector space is a finite-dimensional vec-
tor space E over the field R of real numbers equipped with a map h ; iW E�E !

R satisfying

hwC x;yi D hw;yi C hx;yi;

hx;yi D hy;xi;

hrx;yi D rhx;yi;

hz; zi> 0

for all r 2 R and w, x, y, z 2 E, z ¤ 0. The map h ; i is called the inner product
on E. For z 2 E, we write kzk D hz; zi1=2, and we refer to this number as the
length of the vector z. Any Euclidean vector space E is a metric space with
distance function d W E � E ! R defined by d.x;y/ D kx � yk. If E, E0 are
Euclidean vector spaces, then a map  W E ! E0 is an isomorphism of Euclidean
vector spaces if it is an isomorphism of vector spaces over R that preserves inner
products, in the sense that for all x, y 2 E one has h .x/;  .y/i D hx;yi. For
each non-negative integer n, the vector space Rn is a Euclidean vector space
with the standard inner product defined by

h.xi/
n
iD1

; .yi/
n
iD1

i D
Pn

iD1 xiyi :

For each Euclidean vector space E there is an isomorphism Rdim E Š E of
Euclidean vector spaces, where dim E denotes the dimension of E as a vector
space over R.

Lattices. A subset L of a Euclidean vector space E is discrete if the metric on
E defines the discrete topology on L; in other words, if for each x 2 L there is
a positive real number " such that the only y 2 L with d.x;y/ < " is given by
y D x. A lattice is an additive subgroup L of a Euclidean vector space E such
that L is discrete as a subset of E; given that L is a subgroup, discreteness is
equivalent to the existence of a positive real number " such that the only vector
y 2 L with kyk< " is given by y D 0.

A subset L of a Euclidean vector space E is a lattice if and only if there are
R-linearly independent vectors b1; : : : ; bn 2 E such that

L D

nP
iD1

Zbi D

n nP
iD1

cibi W ci 2 Z for i D 1; : : : ; n
o
:

If this is the case, then b1; : : : ; bn are said to form a basis for L (over Z), and L

is isomorphic to Zn as an abelian group; from #L=2L D 2n one sees that n is
determined by the structure of L as an abelian group, and it is called the rank
of L, notation: rk L.

One can also define lattices without reference to a Euclidean vector space.
Namely, let L be an abelian group, and let qW L ! R be a map. Then L can be
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embedded as a lattice in a Euclidean vector space E with q.x/ D kxk2 for all
x 2 L if and only if L is finitely generated and the following three conditions
are satisfied:

q.x C y/C q.x � y/D 2q.x/C 2q.y/ for all x;y 2 L;

q.x/¤ 0 for all x 2 L with x ¤ 0;

fx 2 L W q.x/� rg is finite for each real number r:

The proof of the ‘if’-part (see [Lenstra 2001, Prop. 4.1]) shows that one may
take E D L ˝Z R, the inner product being such that

hx;yi D
�
q.x C y/� q.x/� q.y/

�
=2

for all x, y 2 L. Thus, one can define a lattice to be a finitely generated abelian
group L equipped with a map qW L ! R satisfying the three conditions just
listed. The first of these properties is called the parallelogram law, since it
expresses that the sum of the squares of the lengths of the two diagonals of a
parallelogram equals the sum of the squares of the lengths of its four sides. In
general, if L, q constitute a lattice, then one has q.x/ � 0 for each x 2 L, one
thinks of q.x/ as the square of the length of x, and the function d W L � L ! R

defined by d.x;y/D q.x � y/1=2 is a metric on L.
We shall often refer to a lattice as a pair L, q, emphasizing that all we need

to know is the group L and the lengths of all of its elements; when q is clear
from the context, it may be dropped. Often, it will tacitly be assumed that
such a lattice is embedded in a Euclidean vector space E, and then it is always
understood that q.x/D kxk2 D hx;xi for all x 2 L. The notation q.x/D hx;xi

will also be used for other elements x of E. Sometimes it is understood that L

is of full rank in E, which means that one has rk L D dim E; one can always
achieve this by replacing E by the subspace of E spanned by L.

Isometries. An isometry of a lattice L, q to a lattice L0, q0 is a bijection f W L !

L0 that preserves distances. One can compose each isometry with a translation
to achieve that it maps 0 to 0, and each isometry mapping 0 to 0 is automatically
a group isomorphism. One cares about lattices only up to isometry.

Sublattices. Let L, q be a lattice. Every subgroup M of L becomes a lattice
upon restricting q to M ; such a lattice is called a sublattice of L. A sublattice
M of L is called pure if L=M is torsion-free as an abelian group, which means
that L=M has no non-zero element of finite order. If M is a pure sublattice
of L, then N D L=M acquires a natural lattice structure in the following way:
embed L in a Euclidean vector space E, let E0 be the subspace spanned by M ,
write E0? for the orthogonal complement fx 2 E W hx;yi D 0 for all y 2 E0g

of E0 in E, and � W E ! E0? for the orthogonal projection (so � is R-linear,
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zero on E0, and the identity on E0?, and � is uniquely determined by those
properties); then �L is a discrete subgroup of the Euclidean vector space E0?

and therefore a lattice, and the natural isomorphism N D L=M ! �L induced
by � identifies �L with N , which therefore becomes a lattice as well.

The dual lattice. Let L be a lattice of full rank in a Euclidean vector space E.
Then L| D fx 2 E W hx;Li � Zg is also a lattice of full rank in E, the dual
(or polar) of L. If b1; : : : ; bn form a basis for L, then the unique elements
b

|
1
; : : : ; b

|
n 2 E satisfying hb

|
i ; bj i D 1 or 0 according as i Cj D nC1 or i Cj ¤

nC1 form a basis for L|. (This is the ‘cobasis’ of E corresponding to the basis
b1; : : : ; bn, numbered backwards for later convenience.) One has rk L| D rk L

and L|| D L.

3. Examples in algebraic number theory

In this section we discuss three types of lattices that are naturally encountered
in algebraic number theory. The examples are not typical of the examples that
we shall encounter later on, and readers without an interest in algebraic number
theory may safely skip this section.

Additive groups of algebraic numbers. Let K be an algebraic number field, i. e.,
a field that is a finite extension of the field Q of rational numbers, and let L be
a finitely generated subgroup of the additive group of K; for example, one may
take L to be the ring ZK of algebraic integers in K, or a fractional ZK -ideal.
Then L carries a natural lattice structure, which is defined by

q.x/D

X
�

j�xj
2

for x 2 L, with � ranging over the set of field embeddings of K in the field C

of complex numbers, and where j j denotes the usual absolute value on C.

Multiplicative groups of algebraic numbers. One can deal with multiplicative
subgroups in a similar manner. Let K again be an algebraic number field, and
denote by � the set of roots of unity in K, which is a finite cyclic subgroup of
the multiplicative group K� of K. Let now L be a finitely generated subgroup
of the quotient group K�=�. Then L has a natural lattice structure, which this
time is defined by

q.x�/D

X
p

X
�

.log j�xjp/
2

for x� 2 L � K�=�; here p ranges over the set f1; 2; 3; 5; 7; : : :g of ‘primes’
of Q, and � ranges, for fixed p, over the set of field embeddings of K in an
algebraic closure Qp of the p-adic completion Qp of Q; each Qp is chosen
once and for all, and j jp denotes, for p < 1, the p-adic absolute value on
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Qp with jpjp D 1=p, whereas on Q1 D C one takes j j1 D j j. If one takes
L D Z�

K
=�, where Z�

K
denotes the group of units of ZK , then all terms with

p ¤ 1 vanish, and one obtains a lattice of which the rank is one less than the
number of infinite places of K.

Elliptic curves. Consider an elliptic curve E over Q, defined by a Weierstrass
equation y2zCa1xyzCa3yz2 Dx3Ca2x2zCa4xz2Ca6z3, with all ai 2 Q. It
is well-known that the set E.Q/ of points .x W y W z/ in the projective plane P2.Q/

that satisfy the equation, is in a natural way an abelian group, the Mordell–Weil
group of E over Q. Denote by E.Q/tor its subgroup of elements of finite order.
Then L D E.Q/=E.Q/tor is a lattice with

q.P /D
1

2
� lim
n!1

h.2nP /

4n

for P 2 E.Q/, where P denotes the image of P in L and where for an element
.x W y W z/ 2 P2.Q/, with Zx C Zy C Zz D Z, one defines h.x W y W z/ D

log maxfjxj; jyj; jzjg; the number q.P / is known as the canonical height of P .

4. Representing lattices

Two different normalizations. Suppose that L is a lattice of full rank in a Eu-
clidean vector space E. Writing n D rk L, one has an isomorphism L Š Zn of
groups as well as an isomorphism E Š Rn of Euclidean vector spaces. How-
ever, these two isomorphisms are generally not compatible, and if, for whatever
reason, one wishes to introduce coordinates, then one needs to choose between
the two. Each option has its virtues, and the usefulness of the concept of lattices
is in no small part due to the possibility of thinking about them in two different
ways.

As we shall see, in many applications of lattices one takes L equal to Zn

and q equal to a function that reflects the problem at hand. On the other hand,
when thinking about lattices one will often find it useful to imagine them as
being embedded in ordinary Euclidean n-space, with q.x/ proportional to the
square of the distance from x to the origin. Here n is bounded only by the limits
of one’s imagination. Experience shows that, even when the fourth dimension
proves too hard to picture in one’s mind, one can still avoid the common pitfall
of implicitly assuming that the rank n of L is small, such as 2 or 3. Several
subtle phenomena occur only for large n, and the fact that the LLL algorithm
runs in polynomial time even when n varies is one of the keys to its success.

Representing lattices numerically. If one wishes to run an algorithm on a lattice,
one needs to specify the lattice and its elements in some numerical manner.
There are many ways of doing this, and the two most important ones correspond
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to the two possibilities mentioned above. The first is to specify a lattice by
writing down a real positive definite symmetric n � n matrix A D .aij /1�i;j�n;
the lattice L is then understood to be the abelian group Zn, its elements are
represented as (column) vectors with n integral entries, and q is given by q.x/D

xT Ax for x 2 L, the superscript T denoting passage to the transpose. In order
to be able to write down A by means of a finite number of bits, one may require
that all the aij are rational, and that they are represented as aij D a0

ij=d where
d and all a0

ij are integers represented in binary, and d > 0.
The second way of specifying a lattice is by writing down a real m�n matrix

B D .bij /1�i�m; 1�j�n of rank n; in this case, L is understood to be the sub-
group

Pn
jD1 Zbj of Rm, where bj D .bij /

m
iD1

and where Rm has the standard
inner product. The elements of L are then represented as real m-vectors. Again,
one may require the entries of B to be rational, so that the coordinates of all
elements of L are rational as well.

Conversion. Whenever we discuss algorithms for lattices, it will always be as-
sumed that lattices are specified in one of the two ways just described, by means
of a matrix with rational entries. Which of the two one uses is immaterial, since
there are polynomial-time algorithms for converting each type of presentation
into the other. In one direction this is easy: the second type is converted into the
first by the formula A D BT � B. The conversion in the other direction is a little
more laborious, and for lack of a suitable reference we give a quick sketch of
a possible way to proceed. Given A, one first uses the Gram–Schmidt process
to diagonalize the induced quadratic form on Qn (see Section 10). This has the
effect of writing A D CT

1
� D � C1, where C1 is an upper triangular n � n matrix

over Q, with 1’s on the diagonal, and D is a diagonal matrix with n positive
rational diagonal entries dj . Using a naive greedy algorithm, one writes each dj

as the sum of mj DO.log maxf2; log d 0
j g/ squares of non-zero rational numbers,

where d 0
j denotes the product of the numerator and the denominator of dj (if

one allows a probabilistic algorithm, as in [Rabin and Shallit 1986], one can
take mj � 4). With m D

P
j mj , this leads to an m � n matrix C2 over Q, with

exactly one non-zero entry per row, such that D D CT
2

� C2; and now the matrix
B D C2 �C1 has rank n and satisfies A D BT �B, as desired. This procedure, while
running in polynomial time, does give rise to a fairly large value for m, which is
not bounded by a function of n alone. The probabilistic algorithm from [Rabin
and Shallit 1986] leads to m � 4n. Theoretically, one can achieve m � n C 3

(see [Cassels 1978, Chapter 6, Example 8]), but I do not know whether this can
be done by means of an algorithm that is efficient in any sense of the word.

Whenever we assert that a lattice algorithm runs in polynomial time, then we
mean that its run time is bounded by a polynomial function of the number of
bits of the input, where all lattices forming part of the input or output of the
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algorithm are specified by a rational matrix A or B as above; that length will be
at least the rank of the input lattice.

Other representations. There are other natural ways of specifying a lattice. For
example, if f W L ! L0 is a group homomorphism from a lattice L to a lattice
L0, then the kernel and the image of f are sublattices of L and L0, respectively.
If L and L0 are specified by an n�n matrix A and an n0 �n0 matrix A0 as above,
so that L D Zn and L0 D Zn0

, then the map f W Zn ! Zn0

is given by an n0 � n

matrix F over Z; the three matrices A, A0, F can then serve to specify both the
kernel and the image of f . One may convert this type of presentation into one
of the earlier ones by means of the kernel and image algorithm presented in
Section 14.

The examples from Section 3 show that sometimes lattices can be specified
in ways that are very difficult to convert to any of our standard formats. For
example, one can specify an algebraic number field K by means of a defining
equation over Q, and this defining equation is then sufficient to specify the lattice
L D ZK . However, no polynomial-time algorithm is known for actually finding
a basis for L D ZK over Z (even when one restricts to the case ŒK W Q� D 2;
see [Buchmann and Lenstra 1994]), and for typical fields K with ŒK W Q� > 2

the function q is not Q-valued. Similar comments apply to the unit lattice L D

Z�
K
=�, for which a Z-basis appears to be even harder to compute, and to the

Mordell–Weil lattices LDE.Q/=E.Q/tor, for which Z-bases are not even known
to be computable.

5. The determinant

Definition of the determinant. After the rank, the most important numerical
invariant attached to a lattice L is its determinant, denoted by d.L/. It is defined
by

d.L/D lim
r!1

volB.
p

r/

#fy 2 L W q.y/� rg
;

where for n D rk L we define B.
p

r/ to be the ball fx 2 Rn W hx;xi � rg of
radius

p
r in Rn, and vol denotes the standard n-dimensional volume. One has

volB.
p

r/D rn=2 � volB.1/D rn=2 ��n=2=n
2
!;

where n
2
! is inductively defined by 0! D 1, 1

2
! D

p
�=2, and n

2
! D

n
2

�
n�2

2
! for

n � 2. (One has n
2
! D � .1 C

n
2
/.) To understand the definition of d.L/, and to

show that the limit exists, one may assume L to be embedded in the standard
Euclidean vector space Rn. Let B be a non-singular real n � n matrix such that
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the columns bj of B form a basis for L. Then the subset

F D

nX
jD1

Œ0; 1/bj D

n nX
jD1

cj bj W cj 2 R; 0 � cj < 1 for 1 � j � n
o

of Rn satisfies volF D jdet Bj, and F is a fundamental domain for L in the sense
that each x 2 Rn has a unique representation x D y C z with y 2 L and z 2 F .
Restricting to the set of all y 2 L with q.y/ � r , one proves that the disjoint
union

S
y.y C F /, taken over those y, is a fair approximation to B.

p
r/; more

precisely, if one puts s D supfhz; zi W z 2 Fg, then that union is contained in
B.

p
r C

p
s/, and for r � s it contains B.

p
r �

p
s/. Comparing volumes, one

deduces

lim
r!1

#fy 2 L W q.y/� rg � jdet Bj

volB.
p

r/
D 1:

It follows that d.L/ is well-defined, and that one has in fact d.L/D jdet Bj D

volF . In particular, volF is independent of the choice of the basis.
The zero lattice has determinant 1.

Hadamard’s inequality. Let L, b1; : : : ; bn, F be as above. The volume of the
parallelepiped F is at most the product of the lengths of the vectors bi , so we
have

d.L/�

nY
iD1

kbik:

This is Hadamard’s inequality, which is valid for any basis b1; : : : ; bn of a lat-
tice L. Equality holds if and only if the vectors bi are pairwise orthogonal, in
the sense that hbi ; bj i D 0 whenever i ¤ j . In Section 10 we will see that if
the basis b1; : : : ; bn is reduced in a suitable sense, then one has the opposite
inequality

nY
iD1

kbik � cn � d.L/;

where cn depends only on the rank n of the lattice. Thus, a ‘reduced’ basis may
be thought of as being ‘nearly orthogonal’.

