Algorithmic Number Theory MSRI Publications Volume **44**, 2008

Fast multiplication and its applications

DANIEL J. BERNSTEIN

ABSTRACT. This survey explains how some useful arithmetic operations can be sped up from quadratic time to essentially linear time.

1. Introduction

This paper presents fast algorithms for several useful arithmetic operations on polynomials, power series, integers, real numbers, and 2-adic numbers.

Each section focuses on one algorithm for one operation, and describes seven features of the algorithm:

- Input: What numbers are provided to the algorithm? Sections 2, 3, 4, and 5 explain how various mathematical objects are represented as inputs.
- Output: What numbers are computed by the algorithm?
- Speed: How many coefficient operations does the algorithm use to perform a polynomial operation? The answer is at most $n^{1+o(1)}$, where *n* is the problem size; each section states a more precise upper bound, often using the function μ defined in Section 4.
- How it works: What is the algorithm? The algorithm may use previous algorithms as subroutines, as shown in (the transitive closure of) Figure 1.
- The integer case (except in Section 2): The inputs were polynomials (or power series); what about the analogous operations on integers (or real numbers)? What difficulties arise in adapting the algorithm to integers? How much time does the adapted algorithm take?

Mathematics Subject Classification: Primary 68–02. Secondary 11Y16, 12Y05, 65D20, 65T50, 65Y20, 68W30.

Permanent ID of this document: 8758803e61822d485d54251b27b1a20d. Date: 2008.05.15.

Figure 1. Outline of the paper. A vertex " $\S N$. F" here means that Section N describes an algorithm to compute the function F. Arrows here indicate prerequisite algorithms.

- History: How were these ideas developed?
- Improvements: The algorithm was chosen to be reasonably simple (subject to the $n^{1+o(1)}$ bound) at the expense of speed; how can the same function be computed even more quickly?

Sections 2 through 5 describe fast multiplication algorithms for various rings. The remaining sections describe various applications of fast multiplication. Here is a simplified summary of the functions being computed:

- § 6. Reciprocal. $f \mapsto 1/f$ approximation.
- § 7. Quotient. $f, h \mapsto h/f$ approximation.
- § 8. Logarithm. $f \mapsto \log f$ approximation.

- § 9. Exponential. $f \mapsto \exp f$ approximation. Also § 15, § 16.
- § 10. Power. $f, e \mapsto f^e$ approximation.
- § 11. Matrix product. $f, g \mapsto fg$ for 2×2 matrices.
- § 12. Product tree. $f_1, f_2, f_3, \ldots \mapsto$ tree of products including $f_1 f_2 f_3 \cdots$.
- § 13. Sum of fractions. $f_1, g_1, f_2, g_2, \ldots \mapsto f_1/g_1 + f_2/g_2 + \cdots$.
- § 14. Fraction from continued fraction. $q_1, q_2, \ldots \mapsto q_1 + 1/(q_2 + 1/(\cdots))$.
- § 17. Quotient and remainder. $f, h \mapsto \lfloor h/f \rfloor, h \mod f$.
- § 18. Remainder tree. $h, f_1, f_2, \ldots \mapsto h \mod f_1, h \mod f_2, \ldots$
- § 19. Small factors of a product. S, h₁, h₂, ... → S(h₁h₂...) where S is a set of primes and S(h) is the subset of S dividing h.
- § 20. Small factors of a sequence. $S, h_1, h_2, \ldots \mapsto S(h_1), S(h_2), \ldots$
- § 21. Continued fraction from fraction. $f_1, f_2 \mapsto q_1, q_2, q_3, \dots$ with $f_1/f_2 = q_1 + 1/(q_2 + 1/(q_3 + 1/(\dots)))$.
- § 22. Greatest common divisor. $f_1, f_2 \mapsto \gcd\{f_1, f_2\}$.
- § 23. Interpolator. $f_1, g_1, f_2, g_2, \ldots \mapsto h$ with $h \equiv f_i \pmod{g_i}$.
- § 24. Coprime base. $f_1, f_2, \ldots \mapsto$ coprime set S with $f_1, f_2, \ldots \in \langle S \rangle$.

Acknowledgments. Thanks to Alice Silverberg, Paul Zimmermann, and the referee for their comments.

2. Product: the FFT case

2.1. Input. Let $n \ge 1$ be a power of 2. Let *c* be a nonzero element of **C**. The algorithm described in this section is given two elements *f*, *g* of the ring $\mathbf{C}[x]/(x^n - c)$.

An element of $\mathbb{C}[x]/(x^n - c)$ is, by convention, represented as a sequence of n elements of \mathbb{C} : the sequence $(f_0, f_1, \ldots, f_{n-1})$ represents $f_0 + f_1x + \cdots + f_{n-1}x^{n-1}$.

2.2. Output. This algorithm computes the product $fg \in \mathbb{C}[x]/(x^n - c)$, represented in the same way. If the input is $f_0, f_1, \ldots, f_{n-1}, g_0, g_1, \ldots, g_{n-1}$ then the output is $h_0, h_1, \ldots, h_{n-1}$, where $h_i = \sum_{0 \le j \le i} f_j g_{i-j} + c \sum_{i+1 \le j < n} f_j g_{i+n-j}$.

For example, for n = 4, the output is $f_{0g_0} + cf_{1g_3} + cf_{2g_2} + cf_{3g_1}$, $f_{0g_1} + f_{1g_0} + cf_{2g_3} + cf_{3g_2}$, $f_{0g_2} + f_{1g_1} + f_{2g_0} + cf_{3g_3}$, $f_{0g_3} + f_{1g_2} + f_{2g_1} + f_{3g_0}$.

2.3. Model of computation. Let *A* be a commutative ring. An **operation in** *A* is, by definition, one binary addition $a, b \mapsto a + b$, one binary subtraction $a, b \mapsto a - b$, or one binary multiplication $a, b \mapsto ab$. Here *a* is an input, a constant, or a result of a previous operation; same for *b*.

For example, given $a, b \in \mathbb{C}$, one can compute 10a + 11b, 9a + 10b with four operations in \mathbb{C} : add a and b to obtain a+b; multiply by 10 to obtain 10a + 10b; add b to obtain 10a + 11b; subtract a from 10a + 10b to obtain 9a + 10b.

Starting in Section 19 of this paper, the definition of **operation in** A is expanded to allow equality tests. Starting in Section 21, the ring A is assumed to be a field, and the definition of **operation in** A is expanded to allow divisions (when the denominators are nonzero). Algorithms built out of additions, subtractions, multiplications, divisions, and equality tests are called **algebraic algorithms**. See [Bürgisser et al. 1997, Chapter 4] for a precise definition of this model of computation.

Warning: It is tempting to think of an algebraic algorithm (e.g., "add *a* to *b*; multiply by *b*") as simply a chain of intermediate results (e.g., "a+b; $ab+b^{2}$ "). Some authors *define* algebraic algorithms as chains of computable results; see, e.g., the definition of addition chains in [Knuth and Papadimitriou 1981]. But this simplification poses problems. Standard measurements of algebraic complexity, such as the number of multiplications, are generally not determined by the chain of intermediate results. (How many multiplications are in 2a, a^2 , $2a^2$?) An algebraic algorithm, properly defined, is not a chain of *computable results* but a chain of *computations*.

2.4. Speed. The algorithm in this section uses $O(n \lg n)$ operations — more precisely, $(9/2)n \lg n + 2n$ additions, subtractions, and multiplications — in **C**. Here $\lg = \log_2$.

2.5. How it works. If n = 1 then the algorithm simply multiplies f_0 by g_0 to obtain the output f_0g_0 .

The strategy for larger n is to split an n-coefficient problem into two (n/2)coefficient problems, which are handled by the same method recursively. One
needs $\lg n$ levels of recursion to split the original problem into n easy singlecoefficient problems; each level of recursion involves 9/2 operations per coefficient.

Consider, for any *n*, the functions $\varphi : \mathbb{C}[x]/(x^{2n}-c^2) \to \mathbb{C}[x]/(x^n-c)$ and $\varphi': \mathbb{C}[x]/(x^{2n}-c^2) \to \mathbb{C}[x]/(x^n+c)$ that take $f_0 + \cdots + f_{2n-1}x^{2n-1}$ to $(f_0+cf_n) + \cdots + (f_{n-1}+cf_{2n-1})x^{2n-1}$ and $(f_0-cf_n) + \cdots + (f_{n-1}-cf_{2n-1})x^{2n-1}$ respectively. Given *f*, one can compute $\varphi(f), \varphi'(f)$ with *n* additions, *n* subtractions, and *n* multiplications by the constant *c*.

These functions φ , φ' are $\mathbb{C}[x]$ -algebra morphisms. In particular, they preserve multiplication: $\varphi(fg) = \varphi(f)\varphi(g)$ and $\varphi'(fg) = \varphi'(f)\varphi'(g)$. Furthermore, $\varphi \times \varphi'$ is injective: one can recover f from $\varphi(f)$ and $\varphi'(f)$. It is simpler to recover 2f: this takes n additions, n subtractions, and n multiplications by the constant 1/c.

Here, then, is how the algorithm computes 2nfg, given $f, g \in \mathbb{C}[x]/(x^{2n}-c^2)$:

Compute φ(f), φ(g), φ'(f), φ'(g) with 2n additions, 2n subtractions, and 2n multiplications by c.

Figure 2. Splitting product in $C[x]/(x^4+1)$ into products in C.

- Recursively compute $n\varphi(f)\varphi(g) = \varphi(nfg)$ in $\mathbb{C}[x]/(x^n c)$, and recursively compute $n\varphi'(f)\varphi'(g) = \varphi'(nfg)$ in $\mathbb{C}[x]/(x^n + c)$.
- Compute 2nfg from φ(nfg), φ'(nfg) with n additions, n subtractions, and n multiplications by 1/c.

For example, given $f = f_0 + f_1 x + f_2 x^2 + f_3 x^3$ and $g = g_0 + g_1 x + g_2 x^2 + g_3 x^3$, the algorithm computes 4fg in $\mathbb{C}[x]/(x^4 + 1) = \mathbb{C}[x]/(x^4 - i^2)$ as follows:

- Compute $\varphi(f) = (f_0 + if_2) + (f_1 + if_3)x$ and $\varphi'(f) = (f_0 if_2) + (f_1 if_3)x$, and similarly compute $\varphi(g)$ and $\varphi'(g)$.
- Recursively compute $2\varphi(f)\varphi(g)$ in $\mathbb{C}[x]/(x^2 i)$, and recursively compute $2\varphi'(f)\varphi'(g)$ in $\mathbb{C}[x]/(x^2 + i)$.
- Recover 4fg.

See Figure 2.

A straightforward induction shows that the total work to compute the product nfg, given $f, g \in \mathbb{C}[x]/(x^n - c)$, is $(3/2)n \lg n$ additions, $(3/2)n \lg n$ subtractions, $(3/2)n \lg n$ multiplications by various constants, and n more multiplications. The algorithm then computes fg with an additional n multiplications by the constant 1/n.

2.6. Generalization. More generally, let *A* be a commutative ring in which 2 is invertible, let $n \ge 2$ be a power of 2, let *c* be an invertible element of *A*, and let ζ be an (n/2)nd root of -1 in *A*.

By exactly the same method as above, one can multiply two elements of the ring $A[x]/(x^n - c^n)$ with $(9/2)n \lg n + 2n$ operations in A: specifically, $(3/2)n \lg n$ additions, $(3/2)n \lg n$ subtractions, $(3/2)n \lg n + n$ multiplications by constants, and *n* more multiplications. The constants are 1/n and products of powers of *c* and ζ .

The assumption that A has a primitive *n*th root of 1 is a heavy restriction on A. If \mathbf{Z}/t has a primitive *n*th root of 1, for example, then every prime divisor of t is in $1 + n\mathbf{Z}$. (This fact is a special case of Pocklington's primality test.) Section 3 explains how to handle more general rings A.

2.7. Variant: radix 3. Similarly, let *A* be a commutative ring in which 3 is invertible, let $n \ge 3$ be a power of 3, let *c* be an invertible element of *A*, and let ζ be an element of *A* satisfying $1 + \zeta^{n/3} + \zeta^{2n/3} = 0$. Then one can multiply two elements of the ring $A[x]/(x^n - c^n)$ with $O(n \lg n)$ operations in *A*.

2.8. History. Gauss [1866, pages 265–327] was the first to point out that one can quickly compute a ring isomorphism from $\mathbf{R}[x]/(x^{2n} - 1)$ to $\mathbf{R}^2 \times \mathbf{C}^{n-1}$ when *n* has no large prime factors. For example, Gauss [1866, pages 308–310] (in completely different language) mapped $\mathbf{R}[x]/(x^{12} - 1)$ to $\mathbf{R}[x]/(x^3 - 1) \times \mathbf{R}[x]/(x^3 + 1) \times \mathbf{C}[x]/(x^3 + i)$, then mapped $\mathbf{R}[x]/(x^3 - 1)$ to $\mathbf{R} \times \mathbf{C}$, mapped $\mathbf{R}[x]/(x^3 + 1)$ to $\mathbf{R} \times \mathbf{C}$, and mapped $\mathbf{C}[x]/(x^3 + i)$ to $\mathbf{C} \times \mathbf{C} \times \mathbf{C}$.