Formulae for the determinant. There are many formulae that can be used in
the computation of d.L/, in addition to the formula d.L/D jdet Bj mentioned
above. If L is given by means of a matrix A as in Section 4, then one has
d.L/ D .det A/1=2. These two formulae suffice for most algorithmic and nu-
merical purposes. In a more theoretical context, they can be supplemented by
the following rules. Let L be a lattice. If M is a sublattice of finite index
.L W M / of L, then one has d.M /D .L W M / � d.L/. If M is a pure sublattice
of L (see Section 2), then one has d.L/ D d.M / � d.L=M /. For the dual L|
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of L, one has d.L|/D 1=d.L/. If L is embedded as a lattice of full rank in a
Euclidean vector space E, and � W E ! E is a non-singular linear map, then �L
is a lattice, and one has d.�L/D jdet � j � d.L/. The proofs are elementary and
may be left to the reader.

The volume discrepancy. Let E1 and E2 be Euclidean vector spaces, and let
� W E1 ! E2 be a linear map. We can associate to � a positive real number

 .�/, the volume discrepancy of � , in the following way. Let .ker �/? be the
orthogonal complement of the kernel of � in E1. Then � restricts to a vector
space isomorphism .ker �/? ! �E1. Identifying each of .ker �/? and �E1,
as Euclidean vector spaces, with Rrank � , we obtain a non-singular linear map
� 0W Rrank � ! Rrank � , and we define 
 .�/ D jdet � 0j; the independence of the
choice of identifications with Rrank � can either be shown directly, or be deduced
from the formula d.�L/D 
 .�/ � d.L/, which is valid for any lattice L of full
rank in .ker �/?. In the case E1 D E2 one has 
 .�/D jdet � j if � is non-singular,
but not if � is singular, since one has 
 .�/ > 0.

Write �|W E2 ! E1 for the linear map that is adjoint to � ; it is characterized
by the property that hx; �|yi D h�x;yi for all x 2 E1, y 2 E2. One has


 .�/D 
 .�|/:

One can prove this by using that any square matrix and its transpose have the
same determinant, or by considering dual lattices.

Some care is required with computing the volume discrepancy of a composed
map. If E3 is a third Euclidean vector space, and � W E2 ! E3 is a linear map,
then the formula 
 .��/D 
 .�/
 .�/ is valid if one has �E1 D .ker �/?, but not
in much greater generality.

The definition of the volume discrepancy given by Lang [1988, Chapter V,
Section 2] generalizes the definition just given: the number 
 .�/ defined above
equals the volume discrepancy, as defined by Lang, of the exact sequence 0 !

ker � ! E1
�

! E2 ! E2=�E1 ! 0. A still more general perspective is offered
by de Smit [1996].

Determinants of kernels and images. Let L1 and L2 be lattices, and let f W L1 !

L2 be a group homomorphism. Embed L1 and L2 as lattices of full rank in
Euclidean vector spaces E1 and E2, respectively, and write fR for the R-linear
map E1 ! E2 induced by f . Then we have

d.kerf / � d.fL1/D 
 .fR/ � d.L1/

with 
 .fR/ as defined above (cf. [Lang 1988, Chapter V, Theorem 2.1]). To
prove this, one observes that ker fR is the R-subspace of E1 spanned by the pure
sublattice kerf of L1, and that L D L1= kerf may be viewed as a lattice of full
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rank in .kerfR/
? satisfying fRL D fL1. Next one uses the formulae d.L1/D

d.kerf /�d.L1= kerf / and d.fRL/D 
 .fR/�d.L/ that we encountered earlier.
The adjoint f |

R of fR restricts to a map f |W L
|
2

! L
|
1
. From 
 .fR/D 
 .f

|
R /

and d.L
|
1
/D d.L1/

�1 one obtains the six lattices formula

d.kerf / � d.fL1/ � d.L
|
1
/D d.kerf |/ � d.f |L

|
2
/ � d.L2/:

This formula is often helpful in computing determinants of lattices; see Sections
7 and 8 for illustrations.

6. The shortest vector problem

Existence of short vectors. The shortest vector problem, also known as the ho-
mogeneous approximation problem, is the following: given a lattice L of posi-
tive rank, find a non-zero element x 2 L with q.x/ smallest possible. The for-
mulation may be interpreted in several ways: writing �.L/D minfq.x/ W x 2 L,
x ¤ 0g; one may actually wish to find x 2 L with q.x/ D �.L/; or one may,
in an algorithmic context, take ‘smallest possible’ to mean: smallest possible
given the time that one is willing to spend.

The main theoretical result about the problem is the following.

THEOREM OF MINKOWSKI. Each lattice L of positive rank n contains a non-
zero element x with q.x/�

4
�

�
n
2
!2=n � d.L/2=n � n � d.L/2=n.

To see why this is true, assume again L � Rn, and put �D �.L/D minfq.x/ W

x 2 L, x ¤ 0g. Then no two distinct points of L have distance smaller than
p
�,

so if one writes B0 D fz 2 Rn W hz; zi < �=4g, then the open balls y C B0 of
radius

p
�=2 centered at the lattice points y 2 L are pairwise disjoint. Since the

sets y CF from the previous proof disjointly cover Rn as y ranges over L, one
deduces that volB0 � volF D d.L/. Using that volB0 D .

p
�=2/n � volB.1/,

one obtains the first inequality, and the second follows from the fact that B.1/

contains a cube with edge length 2=
p

n. By Stirling’s theorem, one actually has
4
�

�
n
2
!2=n D

2Co.1/
�e � n for n ! 1.

The Hermite constant. Both �.L/ and d.L/ are homogeneous functions of L, of
degrees 2 and n, respectively; that is, if inside Rn one replaces L by tL for some
positive real number t (or, equivalently, the function q by t2�q), then � is replaced
by t2 � � and one has d.tL/ D tn � d.L/. Hence, d.L/2=n is the only power of
d.L/ that has the same degree as �.L/, and therefore the only power of d.L/

that can possibly occur in a result like Minkowski’s theorem. The supremum of
�.L/=d.L/2=n, taken over all lattices L of rank n, is called the Hermite constant
and denoted by 
n. Minkowski’s theorem, as stated above, is equivalent to the
inequalities 
n �

4
�

�
n
2
!2=n � n. It is known that n=.2�e/� 
n � n=.�eCo.1//
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for n ! 1; see [Conway and Sloane 1988, Chapter 1, Section 1] for more
information and a slightly better result.

There is a sense in which, for a ‘random’ lattice of given positive rank n, the
inequality �.L/ � 
n � d.L/2=n is close to best possible. However, the lattices
that occur in many applications are by no means random. As we shall see, one
often constructs a lattice in such a manner that it has an ‘exceedingly short’
non-zero vector if and only if a certain problem has a solution, and that solution
can then be read off from the short vector. In such cases, Minkowski’s theorem
plays at best a secondary role.

Construction of short vectors. A salient feature of the proof of Minkowski’s the-
orem is its non-constructive character. The existence of x is shown by a measure-
theoretic version of the pigeon-hole principle, and no efficient algorithm for
actually finding x can be read from the proof. Indeed, all known algorithms for
computing �.L/, or for finding a lattice vector x as in Minkowski’s theorem,
perform some sort of complete enumeration, and fail to run in polynomial time
for varying n (cf. Section 12).

In Section 11 we shall see that the construction of a ‘fair’ approximation
to the shortest non-zero element of L is a byproduct of so-called lattice basis
reduction algorithms, such as the LLL algorithm. The LLL algorithm does run
in polynomial time, but the non-zero vector x 2 L that it finds is not guaran-
teed to be the shortest one, or to be as short as in Minkowski’s theorem. The
quantity q.x/=d.L/2=n will be bounded by a function of n alone, but this is an
exponential function rather than a linear function as in Minkowski’s theorem.
For example, the standard variant of the LLL algorithm produces a non-zero
element x 2 L with

q.x/� 2n�1
��.L/; q.x/� 2.n�1/=2

� d.L/2=n

(see Section 11). It is both fortunate and surprising that these exponential aber-
rations are small enough for most applications.

Short vectors in the dual lattice. Let E be a Euclidean vector space. Write
0 W E � f0g ! E � f0g for inversion in the unit sphere, so that x0 D x=hx;xi;
note that x0 is a vector lying in the same direction from the origin as x, but with
length equal to the inverse of the length of x. For each x 2 E � f0g, one has
x00 D x, and one also verifies easily that the subgroup fy 2 E W hx;yi 2 Zg of E

is the (orthogonal) sum of the subgroup Zx0 generated by x0 and the orthogonal
complement .Rx/? D fy 2 E W hx;yi D 0g of the subspace spanned by x. Thus,
fy 2 E W hx;yi 2 Zg is the union, over m 2 Z, of the translates .Rx/? C mx0

of the hyperplane .Rx/?, and the successive distances between these translates
are equal to kx0k D 1=kxk.
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Next let L�E be a lattice of full rank, and let L| be its dual. For x 2E�f0g,
one has x 2 L| if and only if L is contained in the set fy 2 E W hx;yi 2 Zg D

.Rx/? C Zx0. Since x is ‘short’ if and only if x0 is ‘long’, and since every
hyperplane in E is of the form .Rx/?, we conclude that the shortest vector
problem for L| is equivalent to the following problem posed in terms of L:
given L, find a hyperplane H in E such that L is contained in a collection
of maximally widely spaced translates of H . The latter problem is useful in
enumerating all lattice vectors that lie in a certain region, and it has applications
in integer programming (see [Aardal and Eisenbrand 2005; Lenstra 1983]).

Minkowski’s theorem now implies that for any lattice L of positive rank n

there is a hyperplane H as above, such that the distance between the successive
translates of H is at least 
�1=2

n � d.L/1=n; and with the LLL algorithm one can
find a hyperplane that is within a factor 2.n�1/=2 from optimal.

7. Diophantine approximation

This section and the next are devoted to some traditional applications of the
shortest vector problem. For additional applications, see Sections 13–15 below.

Continued fractions. Suppose that ˛ is a real number. Then the continued frac-
tion expansion of ˛ gives rise to a sequence p0=q0, p1=q1, p2=q2; : : : of rational
numbers, with Zpi CZqi D Z and qi > 0 for all i , such that j˛�pi=qi j< 1=q2

i

for all i and such that any similarly written rational number p=q satisfying
j˛�p=qj<1=.2q2/ occurs in the sequence (see [Hardy and Wright 1938, Chap-
ter X]). If ˛ is rational then the sequence is finite; likewise, when ˛ is irrational
but known or given to finite precision only, as is often the case in an algorithmic
context, then only finitely many terms of the sequence are meaningful.

Thus, the continued fraction expansion gives rise to a sequence of rational
approximations p=q to a given real number ˛ that are ‘good’ in the sense that
the error tends to 0 fairly quickly as a function of the denominator q of the
approximation.

It is instructive to see how one can achieve a similar purpose with the help of
a lattice. Let again ˛ be a real number, and define the lattice L, q by L D Z2

and
q.x;y/D N � .x �˛y/2 C y2 for x;y 2 Z;

where N is a suitably chosen ‘large’ real number. One verifies that rk L D 2 and
d.L/D N 1=2, so there is a non-zero element .x;y/2 L with q.x;y/�
2N 1=2,
where 
2 D

p
4=3 is the Hermite constant for n D 2 (see Section 9). Also, in

algorithmic circumstances one can actually find such a vector efficiently (see
Section 9). If N > 
 2

2
then from .x �˛y/2 � q.x;y/=N � 
2=N

1=2 < 1 one
deduces y ¤ 0, and the inequality of the means implies jN 1=2 � .x �˛y/j � jyj �
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q.x;y/=2 � 
2N 1=2=2, so that we haveˇ̌̌
˛�

x

y

ˇ̌̌
�

2=2

y2
; 0< jyj � 


1=2
2

N 1=4:

Thus one obtains a rational approximation to ˛ that is of the same quality as what
one obtains from the continued fraction algorithm. The main difference is that
the continued fraction algorithm yields a whole sequence of approximations; to
achieve this with lattices, one would need to vary N and therefore consider a
family of lattices. A discussion of techniques for doing this, and for deciding
which values of N are the crucial ones, falls outside the scope of the present
introduction. In most circumstances where ‘good’ rational approximations to a
real number ˛ are required, a single well-chosen number N will do.

Higher-dimensional diophantine approximation. The approximation problem
just discussed allows several natural generalizations to higher dimensions, two
of which will be discussed. Many corresponding higher-dimensional extensions
of the continued fraction method have been proposed, but none appears to have
all the properties that one desires. The translation into the shortest vector prob-
lem for a suitably constructed lattice generalizes readily to higher dimensions,
and here again one encounters a proliferation of algorithms; that is, while in rank
2 there appears to exist only one reasonable lattice basis reduction algorithm
(see Section 9), there is an entire family of them in rank greater than 2 (see
Section 11).

Simultaneous diophantine approximation. Let k real numbers ˛1; : : : ; ˛k , with
k � 1, be given, and suppose that one is interested in finding simultaneous
rational approximations xi=y to ˛i , all with the same denominator y; for k D 1

this is the problem discussed above. For general k, one can introduce the lattice
L, q defined by L D ZkC1 and

q.x1;x2; : : : ;xk ;y/D N �

kX
iD1

.xi �˛iy/
2

C y2

for .x1;x2; : : : ;xk ;y/2 ZkC1, where N plays the same role as above. One has
rk L D k C 1 and d.L/ D N k=2. In the same manner as for k D 1 one now
deduces that for N > 
 kC1

kC1
there is a integer vector .x1;x2; : : : ;xk ;y/ with

y ¤ 0 and

y2
� 
kC1N k=.kC1/;

kX
iD1

.xi �˛iy/
2

�
k � .
kC1=.k C 1//1C1=k

jyj2=k
:

In addition, with the LLL algorithm one can actually find such a vector, but with
2k=2 replacing 
kC1.
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Here is a possible algorithmic application of simultaneous diophantine ap-
proximation. Suppose one is given a k � k matrix C with integer entries and
with det C ¤ 0, as well as a column vector b 2 Zk . Then there is a unique
column vector z 2 Rk with Cz D b, and the entries z1; : : : ; zk of z are rational;
say zi D pi=q, where q 2 Z is a common denominator. Further, suppose that
one in interested in efficiently and exactly computing z, but that the only linear
algebra package at one’s disposal works in real precision. Then one can proceed
as follows. First, use the linear algebra package to compute an approximate
solution vector ˛, so that the entries of C˛ are very close to the entries of b and
the entries ˛i of ˛ are very close to zi . If the approximations are good enough,
then the lattice defined above will for large enough N contain an exceptionally
short vector, namely the (unknown!) vector .p1; : : : ;pk ; q/. Next, one applies
the LLL algorithm; it will find a non-zero vector .x1; : : : ;xk ;y/2ZkC1 that is at
most 2k times as long, and therefore still quite short; so short, that one estimates
the integers entries of Cx � yb (which is close to the tiny vector y � .C˛ � b/)
to be smaller than 1 in absolute value. Consequently, one has actually Cx D yb

and therefore z D x=y. The reader may enjoy filling in the details and working
out explicit inequalities that make the argument valid.

There is a very similar but more complicated application of simultaneous
rational approximations to linear programming (see [Schrijver 1986]).

Approximate linear dependencies. In a second higher-dimensional generaliza-
tion of the approximation problem, one is given k real numbers ˛1; : : : ; ˛k ,
with k � 2, and one is interested in finding an ‘approximate’ linear relation with
integer coefficients among the ˛i , that is, a sequence x1; : : : ;xk of integers, not
all zero, such that

ˇ̌P
i xi˛i

ˇ̌
is small in relation to the sizes of the xi themselves.

With k D 2, ˛2 D 1 this amounts to the problem of finding a good rational
approximation to ˛1 that we considered above. Generally, one can take L D Zk

and define q by

q.x1;x2; : : : ;xk/D

kP
iD1

x2
i C N �

� kP
iD1

xi˛i

�2
.xi 2 Z/;

where N is again a suitably large real number. We claim that one has

d.L/D

�
1 C N �

kP
iD1

˛2
i

�1=2
:

To prove this, consider the standard Euclidean vector spaces E1 D Rk and E2 D

E1 � R D RkC1, and define � W E1 ! E2 by

�
�
.xi/

k
iD1

�
D

�
.xi/

k
iD1;

p
N �

kP
iD1

˛ixi

�
:
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The lattices L1 D Zk and L2 D �L1CZ�.0; 1/ are of full rank in E1 and E2, and
L may as a lattice be identified with �L1. The six lattices formula from Section
5 now simplifies to the statement that d.L/ equals the determinant of the kernel
of the map �|W L

|
2

! L
|
1
; since the vector ..�

p
N � ˛i/

k
iD1

; 1/ generates that
kernel, its length .1 C N �

Pk
iD1 ˛

2
i /

1=2 equals d.L/.
One can now apply Minkowski’s theorem to prove a general existence theo-

rem for approximate linear dependencies. In addition, the LLL algorithm will
find one.