The **discrete Fourier transform** — this isomorphism from $\mathbf{R}[x]/(x^{2n} - 1)$ to $\mathbf{R}^2 \times \mathbf{C}^{n-1}$, or the analogous isomorphism from $\mathbf{C}[x]/(x^n - 1)$ to \mathbf{C}^n — was applied to many areas of scientific computation over the next hundred years. Gauss's method was reinvented several times, as discussed in [Heideman et al. 1985], and finally became widely known after it was reinvented and published by Cooley and Tukey [1965]. Gauss's method is now called the **fast Fourier transform** or simply the **FFT**.

Shortly after the Cooley–Tukey paper, Sande and Stockham pointed out that one can quickly multiply in $\mathbb{C}[x]/(x^n - 1)$ by applying the FFT, multiplying in \mathbb{C}^n , and applying the inverse FFT. See [Stockham 1966, page 229] and [Gentleman and Sande 1966, page 573].

Fiduccia [1972] was the first to point out that *each step* of the FFT is an algebra isomorphism. This fact is still not widely known, despite its tremendous expository value; most expositions of the FFT use only the *module* structure of each step. I have taken Fiduccia's idea much further in this paper and in [Bernstein 2001], identifying the ring morphisms behind all known multiplication methods.

2.9. Improvements. The algorithm explained above takes $15n \lg n + 8n$ operations in **R** to multiply in $\mathbb{C}[x]/(x^n - 1)$, if $n \ge 2$ is a power of 2 and **C** is represented as $\mathbb{R}[i]/(i^2 + 1)$:

- $5n \lg n$ to transform the first input from $\mathbb{C}[x]/(x^n 1)$ to \mathbb{C}^n . The FFT takes $n \lg n$ additions and subtractions in \mathbb{C} , totalling $2n \lg n$ operations in \mathbb{R} , and $(1/2)n \lg n$ multiplications by various roots of 1 in \mathbb{C} , totalling $3n \lg n$ operations in \mathbb{R} .
- $5n \lg n$ to transform the second input from $\mathbb{C}[x]/(x^n 1)$ to \mathbb{C}^n .
- 2n to scale one of the transforms, i.e., to multiply by 1/n. One can eliminate most of these multiplications by absorbing 1/n into other constants.
- 6*n* to multiply the two transformed inputs in \mathbb{C}^n .
- $5n \lg n$ to transform the product from \mathbb{C}^n back to $\mathbb{C}[x]/(x^n 1)$.

One can reduce each $5n \lg n$ to $5n \lg n - 10n + 16$ for $n \ge 4$ by recognizing roots of 1 that allow easy multiplications: multiplications by 1 can be skipped, multiplications by -1 and $\pm i$ can be absorbed into subsequent computations, and multiplications by $\pm \sqrt{\pm i}$ are slightly easier than general multiplications.

Gentleman and Sande [1966] pointed out another algorithm, which I call the **twisted FFT**, to map $\mathbb{C}[x]/(x^n - 1)$ to \mathbb{C}^n using $5n \lg n - 10n + 16$ operations. The twisted FFT maps $\mathbb{C}[x]/(x^{2n} - 1)$ to $\mathbb{C}[x]/(x^n - 1) \times \mathbb{C}[x]/(x^n + 1)$, twists $\mathbb{C}[x]/(x^n + 1)$ into $\mathbb{C}[x]/(x^n - 1)$ by mapping $x \to \zeta x$, and handles each $\mathbb{C}[x]/(x^n - 1)$ recursively.

The **split-radix FFT** is faster: it uses only $4n \lg n - 6n + 8$ operations for $n \ge 2$. The split-radix FFT is a mixture of Gauss's FFT with the Gentleman–Sande twisted FFT: it maps $\mathbb{C}[x]/(x^{4n}-1)$ to $\mathbb{C}[x]/(x^{2n}-1) \times \mathbb{C}[x]/(x^{2n}+1)$, maps $\mathbb{C}[x]/(x^{2n}+1)$ to $\mathbb{C}[x]/(x^n-i) \times \mathbb{C}[x]/(x^n+i)$, twists each $\mathbb{C}[x]/(x^n\pm i)$ into $\mathbb{C}[x]/(x^n-1)$ by mapping $x \to \zeta x$, and recursively handles both $\mathbb{C}[x]/(x^{2n}-1)$ and $\mathbb{C}[x]/(x^n-1)$.

Another method is the **real-factor FFT**: map $\mathbb{C}[x]/(x^{4n} - (2\cos 2\alpha)x^{2n} + 1)$ to $\mathbb{C}[x]/(x^{2n} - (2\cos \alpha)x^n + 1) \times \mathbb{C}[x]/(x^{2n} + (2\cos \alpha)x^n + 1)$, and handle each factor recursively. If one represents elements of $\mathbb{C}[x]/(x^{2n} \pm \cdots)$ using the basis $(1, x, \dots, x^{n-1}, x^{-n}, x^{1-n}, \dots, x^{-1})$ then the real-factor FFT uses $4n \lg n + O(n)$ operations.

It is difficult to assign credit for the bound $4n \lg n + O(n)$. Yavne [1968, page 117] announced the bound $4n \lg n - 6n + 8$ (specifically, $3n \lg n - 3n + 4$ additions and subtractions and $n \lg n - 3n + 4$ multiplications), and apparently had in mind a method achieving that bound; but nobody, to my knowledge, has ever deciphered Yavne's explanation of the method. Ten years later, Bruun [1978] published the real-factor FFT. Several years after that, Duhamel and Hollmann [1984], Martens [1984], Vetterli and Nussbaumer [1984], and Stasinski (according to [Duhamel and Vetterli 1990, page 263]) independently discovered the split-radix FFT.

In 2004, Van Buskirk posted software demonstrating that the split-radix FFT is not optimal: the **tangent FFT** uses only $(34/9)n \lg n + O(n)$ operations, so multiplication in $\mathbb{C}[x]/(x^n - 1)$ uses only $(34/3)n \lg n + O(n)$ operations. The tangent FFT avoids the standard basis $1, x, \ldots, x^{n-1}$ of $\mathbb{C}[x]/(x^n - 1)$ and instead uses the basis $1/s_{n,0}, x/s_{n,1}, \ldots, x^{n-1}/s_{n,n-1}$ where

$$s_{n,k} = \prod_{\ell \ge 0} \max\left\{ \left| \cos \frac{4^{\ell} 2\pi k}{n} \right|, \left| \sin \frac{4^{\ell} 2\pi k}{n} \right| \right\}.$$

Aside from this change, the tangent FFT maps $\mathbf{C}[x]/(x^{8n}-1)$ to $\mathbf{C}[x]/(x^{2n}-1) \times \mathbf{C}[x]/(x^{2n}-1) \times \mathbf{C}[x]/(x^{2n}-1) \times \mathbf{C}[x]/(x^{n}-1) \times \mathbf{C}[x]/(x^{n}-1)$ in essentially the same way as the split-radix FFT. See [Bernstein 2007] for further details

and a cost analysis. See [Lundy and Van Buskirk 2007] and [Johnson and Frigo 2007] for two alternate explanations of the 34/9.

One can multiply in $\mathbf{R}[x]/(x^{2n}+1)$ with $(34/3)n \lg n + O(n)$ operations in **R**, if *n* is a power of 2: map $\mathbf{R}[x]/(x^{2n}+1)$ to $\mathbf{C}[x]/(x^n-i)$, twist $\mathbf{C}[x]/(x^n-i)$ into $\mathbf{C}[x]/(x^n-1)$, and apply the tangent FFT. This is approximately twice as fast as mapping $\mathbf{R}[x]/(x^{2n}+1)$ to $\mathbf{C}[x]/(x^{2n}+1)$.

One can also multiply in $\mathbf{R}[x]/(x^{2n}-1)$ with $(34/3)n \lg n + O(n)$ operations in **R**, if *n* is a power of 2: map $\mathbf{R}[x]/(x^{2n}-1)$ to $\mathbf{R}[x]/(x^n-1) \times \mathbf{R}[x]/(x^n+1)$; handle $\mathbf{R}[x]/(x^n-1)$ by the same method recursively; handle $\mathbf{R}[x]/(x^n+1)$ as above. This is approximately twice as fast as mapping $\mathbf{R}[x]/(x^{2n}-1)$ to $\mathbf{C}[x]/(x^{2n}-1)$. This speedup was announced by Bergland [1968], but it was already part of Gauss's FFT.

The general strategy of all of the above algorithms is to transform f, transform g, multiply the results, and then undo the transform to recover fg. There is some redundancy here if f = g: one can easily save a factor of 1.5 + o(1) by transforming f, squaring the result, and undoing the transform to recover f^2 . (Of course, f^2 is much easier to compute if 2 = 0 in A; this also saves time in Section 6.)

More generally, one can save the transform of each input, and reuse the transform in a subsequent multiplication if one knows (or observes) that the same input is showing up again. I call this technique **FFT caching**. FFT caching was announced in [Crandall and Fagin 1994, Section 9], but it was already widely known; see, e.g., [Montgomery 1992, Section 3.7].

Further savings are possible when one wants to compute a sum of products. Instead of undoing a transform to recover ab, undoing another transform to recover cd, and adding the results to obtain ab + cd, one can add first and then undo a single transform to recover ab + cd. I call this technique **FFT addition**.

There is much more to say about FFT performance, because there are much more sophisticated models of computation. Real computers have operation latency, memory latency, and instruction-decoding latency, for example; a serious analysis of constant factors takes these latencies into account.

3. Product: extension

3.1. Input. Let *A* be a commutative ring in which 2 is invertible. Let $n \ge 1$ be a power of 2. The algorithm described in this section is given two elements *f*, *g* of the ring $A[x]/(x^n + 1)$.

An element of $A[x]/(x^n + 1)$ is, by convention, represented as a sequence of n elements of A: the sequence $(f_0, f_1, \ldots, f_{n-1})$ represents $f_0 + f_1x + \cdots + f_{n-1}x^{n-1}$.

3.2. Output. This algorithm computes the product $fg \in A[x]/(x^n + 1)$.

3.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A: more precisely, at most $(((9/2) \lg \lg(n/4) + 63/2) \lg(n/4) - 33/2)n$ operations in A if $n \ge 8$.

3.4. How it works. For $n \le 8$, use the definition of multiplication in $A[x]/(x^n + 1)$. This takes at most $n^2 + n(n-1) = (2n-1)n$ operations in *A*. If n = 8 then $\lg(n/4) = 1$ so $((9/2) \lg \lg(n/4) + 63/2) \lg(n/4) - 33/2 = 63/2 - 33/2 = 15 = 2n - 1$.

For $n \ge 16$, find the unique power *m* of 2 such that $m^2 \in \{2n, 4n\}$. Notice that $8 \le m < n$. Notice also that $\lg(n/4) - 1 \le 2 \lg(m/4) \le \lg(n/4)$, so $\lg \lg(m/4) \le \lg \lg(n/4) - 1$ and $2 \lg(2n/m) \le \lg(n/4) + 3$.

Define $B = A[x]/(x^m+1)$. By induction, given $f, g \in B$, one can compute the product fg with at most $(((9/2) \lg \lg (m/4)+63/2) \lg (m/4)-33/2)m$ operations in A. One can also compute any of the following with m operations in A: the sum f + g; the difference f - g; the product cf, where c is a constant element of A; the product cf, where c is a constant power of x.

There is a (2n/m)th root of -1 in *B*, namely $x^{m^2/2n}$. Therefore one can use the algorithm explained in Section 2 to multiply quickly in $B[y]/(y^{2n/m}+1)$ —and, consequently, to multiply in $A[x, y]/(y^{2n/m}+1)$ if each input has *x*-degree smaller than m/2. This takes $(9/2)(2n/m) \lg(2n/m) + 2n/m$ easy operations in *B* and 2n/m more multiplications in *B*.

Now, given $f, g \in A[x]/(x^n + 1)$, compute fg as follows. Consider the A[x]-algebra morphism $\varphi : A[x, y]/(y^{2n/m} + 1) \rightarrow A[x]/(x^n + 1)$ that takes y to $x^{m/2}$. Find $F \in A[x, y]/(y^{2n/m} + 1)$ such that F has x-degree smaller than m/2 and $\varphi(F) = f$; explicitly, $F = \sum_j \sum_{0 \le i < m/2} f_{i+(m/2)j} x^i y^j$ if $f = \sum_j f_i x^i$. Similarly construct G from g. Compute FG as explained above. Then compute $\varphi(FG) = fg$; this takes n additional operations in A.

One multiplication in $A[x]/(x^n + 1)$ has thus been split into

- 2n/m multiplications in *B*, i.e., at most $((9 \lg \lg (m/4) + 63) \lg (m/4) 33)n \le (((9/2) \lg \lg (n/4) + 27) \lg (n/4) 33)n$ operations in *A*;
- $(9n/m) \lg(2n/m) + 2n/m \le ((9/2) \lg(n/4) + 31/2)n/m$ easy operations in *B*, i.e., at most $((9/2) \lg(n/4) + 31/2)n$ operations in *A*; and
- *n* additional operations in *A*.

The total is at most $(((9/2) \lg \lg (n/4) + 63/2) \lg (n/4) - 33/2)n$ as claimed.

For example, given $f = f_0 + f_1 x + \dots + f_7 x^7$ and $g = g_0 + g_1 x + \dots + g_7 x^7$ in $A[x]/(x^8+1)$, define $F = (f_0 + f_1 x) + (f_2 + f_3 x)y + (f_4 + f_5 x)y^2 + (f_6 + f_7 x)y^3$ and $G = (g_0 + g_1 x) + (g_2 + g_3 x)y + (g_4 + g_5 x)y^2 + (g_6 + g_7 x)y^3$ in $A[x, y]/(y^4+1)$.