In a typical practical application, one is interested in detecting a true linear
dependency among certain numbers ˇi , and each ˛i is a good approximation
to ˇi . For example, with ˇi D ˇi�1 one may attempt to detect an algebraic
number ˇ from a numerical approximation. A very similar application will be
encountered in Section 13.

Non-archimedean approximation. The approximation problems discussed so
far were concerned with real numbers, and the quality of the approximations
was measured by means of the real absolute value. Sometimes it is felt that a
different notion of lattice would be required if instead we are concerned with
p-adic numbers and the p-adic absolute value. This is not true: both problems
just considered, when transferred to a p-adic context, can still be addressed
by means of suitably constructed lattices. The problem of finding approximate
linear dependencies may serve as illustration.

Let p be a prime number, denote by Zp the ring of p-adic integers, by Qp

the field of fractions of Zp, and by j jp the p-adic absolute value on Qp with
jpjp D 1=p. Given k elements ˛1; : : : ; ˛k of Qp, with k � 2, one looks for
integers x1; : : : ;xk that are not ‘too large’ in the usual absolute value, and not
all zero, such that

Pk
iD1 xi˛i is p-adically very close to 0. As in the case of

real numbers, the p-adic numbers ˛i will in an algorithmic context need to be
specified to some finite precision; and in fact, if one wishes that j

Pk
iD1xi˛i jp �

p�m for some given integer m, then it suffices to know the ˛i modulo pmZp.
Thus, we shall assume that the ˛i are specified by means of approximations ˛0

i

that belong to the ring ZŒ1=p� of rational numbers whose denominator is a power
of p, and that are guaranteed to satisfy j˛i � ˛0

i jp � p�m. If that is the case,
then for xi 2 Z one has

ˇ̌P
i xi˛i

ˇ̌
p

� p�m if and only if
P

i xi ˛
0
i 2 pmZ. We

describe two constructions of lattices that one can use to find ‘small’ integers
xi , not all zero, with the latter property.

In the first construction, one simply takes L to be the subgroupn
x D .xi/

k
iD1

2 Zk W
P
i

xi˛
0
i 2 pmZ

o
of Zk , with q.x/ D

P
i x2

i for x D .xi/
k
iD1

2 L. One then has rk L D k and
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d.L/D pm�m0

, where m0 denotes the largest integer for which pm0

Z contains
all ˛0

i as well as pm. In many practical situations all ˛i are in Zp but not all
are in pZp, and m � 0; then one has m0 D 0 and d.L/ D pm. A short non-
zero vector in L, obtained with Minkowski’s theorem or with LLL, gives rise
to an approximate dependency as one requires. However, it should be observed
that L has not been specified in one of the standard formats from Section 4.
Thus, before LLL can be applied, one needs to find a basis for L. One way of
addressing this problem is found in Section 14. For now, we can achieve the
same result by using the second construction instead.

In the second construction, one takes L D ZkC1 (so rk L D k C 1), with q

defined by

q.x1;x2; : : : ;xk ;y/D

kP
iD1

x2
i C N �

�
pmy �

kP
iD1

xi˛
0
i

�2
;

where N is a ‘large’ positive rational number. One has d.L/ D pmN 1=2.
Suppose that .x1;x2; : : : ;xk ;y/ is a short non-zero lattice vector. Then the
number z D pmy �

Pk
iD1 xi˛

0
i belongs to pm0

Z, with m0 as defined above, and
if N is large enough then from the smallness of the vector and the inequality
z2 � q.x1;x2; : : : ;xk ;y/=N one deduces jzj<pm0

. One concludes that z D 0,
so that

Pk
iD1 xi˛

0
i 2 pmZ. Therefore the xi do yield an approximate linear

dependency, and from
P

i x2
i � q.x1;x2; : : : ;xk ;y/ one sees that the xi are

not too large.
As an interesting exercise, the reader may compare the quality of the approx-

imations obtained from both constructions.
The p-adic absolute value that we just considered is a non-archimedean val-

uation of mixed characteristic, in the sense that the residue class field and the
field on which the valuation is defined have different characteristics. One may
also consider approximation problems for non-archimedean valuations of equal
characteristic. These do give rise to a different notion of lattice, which we
briefly treat in Section 16.

8. The nearest vector problem

Inhomogeneous approximation. The nearest vector problem, also known as the
inhomogeneous approximation problem, is the following: given a lattice L in
a Euclidean vector space E, and an element x 2 E, find y 2 L with smallest
possible distance d.x;y/. By analogy with the case L D Z � R D E, one
can think of this problem as a ‘rounding’ problem. As with the shortest vector
problem in Section 6, the formulation allows for a strict and for a more relaxed
interpretation.
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For given x 2 E, the set fx � y W y 2 Lg equals the coset x C L of L in
E, which is discrete in E; the nearest vector problem asks for an element of
smallest possible length in this coset.

Let E0 be the subspace of E spanned by L, and denote the orthogonal
projection of x 2 E on E0 by x0. Then for all y 2 L one has d.x;y/2 D

d.x;x0/
2 C d.x0;y/

2, so the nearest vector problem does not change if one
replaces E, x by E0, x0. Thus without loss of generality one may assume that
L spans E. In an algorithmic context one will usually also assume that the
coordinates of x, when expressed on a basis for L, are rational numbers.

For x D 0 the nearest vector problem is solved by y D 0; so this special
case is not the same as the shortest vector problem. Nevertheless, one thinks
of the nearest vector problem as being harder than the shortest vector problem,
and there are several observations that support this feeling. For one thing, the
direct analogue of Minkowski’s theorem is wrong; that is, if the rank n is greater
than 1, then one cannot guarantee the existence, for each x 2 E, of an element
y 2 L for which d.x;y/ is bounded by a function of n and d.L/ alone (a
suitable function of n, d.L/, and �.L/ will do, however). There is also a formal
result stating that the shortest vector problem reduces to no more than n D rk L

nearest vector problems, in the following manner (cf. [Goldreich et al. 1999]).
Let b1; : : : ; bn be a basis for L, and for each j D 1, 2; : : : ; n, let Lj be the
sublattice

˚P
i nibi W ni 2 Z, n1, n2; : : : ; nj are even

	
of L. Then each set

bj C Lj is a coset of Lj in L. Their (disjoint) union, for 1 � j � n, equals
L�2L, so if xj 2bj CLj has minimal length then the shortest among x1; : : : ;xn

will be a shortest non-zero element of L; and similarly one can reduce a relaxed
version of the shortest vector problem to n instances of a relaxed version of the
nearest vector problem.

The extended Euclidean algorithm. Let a1; : : : ; ak be positive integers, with
k � 2, and put d D gcd.a1; : : : ; ak/. If k D 2, the Euclidean algorithm can be
used to compute d when a1 and a2 are given, and with the extended Euclidean
algorithm one can compute ‘small’ integers x1 and x2 with x1a1 C x2a2 D d

(see [Buhler and Wagon 2008, Section 3.1; Knuth 1981, Section 4.5.2]). Pro-
ceeding by induction on k, one can compute d D gcd.gcd.a1; : : : ; ak�1/; ak/ in
polynomial time when a1; : : : ; ak are given, and one can also inductively com-
pute integers x1; : : : ;xk with

P
i xiai D d ; however, for k > 2 the integers xi

computed in this manner will in general be very far from ‘smallest possible’.
Thus, one is faced with the question: given a1; : : : ; ak , as well as an integer
solution x D .xi/

k
iD1

to the equation
P

i xiai D d , find the smallest possible
integer solution to the same equation. If we measure the ‘size’ of a solution
by means of the Euclidean norm, then this is an instance of the nearest vector
problem. Namely, let L be the lattice in Rk (with the standard inner product)
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defined by

L D fy D .yi/
k
iD1 2 Zk

W
P

i yiai D 0g:

Then if y 2 L has smallest possible distance to x, the vector x � y will be the
smallest solution that one is looking for. One has rk L D k � 1, and the six
lattices formula from Section 5 readily implies d.L/D .

P
i.ai=d/

2/1=2.
Note that L is not given in one of the standard formats from Section 4, so

before one can apply a lattice basis reduction algorithm one needs to find a basis
for L. It is possible to obtain such a basis as a byproduct of the inductive com-
putation that yields d and the initial solution x. However, in Section 14 we shall
see a much easier solution to the problem: if one works with the right lattice,
then one can entirely forgo the inductive computation, and directly find both
d and a ‘small’ solution to

P
i xiai D d by means of a lattice basis reduction

algorithm.

Finding the nearest vector. As for the shortest vector problem, all known al-
gorithms for solving the nearest vector problem perform some sort of complete
enumeration, and they fail to run in polynomial time when the rank of L varies
(cf. Section 12). However, the LLL algorithm can be used to find an approxi-
mate solution. That is, the LLL algorithm computes a basis for a lattice L that
is ‘reduced’ in a suitable sense, and once a reduced basis is available one can,
for given x 2 E, efficiently compute an element y 2 L such that

d.x;y/� 2n
� minfd.x;y0/ W y0

2 Lg;

where n D rk L (see Sections 10 and 11). An alternative formulation of the same
algorithm is given in Section 14: given L and x, a lattice L0 is constructed such
that a ‘reduced’ basis for L0 immediately yields y 2 L as above.

9. Lattices of rank two

Lattices of rank two are easy to picture and to understand, and they play a
pivotal role in lattice basis reduction algorithms.

Reduced bases in rank two. Let L be a lattice with rk L D 2, embedded in a
two-dimensional Euclidean vector space E, and let b1, b2 2 L. Define the real
numbers a, b, c by

a D q.b1/; b D q.b1 C b2/� q.b1/� q.b2/D 2hb1; b2i; c D q.b2/:

Then for x, y 2 R one has q.xb1 C yb2/ D ax2 C bxy C cy2. We have
b2 �4ac � 0, with strict inequality if and only if b1, b2 are linearly independent
(over R, or over Z). The vectors b1, b2 form a basis for L if and only if one has
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b2 � 4ac D �4d.L/2. We call b1, b2 a reduced basis for L if one has

q.b1/D �.L/D minfq.x/ W x 2 L; x ¤ 0g;

b2 2 L � Zb1; q.b2/D minfq.x/ W x 2 L � Zb1g:

It is automatic that any reduced basis for L is a basis for L. Conversely, if b1,
b2 form a basis for L, then they form a reduced basis if and only if one has
jbj � a � c. It is clear from the definition that any lattice of rank 2 has a reduced
basis.

The shortest and nearest vector problems. Let L and E be as above, and suppose
that a reduced basis b1, b2 for L is available. Let a, b, c be defined as above.
Then both the shortest vector problem and the nearest vector problem admit
easy solutions. For the shortest vector problem this is obvious: b1 is a shortest
non-zero vector of L, and one has �.L/D q.b1/D a � .4=3/1=2d.L/; the last
inequality follows from 4d.L/2 D 4ac �b2 � 4a2 �a2 D 3a2. Considering the
case jbj D a D c > 0 one proves that the Hermite constant 
2 equals .4=3/1=2.

The vector �b1 is also a shortest non-zero vector of L, and the others, if any,
are among ˙b2, ˙b2 ˙ b1.

For the nearest vector problem, assume b D 2hb1; b2i � 0, replacing b2 by
�b2 if necessary. Define

F D fz 2 E W q.z/� q.z � y/ for all y 2 f˙b1;˙b2;˙.b1 � b2/gg:

This is a hexagon if b ¤ 0, and a rectangle if b D 0. Each x 2 E can be written
as x D y C z with y 2 L and z 2 F , and in an algorithmic context such a
representation is for given x not hard to find. For ‘most’ x it is unique, but
whether or not it is unique, it is always true that z is an element of the coset
x C L of minimal length, and that y is a lattice element with minimal distance
to x; so y solves the nearest vector problem for L and x.

It follows that the supremum, over all x 2 E, of minfq.x�y/ W y 2 Lg is equal
to maxfq.z/ W z 2 Fg. The latter number is given by the convenient formula

maxfq.z/ W z 2 Fg D
q.b1/�q.b2/�q.b1�b2/

4d.L/2
D

a�c �.a�bCc/

�b2C4ac
;

where it is still assumed that 0 � b � a � c. The reader may recognize the
formula that expresses the circumradius of a plane triangle in terms of its area
and the lengths of its sides.

Lattice basis reduction in rank two. Given a basis b1, b2 for a lattice L of rank
2, the following iterative procedure replaces b1, b2 by a reduced basis. Let m

be an integer nearest to hb1; b2i=hb1; b1i, and replace b2 by b2 �mb1. The new
vector b2 now satisfies jhb1; b2ij �

1
2
hb1; b1i. If it also satisfies q.b2/� q.b1/,
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then the basis b1, b2 is reduced, as desired; otherwise, interchange b1 and b2,
and start all over again.

The procedure just described goes back to Gauss [1801], who used the lan-
guage of binary quadratic forms. There is a strong analogy with the Euclidean
algorithm for the computation of the greatest common divisor of two non-zero
integers a1, a2: in a typical iteration step of the latter, one replaces a2 by
a2 � ma1, where m equals a2=a1 rounded to an integer. The ‘ideal’ value
m D a2=a1 would make the new value of a2 equal to zero. Analogously, the
ideal value m D hb1; b2i=hb1; b1i would make the new vector b2 orthogonal to
b1 in the sense that hb1; b2i D 0; one recognizes the Gram–Schmidt orthogo-
nalization process. The actual choice of m minimizes the value of q.b2 �mb1/

over m 2 Z; in particular, the new vector b2 satisfies q.b2/ � q.b2 � b1/ and
q.b2/� q.b2 C b1/, which will be useful below.

Performing the procedure above for the sublattice L of Z2 with basis b1 D

.Na1; 0/, b2 D .Na2; 1/ (where N is a suitably large integer) is in fact tanta-
mount to the Euclidean algorithm for a1, a2.

Termination. The value of q.b1/ decreases throughout the procedure just de-
scribed. Since there are only finitely many vectors in L whose length is bounded
by the length of the initially given vector b1, this implies that the procedure
terminates in all cases.

To find a good bound for the number of iteration steps, we prove that in each
step, except possibly the last two, the value of q.b1/ decreases by a factor 3 or
higher. That is to say, if in a certain step it occurs that, after the replacement of
b2 by b2 � mb1, the new vector b2 satisfies q.b2/ > q.b1/=3, then that step is
either the last one or the next-to-last one. Namely, suppose it is not the last one;
then one has q.b2/ < q.b1/. The inequality jhb1; b2ij �

1
2
hb1; b1i < 3

2
hb2; b2i

then implies that the value for m in the next step will be one of 0, 1, �1, and
since all of the vectors b1, b1 � b2, b1 C b2 are at least as long as b2, that next
step will be the last one, as asserted.

It follows that an upper bound for the number of iteration steps is given by 2C

.log.q.b1; initial/=q.b1; final///= log 3, where b1; initial and b1; final are the initially
given basis vector b1 and the basis vector b1 as finally produced, respectively;
here q.b1; final/D �.L/.

Suppose next that we are in an algorithmic context, and that L and its basis
are specified by means of a rational matrix A (or B) as in Section 4. Then q.L/

is contained in Z 1
d

(or Z 1
d2 ) if d is a positive integer for which Z 1

d
contains the

entries of A (or B), and therefore one has q.b1; final/�
1
d

(or 1
d2 ). Combining

this with the bound for the number of iteration steps just given, one now easily
deduces that the entire algorithm runs in polynomial time.
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10. Flags

Flags. It will be convenient to formulate lattice basis reduction algorithms for
general rank not in terms of bases but in terms of flags. In this section, L denotes
a lattice embedded in a Euclidean vector space E, with n D rk L D dim E. A
flag of L is a sequence F D .Li/

n
iD0

of pure sublattices Li of L (as defined in
Section 2) satisfying rk Li D i (for 0 � i � n) and Li�1 � Li (for 0 < i � n).
Clearly one has L0 D f0g and Ln D L.

Every basis b1; : : : ; bn for L gives rise to the flag
�P

j�i Zbj

�n

iD0
. Con-

versely, each flag is of this form, but generally not for a unique basis; more
precisely, two bases a1; : : : ; an and b1; : : : ; bn for L give rise to the same flag if
and only if there are integers cij , for 1 � j � i � n, such that bi D

P
j�i cij aj

and cii D ˙1 for all i . Thus, a flag may be said to carry a little less information
than a basis.