Figure 3. Splitting product in $A[x]/(x^8 + 1)$ into four products in $B = A[x]/(x^4 + 1)$, if 2 is invertible in A. Compare to Figure 2.

The product FG has the form

$$(h_0 + h_1 x + h_2 x^2) + (h_3 + h_4 x + h_5 x^2)y + (h_6 + h_7 x + h_8 x^2)y^2 + (h_9 + h_{10} x + h_{11} x^2)y^3.$$

Compute this product in $A[x, y]/(x^4 + 1, y^4 + 1)$, and substitute $y = x^2$ to recover $fg = (h_0 - h_{11}) + h_1x + (h_2 + h_3)x^2 + h_4x^3 + (h_5 + h_6)x^4 + h_7x^5 + (h_8 + h_9)x^6 + h_{10}x^7$. The multiplication in $A[x, y]/(x^4 + 1, y^4 + 1)$ splits into four multiplications in $A[x]/(x^4 + 1)$. See Figure 3.

3.5. Variant: radix 3. Similarly, let A be a commutative ring in which 3 is invertible, and let $n \ge 3$ be a power of 3. One can multiply two elements of $A[x]/(x^{2n} + x^n + 1)$ with $O(n \lg n \lg \lg n)$ operations in A.

3.6. The integer case; another model of computation. Algorithms that multiply polynomials of high degree using very few coefficient operations are analogous to algorithms that multiply integers with many bits in very little time.

There are many popular definitions of time. In this paper, **time** means number of steps on a multitape Turing machine. See [Papadimitriou 1994, Section 2.3] for a precise definition of multitape Turing machines.

Let *n* be a power of 2. There is an algorithm, analogous to the multiplication algorithm for $A[x]/(x^n + 1)$, that multiplies two elements of $\mathbf{Z}/(2^n + 1)$ in time $O(n \lg n \lg \lg n)$. Here an element of $\mathbf{Z}/(2^n + 1)$ is, by convention, represented as a sequence of n + 1 bits: the sequence (f_0, f_1, \ldots, f_n) represents $f_0 + 2f_1 + \cdots + 2^n f_n$. Note that most numbers have two representations.

The multiplication algorithm for $\mathbb{Z}/(2^n + 1)$ performs 2n/m multiplications in $\mathbb{Z}/(2^m + 1)$, for $n \ge 16$, where $m^2 \in \{2n, 4n\}$. Splitting a $\mathbb{Z}/(2^n + 1)$ multiplication into $\mathbb{Z}/(2^m + 1)$ multiplications is analogous to, but slightly more complicated than, splitting an $A[x]/(x^n + 1)$ multiplication into $A[x]/(x^m + 1)$ multiplications. The complication is that a sum of 2n/m products of (m/2)bit integers generally does not quite fit into *m* bits. On the other hand, the sum does fit into m + k bits for a small *k*, so it is determined by its images in $\mathbb{Z}/(2^m + 1)$ and $\mathbb{Z}/2^k$. One multiplies in $\mathbb{Z}[y]/(y^{2n/m} + 1)$ by multiplying recursively in $(\mathbb{Z}/(2^m + 1))[y]/(y^{2n/m} + 1)$ and multiplying straightforwardly in $(\mathbb{Z}/2^k)[y]/(y^{2n/m} + 1)$.

3.7. History. The ideas in this section were developed first in the integer case. The crucial point is that one can multiply in $\mathbb{Z}[y]/(y^m \pm 1)$ by selecting *t* so that \mathbb{Z}/t has an appropriate root of 1, mapping $\mathbb{Z}[y]/(y^m \pm 1)$ to $(\mathbb{Z}/t)[y]/(y^m \pm 1)$, and applying an FFT over \mathbb{Z}/t . This multiplication method was suggested by Pollard [1971], independently by Nicholson [1971, page 532], and independently by Schönhage and Strassen [1971]. Schönhage and Strassen suggested the choice $t = 2^m + 1$ and proved the $O(n \lg n \lg \lg n)$ time bound.

An analogous method for polynomials was mentioned by Schönhage [1977] and presented in detail by Turk [1982, Section 2]. Schönhage also suggested using the radix-3 FFT to multiply polynomials over fields of characteristic 2.

Nussbaumer [1980] introduced a different polynomial-multiplication algorithm achieving the $O(n \lg n \lg \lg n)$ operation bound. Nussbaumer's algorithm starts in the same way, lifting (for example) $A[x]/(x^8 + 1)$ to $A[x, y]/(y^4 + 1)$ by $y \mapsto x^2$. It then maps $A[x, y]/(y^4 + 1)$ to $(A[y]/(y^4 + 1))[x]/(x^4 - 1)$ and applies an FFT over $A[y]/(y^4 + 1)$, instead of mapping $A[x, y]/(y^4 + 1)$ to $(A[x]/(x^4 + 1))[y]/(y^4 + 1)$ and applying an FFT over $A[x]/(x^4 + 1)$.

3.8. Improvements. Multiplication by a constant power of x in $A[x]/(x^m + 1)$ is easier than the above analysis indicates: multiplications by 1 in A can be eliminated, and multiplications by -1 in A can be absorbed into subsequent computations. The total operation count drops from $(9/2 + o(1))n \lg n \lg \lg n$ to $(3 + o(1))n \lg n \lg \lg n$.

The constant 3 here is the best known. There is much more to say about the o(1). See [Bernstein 2001] for a survey of relevant techniques.

There is vastly more to say about integer multiplication, in part because Turing-machine time is a more complicated concept than algebraic complexity, and in part because real computers are more complicated than Turing machines. I will restrict my discussion of this area to one recent piece of news, namely that the Schönhage–Strassen time bound $O(n \lg n \lg \lg n)$ has been superseded: Fürer [2007] reduced $\lg \lg n$ to $2^{O(\lg^* n)}$. Here $\lg^* n = 0$ for n = 1; $\lg^* n = 1$ for

 $2 \le n < 4$; $\lg^* n = 2$ for $4 \le n < 16$; $\lg^* n = 3$ for $16 \le n < 65536$; $\lg^* n = 4$ for $65536 \le n < 2^{65536}$; etc. All of the \cdots $\lg \lg n$ time bounds for integer operations later in this paper are therefore unnecessarily pessimistic.

Here is Fürer's idea in a nutshell. Recall that the split-radix FFT maps $C[x]/(x^{2n}-c^2)$ to $C[x]/(x^n-c) \times C[x]/(x^n+c)$ when *c* is an "easy" root of 1, specifically a power of *i*; otherwise it twists $C[x]/(x^{2n}-c^2)$ into $C[x]/(x^{2n}-1)$. Generalize from $C = \mathbf{R}[i]/(i^2+1)$ to the ring $\mathbf{R}[i]/(i^{2^k}+1)$, with ζ chosen as an $(n/2^{k+1})$ th root of *i*; for example, take

$$\zeta = \sum_{0 \le d < 2^k} \frac{i^d}{2^{k-1}} \sum_{0 < j < 2^k; \ j \text{ odd}} \cos\left(2\pi j \left(\frac{d}{2^{k+1}} - \frac{1}{n}\right)\right).$$

A split-radix FFT of size *n* over $\mathbf{R}[i]/(i^{2^k}+1)$, with *b* bits of precision in **R**, then involves $\Theta(n \lg n)$ easy operations in $\mathbf{R}[i]/(i^{2^k}+1)$, each of which takes time $\Theta(2^k b)$, and only $\Theta((n \lg n)/k)$ hard multiplications in $\mathbf{R}[i]/(i^{2^k}+1)$, each of which can be expressed as an integer multiplication of size $\Theta(2^k b)$. Fürer takes both *b* and 2^k on the scale of $\lg n$, reducing an integer multiplication of size $\Theta(n(\lg n)^2)$ to $\Theta((n \lg n)/\lg \lg n)$ integer multiplications of size $\Theta((\lg n)^2)$.

4. Product: zero-padding and localization

4.1. Input. Let A be a commutative ring. Let n be a positive integer. The algorithm in this section is given two elements f, g of the polynomial ring A[x] such that deg fg < n: e.g., such that n is the total number of coefficients in f and g.

An element of A[x] is, by convention, represented as a finite sequence of elements of A: the sequence $(f_0, f_1, \ldots, f_{d-1})$ represents $f_0 + f_1x + \cdots + f_{d-1}x^{d-1}$.

4.2. Output. This algorithm computes the product $fg \in A[x]$.

4.3. Speed. The algorithm uses $O(n \lg n \lg \lg n)$ operations in A.

Equivalently: The algorithm uses at most $n\mu(n)$ operations in A, where μ : $\mathbf{N} \rightarrow \mathbf{R}$ is a nondecreasing positive function with $\mu(n) \in O(\lg n \lg \lg n)$. The μ notation helps simplify the run-time analysis in subsequent sections of this paper.

4.4. Special case: how it works if A = C. Given $f, g \in C[x]$ such that deg fg < n, one can compute fg by using the algorithm of Section 2 to compute $fg \mod (x^m - 1) \inf C[x]/(x^m - 1)$; here *m* is the smallest power of 2 with $m \ge n$. This takes $O(m \lg m) = O(n \lg n)$ operations in **C**.

For example, if $f = f_0 + f_1x + f_2x^2$ and $g = g_0 + g_1x + g_2x^2 + g_3x^3$, use the algorithm of Section 2 to multiply the elements $f_0 + f_1x + f_2x^2 + 0x^3 + 0x^3$ $0x^4 + 0x^5 + 0x^6 + 0x^7$ and $g_0 + g_1x + g_2x^2 + g_3x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7$ of $C[x]/(x^8 - 1)$, obtaining $h_0 + h_1x + h_2x^2 + h_3x^3 + h_4x^4 + h_5x^5 + 0x^6 + 0x^7$. Then $fg = h_0 + h_1x + h_2x^2 + h_3x^3 + h_4x^4 + h_5x^5$. Appending zeros to an input — for example, converting f_0 , f_1 , f_2 to f_0 , f_1 , f_2 , 0, 0, 0, 0, 0 — is called **zero-padding**.

In this special case $A = \mathbf{C}$, the aforementioned bound $\mu(n) \in O(\lg n \lg \lg n)$ is unnecessarily pessimistic: one can take $\mu(n) \in O(\lg n)$. Subsequent sections of this paper use the bound $\mu(n) \in O(\lg n \lg \lg n)$, and are correspondingly pessimistic.

Similar comments apply to other rings A having appropriate roots of -1, and to nearby rings such as **R**.

4.5. Intermediate generality: how it works if 2 **is invertible in** *A***.** Let *A* be any commutative ring in which 2 is invertible. Given $f, g \in A[x]$ with deg fg < n, one can compute fg by using the algorithm of Section 3 to compute $fg \mod (x^m + 1)$ in $A[x]/(x^m + 1)$; here *m* is the smallest power of 2 with $m \ge n$. This takes $O(m \lg m \lg \lg m) = O(n \lg n \lg \lg n)$ operations in *A*.

4.6. Intermediate generality: how it works if 3 is invertible in A. Let A be any commutative ring in which 3 is invertible. The previous algorithm has a radix-3 variant that computes fg using $O(n \lg n \lg \lg g n)$ operations in A.

4.7. Full generality: how it works for arbitrary rings. What if neither 2 nor 3 is invertible? Answer: Map A to the product of the localizations $2^{-N}A$ and $3^{-N}A$. This map is injective; 2 is invertible in $2^{-N}A$; and 3 is invertible in $3^{-N}A$.

In other words: Given polynomials f, g over any commutative ring A, use the technique of Section 3 to compute $2^j fg$ for some j; use the radix-3 variant to compute $3^k fg$ for some k; and then compute fg as a linear combination of $2^j fg$ and $3^k fg$. This takes $O(n \lg n \lg \lg n)$ operations in A if deg fg < n.

Assume, for example, that deg fg < 8. Find 16fg by computing $16fg \mod (x^8 - 1)$, and find 9fg by computing $9fg \mod (x^{18} + x^9 + 1)$; then fg = 4(16fg) - 7(9fg). The numbers 16 and 9 here are the denominators produced by the algorithm of Section 3.

4.8. The integer case. An analogous algorithm computes the product of two integers in time $O(n \lg n \lg \lg n)$, if the output size is known to be at most *n* bits. (Given $f, g \in \mathbb{Z}$ with $|fg| < 2^n$, use the algorithm of Section 3 to compute $fg \mod (2^m+1)$ in $\mathbb{Z}/(2^m+1)$; here *m* is the smallest power of 2 with $m \ge n+1$.)

Here an integer is, by convention, represented in **two's-complement no**tation: a sequence of bits $(f_0, f_1, \ldots, f_{k-1}, f_k)$ represents $f_0 + 2f_1 + \cdots + 2^{k-1}f_{k-1} - 2^k f_k$. **4.9. History.** Karatsuba was the first to point out that integer multiplication can be done in subquadratic time; see [Karatsuba and Ofman 1963]. This result is often (e.g., in [Bürgisser et al. 1997, page 58]) incorrectly credited to Karatsuba and Ofman, but [Karatsuba and Ofman 1963, Theorem 2] explicitly credited the algorithm to Karatsuba alone.

Toom [1963] was the first to point out that integer multiplication can be done in essentially linear time: more precisely, time $n \exp(O(\sqrt{\log n}))$. Schönhage [1966] independently published the same observation a few years later. Cook [1966, page 53] commented that Toom's method could be used to quickly multiply polynomials over finite fields.

Stockham [1966, page 230] suggested zero-padding and FFT-based multiplication in $\mathbb{C}[x]/(x^n - 1)$ as a way to multiply in $\mathbb{C}[x]$.