Successive distances and the Gram–Schmidt process. Let F D .Li/
n
iD0

be a
flag of L. For 1 � i � n, the i-th successive distance li.F/ of F is defined by
li.F/D d.Li=Li�1/.

The successive distances are related to the Gram–Schmidt orthogonalization
process. Let b1; : : : ; bn be a basis for L that gives rise to F. For each i , let
b�

i be the unique vector in bi C
P

j<i Rbj that is orthogonal to
P

j<i Rbj . The
vectors b�

i can be computed by means of the Gram–Schmidt orthogonalization
process, that is, by an inductive application of the formula

b�
i D bi �

X
j<i

�ij b�
j ; where �ij D

hbi ; b
�
j i

hb�
j ; b

�
j i
:

One has b�
1

D b1. With this notation, li.F/ is equal to the length kb�
i k of b�

i or,
equivalently, to the distance of bi to the subspace

P
j<i Rbj of E. In particular,

one has l1.F/D kb1k.

The size of a flag. Let F D .Li/
n
iD0

be a flag of L. The size s.F/ of F is defined
by s.F/D

Qn
iD0 d.Li/. From d.Li/D

Q
j�i lj .F/ it follows that s.F/ can be

expressed in terms of the successive distances by s.F/D
Qn

jD1 lj .F/
nC1�j .

It is not difficult to prove that a given lattice L has, for each real number
r , only finitely many flags of size at most r . Imprecisely speaking, a flag will
be interesting for us if it has small size s.F/ D

Qn
jD1 lj .F/

nC1�j , and this
will be the case if the ‘weight’ in the product

Qn
jD1 lj .F/, which assumes the

constant value d.L/, is shifted towards the factors with large j . This may serve
as a motivation for the following definition, which describes more precisely the
property that one desires a flag to have.
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Reduced flags. Let c be a real number, c � 1, and let F be a flag for L. We say
that F is c-reduced if for each j with 0< j < n one has ljC1.F/

2 � lj .F/
2=c;

for c D 1 this is equivalent to the sequence of successive distances being non-
decreasing, and the condition becomes weaker as c gets larger. Not every lattice
has a flag that is 1-reduced, but as we shall see, each lattice has a flag that is
4=3-reduced, and for each c > 4=3 a c-reduced flag can be quickly found. The
standard choice is c D 2.

The shortest vector problem. Suppose n > 0. A c-reduced flag F D .Li/
n
iD0

gives rise to an approximate solution to the shortest vector problem, the quality
of the approximation being measured by c. Namely, put L1 D Zb1. Then b1 is
‘almost’ the shortest non-zero vector of L in the sense that

q.b1/� cn�1 minfq.x/ W x 2 L � f0gg D cn�1�.L/:

To see this, let x 2 L � f0g, and let i be minimal with x 2 Li ; then kxk is at
least the i-th successive distance li.F/, so

q.x/D kxk
2

� li.F/
2

� c1�il1.F/
2

� c1�nq.b1/;

as required. Combining the inequality just proved with Minkowski’s theorem,
we see that q.b1/� n �cn�1 �d.L/2=n, but this can be improved a little. Namely,
multiplying together the inequalities q.b1/D l1.F/

2 � ci�1li.F/
2 that we just

proved, for i D 1; : : : ; n, and using that
Qn

iD1 li.F/D d.L/, one finds

q.b1/� c.n�1/=2
� d.L/2=n:

We also see from our inequalities that b1 itself is actually a shortest non-zero
vector of L if one has l1.F/D minfli.F/ W 1 � i � ng, which occurs if c D 1.

The nearest vector problem. A c-reduced flag F D
�P

j�i Zbi

�n

iD0
also gives

rise to an approximate solution to the nearest vector problem, the quality of the
approximation again being measured by c. To see this, let b�

i be as above, and
write

Fi D

n iX
jD1

�j b�
j W �i 2 R;�1

2
< �j �

1
2

for 1 � j � i
o
; F D Fn:

By induction on i one checks that each x 2
P

j�i Rbj admits a unique represen-
tation of the form x D y C z with y 2

P
j�i Zbj and z 2 Fi . In particular, each

x 2 E can be written uniquely as x D y C z with y 2 L and z 2 F ; moreover,
in an algorithmic context this representation is easy to find. Thus, a c-reduced
flag can be used to find, for every x 2 E, an element y 2 L with

d.x;y/2 � maxfhz; zi W z 2 Fg D
1
4

�

nX
iD1

li.F/
2:
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Also, the approximation of a given element x 2 E by an element y 2 L obtained
in this way is not far from optimal, in the sense that for each other y0 2 L one
has

d.x;y/2 � .1 C c C � � � C cn�1/ � d.x;y0/2:

To prove this, express z D x�y and z0 D x�y0 on the orthogonal basis .b�
j /

n
jD1

of E:

z D

nX
jD1

�j b�
j ; z0

D

nX
jD1

�0
j b�

j ;

with �j , �0
j 2 R, �

1
2
< �j �

1
2

. From z � z0 2 L � f0g one deduces that
the largest i with �i ¤ �0

i exists and satisfies �i ��0
i 2 Z. Then one has the

inequalities j�0
i j �

1
2

and

q.z0/D

nX
jD1

�0 2
j lj .L/

2
�

1
4
li.L/

2
C

X
i<j�n

�2
j lj .L/

2;

q.z/�
1
4

�

X
j�i

lj .L/
2

C

X
i<j�n

�2
j lj .L/

2

�
1
4
.ci�1

C � � � C c C 1/li.L/
2

C

X
i<j�n

�2
j lj .L/

2;

which yield the desired inequality q.z/� .1 C c C � � � C cn�1/ � q.z0/.

Specifying flags, size-reduced bases. If one wishes to do computations with
flags, one will need a way of specifying them numerically. Assuming that the
lattice and its elements are specified in one of the standard formats of Section 4,
one can specify a flag F D .Li/

n
iD0

by listing the elements of a basis b1; : : : ; bn

for L that gives rise to F. This representation is not unique, but it becomes
unique, up to choosing n signs, if one requires in addition that for each i the
vector bi � b�

i belongs to the fundamental domain Fi�1 for Li�1 D
P

j<i Zbj

in
P

j<i Rbj defined above. A basis with this property is called size-reduced.
To change a given basis for a lattice into a size-reduced one that gives rise to the
same flag, it suffices to subtract a suitable element of Li�1 from bi , for each i .

In the course of computations, it may not be necessary to insist that no other
bases than size-reduced ones be used for the purpose of specifying flags. How-
ever, size-reduced bases are important both in practice and in theory, because
they help both in preventing excessive coefficient growth and in obtaining low
run time estimates.

It will be convenient to say that a basis b1; : : : ; bn for L is c-reduced, for a real
number c � 1, if it is size-reduced and the corresponding flag

�P
j�i Zbj

�n

iD0
is c-reduced.



LATTICES 151

Near-orthogonality of c-reduced bases. Let c be a real number, c � 1, and
suppose that b1; : : : ; bn is a c-reduced basis for a lattice L. With the notation
as above, we have bi D b�

i C
P

j<i �ij b�
j for certain real numbers �ij with

�
1
2
< �ij �

1
2

, and this implies

q.bi/� q.b�
i /C

1
4

P
j<i

q.b�
j /

� q.b�
i /C

1
4

P
j<i

ci�j q.b�
i /D

�
1 C

1
4
.ci � c/=.c � 1/

�
� q.b�

i /;

where .ci � c/=.c �1/D i �1 if c D 1. Taking the product over i and using the
equality

Q
i kb�

i k D d.L/ we find
nQ

iD1

kbik �

nQ
iD1

�
1 C

1
4
.ci � c/=.c � 1/

�1=2
� d.L/:

Thus, for fixed c, a c-reduced basis is ‘nearly orthogonal’ in the sense of Sec-
tion 5. If c � 4=3, then the inequalities just given can be simplified to

q.bi/� ci�1
� q.b�

i / for 1 � i � n;
nQ

iD1

kbik � cn.n�1/=4 � d.L/:

Successive minima and c-reduced bases. For 1 � i � n, the i-th successive
minimum �i.L/ of L is defined to be the infimum of the set of all real numbers
r with the property that L contains at least i linearly independent vectors a with
q.a/ � r ; equivalently, it is the minimum of that set of real numbers. Clearly,
we have �1.L/D �.L/. The following result shows that the successive minima
can be approximately computed from a c-reduced basis.

PROPOSITION. Let c be a real number with c � 4=3, and let b1; : : : ; bn be a
c-reduced basis for a lattice L. Then we have

c1�n
� q.bi/� �i.L/� maxfq.bj / W 1 � j � ig � ci�1

� q.bi/

for 1 � i � n.

Proof. Since b1; : : : ; bi are i linearly independent vectors, the middle inequality
is immediate from the definition of �i.L/. For 1 � j � i we have

q.bj /� cj�1
� q.b�

j /� ci�1
� q.b�

i /� ci�1
� q.bi/;

which implies the third inequality. For the lower bound, let F D .Lj /
n
jD0

be the
flag of L that b1; : : : ; bn gives rise to. Choose k minimal such that Lk contains
all a 2 L with q.a/ � �i.L/. The set of such a has rank at least i , so we have
k � i , and therefore

lk.F/
2

� ci�k
� li.F/

2
D ci�k

� q.b�
i /� c1�k

� q.bi/� c1�n
� q.bi/:
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By definition of k, at least one a does not belong to Lk�1, so we have lk.F/
2 �

q.a/� �i.L/. This proves the stated lower bound for �i.L/ and completes the
proof of the Proposition.

The dual flag. Let L be a lattice with dual L| (see Section 2), and let F D

.Li/
n
iD0

be a flag of L. For M � L, write M ? D fx 2 L| W hx;yi D 0

for all y 2 M g; this is a pure sublattice of L|. Then F? D .L?
n�i/

n
iD0

is a
flag of L|, and one has F?? D F. If c is a real number with c � 1, then
F is c-reduced if and only if F? is c-reduced; this follows from the equality
li.F/lj .F

?/ D 1 for i C j D n C 1. If .bi/
n
iD1

is a basis for L that gives rise
to F, then the corresponding cobasis .b|

i /
n
iD1

(see Section 2) gives rise to F?.
It is not generally true, for a real number c � 1, that .bi/

n
iD1

is c-reduced if and
only if .b|

i /
n
iD1

is c-reduced, though this is valid (up to a sign) for rk L � 2.

11. Finding a good flag

Flags in rank two. Suppose L is a lattice of rank 2. Giving a flag F D .Li/
2
iD0

of L is the same as giving a pure sublattice L1 D Zb1 of rank 1 of L, since
necessarily one has L0 D f0g and L2 D L; the size s.F/ of such a flag is given
by s.F/D l1.F/d.L/D kb1k�d.L/, so finding a flag of small size is equivalent
to finding a non-zero vector of small length. Also, one has l2.F/D d.L/= l1.F/,
so if c is a real number �1 then F is c-reduced, as defined in the previous section,
if and only if one has q.b1/�

p
c � d.L/. Since the Hermite constant 
2 equalsp

4=3, it follows that L has a 4=3-reduced flag; and there is a lattice of rank 2

that does not have a c-reduced flag for any c < 4=3.
In Section 9 we saw a procedure for finding a 4=3-reduced flag of L. If we

rephrase one iteration step from that procedure in the language of flags, then we
obtain the following: if a flag F of L is not 4=3-reduced, then one can find a
flag F0 with smaller size: s.F0/ < s.F/. Namely, let b1, b2 be a size-reduced
basis for L giving rise to F. Then one has b2 D b�

2
C�b1 with j�j �

1
2

, and
therefore

q.b2/D q.b�
2 /C�2q.b1/�

�
l2.F/

2

l1.F/
2

C
1

4

�
� q.b1/:

Since F is not 4=3-reduced, we have l2.F/
2= l1.F/

2 < 3=4, and therefore
q.b2/ < q.b1/; so the flag F0 corresponding to the basis b2, b1 is of smaller
size than F.

Improving a given flag. Suppose next that L is a lattice of any rank n, and that
F D .Li/

n
iD0

is a flag of L that is not 4=3-reduced. Then just as in the case of
rank 2, one can find a flag F0 of smaller size. To do this, first choose a pivot,
i. e., an index j with 0 < j < n for which ljC1.F/

2 < 3
4
lj .F/

2. Such an index
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exists, since by assumption the flag is not 4=3-reduced. Then .Li=Lj�1/
jC1
iDj�1

is a flag of the rank two lattice LjC1=Lj�1, and that flag is not 4=3-reduced
either. Thus, by the rank two case that we just did, one can replace it by
a flag .L0

i=Lj�1/
jC1
iDj�1

of smaller size; here one has L0
j�1

=Lj�1 D f0g and
L0

jC1
=Lj�1 D LjC1=Lj�1. Writing L0

i D Li for all i ¤ j , one now obtains a
flag F0 D .L0

i/
n
iD0

of L with s.F0/ < s.F/. Notice that F0 and F differ only in
the rank j sublattice.

Referring back to what we just proved for rank 2, we see that the inequality
s.F0/ < s.F/ can be sharpened to

s.F0/�

�
ljC1.F/

2

lj .F/
2

C
1

4

�1=2
� s.F/:

This will be useful below.

Finding a 4=3-reduced flag. Let L be a given lattice, and let F be the flag of
L corresponding to a given basis b1; : : : ; bn for L. If F is not 4=3-reduced,
then as we just saw we can replace F by a flag F0 that has smaller size. Since
there are only finitely many flags of size smaller than the initially given flag, this
procedure will, upon iteration, terminate with a flag of L that is 4=3-reduced.
This tells us, first, that each lattice has a 4=3-reduced flag and, second, how to
find one in an algorithmic situation. Considering a size-reduced basis that gives
rise to such a flag, we also conclude that each lattice has a 4=3-reduced basis.

A basis reduction algorithm. An algorithm that, given a lattice L in one of
the standard formats of Section 4, produces a basis for L that is reduced in a
certain sense, is called a basis reduction algorithm. For example, the procedure
that we just sketched produces a basis that is 4=3-reduced. In the case n D 2,
this procedure is nothing but the algorithm that we described in Section 9. For
larger rank, the procedure becomes an actual basis reduction algorithm if it is
supplemented with rules for choosing pivots and for deciding at which stages
the basis corresponding to the current flag is to be replaced by a size-reduced
basis.

It is an open problem whether, with appropriate rulings, the basis reduction
algorithm obtained in this manner runs in polynomial time. As we saw in Sec-
tion 9, it does run in polynomial time in the case n D 2, and in fact it runs in
polynomial time for any fixed value of n (see [Lenstra 2001]). The main obstacle
towards proving such a result for varying n is finding a good upper bound for
the number of flags that the algorithm goes through.

It turns out that, in order to obtain a polynomial-time basis reduction algo-
rithm, it suffices to be a little less demanding: if, instead of insisting on a flag
or a basis that is 4=3-reduced, one allows a flag or a basis that is c-reduced
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with c > 4=3, then for any fixed value of c such a flag or basis can be found in
polynomial time. This is what we consider next.

Finding a c-reduced flag. Let a real number c with c > 4=3 be fixed, and let L

be a lattice. The procedure that we indicated for finding a 4=3-reduced flag can
in an obvious way be shortened so as to find a flag that is merely c-reduced. One
uses only pivots j with ljC1.F/

2< lj .F/
2=c, and at each step the improved flag

F0 satisfies

s.F0/�

�
ljC1.F/

2

lj .F/
2

C
1

4

�1=2
� s.F/ <

p
1=c C 1=4 � s.F/;

where
p

1=c C 1=4 < 1. Starting from an initially given flag Finitial, one ter-
minates with a flag Ffinal that is c-reduced. Each time the flag is changed, its
size gets multiplied by a factor smaller than

p
1=c C 1=4, so the number of

times this happens is at most .log.s.Finitial/=s.Ffinal///=jlog
p

1=c C 1=4j. As
in Section 9 one sees that in an algorithmic situation a good lower bound for
s.Ffinal/ is available. This leads to an upper bound for the number of flags
encountered in the course of the algorithm, an upper bound that is good enough
to allow for a straightforward proof that the algorithm runs in polynomial time.
The algorithm just described is the LLL algorithm. Properly speaking, the LLL
algorithm is an entire family of algorithms, since there is considerable freedom
in choosing c, in choosing the pivots, and in dealing with size-reduction.

The LLL algorithm. In summary, the LLL algorithm takes as input a lattice L,
specified in one of the standard formats of Section 4, as well as a rational number
c> 4=3; if no value for c is specified, we assume that c D 2. For any fixed value
of c, the algorithm runs in polynomial time. The output of the algorithm is a
basis for L that is c-reduced, as defined at the end of Section 10. If n D rk L>0,
then the first basis vector b1 of that basis yields an approximate solution to the
shortest vector problem for L, in the sense that one has

q.b1/� cn�1
� minfq.x/ W x 2 L � f0gg; q.b1/� c.n�1/=2

� d.L/2=n:

Further, such a basis being available, one can approximately solve the nearest
vector problem for L, in the sense of having a polynomial-time algorithm that
given a vector x in the Q-linear span of L finds y 2 L such that

d.x;y/� .1 C c C � � � C cn�1/ � minfd.x;y0/ W y0
2 Lg:

If c D 2, then the last inequality yields d.x;y/� 2n � minfd.x;y0/ W y0 2 Lg.
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12. Enumerating short vectors

In the present section we show how one can enumerate short vectors in a
lattice with the help of a reduced basis. The method runs at best in polynomial
time for fixed values of rk L. It relies on the following result, provided by
R. J. Schoof, which gives upper bounds for the coefficients of a vector when
expressed on a reduced basis, in terms of the length of the vector.

LEMMA. Let L be a lattice in a Euclidean vector space, and put n D rk L. Let
b1; : : : ; bn be a basis for L, and let c be a real number with c � 1 such that
b1; : : : ; bn is c-reduced. For each i D 1; : : : ; n, denote by b�

i the unique vector
in bi C

P
j<i Rbj that is orthogonal to

P
j<i Rbj . Let r1; : : : ; rn 2 R, and put

x D
Pn

iD1 ribi . Then one has

jrj j � .3
p

c=2/n�j
�

kxk

kb�
j k

� c.n�1/=2
� .3=2/n�j

�
kxk

kb1k

for j D 1, . . . , n.

Proof. By the definition of b�
i , we can write bi �b�

i D
P

j<i �ij b�
j with �ij 2 R.

The basis b1; : : : ; bn being c-reduced is equivalent to the inequalities

kb�
j k � c.i�j/=2

kb�
i k; �

1
2
< �ij �

1
2

being valid for 1 � j < i � n (see the definition in Section 10). Substitut-
ing bi D b�

i C
P

j<i �ij b�
j into x D

Pn
iD1 ribi we find that we have x DP

j r�
j b�

j for r�
j D rj C

P
i>j �ij ri . The orthogonality of the b�

j implies
kxk2 D

P
j r�2

j kb�
j k2, so for each j we have

jr�
j j � kb�

j k � kxk:

We now prove the inequality jrj j � kb�
j k � .3

p
c=2/n�j � kxk by induction on

n � j . From rj D r�
j �

P
i>j �ij ri and j�ij j �

1
2

we obtain

jrj j � kb�
j k � jr�

j j � kb�
j k C

X
i>j

1
2
jri j � kb�

j k � kxk C
1
2

X
i>j

c.i�j/=2
� jri j � kb�

i k

�

�
1 C

1
2

Xn

iDjC1
c.i�j/=2.3

p
c=2/n�i

�
� kxk

D
�
1 C c.n�j/=2

� ..3=2/n�j
� 1/

�
� kxk � .3

p
c=2/n�j

� kxk;

as required. This proves the first inequality in the Lemma. The second one
follows from kb1k D kb�

1
k � c.j�1/=2kb�

j k. This proves the Lemma.

Computing �.L/ and finding a shortest non-zero vector. If, in the notation of
the Lemma, the ri range independently over Z, then x ranges over L. If x is a
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shortest non-zero vector of L, then one has kxk � kb1k, so by the Lemma each
jri j is bounded by c.n�1/=2 � .3=2/n�i .

This suggests the following algorithm for computing �.L/ for a given lattice
L of positive rank n. First, use the LLL algorithm to find a 2-reduced basis
b1; : : : ; bn for L. Next, compute q.x/ for each x of the form x D

P
i ribi , where

the ri range independently over all integers that are at most 2.n�1/=2 � .3=2/n�i

in absolute value. Now �.L/ is equal to the minimal non-zero value of q.x/

that is found. The algorithm can also be used to compute all shortest non-zero
vectors of L; these are the vectors x encountered that achieve the minimum.

Evidently, the number of systems of integers ri to be tried by the algorithm
is bounded by a function of n alone. Therefore, if L is specified in one of the
standard formats of Section 4, the algorithm just described runs in polynomial
time for any fixed value of n D rk L.

Enumerating all short vectors. Suppose one is given a lattice L of positive
rank n, as well as a positive real number r , and one is interested in listing all
x 2 L with q.x/� r . Then one can proceed in a similar fashion: apply the LLL
algorithm with c D 2 (say), and try all x of the form

P
i ribi , where each ri is

an integer satisfying jri j � 2.n�1/=2 � .3=2/n�i �
p

r=kb1k. For ‘small’ values of
r — for example, no larger than �.L/ multiplied by a function of n alone — the
resulting algorithm will for fixed n run in polynomial time, as in the previous
case.

In the case that r is ‘large’, there is a special advantage in using the sharper
upper bound jri j � .3=

p
2/n�i �

p
r=kb�

i k from the Lemma. Namely, the number
of vectors to be tried is in that case bounded by

rn=2Q
i kb�

i k
D

rn=2

d.L/

multiplied by a function of n alone. By what we saw in Section 5, this is a good
approximation to the number of vectors x 2 L with q.x/� r to be enumerated,
again up to a factor depending on n alone. In other words, for large enough r ,
the run time of the resulting algorithm is for fixed n bounded by the length of
the output of the algorithm multiplied by a polynomial function of the length
of the input. This will in fact be true if r is at least 1=�.L|/ times a suitable
function of n.

The nearest vector problem. There is a similar enumeration algorithm for solv-
ing the nearest vector problem, which for any fixed value of n D rk L runs in
polynomial time. To see how this works, let L be a lattice in a Euclidean vector
space E with n D dim E D rk L, and let x 2 E. We are interested in finding
y 2 L with q.x � y/ minimal. One starts by applying the LLL algorithm, with
any fixed c > 4=3. This gives rise to a c-reduced basis b1; : : : ; bn for L, with
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Gram–Schmidt orthogonalization b�
1
; : : : ; b�

n as in the Lemma. In Section 10
we saw how to use this basis in order to find y0 2 L such that

q.x � y0/�
1
4

�

nX
iD1

q.b�
i /�

1
4

� .cn�1
C � � � C c C 1/ � q.b�

n /:

Write x D
P

i ribi with ri 2 R, and let the vector y 2 L one is looking for be
written y D

P
i mibi with mi 2 Z. Then one has

.rn � mn/
2

� q.b�
n /� q.x � y/� q.x � y0/:

In view of our bound for q.x �y0/, this leaves a number of possibilities for the
integer mn that is bounded by a function of n alone. For each m 2 Z satisfying
.rn � m/2 � q.b�

n / � q.x � y0/, one now solves recursively the nearest vector
problem for the lattice L0 D

P
i<n Zbi of rank n�1 and the element x �mbn �

.rn � m/b�
n obtained by projecting x � mbn orthogonally to the subspace of E

spanned by L0; for each value of m, this gives rise to a nearest vector ym 2 L0,
and one finds the solution to the nearest vector problem for L and x by putting
y DymCmbn, the value for m being chosen so as to minimize q.x�ym�mbn/.
One checks in a straightforward way that this correctly solves the nearest vector
problem, and that for any fixed value of n it does so in polynomial time. Its
practical performance can be enhanced by a branch-and-bound technique.

13. Factoring polynomials

The present section is devoted to the earliest published application of the
LLL algorithm, namely the construction of a polynomial-time algorithm for
the problem of factoring non-zero polynomials in QŒX � into irreducible factors
(see [Lenstra et al. 1982]).

Summary description of the algorithm. Let f 2 QŒX � be a given non-constant
polynomial, and write n D degf . One starts by choosing a ‘prime’ p of the
field Q, and by finding an approximation ˇ to a zero ˛ of f in a finite extension
of the completion Qp of Q at p; for example, if one chooses p D 1, then ˇ will
be a complex number close to a complex zero ˛ of f , and one can compute ˇ by
means of techniques from numerical analysis. If f is reducible, then ˛ is a zero
of a non-zero polynomial in QŒX � of degree smaller than n, so 1, ˛; : : : ; ˛n�1

are linearly dependent over Q, and 1, ˇ, . . . , ˇn�1 are approximately linearly
dependent. As we saw in Section 7, one can formulate the problem of finding
an approximate linear dependence relation among the ˇi in lattice terms, and
solve it by means of the LLL algorithm. If the vector found by LLL is short
enough, then it will give rise to a non-trivial factor g of f , and otherwise f is
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irreducible. In the former case, one recursively applies the algorithm to g and
f=g, which leads to the full factorization of f into irreducible factors in QŒX �.

Intermezzo on Berlekamp’s algorithm. In the more detailed description of the
algorithm to be given below, we shall, instead of choosing p D 1, take for p

a prime number depending on f . The role of the numerical analysis is then
played by a combination of Berlekamp’s algorithm and Hensel’s algorithm. For
the latter, see [Buhler and Wagon 2008, Section 4.2; von zur Gathen and Gerhard
1999, Section 15.4]; to the former we devote the present intermezzo.

Berlekamp’s algorithm takes as input a prime number p and a non-zero
polynomial f 2 Fp ŒX �, and its output is the full factorization of f into irre-
ducible factors in Fp ŒX �. The algorithm is deterministic, and its run time is
O.p � .log p C degf /c/ for a positive constant c.

For simplicity of description, we shall make the assumptions that the discrim-
inant of f is non-zero, that f has positive degree, and that f is monic in the
sense of having leading coefficient 1; and in addition, instead of factoring f
completely, we shall find a single irreducible factor. It would be easy to remove
these restrictions, but for the purposes of our application there is no need to do
so.

Our assumptions imply that f D
Q

i fi for certain pairwise distinct monic
irreducible polynomials f1; : : : ; ft 2 Fp ŒX �. There is a ring isomorphism

Fp ŒX �=.f /Š

tY
iD1

Fp ŒX �=.fi/;

where each Fp ŒX �=.fi/ is a field, with the subring fy 2 Fp ŒX �=.fi/ W yp D yg

equal to its prime field Fp. Hence one has fy 2 Fp ŒX �=.f / Wy
p DygŠ

Qt
iD1 Fp.

In particular, f is irreducible if and only if fy 2 Fp ŒX �=.f / W yp D yg has
dimension 1 as a vector space over Fp; more generally, if h is a non-constant
factor of f , then h is irreducible if and only if all y 2 Fp ŒX �=.f / with yp D y

reduce to a constant mod h.
To exploit these facts, Berlekamp’s algorithm starts by finding a basis g1,

g2; : : : ;gt of the Fp-vector space fy 2 Fp ŒX �=.f / W yp D yg. The latter space is
the null-space of the linear map Fp ŒX �=.f /! Fp ŒX �=.f / sending y to yp �y,
and a basis of this null-space can be computed by means of linear algebra. Next,
the algorithm keeps track of a non-constant factor h of f , starting with h D f ,
stopping when h is irreducible, and replacing h by a proper factor otherwise.
This is done in the following manner.

If all gi are congruent to a constant modulo h, then h is irreducible, and one
stops. Otherwise, choose i such that gi is not congruent to a constant modulo h.
Then h divides gp � g, which equals the product

Q
j2Fp

.gi � j /, but h does
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not divide any of the factors gi � j . Hence, computing at most p � 1 greatest
common divisors by means of the Euclidean algorithm, one finds j 2 Fp with
0 < deg gcd.h;gi � j / < deg h. Now replace h by gcd.h;gi � j /, and iter-
ate. This finishes the description of Berlekamp’s algorithm. One checks in a
straightforward way that it has the properties claimed.

For more information on factoring polynomials over finite fields, including
the description of a probabilistic algorithm with polynomial expected run time,
one may consult [von zur Gathen and Gerhard 1999, Chapter 14].

Guaranteeing a common factor. We prove a result that will be useful in proving
the correctness of the factoring algorithm to be described. For a polynomial
e D

P
i aiX

i 2 ZŒX �, write q.e/D
P

i a2
i and kek D q.e/1=2. For each positive

integer n, write ZŒX �n for the set of polynomials in ZŒX � of degree smaller
than n; each ZŒX �n is, with the function q, a lattice of rank n and determinant 1.

PROPOSITION. Let m be a positive integer, and let h 2 ZŒX � be a monic poly-
nomial. Let f , g be non-zero elements of the ZŒX �-ideal .m; h/ generated by m

and h, and suppose that we have

kf k
deg g

� kgk
deg f <mdeg h; degf C deg g � deg h:

Then f and g have a common factor of positive degree in ZŒX �.

Proof. First suppose that the only pair of polynomials � 2 ZŒX �deg g, � 2

ZŒX �deg f with �f C�g D 0 is given by �D �D 0. Then the set

M D f�f C�g W � 2 ZŒX �deg g; � 2 ZŒX �deg f g

is a sublattice of ZŒX �deg f Cdeg g of rank degf C deg g, with basis

f;Xf; : : : ;X deg g�1f;g;Xg; : : : ;X deg f �1g:

By Hadamard’s inequality, one has d.M / � kf kdeg g � kgkdeg f . From f , g 2

.m; h/ it follows that M is contained in L D .m; h/\ ZŒX �deg f Cdeg g, which is
also a sublattice of ZŒX �deg f Cdeg g. From degf C deg g � deg h it follows that
.m; h/C ZŒX �deg f Cdeg g D ZŒX �, and therefore

d.L/D #ZŒX �deg f Cdeg g=L D #ZŒX �=.m; h/D mdeg h:

Altogether we obtain

kf k
deg g

� kgk
deg f

� d.M /D .L W M / � d.L/� mdeg h;

contradicting our hypothesis. Thus, there do exist non-zero polynomials � 2

ZŒX �deg g and � 2 ZŒX �deg f with �f D ��g. This implies that f and g have a
common factor of positive degree in ZŒX �, as required.
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Factoring polynomials. We describe a polynomial-time algorithm that, given a
non-constant polynomial f 2 QŒX �, finds the factorization of f into irreducible
factors in QŒX �. Our description assumes that the discriminant �.f / of f is
non-zero, and that the coefficients of f are in Z; to achieve the first, one re-
places f by f= gcd.f; df=dX /, and to achieve the second one multiplies the
coefficients by a common denominator. We let n D degf .

(a) Choose an auxiliary prime number. Compute the least prime number p not
dividing the resultant R.f; df=dX / of f and its derivative. As ˙R.f; df=dX /

equals the product of the leading coefficient and the discriminant of f , the poly-
nomial .f mod p/ 2 Fp ŒX � has degree n and non-zero discriminant.

(b) Find an irreducible factor mod p. Apply Berlekamp’s algorithm, as de-
scribed above, to .f mod p/ divided by its leading coefficient. This leads to a
monic irreducible factor h0 2 Fp ŒX � of .f mod p/. If deg h0 D degf , then f
is irreducible in QŒX �, and the algorithm stops. Assume now deg h0 < degf .

(c) Determine the p-adic precision needed. Compute the least integer � with

p2� deg h0 > 2n.n�1/
�

�
2.n � 1/

n � 1

�n

� q.f /2n�1:

(d) Find an approximate p-adic factor of f . Use Hensel’s algorithm, as
described in [von zur Gathen and Gerhard 1999, Section 15.4], to find a monic
polynomial h 2 ZŒX � such that h0 D .h mod p/ and such that .h mod p�/ di-
vides .f mod p�/ in .Z=p�Z/ŒX �; by Hensel’s lemma and the fact that�.f / 6�
0 mod p, the polynomial h exists and is unique modulo p�. (Note. A formal
zero of h may be viewed as an approximate p-adic zero of f ; so the computation
of h corresponds to the computation of ˇ in the summary description provided
earlier.)

(e) Apply lattice basis reduction. Define L to be the additive subgroup of
ZŒX � that has basis

p�; p�
� X; : : : ; p�

� X .deg h/�1; h; X � h; : : : ; X n�1�deg h
� h:

Viewing L as a sublattice of the lattice ZŒX �n defined above, apply the LLL
algorithm to find a 2-reduced basis b1; : : : ; bn for L. (Note. The elements of
L are the polynomials of degree smaller than n that assume p-adically small
values at a zero ˇ of h, so they provide approximate linear dependencies among
1, ˇ; : : : ; ˇn�1.)

(f) Decide irreducibility or find a factor. If

q.b1/ > 2n�1
�

�
2.n � 1/

n � 1

�
� q.f /;

declare f irreducible and stop. Otherwise, compute g D gcd.b1; f / using the
Euclidean algorithm in QŒX �. Multiplying g by a suitable scalar, we may assume
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that the coefficients of g are in Z and generate the unit ideal of Z. Factor g and
f=g recursively into irreducible factors in QŒX �, and combine their factoriza-
tions into the factorization of f .