The $O(n \lg n \lg \lg n)$ time bound for integers is usually credited to Schönhage and Strassen; see Section 3. Cantor and Kaltofen [1991] used $A \rightarrow 2^{-N}A \times 3^{-N}A$ to prove the $O(n \lg n \lg \lg n)$ operation bound for polynomials over any ring.

4.10. Improvements. The above algorithms take

- $(m/n)(9/2 + o(1))n \lg n$ operations in **C** to multiply in **C**[x]; or
- $(m/n)(34/3 + o(1))n \lg n$ operations in **R** to multiply in **C**[x], using the tangent FFT; or
- $(m/n)(17/3 + o(1))n \lg n$ operations in **R** to multiply in **R**[x]; or
- $(m/n)(3+o(1))n \lg n \lg \lg n$ operations in any ring A to multiply in A[x], if 2 is invertible in A.

There are several ways to eliminate the m/n factor here. One good way is to compute fg modulo $x^m + 1$ for several powers m of 2 with $\sum m \ge n$, then recover fg. For example, if n = 80000, one can recover fg from $fg \mod (x^{65536} + 1)$ and $fg \mod (x^{16384} + 1)$. A special case of this technique was pointed out by Crandall and Fagin [1994, Section 7]. See [Bernstein 2001, Section 8] for an older technique.

One can save time at the beginning of the FFT when the input is known to be the result of zero-padding. For example, one does not need an operation to compute $f_0 + 0$. Similarly, one can save time at the end of the FFT when the output is known to have zeros: the zeros need not be recomputed.

In the context of FFT addition — for example, computing ab + cd with only five transforms — the transform size does not need to be large enough for ab and cd; it need only be large enough for ab + cd. This is useful in applications where ab + cd is known to be small.

When f has a substantially larger degree than g (or vice versa), one can often save time by splitting f into pieces of comparable size to g, and multiplying each piece by g. Similar comments apply in Section 7. In the polynomial case,

this technique is most often called the "overlap-add method"; it was introduced by Stockham [1966, page 230] under the name "sectioning." The analogous technique for integers appears in [Knuth 1997, answer to Exercise 4.3.3–13] with credit to Schönhage.

See [Bernstein 2001] for a survey of further techniques.

5. Product: completion

5.1. Input. Let *A* be a commutative ring. Let *n* be a positive integer. The algorithm in this section is given the precision-*n* representations of two elements *f*, *g* of the power-series ring A[[x]].

The precision-*n* representation of a power series $f \in A[[x]]$ is, by definition, the polynomial $f \mod x^n$. If $f = \sum_j f_j x^j$ then $f \mod x^n = f_0 + f_1 x + \dots + f_{n-1}x^{n-1}$. This polynomial is, in turn, represented in the usual way as its coefficient sequence $(f_0, f_1, \dots, f_{n-1})$.

This representation does not carry complete information about f; it is only an approximation to f. It is nevertheless useful.

5.2. Output. This algorithm computes the precision-*n* representation of the product $fg \in A[[x]]$. If the input is $f_0, f_1, \ldots, f_{n-1}, g_0, g_1, \ldots, g_{n-1}$ then the output is $f_{0g_0}, f_{0g_1} + f_{1g_0}, f_{0g_2} + f_{1g_1} + f_{2g_0}, \ldots, f_{0g_{n-1}} + f_{1g_{n-2}} + \cdots + f_{n-1g_0}$.

5.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A: more precisely, at most $(2n-1)\mu(2n-1)$ operations in A.

5.4. How it works. Given $f \mod x^n$ and $g \mod x^n$, compute the polynomial product $(f \mod x^n)(g \mod x^n)$ by the algorithm of Section 4. Throw away the coefficients of x^n, x^{n+1}, \ldots to obtain $(f \mod x^n)(g \mod x^n) \mod x^n = fg \mod x^n$.

For example, given the precision-3 representation f_0 , f_1 , f_2 of the series $f = f_0 + f_1x + f_2x^2 + \cdots$, and given the precision-3 representation g_0 , g_1 , g_2 of the series $g = g_0 + g_1x + g_2x^2 + \cdots$, first multiply $f_0 + f_1x + f_2x^2$ by $g_0 + g_1x + g_2x^2$ to obtain $f_0g_0 + (f_0g_1 + f_1g_0)x + (f_0g_2 + f_1g_1 + f_2g_0)x^2 + (f_1g_2 + f_2g_1)x^3 + f_2g_2x^4$; then throw away the coefficients of x^3 and x^4 to obtain f_0g_0 , $f_0g_1 + f_1g_0$, $f_0g_2 + f_1g_1 + f_2g_0$.

5.5. The integer case, easy completion: $\mathbf{Q} \to \mathbf{Q}_2$. Consider the ring \mathbf{Z}_2 of 2-adic integers. The precision-*n* representation of $f \in \mathbf{Z}_2$ is, by definition, the integer $f \mod 2^n \in \mathbf{Z}$. This representation of elements of \mathbf{Z}_2 as nearby elements of \mathbf{Z} is analogous in many ways to the representation of elements of A[[x]] as nearby elements of A[x]. In particular, there is an analogous multiplication

algorithm: given $f \mod 2^n$ and $g \mod 2^n$, one can compute $fg \mod 2^n$ in time $O(n \lg n \lg \lg n)$.

5.6. The integer case, hard completion: $\mathbf{Q} \to \mathbf{R}$. Each real number $f \in \mathbf{R}$ is, by convention, represented as a nearby element of the localization $2^{-N}\mathbf{Z}$: an integer divided by a power of 2. If |f| < 1, for example, then there are one or two integers *d* with $|d| \le 2^n$ such that $|d/2^n - f| < 1/2^n$.

If another real number g with |g| < 1 is similarly represented by an integer e then fg is almost represented by the integer $\lfloor de/2^n \rfloor$, which can be computed in time $O(n \lg n \lg \lg n)$. However, the distance from fg to $\lfloor de/2^n \rfloor / 2^n$ may be somewhat larger than $1/2^n$. This effect is called **roundoff error**: the output is known to slightly less precision than the input.

5.7. History. See [Knuth 1997, Section 4.1] for the history of positional notation.

5.8. Improvements. The coefficients of $x^n, x^{n+1}, ...$ in fg are thrown away, so operations involved in multiplying $f \mod x^n$ by $g \mod x^n$ can be skipped if they are used only to compute those coefficients. The number of operations skipped depends on the multiplication method; optimizing $u, v \mapsto uv$ does not necessarily optimize $u, v \mapsto uv \mod x^n$. Similar comments apply to the integer case.

6. Reciprocal

6.1. Input. Let *A* be a commutative ring. Let *n* be a positive integer. The algorithm in this section is given the precision-*n* representation of a power series $f \in A[[x]]$ with f(0) = 1.

6.2. Output. This algorithm computes the precision-*n* representation of the reciprocal $1/f = 1 + (1 - f) + (1 - f)^2 + (1 - f)^3 + \dots \in A[[x]]$. If the input is 1, $f_1, f_2, f_3, \dots, f_{n-1}$ then the output is $1, -f_1, f_1^2 - f_2, 2f_1f_2 - f_1^3 - f_3, \dots, \dots - f_{n-1}$.

6.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A: more precisely, at most $(8n+2k-8)\mu(2n-1)+(2n+2k-2)$ operations in A if $n \le 2^k$.

6.4. How it works. If n = 1 then $(1/f) \mod x^n = 1$. There are 0 operations here; and $(8n + 2k - 8)\mu(2n - 1) + (2n + 2k - 2) = 2k\mu(1) + 2k \ge 0$ since $k > \lg n = 0$.

Otherwise define $m = \lceil n/2 \rceil$. Recursively compute $g_0 = (1/f) \mod x^m$; note that m < n. Then compute $(1/f) \mod x^n$ as $(g_0 - (fg_0 - 1)g_0) \mod x^n$, using the algorithm of Section 5 for the multiplications by g_0 . This works because the

difference $1/f - (g_0 - (fg_0 - 1)g_0)$ is exactly $f(1/f - g_0)^2$, which is a multiple of x^{2m} , hence of x^n .

For example, given the precision-4 representation $1 + f_1x + f_2x^2 + f_3x^3$ of f, recursively compute $g_0 = (1/f) \mod x^2 = 1 - f_1x$. Multiply f by g_0 modulo x^4 to obtain $1 + (f_2 - f_1^2)x^2 + (f_3 - f_1f_2)x^3$. Subtract 1 and multiply by g_0 modulo x^4 to obtain $(f_2 - f_1^2)x^2 + (f_3 + f_1^3 - 2f_1f_2)x^3$. Subtract from g_0 to obtain $1 - f_1x + (f_1^2 - f_2)x^2 + (2f_1f_2 - f_1^3 - f_3)x^3$. This is the precision-4 representation of 1/f.

The proof of speed is straightforward. By induction, the recursive computation uses at most $(8m + 2(k-1) - 8)\mu(2m-1) + (2m+2(k-1)-2)$ operations in A, since $m \le 2^{k-1}$. The subtraction from g_0 and the subtraction of 1 use at most n + 1 operations in A. The two multiplications by g_0 use at most $2(2n-1)\mu(2n-1)$ operations in A. Apply the inequalities $m \le (n+1)/2$ and $\mu(2m-1) \le \mu(2n-1)$ to see that the total is at most $(8n+2k-8)\mu(2n-1) + (2n+2k-2)$ as claimed.

6.5. The integer case, easy completion: $\mathbf{Q} \to \mathbf{Q}_2$. Let $f \in \mathbf{Z}_2$ be an odd 2-adic integer. Then f has a reciprocal $1/f = 1 + (1 - f) + (1 - f)^2 + \cdots \in \mathbf{Z}_2$.

One can compute $(1/f) \mod 2^n$, given $f \mod 2^n$, by applying the same formula as in the power-series case: first recursively compute $g_0 = (1/f) \mod 2^{\lceil n/2 \rceil}$; then compute $(1/f) \mod 2^n$ as $(g_0 + (1 - fg_0)g_0) \mod 2^n$. This takes time $O(n \lg n \lg \lg n)$.

6.6. The integer case, hard completion: $\mathbf{Q} \to \mathbf{R}$. Let $f \in \mathbf{R}$ be a real number between 0.25 and 1. Then f has a reciprocal $g = 1 + (1 - f) + (1 - f)^2 + \cdots \in \mathbf{R}$. If g_0 is a close approximation to 1/f, then $g_0 + (1 - fg_0)g_0$ is an approximation to 1/f with *nearly* twice the precision. Consequently one can compute a precision-n representation of 1/f, given a slightly higher-precision representation of f, in time $O(n \lg n \lg \lg n)$.

The details are, thanks to roundoff error, more complicated than in the powerseries case, and are not included in this paper. See [Knuth 1997, Algorithm 4.3.3–R] or [Bernstein 1998, Section 8] for a complete algorithm.

6.7. History. Simpson [1740, page 81] presented the iteration $g \mapsto g - (fg-1)g$ for reciprocals. Simpson also commented that one can carry out the second-to-last iteration at about 1/2 the desired precision, the third-to-last iteration at about 1/4 the desired precision, etc., so that the total time is comparable to the time for the last iteration. I have not been able to locate earlier use of this iteration.

Simpson considered, more generally, the iteration $g \mapsto g - p(g)/p'(g)$ for roots of a function p. The iteration $g \mapsto g - (fg-1)g$ is the case $p(g) = g^{-1} - f$. The general case is usually called "Newton's method," but I see no evidence that Newton deserves credit for it. Newton used the iteration for polynomials *p*, but so did previous mathematicians. Newton's descriptions never mentioned derivatives and were not amenable to generalization. See [Kollerstrom 1992] and [Ypma 1995] for further discussion.

Cook [1966, pages 81–86] published details of a variable-precision reciprocal algorithm for **R** taking essentially linear time, using the iteration $g \mapsto g - (fg - 1)g$ with Toom's multiplication algorithm. Sieveking [1972], apparently unaware of Cook's result, published details of an analogous reciprocal algorithm for A[[x]]. The analogy was pointed out by Kung [1974].

6.8. Improvements. Computing a reciprocal by the above algorithm takes 4 + o(1) times as many operations as computing a product. There are several ways that this constant 4 can be reduced. The following discussion focuses on $\mathbb{C}[x]$ and assumes that *n* is a power of 2. Analogous comments apply to other values of *n*; to A[x] for other rings *A*; to \mathbb{Z}_2 ; and to \mathbb{R} .

One can achieve 3+o(1) by skipping some multiplications by low zeros. The point is that that $fg_0 - 1$ is a multiple of x^m . Write $u = ((fg_0 - 1) \mod x^n)/x^m$ and $v = g_0 \mod x^{n-m}$; then u and v are polynomials of degree below n - m, and $((fg_0 - 1)g_0) \mod x^n = x^m uv \mod x^n$. One can compute $uv \mod x^n - 1$, extract the bottom n-m coefficients of the product, and insert m zeros, to obtain $((fg_0 - 1)g_0) \mod x^n$.

One can achieve 2+o(1) by skipping some multiplications by high zeros and by not recomputing a stretch of known coefficients. To compute $fg_0 \mod x^n$, one multiplies $f \mod x^n$ by g_0 and extracts the bottom n coefficients. The point is that $(f \mod x^n)g_0 - 1$ is a multiple of x^m , and has degree at most m + n, so it is easily computed from its remainder modulo $x^n - 1$: it has m zeros, then the top n - m coefficients of the remainder, then the bottom n - m coefficients of the remainder.

One can achieve 5/3 + o(1) by applying FFT caching. There is a multiplication of $f \mod x^n$ by $g_0 \mod x^n - 1$, and a multiplication of $(fg_0 - 1) \mod x^n$ by $g_0 \mod x^n - 1$; the transform of g_0 can be reused rather than recomputed.

One can achieve 3/2 + o(1) by evaluating a cubic rather than two quadratics. The polynomial $((f \mod x^n)g_0 - 1)g_0$ is a multiple of x^m and has degree below n + 2m, so it is easily computed from its remainders modulo $x^n + 1$ and $x^m - 1$. One transforms $f \mod x^n$, transforms g_0 , multiplies the first transform by the square of the second, subtracts the second, and untransforms the result.

Brent [1976c] published 3 + o(1). Schönhage, Grotefeld, and Vetter [1994, page 256] announced 2 + o(1) without giving details. I published 28/15 + o(1) in 1998, and 3/2 + o(1) in 2000, with a rather messy algorithm; see [Bernstein 2004c]. Schönhage [2000] independently achieved 3/2 + o(1) with the simpler algorithm shown above.

7. Quotient

7.1. Input. Let *A* be a commutative ring. Let *n* be a positive integer. The algorithm in this section is given the precision-*n* representations of power series $f, h \in A[[x]]$ such that f(0) = 1.

7.2. Output. This algorithm computes the precision-*n* representation of $h/f \in A[[x]]$. If the input is 1, $f_1, f_2, \ldots, f_{n-1}, h_0, h_1, h_2, \ldots, h_{n-1}$ then the output is

$$h_{0}, \\ h_{1} - f_{1}h_{0}, \\ h_{2} - f_{1}h_{1} + (f_{1}^{2} - f_{2})h_{0}, \\ \vdots \\ h_{n-1} - \dots + (\dots - f_{n-1})h_{0}.$$

7.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A: more precisely, at most $(10n + 2k - 9)\mu(2n - 1) + (2n + 2k - 2)$ operations in A if $n \le 2^k$.

7.4. How it works. First compute a precision-*n* approximation to 1/f as explained in Section 6. Then multiply by *h* as explained in Section 5.

7.5. The integer case, easy completion: $\mathbf{Q} \to \mathbf{Q}_2$. Let *h* and *f* be elements of \mathbf{Z}_2 with *f* odd. Given *f* mod 2^n and *h* mod 2^n , one can compute $(h/f) \mod 2^n$ in time $O(n \lg n \lg \lg n)$ by the same method.

7.6. The integer case, hard completion: $\mathbf{Q} \rightarrow \mathbf{R}$. Let *h* and *f* be elements of \mathbf{R} with $0.5 \le f \le 1$. One can compute a precision-*n* representation of h/f, given slightly higher-precision representations of *f* and *h*, in time $O(n \lg n \lg \lg n)$. As usual, roundoff error complicates the algorithm.

7.7. Improvements. One can improve the number of operations for a reciprocal to 3/2 + o(1) times the number of operations for a product, as discussed in Section 6, so one can improve the number of operations for a quotient to 5/2 + o(1) times the number of operations for a product.

The reader may be wondering at this point why quotient deserves to be discussed separately from reciprocal. Answer: Further improvements are possible. Karp and Markstein [1997] pointed out that a quotient computation could profitably avoid some of the work in a reciprocal computation. I achieved a gap of 2.6/3+o(1) in 1998 and 2/3+o(1) in 2000, combining the Karp–Markstein idea with some FFT reuse; see [Bernstein 2004c]. In 2004, Hanrot and Zimmermann announced a gap of 1.75/3 + o(1): i.e., the number of operations for a quotient is 6.25/3 + o(1) times the number of operations for a product. More recently, Joris van der Hoeven [2006] announced 5/3 + o(1).

8. Logarithm: the series case

8.1. Input. Let *A* be a commutative ring containing **Q**. Let *n* be a positive integer. The algorithm in this section is given the precision-*n* representation of a power series $f \in A[[x]]$ with f(0) = 1.

8.2. Output. This algorithm computes the precision-*n* representation of the series $\log f = -(1-f) - (1-f)^2/2 - (1-f)^3/3 - \cdots \in A[[x]]$. If the input is 1, f_1, f_2, f_3, \ldots then the output is 0, $f_1, f_2 - f_1^2/2, f_3 - f_1f_2 + f_1^3/3, \ldots$

Define $D(\sum a_j x^j) = \sum j a_j x^j$. The reader may enjoy checking the following properties of log and D:

- D(fg) = gD(f) + fD(g);
- $D(g^n) = ng^{n-1}D(g);$
- if f(0) = 1 then $D(\log f) = D(f)/f$;
- if f(0) = 1 and $\log f = 0$ then f = 1;
- if f(0) = 1 and g(0) = 1 then $\log fg = \log f + \log g$;
- log is injective: i.e., if f(0) = 1 and g(0) = 1 and $\log f = \log g$ then f = g.

8.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A: more precisely, at most $(10n + 2k - 9)\mu(2n - 1) + (4n + 2k - 4)$ operations in A if $n \le 2^k$.

8.4. How it works. Given $f \mod x^n$, compute $D(f) \mod x^n$ from the definition of D; compute $(D(f)/f) \mod x^n$ as explained in Section 7; and recover $(\log f) \mod x^n$ from the formula $D((\log f) \mod x^n) = (D(f)/f) \mod x^n$.

8.5. The integer case. This A[[x]] algorithm does not have a useful analogue for \mathbb{Z}_2 or \mathbb{R} , because \mathbb{Z}_2 and \mathbb{R} do not have adequate replacements for the differential operator *D*. See, however, Section 16.

8.6. History. This algorithm was published by Brent [1976c, Section 13].

8.7. Improvements. See Section 7 for improved quotient algorithms. I do not know any way to compute $\log f$ more quickly than computing a generic quotient.

9. Exponential: the series case

9.1. Input. Let A be a commutative ring containing **Q**. Let n be a positive integer. The algorithm in this section is given the precision-n representation of a power series $f \in A[[x]]$ with f(0) = 0.

9.2. Output. This algorithm computes the precision-*n* representation of the series exp $f = 1 + f + f^2/2! + f^3/3! + \cdots \in A[[x]]$. If the input is 0, f_1, f_2, f_3, \ldots then the output is 1, $f_1, f_2 + f_1^2/2, f_3 + f_1f_2 + f_1^3/6, \ldots$

The reader may enjoy checking the following properties of exp:

- if f(0) = 0 then $D(\exp f) = D(f) \exp f$;
- if f(0) = 0 then $\log \exp f = f$;
- if g(0) = 1 then $\exp \log g = g$;
- if f(0) = 0 and g(0) = 0 then $\exp(f + g) = (\exp f) \exp g$.

9.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A: more precisely, at most $(24n + k^2 + 3k - 24)\mu(2n - 1) + (12n + k^2 + 3k - 12)$ operations in A if $n \le 2^k$.

9.4. How it works. If n = 1 then $(\exp f) \mod x^n = 1$. Otherwise define $m = \lceil n/2 \rceil$. Recursively compute $g_0 = (\exp f) \mod x^m$. Compute $(\log g_0) \mod x^n$ as explained in Section 8. Then compute $(\exp f) \mod x^n$ as $(g_0 + (f - \log g_0)g_0) \mod x^n$. This works because $\exp(f - \log g_0) - 1 - (f - \log g_0)$ is a multiple of $(f - \log g_0)^2$, hence of x^{2m} , hence of x^n .

The recursive step uses at most $(24(n+1)/2+(k-1)^2+3(k-1)-24)\mu(2n-1) + (12(n+1)/2+(k-1)^2+3(k-1)-12)$ operations by induction. The computation of $(\log g_0) \mod x^n$ uses at most $(10n+2k-9)\mu(2n-1)+(4n+2k-4)$ operations. The subtraction from f and the addition of g_0 use at most 2n operations. The multiplication by g_0 uses at most $(2n-1)\mu(2n-1)$ operations. The total is at most $(24n+k^2+3k-24)\mu(2n-1)+(12n+k^2+3k-12)$ as claimed.

9.5. The integer case. See Section 16.

9.6. History. The iteration $g \mapsto g + (f - \log g)g$ is an example of "Newton's method," i.e., Simpson's method.

Brent [1976c, Section 13] pointed out that this is a particularly efficient way to compute exp for $\mathbf{R}[[x]]$, since log is so easy to compute for $\mathbf{R}[[x]]$.

9.7. Improvements. Brent [1976c, Section 13] stated that the number of operations for an exponential in **R**[[*x*]] could be improved to 22/3 + o(1) times the number of operations for a product. In fact, one can achieve 8.5/3 + o(1); see [Bernstein 2004c]. More recently, Joris van der Hoeven [2006] announced 7/3 + o(1).

10. Power: the series case

10.1. Input. Let A be a commutative ring containing **Q**. Let n be a positive integer. The algorithm in this section is given the precision-n representations of power series $f, e \in A[[x]]$ such that f(0) = 1.

10.2. Output. This algorithm computes the precision-*n* representation of the series $f^e = \exp(e \log f) \in A[[x]]$. If the input is 1, $f_1, f_2, \ldots, e_0, e_1, \ldots$ then the output is 1, $e_0 f_1, e_1 f_1 + e_0 f_2 + e_0(e_0 - 1) f_1^2/2, \ldots$

The reader may enjoy checking the following properties of $f, e \mapsto f^e$:

- $f^0 = 1;$
- $f^1 = f;$
- f^{d+e} = f^d · f^e, so the notation f^e for exp(e log f) is, for positive integers e, consistent with the usual notation f^e for ∏_{1≤i≤e} f;
- $f^{-1} = 1/f;$
- $(f^d)^e = f^{de};$
- $(fg)^e = f^e g^e;$
- $D(f^e) = D(e)f^e \log f + D(f)ef^{e-1};$
- $f^e = 1 + e(f-1) + (e(e-1)/2)(f-1)^2 + \cdots$

10.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A: more precisely, at most $(36n + k^2 + 5k - 34)\mu(2n - 1) + (16n + k^2 + 5k - 16)$ operations in A if $n \le 2^k$.

10.4. How it works. Given $f \mod x^n$, compute $(\log f) \mod x^n$ as explained in Section 8; compute $(e \log f) \mod x^n$ as explained in Section 5; compute $(\exp(e \log f)) \mod x^n$ as explained in Section 9.

10.5. The integer case. See Section 16.

10.6. History. According to various sources, Napier introduced the functions exp and log for **R**, along with the idea of using exp and log to compute products in **R**. I do not know the history of exp and log for \mathbb{Z}_2 and A[[x]].

10.7. Improvements. As in Sections 6, 7, and 9, one can remove some redundancy from the above algorithm. See [Bernstein 2004c].

Brauer [1939] pointed out that, if *e* is a positive integer, one can compute f^e with about lg *e* squarings and at most about $(\lg e) / \lg \lg e$ other multiplications. This is faster than the exp-log algorithm if *e* is small. See [Bernstein 2002b] for further discussion of square-and-multiply exponentiation algorithms.

One can compute f^e for any rational number e with a generalization of the algorithm of Section 6. This takes essentially linear time for fixed e, as pointed out by Cook [1966, page 86]; it is faster than the exp-log algorithm if the height

of *e* is small, i.e., the numerator and denominator of *e* are small. The special case e = 1/2—i.e., square roots—is discussed in detail in [Bernstein 2004c].

11. Matrix product

11.1. Input. Let A be a commutative ring. The algorithm in this section is given two 2 × 2 matrices $F = \begin{pmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{pmatrix}$ and $G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$ with entries in the polynomial ring A[x].

11.2. Output. This algorithm computes the 2×2 matrix product FG.

11.3. Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in *A*, where *n* is the total number of input coefficients. More precisely, the algorithm uses at most $n(2\mu(n) + 2)$ operations in *A*. This bound is pessimistic.

Here, and elsewhere in this paper, **number of coefficients** means the number of elements of *A* provided as input. Reader beware: the number of coefficients of an input polynomial is not determined by the polynomial; it depends on how the polynomial is represented. For example, the sequence (5, 7, 0), with 3 coefficients, represents the same polynomial as the sequence (5, 7), with 2 coefficients.

11.4. How it works. Multiply F_{11} by G_{11} , multiply F_{12} by G_{21} , add, etc., to obtain $FG = \begin{pmatrix} F_{11}G_{11} + F_{12}G_{21} & F_{11}G_{12} + F_{12}G_{22} \\ F_{21}G_{11} + F_{22}G_{21} & F_{21}G_{12} + F_{22}G_{22} \end{pmatrix}$.

11.5. The integer case. An analogous algorithm computes the product of two 2×2 matrices with entries in **Z** in time $O(n \lg n \lg \lg n)$, where *n* is the number of input bits.

11.6. History. The matrix concept is generally credited to Sylvester and Cayley.

11.7. Improvements. The above algorithm involves 24 transforms. FFT caching — transforming each of the input polynomials F_{11} , F_{12} , F_{21} , F_{22} , G_{11} , G_{12} , G_{21} , G_{22} just once — saves 8 transforms. FFT addition — untransforming $F_{11}G_{11} + F_{12}G_{21}$, for example, rather than separately untransforming $F_{11}G_{11}$ and $F_{12}G_{21}$ — saves 4 more transforms.

Strassen [1969] published a method to multiply 2×2 matrices using just 7 multiplications of entries and 18 additions or subtractions of entries, rather than 8 multiplications and 4 additions. Winograd observed that 18 could be replaced by 15; see, e.g., [Knuth 1997, page 500].