Correctness of the algorithm. The proof that the algorithm, as described, runs in
polynomial time, is largely routine. The only point worth emphasizing is that,
by a very weak form of the prime number theorem, the prime number p chosen
in (a) is small enough for Berlekamp’s algorithm to run in time polynomial in
the length of the input data for our factoring algorithm. For more details on the
run time analysis one may consult the original article [Lenstra et al. 1982].

The correctness of the algorithm, in particular of step (f), follows from the
equivalence of the following statements: (i) f is reducible; (ii) we have

q.b1/� 2n�1
�

�
2.n � 1/

n � 1

�
� q.f /I

(iii) f and b1 have a common factor of positive degree in ZŒX �. The implication
(iii) ) (i) follows from deg b1 < n D degf . To prove (i) ) (ii), denote by
g the irreducible factor of f in ZŒX � for which h0 divides .g mod p/; from
�.f / 6� 0 mod p it follows that g exists and is unique up to sign. By Hensel’s
lemma, .h mod p�/ divides .g mod p�/ in .Z=p�Z/ŒX �. Also, if we assume
(i), then we have deg g < n, and therefore g 2 L. A very general inequality of
Mignotte [1974] on factors of polynomials implies

q.g/�

�
2 deg g

deg g

�
� q.f /�

�
2.n � 1/

n � 1

�
� q.f /:

Since b1; : : : ; bn is a 2-reduced basis for L (see the end of Section 11), we have
q.b1/ � 2n�1 � q.g/, which leads to (ii). Finally, the inequalities in (ii) and (c)
imply that the conditions of the Proposition are satisfied for m D p� and g D b1,
and this leads to a proof of (ii) ) (iii).

Global fields. The factoring algorithm in QŒX � described above admits a gen-
eralization to KŒX1; : : : ;Xt �, for any global field K and any positive integer t .
A significant special case is treated in [Lenstra 1985] by means of a different
notion of lattice, as defined in Section 16 below. For a good general discussion
with references, see [von zur Gathen and Gerhard 1999, Chapters 15 and 16].

Van Hoeij’s algorithm. The reader may have noticed that, for practical pur-
poses, the factoring algorithm as described allows many improvements. There
is no need to care about these, since in virtually all practical situations there are
other algorithms with a better performance. The chief one among these is van
Hoeij’s algorithm, which applies lattice basis reduction in an altogether different
manner. We sketch the basic idea, without paying attention to refinements of
practical value.
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Let f 2 ZŒX � be a monic polynomial to be factored in irreducible factors in
QŒX � or, equivalently, in ZŒX �. Put n D degf . As in the previous algorithm,
one starts by choosing a prime p of Q, but next, instead of finding a good
approximation to a single p-adic zero ˛ of f , one finds good approximations
ˇ1; : : : ; ˇn to all zeros ˛1; : : : ; ˛n of f in a suitable finite extension K of the
completion Qp of Q at p. These approximations are found by means of tech-
niques from classical or p-adic numerical analysis. Every monic factor g of
f is of the form

Q
i2I .X � ˛i/ for some subset I � f1; 2; : : : ; ng, and for

g to have coefficients in Z it is necessary that
P

i2I ˛i ,
P

i2I ˛
2
i , . . . are in

Z, and hence that
P

i2I ˇi ,
P

i2I ˇ
2
i , . . . are p-adically very close to elements

of Z. Thus, van Hoeij’s algorithm proceeds by choosing a positive integer m and
searching for an integer vector .ki/

n
iD1

with the property that each of
Pn

iD1 kiˇi ,Pn
iD1 kiˇ

2
i ; : : : ;

Pn
iD1 kiˇ

m
i is very close to an integer. This can be done by

means of lattice basis reduction, the construction of the lattice being similar to
the constructions shown in Section 7. If the only vectors that one finds have all
ki equal, then one declares f to be irreducible; if not all ki are equal, then for
each k that occurs among the ki one computes

Q
i; ki Dk.X �ˇi/, and one hopes

to be able to round its coefficients to integers and obtain a non-trivial factor of f .
Using different vectors .ki/

n
iD1

one may even hope to find the full factorization
of f into irreducible factors in ZŒX � in this way. This strategy often works for
very small values of m, such as m D 1 or 2. If it doesn’t work, then one increases
the value of m and tries again.

Van Hoeij’s algorithm presents a number of interesting mathematical prob-
lems. The first is to give a version that can be rigorously analyzed and that runs
in polynomial time. The second is to extend the algorithm from QŒX � to KŒX �,
for any global field K, including the case of positive characteristic. Neither of
these problems is trivial, but they do admit solutions, see [Belabas et al. 2004].
The solution to the first problem uses an unrealistically large value for m, namely
m D n�1. One may wonder whether smaller values of m can be proved to work
in all cases.

14. Linear algebra over the ring of integers

Lattice basis reduction is useful in solving linear algebra problems over Z.
Examples of such problems are: given an m � n matrix F with integral entries,
find bases both for the kernel and for the image of the group homomorphism
Zn ! Zm mapping x 2 Zn to F �x 2 Zm; and given such a matrix F, and b 2 Zm,
determine all x 2 Zn with F � x D b.

The problems that we shall consider are purely linear, and their formulation
does not refer to a lattice structure. Lattices are nevertheless useful in their
solution, because they provide a natural way of coping with a difficulty that the
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more traditional approach, which depends on the Hermite normal form of an
integer matrix (see [Cohen 1993, Section 2.4]), runs into. The straightforward
algorithm for computing the Hermite normal form (see [Cohen 1993, Algorithm
2.4.4]) suffers from serious coefficient blow-up, and is therefore not expected
to run in polynomial time. Preventing coefficient blow-up is tantamount to con-
trolling the Euclidean length of the vectors that one works with, and that is what
lattice algorithms are designed to do.

We shall in this section have occasion to endow groups of the form Zk , with k

a non-negative integer, with several different lattice structures; the notation k k2

will always be reserved for the standard lattice structure, defined by kxk2 DPk
iD1 x2

i for x D .xi/
k
iD1

2 Zk .

Kernels, images, and reduced bases. Let n and m be non-negative integers, and
let f W Zn ! Zm be a group homomorphism. Denote by F the m�n matrix over
Z with the property that for all x 2 Zn one has f .x/ D F � x; so the columns
of F are the images of the standard basis vectors of Zn under f . The following
result shows how one can define a lattice with the property that bases for the
kernel and the image of f can be read off from a reduced basis for the lattice.

PROPOSITION. Let n, m, f , F be as above, and write r for the rank of F. Let
F be a real number such that the absolute value of any entry of F is at most F ,
and let c and N be real numbers with

c � 4=3; N > cn�1
� .r C 1/ � r r

� F2r :

Let the lattice L, q be defined by L D Zn and

q.x/D kxk
2

C N � kf .x/k2 for x 2 Zn;

and let b1; : : : ; bn be a c-reduced basis for this lattice. Then we have:

(a) q.bi/ <N for 1 � i � n � r ;
(b) b1; : : : ; bn�r form a basis for kerf over Z;
(c) q.bi/� N for n � r < i � n;
(d) f .bn�rC1/; : : : ; f .bn/ form a basis for f .Zn/ over Z.

Proof. For notational convenience we may assume that the standard basis vec-
tors of Zn are numbered in such a way that the first r columns of F are linearly
independent. Let r <h�n. By Cramer’s rule, there is a non-trivial linear depen-
dency among the first r columns and the h-th column of F, with coefficients that
are r � r minors of F. This dependency gives rise to an element x D .xi/

n
iD1

of
kerf with xh ¤ 0 and xi D 0 for all i > r with i ¤ h. By Hadamard’s inequality
we have jxi j�r r=2F r for all i , and therefore q.x/Dkxk2 � .rC1/�r r �F2r . The
n�r vectors obtained in this way for h D r C1; : : : ; n are linearly independent,
so for each i �n�r the i-th successive minimum �i.L/, as defined in Section 10,
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satisfies �i.L/ � .r C 1/ � r r � F2r . By the Proposition in Section 10, we now
have

q.bi/� cn�1
��i.L/� cn�1

� .r C 1/ � r r
� F2r <N for i � n � r:

This proves (a). The definition of q implies that every x 2 L with q.x/ <N

belongs to ker f . Thus, from (a) we see that kerf contains the linearly inde-
pendent vectors b1; : : : ; bn�r . By linear algebra, the null space of F on Qn has
Q-dimension equal to n � r and is therefore spanned by b1; : : : ; bn�r . Conse-
quently, inside Qn we have

kerf D

� n�rX
iD1

Qbi

�
\ Zn

D

n�rX
iD1

Zbi ;

the latter equality because b1; : : : ; bn form a basis for Zn over Z. This proves (b).
It follows that for each i > n � r we have bi 62 kerf and therefore q.bi/ � N ,
which is (c). Finally, (d) follows from (b) and the homomorphism theorem from
elementary group theory. This proves the Proposition.

The kernel and image algorithm. We describe an algorithm that, given non-
negative integers n and m and a group homomorphism f W Zn ! Zm, determines
the kernel and the image of f . Here f is specified by an m�n matrix F over Z,
as above. The kernel of f is required to be specified by a sequence of vectors
in Zn that form a basis for kerf over Z, and likewise for the image of f in Zm.

One starts by defining F to be the maximum of the absolute values of the
entries of F, with F D 0 if nm D 0. One chooses c D 2, and one chooses N to
be an integer exceeding 2n�1 �.r C1/ �r r �F2r , where r denotes the rank of F; if
the value of r is not known, one just uses the upper bound r � minfn;mg. Next,
one applies the LLL algorithm to find a c-reduced basis b1; : : : ; bn for L. By the
Proposition, the bi with q.bi/ <N form a basis for kerf , and the images of the
other bi under f form a basis for the image of f . This completes the description
of the algorithm. With a proper choice of N , this algorithm is readily shown to
run in polynomial time.

Ordered vector spaces. We discuss a modification of the algorithm just de-
scribed that both improves its practical performance and has theoretical interest.
The modification consists of not choosing an actual value for N , but viewing it
as an ‘indefinitely large’ symbol. More rigorously, one redefines the function q

on L by q.x/D .kxk2; kf .x/k2/; its values are not in R, but in the real vector
space R�R, which one endows with a total ordering by putting .r1; r2/>.s1; s2/

if and only if either r2 > s2, or r2 D s2 and r1 > s1 (the anti-lexicographic
ordering). To capture the structure L, q defined in this manner in a theoretical
framework, one is led to define a generalized notion of Euclidean vector space,



LATTICES 165

in which the real-valued inner product h ; i defined on E � E, as considered in
Section 2, is replaced by one that takes values in a totally ordered real vector
space; in addition to the axioms from Section 2, one requires that for any x,
y 2 E there exists r 2 R with hx;yi � rhx;xi. It appears to be both worthwhile
and feasible to define a correspondingly generalized notion of lattice, and to
formulate conditions under which a natural extension of the LLL algorithm
terminates in polynomial time. This theory, yet to be developed, should con-
firm that the modified kernel and image algorithm, and similar algorithms to
be discussed below, run in polynomial time. The implications for diophantine
approximation, where large weights N are also encountered (see Section 7), are
worth exploring as well.

Solving a system of linear equations over Z. Let m and n be non-negative in-
tegers, let F be an m � n matrix over Z, and let b 2 Zm. We are interested in
finding all x 2 Zn with F � x D b.

Define the group homomorphisms gW Zn�Z D ZnC1 ! Zm and hW Zn�Z ! Z

by g.x; z/D F �x �z �b and h.x; z/D z, for x 2 Zn, z 2 Z. Clearly, there exists
x 2 Zn with F �x D b if and only if 1 belongs to the image under h of the kernel
of g. Thus, one can decide whether the equation F � x D b is solvable with
x 2 Zn by performing the kernel and image algorithm twice. Actually, a single
application of the LLL algorithm suffices, and the resulting algorithm does not
only decide solvability, but in fact describes the set of all solutions. It runs as
follows.

Let N and M be suitably chosen large integers with N � M , and make the
group L D Zn � Z into a lattice by putting

q.x; z/D kxk
2

C M � z2
C N � kF � x � z � bk

2 for x 2 Zn; z 2 Z:

Use the LLL algorithm to determine a 2-reduced basis b1; : : : ; bnC1 for L. Then
F � x D b has a solution x 2 Zn if and only if there exists an index j with
M � q.bj / < 4M ; moreover, if such an index exists, then it is unique, and
the following is valid: each bi with i < j is of the form .b0

i ; 0/ with b0
i 2 Zn,

the z-coordinate of bj equals ˙1, and if x0 2 Zn is defined by ˙bj D .x0; 1/,
then x D x0 is a solution to F � x D b, whereas the general solution is given by
x D x0 C

Pj�1
iD1

kib
0
i with k1; : : : ; kj�1 2 Z.

One can show that the assertions just made are correct if M > 2n �.r C1/ �r r �

F2r and N > 2n �.r CM /�r r �F2r , where r equals the rank of F and F 2 Z is an
upper bound for the absolute values of all entries of F and b. As a consequence,
one obtains a polynomial-time algorithm for solving F � x D b over Z. Alterna-
tively, one may redefine q to take values in the anti-lexicographically ordered
real vector space R � R � R, by putting q.x; z/D

�
kxk2; kzk2; kF � x � z � bk2

�
,

and invoke the generalized algorithmic theory of lattices alluded to above.
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The Chinese remainder theorem. Suppose one is given a positive integer k, a
sequence m1; : : : ;mk of pairwise coprime positive integers, as well as a se-
quence r1; : : : ; rk of integers, and that one is interested in finding an integer
x satisfying the k congruences x � ri mod mi (1 � i � k). The problem is
equivalent to finding a vector .x;y1; : : : ;yk/ 2 ZkC1 satisfying the system of
linear equations x�yimi D ri (1 � i � k), and can thus be solved in polynomial
time by the linear algebra algorithm just explained. There is also a more direct
approach (see [Knuth 1981, Section 4.3.2]), and the reader is invited to make a
comparison of run times.

The generalized extended Euclidean algorithm. We revisit a problem considered
earlier. Let, slightly more generally than in Section 8, a non-negative integer k

as well as integers a1; : : : ; ak be given; we want to compute an integer d withPk
iD1 Zai D Zd , as well as ‘small’ integers x1; : : : ;xk with

Pk
iD1 xiai D d .

As in the linear algebra problem just considered, let N and M be suitably
large positive integers with N � M , and make the group ZkC1 into a lattice by
putting

q.x1; : : : ;xkC1/D

� kX
iD1

x2
i

�
C M � x2

kC1 C N �

�
xkC1 �

kX
iD1

xiai

�2
:

Let b1; : : : ; bkC1 be a 2-reduced basis for this lattice. If there is an index j with
M � q.bj / <N , and bj D .xi/

kC1
iD1

, then for d DxkC1 one has
Pk

iD1 Zai DZd

and
Pk

iD1 xiai D d . If no such index j exists, then all ai are 0, and one can
take d and all xi to be 0 as well. The details, and the proof that the resulting
algorithm runs in polynomial time, may again be left to the reader.

The nearest vector problem. The problem that we just discussed, was in Sec-
tion 8 identified as a special case of the nearest vector problem. The general near-
est vector problem admits a similarly direct solution by means of lattice basis re-
duction. Namely, suppose one is given a lattice L in a Euclidean vector space E,
as well as an element x 2E, and that one wants to find y 2L with q.x�y/ small.
Define a lattice L0, q0 by putting L0 D L�Z and q0.y; z/D q.y�zx/CN �z2 for
y 2 L, z 2 Z, where again N is chosen large enough or indefinitely large. Only
the last basis vector of a c-reduced basis b1; : : : ; brk L0 for L0 will then have a
non-zero z-coordinate, and that z-coordinate will be ˙1; if ˙brk L0 D .y; 1/,
with y 2 L, then y is a ‘good’ solution to the nearest vector problem. This
solution is essentially the same as the one constructed in Section 10.

Operations on subgroups. Let n be a non-negative integer. The kernel and image
algorithm can be used to perform several operations on subgroups of Zn. We
give a number of examples; it is always assumed that, for algorithmic purposes,
a subgroup H � Zn is specified by means of a sequence of elements of Zn that
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is a basis for H over Z. All algorithms to be described run in polynomial time,
n being viewed as part of the input.