Many applications involve matrices of particular shapes: for example, matrices *F* in which $F_{12} = 0$. One can often save time accordingly.

11.8. Generalization: larger matrices. Strassen [1969] published a general method to multiply $d \times d$ matrices using $O(d^{\alpha})$ multiplications, additions, and subtractions of entries; here $\alpha = \log_2 7 = 2.807...$ Subsequent work by Pan, Bini, Capovani, Lotti, Romani, Schönhage, Coppersmith, and Winograd showed that there is an algorithm to multiply $d \times d$ matrices using $d^{\beta+o(1)}$ multiplications and additions of entries, for a certain number $\beta < 2.38$. See [Bürgisser et al. 1997, Chapter 15] for a detailed exposition and further references.

It is not known whether matrix multiplication can be carried out in essentially linear time, when the matrix size is a variable.

12. Product tree

12.1. Input. Let A be a commutative ring. Let t be a nonnegative integer. The algorithm in this section is given 2×2 matrices M_1, M_2, \ldots, M_t with entries in A[x].

12.2. Output. This algorithm computes the product tree of M_1, M_2, \ldots, M_t , which is defined as follows. The root of the tree is the 2×2 matrix $M_1 M_2 \cdots M_t$. If $t \le 1$ then that's the complete tree. If $t \ge 2$ then the left subtree is the product tree of M_1, M_2, \ldots, M_s , and the right subtree is the product tree of $M_{s+1}, M_{s+2}, \ldots, M_t$, where $s = \lfloor t/2 \rfloor$. For example, here is the product tree of $M_1, M_2, M_3, M_4, M_5, M_6$:

Most applications use only the root $M_1M_2 \cdots M_t$ of the product tree. This root is often described in the language of linear recurrences as follows. Define $X_i = M_1M_2 \cdots M_i$; then $X_i = X_{i-1}M_i$, i.e., $X_{i,j,k} = X_{i-1,j,0}M_{i,0,k} + X_{i-1,j,1}M_{i,1,k}$. The algorithm computes $X_{t,0,0}, X_{t,0,1}, X_{t,1,0}, X_{t,1,1}$, given the coefficients $M_{i,j,k}$ of the linear recurrence $X_{i,j,k} = X_{i-1,j,0}M_{i,0,k} + X_{i-1,j,1}M_{i,1,k}$, with the starting condition $(X_{0,0,0}, X_{0,0,1}, X_{0,1,0}, X_{0,1,1}) = (1, 0, 0, 1)$.

12.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in *A*, where *n* is the total number of coefficients in M_1, M_2, \ldots, M_t : more precisely, at most $nk(2\mu(n) + 2)$ operations in *A* if *k* is a nonnegative integer and $t \le 2^k$.

12.4. How it works. If t = 0 then the answer is the identity matrix. If t = 1 then the answer is M_1 . Otherwise recursively compute the product tree of M_1, M_2, \ldots, M_s and the product tree of $M_{s+1}, M_{s+2}, \ldots, M_t$, where $s = \lfloor t/2 \rfloor$.

Multiply the roots $M_1M_2 \cdots M_s$ and $M_{s+1} \cdots M_t$, as discussed in Section 11, to obtain $M_1M_2 \cdots M_t$.

Time analysis: Define *m* as the total number of coefficients in M_1, \ldots, M_s . By induction, the computation of the product tree of M_1, \ldots, M_s uses at most $m(k-1)(2\mu(n)+2)$ operations, and the computation of the product tree of M_{s+1}, \ldots, M_t uses at most $(n-m)(k-1)(2\mu(n)+2)$ operations. The final multiplication uses at most $n(2\mu(n)+2)$ operations. Add: m(k-1) + (n-m)(k-1) + n = nk.

12.5. The integer case. An analogous algorithm takes time $O(n(\lg n)^2 \lg \lg n)$ to compute the product tree of a sequence M_1, M_2, \ldots, M_t of 2×2 matrices with entries in **Z**. Here *n* is the total number of input bits.

12.6. Generalization: larger matrices. One can use the same method to compute a product of several $d \times d$ matrices — in other words, to compute terms in linear recurrences of any order. It is not known whether this can be done in essentially linear time for variable d; see Section 11 for further comments.

12.7. History. Product trees are so simple and so widely applicable that they have been reinvented many times. They are not only a basic tool in the context of fast multiplication but also a basic tool for building low-depth parallel algorithms.

Unfortunately, most authors state product trees for particular applications, with no hint of the generality of the technique. They define ad-hoc product operations, and prove associativity of their product operations from scratch, never realizing that these operations are special cases of matrix product.

Weinberger and Smith [1958] published the "carry-lookahead adder," a lowdepth parallel circuit for computing the sum of two nonnegative integers, with the inputs and output represented in the usual way as bit strings. This circuit computes (in different language) a product

$$\begin{pmatrix} a_1 & 0 \\ b_1 & 1 \end{pmatrix} \begin{pmatrix} a_2 & 0 \\ b_2 & 1 \end{pmatrix} \cdots \begin{pmatrix} a_t & 0 \\ b_t & 1 \end{pmatrix} = \begin{pmatrix} a_1 a_2 \cdots a_t & 0 \\ b_t + b_{t-1} a_t + b_{t-2} a_{t-1} a_t + \cdots + b_1 a_2 \cdots a_t & 1 \end{pmatrix}$$

of matrices over the Boole algebra $\{0, 1\}$ by multiplying pairs of matrices in parallel, then multiplying pairs of pairs in parallel, and so on for approximately $\lg t$ steps.

Estrin [1960] published a low-depth parallel algorithm for evaluating a onevariable polynomial. Estrin's algorithm computes (in different language) a product

$$\begin{pmatrix} a & 0 \\ b_1 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ b_2 & 1 \end{pmatrix} \cdots \begin{pmatrix} a & 0 \\ b_t & 1 \end{pmatrix} = \begin{pmatrix} a^t & 0 \\ b_t + b_{t-1}a + b_{t-2}a^2 + \cdots + b_1a^{t-1} & 1 \end{pmatrix}$$

by multiplying pairs, pairs of pairs, etc.

Schönhage, as reported in [Knuth 1971a, Exercise 4.4–13], pointed out that one can convert integers from base 10 to base 2 in essentially linear time. Schönhage's algorithm computes (in different language) a product

$$\begin{pmatrix} 10 & 0 \\ b_1 & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ b_2 & 1 \end{pmatrix} \cdots \begin{pmatrix} 10 & 0 \\ b_t & 1 \end{pmatrix} = \begin{pmatrix} 10^t & 0 \\ b_t + 10b_{t-1} + 100b_{t-2} + \cdots + 10^{t-1}b_1 & 1 \end{pmatrix}$$

by multiplying pairs of matrices, then pairs of pairs, etc.

Knuth [1971b, Theorem 1] published an algorithm to convert a continued fraction to a fraction in essentially linear time. Knuth's algorithm is (in different language) another example of the product-tree algorithm; see Section 14 for details.

Moenck and Borodin [1972, page 91] pointed out that one can compute the product tree — and thus the product — of a sequence of polynomials or a sequence of integers in essentially linear time; see also [Borodin and Moenck 1974, page 372]. Beware that the Moenck–Borodin "theorems" assume that all of the inputs are "single precision"; it is unclear what this is supposed to mean for integers.

Moenck and Borodin also pointed out an algorithm to add fractions in essentially linear time. This algorithm is (in different language) yet another example of the product-tree algorithm. See Section 13 for details and further historical notes.

Meanwhile, in the context of parallel algorithms, Stone and Kogge published the product-tree algorithm in a reasonable level of generality, with polynomial evaluation and continued-fraction-to-fraction conversion ("tridiagonallinear-system solution") as examples. See [Stone 1973], [Kogge and Stone 1973], and [Kogge 1974]. Stone commented that linear recurrences of any order could be phrased as matrix products — see [Stone 1973, page 34] and [Stone 1973, page 37] — but, unfortunately, made little use of matrices elsewhere in his presentation.

Kogge and Stone [1973, page 792] credited Robert Downs, Harvard Lomax, and H. R. G. Trout for independent discoveries of general product-tree algorithms. They also stated that special cases of the algorithm were "known to J. J. Sylvester as early as 1853"; but I see no evidence that Sylvester ever formed a product tree in that context or any other context. Sylvester [1853] (cited in [Knuth 1971b] and [Stone 1973]) simply pointed out the associativity of continued fractions.

Brent [1976a, Section 6] pointed out that the numerator and denominator of $1+1/2+1/3!+\cdots+1/t! \approx \exp 1$ could be computed quickly. Brent's algorithm

formed (in different language) a product tree for

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \cdots \begin{pmatrix} t & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} t! & 0 \\ t! + t!/2 + \cdots + t(t-1) + t + 1 & 1 \end{pmatrix}.$$

Brent also addressed exp for more general inputs, as discussed in Section 15; and π , via arctan. Brent described his method as a mixed-radix adaptation of Schönhage's base-conversion algorithm. Evidently he had in mind the product

$$\begin{pmatrix} a_1 & 0 \\ b_1 & c \end{pmatrix} \begin{pmatrix} a_2 & 0 \\ b_2 & c \end{pmatrix} \cdots \begin{pmatrix} a_t & 0 \\ b_t & c \end{pmatrix} = \begin{pmatrix} a_1 a_2 \cdots a_t & 0 \\ c^{t-1} b_t + c^{t-2} b_{t-1} a_t + \cdots + b_1 a_2 \cdots a_t & c^t \end{pmatrix}$$

corresponding to the sum $\sum_{1 \le k \le t} c^{k-1} b_k / a_1 \cdots a_k$. Brent and McMillan [1980, page 308] mentioned that the sum $\sum_{1 \le k \le t} n^k (-1)^{k-1} / k! k$ could be handled similarly.

I gave a reasonably general statement of the product-tree algorithm in [Bernstein 1987], with a few series and continued fractions as examples. I pointed out that computing $M_1M_2 \cdots M_t$ takes time $O(t(\lg t)^3 \lg \lg t)$ in the common case that the entries of M_j are bounded by polynomials in j.

Gosper [1990] presented a wide range of illustrative examples of matrix products, emphasizing their "notational, analytic, and computational virtues." Gosper then [1990, page 263] gave a brief statement of the product-tree algorithm and credited it to Rich Schroeppel.

Chudnovsky and Chudnovsky [1990, pages 115–118] stated the product-tree algorithm for matrices M_j whose entries depend rationally on j. They gave a broad class of series as examples in [Chudnovsky and Chudnovsky 1990, pages 123–134]. They called the algorithm "a well-known method to accelerate the (numerical) solution of linear recurrences."

Karatsuba used product trees (in different language) to evaluate various sums in several papers starting in 1991 and culminating in [Karatsuba 1999].

See [Haible and Papanikolaou 1997], [van der Hoeven 1999], [Borwein et al. 2000, Section 7], and [van der Hoeven 2001] for further uses of product trees to evaluate sums.

12.8. Improvements. One can change *s* in the definition of a product tree and in the product-tree algorithm. The choice $s = \lceil t/2 \rceil$, balancing *s* against t - s, is not necessarily the fastest way to compute $M_1M_2 \cdots M_t$: when M_1, M_2, \ldots, M_t have widely varying degrees, it is much better to balance deg M_1 +deg M_2 +···+ deg M_s against deg M_{s+1} + deg M_{s+2} +···+ deg M_t . Strassen [1983, Theorem 3.2] proved that a slightly more complicated strategy is within a constant factor of optimal.

In some applications, M_1, M_2, \ldots, M_t are known to commute. One can often permute M_1, M_2, \ldots, M_t for slightly higher speed. Strassen [1983, Theorem

2.2] pointed out a particularly fast, and pleasantly simple, algorithm: find the two matrices of smallest degree, replace them by their product, and repeat. See [Bürgisser et al. 1997, Section 2.3] for an exposition.

Robert Kramer has recently pointed out another product-tree speedup. Suppose, as an illustration, that M_1 , M_2 , M_3 , M_4 each have degree close to n. To multiply M_1 by M_2 , one applies a size-2n transform to each of M_1 and M_2 , multiplies the transforms, and untransforms the result. To multiply M_1M_2 by M_3M_4 , one starts by applying a size-4n transform to M_1M_2 . Kramer's idea, which I call **FFT doubling**, is that the first half of the size-4n transform of M_1M_2 is exactly the size-2n transform of M_1M_2 , which is already known. This idea saves two halves of every three transforms in a large balanced product-tree computation.

13. Sum of fractions

13.1. Input. Let *A* be a commutative ring. Let *t* be a positive integer. The algorithm in this section is given 2t polynomials $f_1, g_1, f_2, g_2, \ldots, f_t, g_t \in A[x]$.

13.2. Output. This algorithm computes $h = f_1g_2 \cdots g_t + g_1f_2 \cdots g_t + \cdots + g_1g_2 \cdots f_t$, along with $g_1g_2 \cdots g_t$.

The reader may think of this output as follows: the algorithm computes the sum $h/g_1g_2\cdots g_t$ of the fractions $f_1/g_1, f_2/g_2, \ldots, f_t/g_t$. The equation $h/g_1g_2\cdots g_t = f_1/g_1 + f_2/g_2 + \cdots + f_t/g_t$ holds in any A[x]-algebra where g_1, g_2, \ldots, g_t are invertible: in particular, in the localization $g_1^{-N}\cdots g_t^{-N}A[x]$.

13.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in *A*, where *n* is the total number of coefficients in the input polynomials.

13.4. How it works. The matrix product $\begin{pmatrix} g_1 & f_1 \\ 0 & g_1 \end{pmatrix} \begin{pmatrix} g_2 & f_2 \\ 0 & g_2 \end{pmatrix} \cdots \begin{pmatrix} g_t & f_t \\ 0 & g_t \end{pmatrix}$ is ex-

actly $\begin{pmatrix} g_1g_2\cdots g_t & h \\ 0 & g_1g_2\cdots g_t \end{pmatrix}$. Compute this product as described in Section 12.

The point is that adding fractions a/b and c/d to obtain (ad + bc)/bd is the same as multiplying matrices $\begin{pmatrix} b & a \\ 0 & b \end{pmatrix}$ and $\begin{pmatrix} d & c \\ 0 & d \end{pmatrix}$ to obtain $\begin{pmatrix} bd & ad + bc \\ 0 & bd \end{pmatrix}$. Another proof, using the language of recurrences: the quantities $p_j = g_1 \cdots g_j$

Another proof, using the language of recurrences: the quantities $p_j = g_1 \cdots g_j$ and $q_j = (f_1/g_1 + \cdots + f_j/g_j)p_j$ satisfy the recurrences $p_j = p_{j-1}g_j$ and $q_j = q_{j-1}g_j + p_{j-1}f_j$, i.e., $\begin{pmatrix} p_j & q_j \\ 0 & p_j \end{pmatrix} = \begin{pmatrix} p_{j-1} & q_{j-1} \\ 0 & p_{j-1} \end{pmatrix} \begin{pmatrix} g_j & f_j \\ 0 & g_j \end{pmatrix}$.

The reader may prefer to describe this algorithm without matrices: for $t \ge 2$, recursively compute $f_1/g_1 + \cdots + f_s/g_s$ and $f_{s+1}/g_{s+1} + \cdots + f_t/g_t$, and then add to obtain $f_1/g_1 + \cdots + f_t/g_t$. Here $s = \lceil t/2 \rceil$.

13.5. The integer case. An analogous algorithm takes time $O(n(\lg n)^2 \lg \lg n)$ to compute $f_1g_2 \cdots g_t + g_1f_2 \cdots g_t + \cdots + g_1g_2 \cdots f_t$ and $g_1g_2 \cdots g_t$, given integers $f_1, g_1, f_2, g_2, \ldots, f_t, g_t$. Here *n* is the total number of input bits.

13.6. History. Horowitz [1972] published an algorithm to compute the polynomial

$$\left(\frac{b_1}{x-a_1} + \frac{b_2}{x-a_2} + \dots + \frac{b_t}{x-a_t}\right)(x-a_1)(x-a_2)\cdots(x-a_t)$$

within a lg t factor of the time for polynomial multiplication. Horowitz's algorithm is essentially the algorithm stated above, except that it splits t into t/2, t/4, t/8, ... rather than t/2, t/2.

Borodin and Moenck [1974, Section 7] published a more general algorithm to add fractions, in both the polynomial case and the integer case, for the application described in Section 23.

13.7. Improvements. See Section 12 for improved product-tree algorithms.

14. Fraction from continued fraction

14.1. Input. Let A be a commutative ring. Let t be a nonnegative integer. The algorithm in this section is given t polynomials $q_1, q_2, \ldots, q_t \in A[x]$ such that, for each i, at least one of q_i, q_{i+1} is nonzero.

14.2. Output. This algorithm computes the polynomials $F(q_1, q_2, ..., q_t) \in A[x]$ and $G(q_1, q_2, ..., q_t) \in A[x]$ defined recursively by F() = 1, G() = 0,

$$F(q_1, q_2, \dots, q_t) = q_1 F(q_2, \dots, q_t) + G(q_2, \dots, q_t)$$
 for $t \ge 1$, and
 $G(q_1, q_2, \dots, q_t) = F(q_2, \dots, q_t)$ for $t \ge 1$.

For example, $F(q_1, q_2, q_3, q_4) = q_1q_2q_3q_4 + q_1q_2 + q_1q_4 + q_3q_4 + 1$. In general, $F(q_1, q_2, ..., q_t)$ is the sum of all products of subsequences of $(q_1, q_2, ..., q_t)$ obtained by deleting any number of non-overlapping adjacent pairs.

The reader may think of this output as the numerator and denominator of a continued fraction:

$$\frac{F(q_1, q_2, \dots, q_t)}{G(q_1, q_2, \dots, q_t)} = q_1 + \frac{1}{\frac{F(q_2, \dots, q_t)}{G(q_2, \dots, q_t)}} = q_1 + \frac{1}{q_2 + \frac{1}{\frac{1}{\ddots + \frac{1}{q_t}}}}$$

As in Section 13, these equations hold in any A[x]-algebra where all the divisions make sense.

14.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in A, where n is the total number of coefficients in the input polynomials.

14.4. How it works. The product $\begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_t & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is exactly $\begin{pmatrix} F(q_1, q_2, \dots, q_t) \\ G(q_1, q_2, \dots, q_t) \end{pmatrix}$ by definition of *F* and *G*. Compute this product as described in Section 12.

The assumption that no two consecutive q's are 0 ensures that the total number of coefficients in these matrices is in O(n).

14.5. The integer case. An analogous algorithm, given integers q_1, q_2, \ldots, q_t , computes $F(q_1, q_2, \ldots, q_t)$ and $G(q_1, q_2, \ldots, q_t)$. This algorithm takes time $O(n(\lg n)^2 \lg \lg n)$, where *n* is the total number of input bits.

14.6. History. See Section 12.

14.7. Improvements. See Section 12 for improved product-tree algorithms.

15. Exponential: the short case

15.1. Input. Let A be a commutative ring containing **Q**. Let m and n be positive integers. The algorithm in this section is given a polynomial $f \in A[x]$ with deg f < 2m and $f \mod x^m = 0$. For example, if m = 2, the input is a polynomial of the form $f_2x^2 + f_3x^3$.

15.2. Output. This algorithm computes the precision-*n* representation of the series exp $f \in A[[x]]$ defined in Section 9.

15.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in *A*. It is usually slower than the algorithm of Section 9; its main virtue is that the same idea also works for \mathbb{Z}_2 and \mathbb{R} .

15.4. How it works. Define $k = \lceil n/m - 1 \rceil$. Compute the matrix product $\begin{pmatrix} u & v \\ 0 & w \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f & f \\ 0 & 2 \end{pmatrix} \cdots \begin{pmatrix} f & f \\ 0 & k \end{pmatrix}$ as described in Section 12. Then (exp *f*) mod $x^n = (v/w) \mod x^n$. Note that *w* is simply the integer *k*!, so the division by *w* is a multiplication by the constant 1/k!.

The point is that $(u, v, w) = (f^k, k!(1 + f + f^2/2 + \dots + f^k/k!), k!)$ by induction, so $(\exp f) - v/w = f^{k+1}/(k+1)! + f^{k+2}/(k+2)! + \dots$; but k was chosen so that f^{k+1} is divisible by x^n .

15.5. The integer case, easy completion: $\mathbf{Q} \to \mathbf{Q}_2$. One can use the same method to compute a precision-*n* representation of exp $f \in \mathbf{Z}_2$, given an integer $f \in \{0, 2^m, (2)2^m, \dots, (2^m - 1)2^m\}$, in time $O(n(\lg n)^2 \lg \lg n)$, for $m \ge 2$. Note

that k must be chosen somewhat larger in this case, because the final division of v by w = k! loses approximately k bits of precision.

15.6. The integer case, hard completion: $\mathbf{Q} \to \mathbf{R}$. One can compute a precision-*n* representation of exp *f*, given a real number *f* such that $|f| < 2^{-m}$ and *f* is a multiple of 2^{-2m} , in time $O(n(\lg n)^2 \lg \lg n)$. As usual, roundoff error complicates the algorithm.

15.7. History. See Section 12.

15.8. Improvements. See Section 16.

16. Exponential: the general case

16.1. Input. Let *A* be a commutative ring containing **Q**. Let *n* be a positive integer. The algorithm in this section is given the precision-*n* representation of a power series $f \in A[[x]]$ with f(0) = 0.

16.2. Output. This algorithm computes the precision-*n* representation of the series exp $f \in A[[x]]$ defined in Section 9.

16.3. Speed. This algorithm uses $O(n(\lg n)^3 \lg \lg n)$ operations in *A*. It is usually much slower than the algorithm of Section 9; its main virtue is that the same idea also works for \mathbb{Z}_2 and \mathbb{R} .

16.4. How it works. Write f as a sum $f_1 + f_2 + f_4 + f_8 + \cdots$ where $f_m \mod x^m = 0$ and deg $f_m < 2m$. In other words, put the coefficient of x^1 into f_1 ; the coefficients of x^2 and x^3 into f_2 ; the coefficients of x^4 through x^7 into f_4 ; and so on.

Compute precision-*n* approximations to exp f_1 , exp f_2 , exp f_4 , exp f_8 , ... as described in Section 15. Multiply to obtain exp f.

16.5. The integer case. Similar algorithms work for \mathbf{Z}_2 and \mathbf{R} .

16.6. History. This method of computing exp is due to Brent [1976a, Theorem 6.2]. Brent also pointed out that, starting from a fast algorithm for exp, one can use "Newton's method" — i.e., Simpson's method — to quickly compute log and various other functions. Note the reversal of roles from Section 9, where exp was obtained by inverting log.

16.7. Improvements. Salamin, and independently Brent, observed that one could use the "arithmetic-geometric mean" to compute log and exp for **R** in time only $O(n(\lg n)^2 \lg \lg n)$. See [Beeler et al. 1972, Item 143], [Salamin 1976], [Brent 1976b], and [Brent 1976c, Section 9] for the basic idea; [Borwein and Borwein 1987] for much more information about the arithmetic-geometric

mean; and my self-contained paper [Bernstein 2003] for constant-factor improvements.

17. Quotient and remainder

17.1. Input. Let *A* be a commutative ring. Let *d* and *e* be nonnegative integers. The algorithm in this section is given two elements *f*, *h* of the polynomial ring A[x] such that *f* is monic, deg f = d, and deg h < e.

17.2. Output. This algorithm computes $q, r \in A[x]$ such that h = qf + r and deg r < d. In other words, this algorithm computes $r = h \mod f$ and q = (h-r)/f.

For example, say d = 2 and e = 5. Given $f = f_0 + f_1 x + x^2$ and $h = h_0 + h_1 x + h_2 x^2 + h_3 x^3 + h_4 x^4$, this algorithm computes

$$q = (h_2 - h_3 f_1 + h_4 (f_1^2 - f_0)) + (h_3 - h_4 f_1)x + h_4 x^2$$

and

$$r = h \mod f = h - qf$$

= $(h_0 - h_2 f_0 + h_3 f_1 f_0 + h_4 (f_1^2 - f_0) f_0)$
+ $(h_1 - h_2 f_1 + h_3 (f_1^2 - f_0) + h_4 ((f_1^2 - f_0) f_1 + f_1 f_0))x.$

17.3. Speed. This algorithm uses $O(e \lg e \lg \lg g)$ operations in A.

More precisely, the algorithm uses at most $(10(e-d)+2k-9)\mu(2(e-d)-1)+(2(e-d)+2k-2)+e\mu(e)+e$ operations in A if $1 \le e-d \le 2^k$. The algorithm uses no operations if $e \le d$.

For simplicity, subsequent sections of this paper use the relatively crude upper bound $12(e + 1)(\mu(2e) + 1)$.

17.4. How it works: $A(x) \rightarrow A((x^{-1}))$. The point is that polynomial division in A[x] is division in $A((x^{-1}))$; $A((x^{-1}))$, in turn, is isomorphic to A((x)).

If $e \le d$, the answer is q = 0 and r = h. Assume from now on that e > d.

Reverse the coefficient order in $f = \sum_j f_j x^j$ to obtain $F = \sum_j f_{d-j} x^j \in A[x]$; in other words, define $F = x^d f(x^{-1})$. Then deg $F \le d$ and F(0) = 1. For example, if d = 2 and $f = f_0 + f_1 x + x^2$, then $F = 1 + f_1 x + f_0 x^2$.

Similarly, reverse $h = \sum_j h_j x^j$ to obtain $H = \sum_j h_{e-1-j} x^j \in A[x]$; in other words, define $H = x^{e-1}h(x^{-1})$. Then deg H < e. For example, if e = 5 and $h = h_0 + h_1 x + h_2 x^2 + h_3 x^3 + h_4 x^4$, then $H = h_4 + h_3 x + h_2 x^2 + h_1 x^3 + h_0 x^4$.

Now compute $Q = (H/F) \mod x^{e-d}$ as explained in Section 7. Then deg Q < e - d. Reverse $Q = \sum_j q_{e-d-1-j} x^j$ to obtain $q = \sum_j q_j x^j \in A[x]$; in other words, define $q = x^{e-d-1}Q(x^{-1})$.

Compute $r = h - qf \in A[x]$ as explained in Section 4. Then deg r < d. Indeed, $x^{e-1}r(x^{-1}) = H - QF$ is a multiple of x^{e-d} by construction of Q.

17.5. The *x*-adic case: $A(x) \rightarrow A((x))$. Omit the reversal of coefficients in the above algorithm. The resulting algorithm, given two polynomials f, h with f(0) = 1, deg $f \le d$, and deg h < e, computes polynomials q, r such that $h = qf + x^{\max\{e-d,0\}}r$ and deg r < d.