Let H1 and H2 be two subgroups of Zn, and consider the group homomor-
phism H1�H2 ! Zn sending .x;y/ to x�y. Its image is the subgroup H1CH2

of Zn, and its kernel can in an obvious manner be identified with H1\H2. Thus,
from the kernel and image algorithm one obtains bases for both H1 C H2 and
H1 \ H2 over Z. In fact, in the case of H1 \ H2, one obtains three expressions
for the same basis: one in terms of the given basis for H1, one in terms of the
given basis for H2, and one in terms of the standard basis for Zn.

Let H be a subgroup of Zn, and let F be an n � .rk H / matrix over Z of
which the columns form a basis for H over Z. The transpose of F may be
viewed as the matrix that describes the map 'W Zn ! Hom.H;Z/ defined by
'.x/.y/ D hx;yi for x 2 Zn, y 2 H , where h ; i denotes the standard inner
product on Zn. Applying the kernel and image algorithm, one obtains a basis
for H ? D ker' D fx 2 Zn W hx;yi D 0 for all y 2 H g. Doing this again,
one obtains a basis for H ??, which equals the subgroup .Q � H /\ Zn of Zn.
Simultaneously, one obtains a basis for Zn=H ??, which may be identified with
the group Zn=H modulo its torsion subgroup.

Define the degree deg x of a non-zero vector x D .xi/
n
iD1

2 Zn to be maxfi W

xi ¤ 0g. It is well-known that any subgroup H � Zn has a basis b1; : : : ; brk H

with the property that deg bi is strictly increasing as a function of i . To compute
such a basis from a given basis for H , it suffices to apply lattice basis reduction
to the lattice H , q, where q is defined by

q.x1; : : : ;xn/D

nX
iD1

Nix
2
i ;

for suitable integers Ni with Nn � Nn�1 � � � � � N2 � N1 D 1; again, the
formalism involving ordered vector spaces would be applicable here. The same
technique can be used to compute the Hermite normal form of an integer matrix
by means of lattice basis reduction.

I do not know whether lattice basis reduction algorithms may assist in com-
puting the Smith normal form of an integer matrix (see [Cohen 1993, Section
2.4.4]), or how useful they are in doing computations with finitely generated
abelian groups that are allowed to have torsion.

15. Nonlinear problems

In Section 13 we saw that lattices can be used to solve the nonlinear problem
of factoring in the ring QŒX �. There is in fact a surprisingly large class of nonlin-
ear problems that can be solved by means of lattices. In the present section we
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describe a general technique, and we illustrate it with three examples. Related
methods are well-known in the area of diophantine approximation, where they
are used to prove upper bounds for the number of integral solutions to certain
systems of equations that satisfy certain inequalities (see [Heath-Brown 2002]).
It is a more recent insight that in many cases these solutions can be efficiently
enumerated by means of lattice basis reduction. One may consult [Bernstein
2008] for a different perspective, for references, and for a historical discussion,
and [Elkies 2000] for an account of a very similar technique, with additional
applications.

Let V be an affine algebraic set defined over R, embedded in affine t -space
At

R, for some non-negative integer t ; so the coordinate ring RŒV � is equal to
RŒX1; : : : ;Xt �=I for some ideal I of the polynomial ring RŒX1; : : : ;Xt �. The
set V .R/ of real points of V is defined by fx 2 Rt W f .x/ D 0 for all f 2 Ig.
By abuse of notation, we write V .Z/D V .R/\ Zt . Suppose in addition that B

is a subset of Rt for which B \ V .R/ is bounded. Then the set S D B \ V .Z/

is finite. We assume that one is interested in determining upper bounds for #S

and, if I and B are given in some explicit manner, in algorithms for listing all
elements of S .

The lattice-based technique that applies in this context, produces a non-zero
element g 2 RŒV � that vanishes on S , so that S remains unchanged if V is
replaced by the affine algebraic set W defined by RŒW �D RŒV �=.g/, which can
in principle be dealt with recursively.

In many situations of interest, the variety V is an irreducible curve. In that
case, the zero set of g on V , which contains S , is finite; the lattice method gives
an upper bound for its cardinality, and in algorithmic circumstances it is usually
easy to first compute all zeros of g in V .Z/ and next check them one by one for
membership of S .

Examples. Rather than attempting to formulate general conditions under which
the technique is useful, we describe three problems from algorithmic number
theory to which it has been successfully applied. In each case, the efficiency of
the resulting algorithm is contingent upon inequalities satisfied by the problem
parameters.

(a) Zeros of polynomials modulo n. Suppose one is given integers a, b, and
n with a < b and n > 0, as well as a monic polynomial p 2 ZŒX �, and that
one is interested in the set of all x 2 Z with a � x � b and p.x/ � 0 mod n.
Then one can take t D 2, and V to be the algebraic subset of real affine 2-space
defined by the equation p.x/D n �y; that is, one has RŒV �D RŒX;Y �=.p�nY /.
Note that the natural map RŒX � ! RŒV � is a ring isomorphism, so that V is
actually isomorphic to the affine line over R, which is an irreducible curve.
With B D f.x;y/ 2 R2 W a � x � bg, the set S D B \V .Z/ defined above maps
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bijectively to the set fx 2 Z W a � x � b, p.x/� 0 mod ng that one is interested
in, by the projection map .x;y/‘ x.

(b) Divisors in residue classes. Suppose one is given positive integers u, v,
and n with gcd.u; v/D 1, and that one is interested in the set of divisors x of n

that satisfy x �u mod v. In this case, one can take t D3 and define V by xy Dn,
x D uCvz. Then one has RŒV �D RŒX;Y;Z�=.XY �n;X �u�vZ/, and there
is an R-algebra isomorphism from the ring RŒX;X �1� of Laurent polynomials
in X over R to the ring RŒV � that maps X to X and X �1 to Y=n. Hence, V

is isomorphic to the affine line with a single point removed, which is again an
irreducible curve. With B D f.x;y; z/ 2 R3 W 1 � x � ng, the set S D B \V .Z/

may again be identified with the set one is interested in.
(c) Diophantine approximation with restricted denominators. Let ˛ be a real

number and let n be a positive integer. We suppose that one is interested in
‘good’ rational approximations y=z to ˛, with y, z 2 Z, z > 0, of which the
denominator z is ‘small’ and satisfies the additional restriction that it divide n.
Denote by Œa=n; b=n� the interval around ˛ that one wishes y=z to belong to,
with the endpoints properly rounded to integer multiples of 1=n, so that a, b 2

Z, a < b. We shall always assume b � a < n, since otherwise the interval
Œa=n; b=n� contains rational numbers with any given denominator. Write m for
the desired upper bound on z. We can now take t D 3, define the surface V

by xz D ny, and put B D f.x;y; z/ 2 R3 W a � x � b, 1 � z � mg. One
has RŒV �D RŒX;Y;Z�=.XZ �nY /, and the natural map RŒX;Z�! RŒV � is an
isomorphism. The set S D B\V .Z/maps bijectively to the set one is interested
in, by .x;y; z/‘ y=z.

If two distinct rational numbers in Œa=n; b=n� each have denominator at most
m, then their difference is a non-zero rational number of absolute value at most
.b � a/=n with denominator at most m2, so that .b � a/=n � 1=m2. Thus, for
m<

p
n=.b � a/ the number y=z is unique if it exists. One can find it using con-

tinued fractions or two-dimensional lattice basis reduction, as in Section 7. This
approach, however, disregards the requirement that z divide n. The approach of
the present section does take that requirement into account, and it allows larger
values for m to be taken. More specifically, if " is such that b � a D n", then
Proposition C below shows that instead of m<

p
n=.b � a/D n.1�"/=2 we can

allow m< n� for any � < 1 �
p
"; note that one has .1 � "/=2< 1 �

p
".

The equation xz D ny defining V is homogeneous in y and z, so it may
also be thought of as defining a curve V 0 in the product of the affine line A1

R

parametrized by x and the projective line P1
R parametrized by y W z. One may

then view V as a ‘cone’ over V 0, the ‘top’ of the cone being the line in A3
R

defined by y D z D 0. We will be careful to construct the non-zero element
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g 2 RŒV � in such a way that it will likewise be homogeneous in Y and Z, so
that g D 0 defines a finite set of points in V 0.

The following result shows the relevance of lattices for the type of problem we
are considering. Let the notations V , RŒV �, V .R/, V .Z/, B, S be as introduced
at the beginning of this section.

LEMMA. Let L, q be a non-zero lattice and let c be a positive real number such
that:
(i) the group L is a subgroup of the additive group of RŒV � with the property

that each f 2 L is integral-valued on V .Z/,
(ii) for each x 2 B \ V .R/ and each f in the R-linear span of L, one has

jf .x/j � c � q.f /1=2,
(iii) one has c �

p
rk L � d.L/1=rk L < 1.

Then there exists a non-zero element g 2 L such that for all x 2 S one has
g.x/D 0.

PROOF. By the theorem of Minkowski (Section 6), we can choose a non-zero
element g 2 L with q.g/ � .rk L/ � d.L/2=rk L. Let x 2 S . Applying (ii) to
f D g we obtain jg.x/j � c �

p
rk L �d.L/1=rk L, so by (iii) we have jg.x/j< 1.

Since by (i) we have g.x/2 Z, we obtain g.x/D 0. This proves the Lemma. �

In algorithmic circumstances, one replaces the theorem of Minkowski by a lat-
tice basis reduction algorithm. This allows the actual construction of a non-zero
element g 2 L that vanishes on S , provided that the condition (iii) is replaced
by a slightly stronger one. Specifically, if one makes use of 2-reduced bases,
then the factor

p
rk L in (iii) should be replaced by 2.rk L�1/=4.

The integrality condition (i) of the Lemma is satisfied if L is chosen inside
the image of the ring ZŒX1; : : : ;Xt � in RŒX1; : : : ;Xt �=I D RŒV �. (Alternatively,
the ring of integral-valued polynomials, which is generated by˚�

Xi

j

�
W 1 � i � t; j 2 Z�0

	
;

can be used.) Condition (ii) is, under weak conditions, probably automatic for
some value of c; to keep c small, with an eye on (iii), one adapts the choice
of q to the set B, as illustrated in the examples below. The inequality in (iii)
expresses the condition under which the technique under discussion is useful.

Several strategies are available if (iii) is not satisfied. One strategy, which
we shall follow in the proof of Proposition B below, is to cut up B into several
pieces, each piece having its own L, q and a smaller value for c. Alternatively,
one may decide to be satisfied with an element g 2 L with the weaker property
that the zeros of g�i cover all of S when i ranges over all integers with ji j below
a certain bound; to avoid the possibility that one of these g�i is identically zero
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(that is, g D i in RŒV �), one may have to find a non-zero element in the lattice
L=.L \ Z/ instead of in L itself.

We return to our examples and illustrate how suitable lattices may be con-
structed.

PROPOSITION A. There is a function ˛W Z>0 ! R>0 with limm!1 ˛.m/ D

1= log 2 such that for any integers a, b, n and any polynomial p 2 ZŒX � with

p 62 Z; p monic; n> 1; 0< b � a � n1= deg p;

the number of integers x with a � x � b and p.x/� 0 mod n is at most deg pC

˛.n/ � log n. In addition, there is a polynomial-time algorithm that given such a,
b, n, and p, determines all those x.

PROOF. We write d D deg p, and we let h be the least positive integer satisfying
the inequality 2dh�1 > .dh/2 � n1�1=d . One readily checks that one has dh <

deg p C ˛.n/ � log n for a function ˛ as in the Proposition, so to prove the first
statement it suffices to show that the number of desired values for x is smaller
than dh.

Define L to be the additive group of polynomials in the subring ZŒX;p=n� of
RŒX � that have degree smaller than dh. Then L is a free abelian group of rank
dh, with basis fX i.p=n/j W 0 � i < d , 0 � j <hg, and it contains

Pdh�1
iD0 Z � X i

as a subgroup of index ndh.h�1/=2. To endow L with a lattice structure, write any
polynomial f 2 RŒX � with degf < dh in the form f D

Pdh�1
iD0 ci

�
X �

bCa
2

�
i

with ci 2 R, and put q.f /D
P

i c2
i

�
b�a

2

�
2i . This makes L into a lattice, and a

straightforward calculation gives

d.L/D

�
b�a

2

�dh.dh�1/=2
� n�dh.h�1/=2:

For any real number x with a � x � b one has


x�.bCa/

2



ı
b�a

2
� 1, so the

Cauchy–Schwarz inequality implies jf .x/j � .dh � q.f //1=2 for any f 2 RŒX �

with degf <dh. We can now apply the Lemma with c D
p

dh. Condition (iii) is

dh �

�
b�a

2

�.dh�1/=2
� n�.h�1/=2 < 1:

From b �a � n1=d and the choice of h it follows that this condition is satisfied.
The Lemma now implies that there is a non-zero polynomial g 2 QŒX � of degree
smaller than dh that has all x 2 Z with a � x � b and p.x/� 0 mod n among
its zeros. It follows that the number of those x is smaller than dh, as desired.

It is straightforward to convert the proof just given into a polynomial-time al-
gorithm finding all desired values of x. Instead of the version of the Lemma that
depends on Minkowski’s theorem, one uses the algorithmic version, in which
(iii) is replaced by a stronger condition. Thus, h needs to be chosen somewhat
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larger, but one can still assure that dh is small enough for the algorithm to run
in polynomial time. Basis reduction yields a polynomial g of degree smaller
than dh as above. All of its integral zeros can be determined by the method of
Section 13, and these can be checked one by one. This proves Proposition A. �

The exponent 1=deg p in Proposition A is best possible as a function of deg p.
Namely, for any integer d > 1 and any real number � > 1=d , the number of
x 2 Z with 0 � x � n� that are zeros of p D X d modulo an integer n that
is a d -th power, grows exponentially with log n; thus, there does not exist a
polynomial-time algorithm for enumerating all those x.

PROPOSITION B. There is a positive real number ˇ such that for any three
integers u, v, n with

gcd.u; v/D 1; n> 1; v � n1=4;

the number of positive divisors x of n with x � u mod v is at most ˇ � .log n/2.
In addition, there is a polynomial-time algorithm that given such u, v, n, deter-
mines all those x.

PROOF. Any divisor of n that is congruent to u mod v is coprime to v. Hence,
replacing n by the largest divisor of n that is coprime to v (and dealing separately
with the case in which this divisor equals 1), we may assume gcd.n; v/D 1. We
shall do this throughout the proof.

Let a, b, h be positive integers with b > a. We start by establishing, under
suitable conditions, an upper bound for the number of divisors x of n with
a � x � b and x � u mod v, the number h being an auxiliary parameter.

The lattice to be used is of full rank in the .2hC1/-dimensional subspacePh
iD�h R � X i of the ring RŒX;X �1� of Laurent polynomials over R. On this

vector space, we define a positive definite quadratic form q by

q.f /D

hX
iD0

c2
i �

�
b�a

2

�2i
C

hX
iD1

d2
i �

�
a�1�b�1

2

�2i

if

f D

hX
iD0

ci �

�
X �

bCa

2

�i
C

hX
iD1

di �

�
X �1

�
a�1Cb�1

2

�i
; ci ; di 2 R:

As in the previous proof, for any such f and any x 2 R with a � x � b one
has jf .x/j � ..2h C 1/ � q.f //1=2, so that condition (ii) of the Lemma will be
satisfied with c D

p
2h C 1.

One checks that the lattice L0 D
Ph

iD�h Z � X i in
Ph

iD�h R � X i has deter-
minant

d.L0/D

�
b�a

2

�h.hC1/=2
�

�
a�1�b�1

2

�h.hC1/=2
:
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Write Y D n � X �1. Then the elements of the sublattice L1 D
Ph

iD0 Z � X i CPh
iD1 Z � Y i of L0 are integral-valued on the set of divisors of n. One has

.L0 W L1/D nh.hC1/=2 and therefore

d.L1/D

�
b�a

2

�h.hC1/=2
�

�
n=a�n=b

2

�h.hC1/=2
:

Write Z D .X � u/=v. Then all elements of the lattice L D L1 C
P2h

iD0 Z �

Y hZi �
Ph

iD�h R � X i are integral-valued on the set of divisors x of n with
x � u mod v. From gcd.n; v/D 1 one deduces .L W L1/D vh.2hC1/, so

d.L/D

�
b�a

2

�h.hC1/=2
�

�
n=a�n=b

2

�h.hC1/=2
� v�h.2hC1/:

Now the Lemma shows: if h satisfies the inequality

.2h C 1/2 �

�
b�a

2

�h.hC1/=.2hC1/
�

�
n=a�n=b

2

�h.hC1/=.2hC1/
� v�2h < 1;

then there exists a non-zero element g 2 L that has all divisors x of n with
x � u mod v and a � x � b among its zeros, so that the number of such x is at
most 2h.

To investigate which values of h satisfy the inequality, we restrict to the case
b D 2a. Then one has ..b � a/=2/ � .n=a � n=b/=2 D n=8. From v � n1=4 one
now deduces that the inequality for h is satisfied if

.2h C 1/2.2hC1/
� nh=2 < 8h.hC1/:

Such a value for h can be chosen to satisfy h � ı � log n for some positive
constant ı. Thus, we have shown that for any positive integer a, the number
of divisors x of n with x � u mod v and a � x � 2a is at most 2ı log n.
We apply this to a D 1, 2, 4, . . . , 2t , where t is maximal with 2t < n. It
follows that the number of positive divisors x of n with x � u mod v is at most
.1 C .log n/= log 2/ � 2ı log n. This implies the first statement of Proposition B.

The conversion of the proof just given into a polynomial-time algorithm fol-
lows the same lines as in the case of Proposition A. This proves Proposition B.

�

The lattice L used in the proof just given equals the intersection of
Ph

iD�h R�X i

with the subring ZŒX;Y;Z� of RŒX;X �1�. The reader may verify that use of the
lattice L1 C

P2h
iD0 Z � Y h

�
Z
i

�
leads to a notably better result if n has no small

prime factors.
Choosing a different partition of Œ1; n� into intervals Œa; b�, and using the lattice

L D ZŒX;Y;Z�\
Pk

iD�h R � X i for suitable h, k depending on a, b, one can
improve the bound ˇ � .log n/2 given in Proposition B to ˇ � .log n/3=2. This
result is due to D. J. Bernstein [2008, Theorem 6.4].
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Pollard [1974] exhibited a deterministic and fully proved algorithm for fac-
toring integers that runs in time n1=4Co.1/ when the number n to be factored
tends to infinity. His result is still the best that is known. Pollard’s algorithm
depends on fast multiplication techniques. A different algorithm that proves the
same result, and that has excellent parallelization properties, is obtained from
Proposition B, as follows.

COROLLARY. There exists, for some positive real number c, an algorithm that
given a positive integer n, determines the complete prime factorization of n in
time at most n1=4 � .2 C log n/c .

Proof. We give a brief sketch of the algorithm. First, reduce to the case n is
odd. Next, let v be the least power of 2 with v > n1=4, and apply the algorithm
from Proposition B to all odd values of u with 0 < u < v. This gives rise to
a complete list of divisors of n, from which one easily assembles the prime
factorization of n. This proves the Corollary.

PROPOSITION C. (a) Let a, b, n be integers with 0< b � a< n, let " be the real
number with b � a D n", and let � 2 R satisfy � < 1 �

p
". Then there are at

most 3=.1 �
p
"� �/ integers x with a � x � b for which the denominator of

x=n is at most n�.
(b) There is an algorithm that, given integers a, b, n, k, h with h > k > 0

and 0< b � a � nk2=h2

, determines, in time bounded by a polynomial function
of log.jaj C jbj/, log n, and h, all integers x with a � x � b for which the
denominator of x=n is at most n1�k=h�1=.2h/.

PROOF. Let a, b, n be as in (a). We let m be a positive integer, to be thought of
as an upper bound for the denominator of x=n. Further we let h, k be integers
satisfying h> k > 0; these are auxiliary parameters.

We consider full-rank lattices in the h-dimensional subspace
Ph�1

iD0 R �X iZk

of the polynomial ring RŒX;Z�. For f D
Ph�1

iD0ci.X � .b C a/=2/iZk in that
space (ci 2 R), we write

q.f /D

h�1X
iD0

c2
i

�
b�a

2

�2i
� m2k

I

as in the earlier proofs in this section, we have

jf .x; z/j � .h � q.f //1=2

for all x, z 2 R with a � x � b, 1 � z � m.
The lattice L0 D

Ph�1
iD0 Z � X iZk has rank h and

d.L0/D

�
b�a

2

�h.h�1/=2
� mkh:
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Write Y D XZ=n. The lattice L D
Pk

iD0 Z � Y iZk�i C
Ph�k�1

jD1 Z � X j Y k inPh�1
iD0 R � X iZk contains L0 as a sublattice of index nkh�k.kC1/=2, so one has

d.L/D

�
b�a

2

�h.h�1/=2
� mkh

� n�khCk.kC1/=2:

All f 2 L are integral-valued on the set of pairs of integers .x; z/ for which
x=n has denominator dividing z.

Now the Lemma implies: if m, h, k satisfy the inequality

h2

2h�1
� .b � a/h�1

� m2k
� n�2kCk.kC1/=h < 1;

then there is a non-zero polynomial g 2 QŒX � with deg g< h that has among its
zeros all integers x with a � x � b for which x=n has denominator at most m,
so that the number of such x is at most h � 1. For example, with h D 2, k D 1

this shows that x is unique (if it exists) whenever m<
p

n=.b � a/=
p

2, which
is slightly weaker than what we saw earlier.

To prove (a), put "D .log.b � a//= log n as in (a), and let � < 1 �
p
". Since

we know that there is at most one x as in (a) if � < .1 � "/=2, we may assume
� � .1 � "/=2. Then we have 1 �

p
"� � < 1=2. Choose h to be the unique

integer with 1=h < .1 �
p
"� �/=3 � 1=.h � 1/ and k to be the least integer

with k � h
p
". Then one verifies that we have 0< k < h and

h � 7;
1

2
�

�
h�1

k
� "C

kC1

h

�
< 1 � �:

This implies that h, k, and m D bn�c satisfy the inequality above, so the number
of x is at most h � 1, which by the choice of h is at most 3=.1 �

p
"� �/. This

proves (a).
The proof of (b) follows the same lines as before. It depends on the inequality

1

2
�

�
h�1

k
�
k2

h2
C

kC1

h

�
<

k

h
C

1

2h
:

Note that replacing k, h by 4k, 4h, if necessary, one may assume h � 7. This
proves Proposition C. �

REMARK. No particular effort has been spent on optimizing the constant 3 in
the bound 3=.1�

p
"��/ in (a). A more pressing issue is to decide whether the

number of x in (a) may be bounded above by a continuous function of " alone.

Error correction in Z=nZ. The result just proved admits an attractive reformu-
lation in the terminology of coding theory. Let n be an integer with n > 1.
We define an ‘n-adic’ metric d on the underlying set of the ring Z=nZ by
putting d.r; s/ D .log #J /= log n, where J is the ideal of Z=nZ generated by
r � s; the reader may verify that d is indeed a metric, and that the maximal
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value assumed by d equals 1. This metric is closely related to the Hamming
metric from coding theory (see [van Lint 1982]). To see this, assume mo-
mentarily that n is squarefree, write P for the set of prime factors of n, and
identify Z=nZ with

Q
p2P Z=pZ through the ring isomorphism sending r to

.r mod p/p2P . Two ‘vectors’ .rp/p2P , .sp/p2P in
Q

p2P Z=pZ have Ham-
ming distance #fp W rp ¤ spg, whereas their newly defined distance equals�P

p; rp¤sp
log p

�
=

P
p2P log p; thus, d is a weighted version of the Hamming

distance, the weights having been normalized such that the maximum distance
equals 1.

Note that, for general n and all x, x0 2 Z, the denominator of .x � x0/=n

equals nd.x modn; x0 modn/.
Next let, in addition to an integer n> 1, two integers a, b with 0< b �a< n

be given, and write

C D f.x mod n/ W x 2 Z; a � x � bg; ı D 1 �
log.b�a/

log n
:

We think of the subset C of Z=nZ as a code, and, as in coding theory, we refer
to ı as the designed distance of C . To justify this terminology, suppose that x,
x0 are integers with a � x < x0 � b. Then we have d.x mod n;x0 mod n/ D

1 � .log gcd.x0 � x; n//= log n � 1 � .log.b � a//= log n D ı, so the ‘distance’
minfd.v; w/ W v, w 2 C , v ¤ wg of C is at least ı. From ı > 0 we also see
that no two distinct integers x, x0 2 Œa; b� are congruent modulo n, so we have
#C D b � a C 1.

For given r 2 Z=nZ, one is now interested in the set of all v 2 C for which
d.v; r/ is small; say, d.v; r/� �, where � is a given real number. For v, w 2 C ,
v ¤w, one has d.v; r/C d.w; r/� d.v; w/� ı, so at most one v 2 C satisfies
d.v; r/ < ı=2. If u 2 Z is such that r D .u mod n/, then the set of all v 2 C

with d.v; r/� � is the same as the set of all .x mod n/Cr , where x ranges over
those integers with a�u � x � b�u for which x=n has denominator at most n�.
Thus, the results of Proposition C can be transposed to the present setting. From
(a) one sees that, for any � < 1 �

p
1 � ı, the number of v 2 C with d.v; r/� �

is at most 3=.1 �
p

1 � ı� �/; note that ı=2< 1 �
p

1 � ı. Similarly, (b) gives
rise to an efficient ‘decoding algorithm’ past half the designed distance.

The analogue of Proposition C in non-zero characteristic, which may be
based on the theory from Section 16 below, has applications to decoding Reed–
Solomon and algebraic geometry codes from conventional coding theory, see
[Guruswami and Sudan 1999; Bernstein 2008, Section 7].
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16. Lattices over polynomial rings

There is an analogue of the notion of lattice in which the role of the ring Z

of integers is played by the ring kŒt � of polynomials in one variable t over a
field k. The theory, to which we alluded in earlier sections, is in substance due
to Mahler [1941]. Some of the main points are presented below, but we have
good reasons to forgo a detailed treatment: from an algorithmic point of view,
the theory has little to offer that one cannot obtain from linear algebra over k;
and from a theoretical point of view the almost equivalent language of vector
bundles over the projective line is more common.

Let k and kŒt � be as above, and let degW kŒt � ! f�1g [ R map each non-
zero polynomial to its degree and 0 to �1. By a kŒt �-lattice we mean a pair
consisting of a finitely generated kŒt �-module L and a function qW L!f�1g[R

with the following properties:

q.x C y/� maxfq.x/; q.y/g

q.cx/D deg c C q.x/

q.x/¤ �1

dimkfx 2 L W q.x/� rg<1

for all x;y 2 L;

for all c 2 kŒt �; x 2 L;

for all x 2 L; x ¤ 0;

for each r 2 R:

The first two properties imply that fx 2 L W q.x/ � rg is a k-vector space for
each r 2 R, so the dimension referred to in the last property is well-defined. To
improve the resemblance to the definition given in Section 2, one may replace q

by the function L!R sending x to exp.q.x//. One often restricts to lattices that
are integral-valued in the sense that the image of q is contained in f�1g [ Z.

Examples. (a) For each � 2 R, an example of a kŒt �-lattice is given by L D kŒt �,
q.f / D � C degf ; this lattice is denoted by O.��/. If L1, q1 and L2, q2

are kŒt �-lattices, then their orthogonal sum is the kŒt �-lattice L D L1 ˚L2 with
q.x1;x2/Dmaxfq1.x1/; q2.x2/g, for x1 2L1, x2 2L2. Somewhat surprisingly,
there exists for every kŒt �-lattice a finite sequence �1; : : : ; �n of real numbers
such that the lattice is, in an obvious sense, isomorphic to the orthogonal sum of
the n lattices O.��i/, 1 � i � n; if we also require �1 � �2 � � � � � �n, then the
�i are uniquely determined as the successive minima of the lattice, and all �i

are in Z if and only if the lattice is integral-valued. Thus, unlike usual lattices,
kŒt �-lattices admit a satisfactory classification.

(b) The reader acquainted with algebraic geometry (see [Hartshorne 1977])
can obtain kŒt �-lattices from vector bundles over the projective line, as follows.
Write A1

k
for Spec kŒt �, and let P1

k
D A1

k
[ f1g be the projective line over k.

If E is a vector bundle over P1
k

, then L D E.A1
k
/ is a kŒt �-lattice, with q.x/ D

minfm 2 Z W x 2 tmE1g for x 2 L, x ¤ 0, and q.0/ D �1. The kŒt �-lattices
obtained in this way are integral-valued, and conversely, each integral-valued
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kŒt �-lattice arises, up to isomorphism, from exactly one vector bundle over P1
k

.
The classification just referred to amounts in this case to Grothendieck’s theorem
describing all vector bundles over the projective line (see [Grothendieck 1957,
Theorem 2.1]).

(c) Just as the ring kŒt � plays the role that in previous sections was played
by Z, so does the field k.t/ of fractions of kŒt � play the role of Q. In Section 3
we obtained examples of lattices from algebraic number fields, and in a similar
way one can obtain kŒt �-lattices from fields that are finite extensions of k.t/. Let
K be such a field, and write A for the integral closure of kŒt � in K. Consider
the set D of all maps d W K ! f�1g [ R satisfying d.xy/D d.x/C d.y/ and
d.x C y/ � maxfd.x/; d.y/g for all x, y 2 K, as well as d.x/ ¤ �1 for all
x ¤ 0 and d.x/ D deg x for all x 2 kŒt �; so the maps �d , for d 2 D, are the
exponential valuations of K that extend the ‘infinite valuation’ �deg of k.t/.
From valuation theory it is well-known that the set D is finite and non-empty.
We may make A into a kŒt �-lattice by putting q.x/ D maxfd.x/ W d 2 Dg for
x 2A. If the infinite valuation is ramified in K, this is an example of a kŒt �-lattice
that is not integral-valued.

(d) The role of Euclidean vector spaces is in the current theory played by
certain normed vector spaces over the completion k.t/1 of k.t/ at the infi-
nite prime. One may identify this completion with the field k..t�1// of for-
mal Laurent series in t�1 over k, and define degW k.t/1 ! f�1g [ R by
deg

�P
i2Z;i�m ai t

i
�

D m for ai 2 k, am ¤ 0, and deg 0 D �1. For integral-
valued lattices, the only normed vector spaces one needs to consider are of the
form E D k.t/n1, with n 2 Z�0, the norm qW E ! f�1g [ R being defined by
q..ci/

n
iD1

/D maxfdeg ci W 1 � i � ng (and q.E/ D f�1g if n D 0). For each
basis b1; : : : ; bn of E over k.t/1, the kŒt �-module L D

Pn
iD1 kŒt � � bi , together

with the restriction of q to L, is an integral-valued kŒt �-lattice. This is the way in
which integral-valued kŒt �-lattices are often represented numerically. In order to
specify the entries of the basis vectors bi by means of a finite number of elements
of k, one may require them to be ‘rational’ in the sense that they belong to the
subfield k.t/ of k.t/1; in algorithmic circumstances, one will also need to place
restrictions on the base field k.

To represent general kŒt �-lattices in a similar way, it suffices to choose real
numbers �1; : : : ; �n and to redefine q on E by q..ci/

n
iD1

/D maxf�i C deg ci W

1 � i � ng.

Basis reduction. Let L, q be a kŒt �-lattice. Then L has a basis as a kŒt �-module,
i.e., a sequence b1; : : : ; bn of elements of L such that the map kŒt �n !L sending
.ci/

n
iD1

to
Pn

iD1 cibi is bijective. A basis b1; : : : ; bn is called reduced if for
each .ci/

n
iD1

2 kŒt �n one has q
�Pn

iD1 cibi

�
D maxfq.cibi/ W 1 � i � ng. The

classification theorem stated in Example (a) is readily seen to imply that each
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kŒt �-lattice has a reduced basis. One may wonder whether there is an algorithmic
version of the classification theorem. In other words, is there an ‘algorithm’ that,
given a kŒt �-lattice L as in Example (d), produces a reduced basis for L? In the
case k is finite and the lattice L � E D k.t/n1 from (d) is a sublattice of kŒt �n,
such an algorithm, running in polynomial time, was exhibited by A. K. Lenstra
[1985, Section 1]. It is not hard to adapt his algorithm to more general situations.

Linear algebra. The reader may enjoy developing the theory further, defining
the determinant of a lattice and finding the analogue of Minkowski’s theorem;
but it is good to realize that almost anything that one can do with kŒt �-lattices
can also be done by means of linear algebra over k. In many applications, one is
interested in the set fx 2 L W q.x/� rg for some kŒt �-lattice L and some r 2 R;
that set is a finite-dimensional k-vector space, and one can usually compute
a k-basis of that vector space using linear algebra over k (see [Lenstra 1985,
Section 1]). Over infinite fields, such as k D Q, linear algebra has the distinct
advantage of offering ready means for controlling coefficient blow-up. For fi-
nite k, however, the linear algebra approach is less efficient than the approach
through kŒt �-lattice basis reduction [Lenstra 1985, Section 1]. This algorithmic
distinction may be the one redeeming feature of the theory of kŒt �-lattices.
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