17.6. The integer case, easy completion: $\mathbf{Q} \to \mathbf{Q}_2$. An analogous algorithm, given integers f, h with f odd, $|f| \leq 2^d$, and $|h| < 2^e$, computes integers q, r such that $h = qf + 2^{\max\{e-d,0\}}r$ and $|r| < 2^d$. The algorithm takes time $O(n \lg n \lg \lg n)$, where n is the total number of input bits.

17.7. The integer case, hard completion: $\mathbf{Q} \to \mathbf{R}$. An analogous algorithm, given integers f, h with $f \neq 0$, computes integers q, r such that h = qf + r and $0 \leq r < |f|$. The algorithm takes time $O(n \lg n \lg \lg n)$, where n is the total number of input bits.

It is often convenient to change the sign of *r* when *f* is negative; in other words, to replace $0 \le r < |f|$ with $0 \le r/f < 1$; in other words, to take $q = \lfloor h/f \rfloor$. The time remains $O(n \lg n \lg \lg n)$.

17.8. History. See Section 7 for historical notes on fast division in A[[x]] and **R**.

The use of $x \mapsto x^{-1}$ for computing quotients dates back to at least 1973: Strassen [1973, page 240] (translated) commented that "the division of two formal power series can easily be used for the division of two polynomials with remainder." I have not attempted to trace the earlier history of the x^{-1} valuation.

17.9. Improvements. One can often save some time, particularly in the integer case, by changing the problem, allowing a wider range of remainders. Most applications do not need the smallest possible remainder of h modulo f; any reasonably small remainder is adequate.

A different way to divide h by f is to recursively divide the top half of h by the top half of f, then recursively divide what's left. Moenck and Borodin [1972] published this algorithm (in the polynomial case), and observed that it takes time $O(n(\lg n)^2 \lg \lg n)$. Borodin and Moenck later [1974, Section 6] summarized the idea in two sentences and then dismissed it in favor of multiply-by-reciprocal. The Moenck–Borodin idea was reinvented many years later (in the integer case) by Jebelean [1997], by Daniel Ford (according to email I received from John Cannon in June 1998), and by Burnikel and Ziegler [1998]. The idea is claimed in [Burnikel and Ziegler 1998, Section 4] to be faster than multiply-by-reciprocal for fairly large values of n; on the other hand, the algorithm in [Burnikel and Ziegler 1998, Section 4.2] is certainly not the state of the art in reciprocal computation. Further investigation is needed.

Many applications of division in **R** can work equally well with division in \mathbb{Z}_2 . This fact — widely known to number theorists since Hensel's introduction of \mathbb{Z}_2 (and more general completions) in the early 1900s — has frequently been applied to computations; replacing **R** with \mathbb{Z}_2 usually saves a little time and a considerable amount of effort. See, e.g., [Krishnamurthy 1977], [Hehner and Horspool 1979], [Gregory 1980], [Dixon 1982] (using \mathbb{Z}_p where, for simplicity, *p* is chosen to not divide an input), [Montgomery 1985], and [Jebelean 1993]. Often \mathbb{Z}_2 division is called "Montgomery reduction," but this gives too much credit to [Montgomery 1985].

In some applications, one knows in advance that a division will be exact, i.e., that the remainder will be zero. Schönhage and Vetter [1994] suggested computing the top half of the quotient with division in \mathbf{R} , and the bottom half of the quotient with division in \mathbf{Z}_2 . These two half-size computations are faster than one full-size computation, because computation speed is not exactly linear. Similarly, for polynomials, one can combine *x*-adic division with the usual division.

Another exact-division method, for h, $f \in \mathbb{C}[x]$, is **deconvolution**: one solves h = qf by transforming h, transforming f, dividing to obtain the transform of q, and untransforming the result to obtain q. Extra work is required if the transform of f is noninvertible.

18. Remainder tree

18.1. Input. Let *A* be a commutative ring. Let *t* be a nonnegative integer. The algorithm in this section is given a polynomial $h \in A[x]$ and monic polynomials $f_1, f_2, \ldots, f_t \in A[x]$.

18.2. Output. This algorithm computes $h \mod f_1$, $h \mod f_2$, ..., $h \mod f_t$. Actually, the algorithm computes more: the **remainder tree** of h, f_1 , f_2 , ..., f_t .

The remainder tree is defined as follows: for each vertex v in the product tree of f_1, f_2, \ldots, f_t , there is a corresponding vertex $h \mod v$ in the remainder tree of h, f_1, f_2, \ldots, f_t . In particular, the leaves of the product tree are f_1, f_2, \ldots, f_t , so the leaves of the remainder tree are $h \mod f_1, h \mod f_2, \ldots, h \mod f_t$.

In other words: The root of the remainder tree is $h \mod f_1 f_2 \cdots f_t$. If $t \le 1$ then that's the complete tree. If $t \ge 2$ then the left subtree is the remainder tree of h, f_1, \ldots, f_s , and the right subtree is the remainder tree of h, f_{s+1}, \ldots, f_t , where $s = \lfloor t/2 \rfloor$.

For example, here is the remainder tree of h, f_1 , f_2 , f_3 , f_4 , f_5 , f_6 :

18.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in *A*, where *n* is the total number of coefficients in *h*, f_1, f_2, \ldots, f_t .

More precisely: Assume that d, m, k are nonnegative integers, that deg h < m, that f_1, f_2, \ldots, f_t together have at most d coefficients, and that $t \le 2^k$. Then the algorithm uses at most $(12m + 26dk + 24 \cdot 2^k - 12)(\mu(2\max\{d, m\}) + 1))$ operations in A.

18.4. How it works: $A(x) \to A((x^{-1}))$. Here is a recursive algorithm that, given *h* and the product tree *P* of f_1, \ldots, f_t , computes the remainder tree *R* of *h*, f_1, f_2, \ldots, f_t . This algorithm uses at most $12(m + 2dk + 2^{k+1} - 1)(\mu(2\max\{d, m\}) + 1)$ operations in *A*; add $2dk(\mu(2d) + 1)$ operations in *A* to compute *P* in the first place as explained in Section 12.

The root of *P* is $f_1 f_2 \cdots f_t$. Compute $g = h \mod f_1 f_2 \cdots f_t$ as explained in Section 17; this is the root of *R*. This uses at most $12(m + 1)(\mu(2m) + 1) \le 12(m + 1)\mu(2\max\{d, m\}) + 1$ operations in *A*.

The strategy is to compute each remaining vertex in R by reducing its parent vertex modulo the corresponding vertex in P. For example, the algorithm computes $h \mod f_1 f_2 \cdots f_s$ as $(h \mod f_1 f_2 \cdots f_t) \mod f_1 f_2 \cdots f_s$.

If $t \le 1$, stop. There are no operations here; and $k \ge 0$ so $12(m+1) \le 12(m+2dk+2^{k+1}-1)$.

Otherwise define $s = \lfloor t/2 \rfloor$. Apply this algorithm recursively to g and the left subtree of P to compute the remainder tree of g, f_1 , f_2 , ..., f_s , which is exactly the left subtree of R. Apply this algorithm recursively to g and the right subtree of P to compute the remainder tree of g, f_{s+1} , f_{s+2} , ..., f_t , which is exactly the right subtree of R.

Time analysis: Define *c* as the number of coefficients of f_1, \ldots, f_s . By induction, the recursion for the left subtree uses at most $12(d+2c(k-1)+2^k-1)$ times $\mu(2d) + 1 \le \mu(2\max\{d, m\}) + 1$ operations, since deg g < d. The recursion for the right subtree uses at most $12(d+2(d-c)(k-1)+2^k-1)$ times

 $\mu(2\max\{d,m\}) + 1$ operations. Add: $m + 1 + d + 2c(k-1) + 2^k - 1 + d + 2(d-c)(k-1) + 2^k - 1 = m + 2dk + 2^{k+1} - 1$.

18.5. The *x*-adic case: $A(x) \rightarrow A((x))$. One obtains a simpler algorithm by omitting the reversals described in Section 17. The simpler algorithm, given polynomials h, f_1, f_2, \ldots, f_t where $f_1(0) = f_2(0) = \cdots = f_t(0) = 1$, computes small polynomials r_1, r_2, \ldots, r_t such that h is congruent modulo f_j to a certain power of x times r_j . The algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in A.

18.6. The integer case, easy completion: $\mathbf{Q} \to \mathbf{Q}_2$. An analogous algorithm, given an integer *h* and odd integers f_1, f_2, \ldots, f_t , computes small integers r_1, r_2, \ldots, r_t such that *h* is congruent modulo f_j to a certain power of 2 times r_j . The algorithm takes time $O(n(\lg n)^2 \lg \lg n)$, where *n* is the total number of input bits.

18.7. The integer case, hard completion: $\mathbf{Q} \to \mathbf{R}$. An analogous algorithm, given an integer *h* and nonzero integers f_1, f_2, \ldots, f_t , computes integers r_1, r_2, \ldots, r_t , with $0 \le r_j < |f_j|$, such that *h* is congruent modulo f_j to r_j . The algorithm takes time $O(n(\lg n)^2 \lg \lg n)$, where *n* is the total number of input bits.

18.8. History. This algorithm was published by Moenck and Borodin for "single-precision" moduli f_1, f_2, \ldots, f_t . See [Moenck and Borodin 1972] and [Borodin and Moenck 1974, Sections 4–6].

18.9. Improvements. Montgomery [1992, Section 3.7] pointed out several opportunities to remove redundancy — for example, by FFT caching — within and across levels of computation of a remainder tree.

One can replace the remainder tree with the **scaled remainder tree** to save another constant factor in the computation of $h \mod f_1$, $h \mod f_2$, ..., $h \mod f_t$. Where the remainder tree has integers such as $h \mod f_1 f_2$, the scaled remainder tree has real numbers such as $(h \mod f_1 f_2)/f_1 f_2$, represented in the usual way as nearby floating-point numbers. Here's the point: moving from $h \mod f_1 f_2$ to $h \mod f_1$ means dividing by f_1 ; moving from $(h \mod f_1 f_2)/f_1 f_2$ to $(h \mod f_1)/f_1$ means multiplying by f_2 , which is faster. This speedup was achieved in the polynomial case by Bostan, Lecerf, and Schost, using a more complicated approach that does not work for integers; see [Bostan et al. 2003] and [Bostan et al. 2004, Section 3.1]. I found the scaled-remainder-tree structure, achieved the same speedup for integers, and then pointed out some redundancies that could be removed, saving even more time. See [Bernstein 2004d].

19. Small factors of a product

19.1. Input. Let *A* be a commutative ring. Let *s* be a positive integer, and let *t* be a nonnegative integer. The algorithm in this section is given polynomials $h_1, h_2, \ldots, h_s \in A[x]$ and monic polynomials $f_1, f_2, \ldots, f_t \in A[x]$.

19.2. Output. This algorithm figures out which f_i 's divide $h_1h_2 \cdots h_s$: it computes the subsequence g_1, g_2, \ldots of f_1, \ldots, f_t consisting of each f_i that divides $h_1h_2 \cdots h_s$.

The name "small factors" comes from the following important special case. Let A be a finite field, and let f_1, f_2, \ldots be all the small primes in A[x], i.e., all the low-degree monic irreducible polynomials in A[x]. Then this algorithm computes the small factors of $h_1h_2 \cdots h_s$.

For example, say $A = \mathbb{Z}/2$, s = 4, t = 5, $h_1 = 101111 = 1 + x^2 + x^3 + x^4 + x^5$, $h_2 = 1101011$, $h_3 = 00001011$, $h_4 = 0001111$, $f_1 = 01$, $f_2 = 11$, $f_3 = 111$, $f_4 = 1101$, and $f_5 = 1011$. This algorithm finds all the factors of $h_1h_2h_3h_4$ among f_1 , f_2 , f_3 , f_4 , f_5 . Its output is (01, 11, 111, 1011): the product $h_1h_2h_3h_4$ is divisible by 01, 11, 111, and 1011, but not by 1101.

19.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in *A*, where *n* is the total number of coefficients in $h_1, h_2, \ldots, h_s, f_1, f_2, \ldots, f_t$.

More precisely: Assume that d, m, j, k are nonnegative integers, that $s \le 2^j$, that $t \le 2^k$, that h_1, \ldots, h_s together have at most m coefficients, and that f_1, \ldots, f_t together have at most d coefficients. Then the algorithm uses at most $(2mj + 12m + 26dk + 24 \cdot 2^k - 12)(\mu(2\max\{d, m\}) + 1) + d$ operations in A.

19.4. How it works. Compute $h = h_1 h_2 \cdots h_s$ as explained in Section 12. This uses at most $2mj(\mu(m) + 1) \le 2mj(\mu(2\max\{d, m\}) + 1)$ operations in *A*.

Compute $h \mod f_1, \ldots, h \mod f_t$ as explained in Section 18. This uses at most $(12m + 26dk + 24 \cdot 2^k - 12)(\mu(2\max\{d, m\}) + 1)$ operations in A.

Check whether $h \mod f_1 = 0$, $h \mod f_2 = 0$, ..., $h \mod f_t = 0$. This uses at most d equality tests in A.

19.5. The integer case. An analogous algorithm, given integers h_1, h_2, \ldots, h_s and nonzero integers f_1, f_2, \ldots, f_t , figures out which f_i 's divide $h_1h_2 \cdots h_s$. The algorithm takes time $O(n(\lg n)^2 \lg \lg n)$, where *n* is the total number of input bits.

19.6. History. See Section 20. This algorithm is a stepping-stone to the algorithm of Section 20.

19.7. Improvements. See Section 12 for improved product-tree algorithms, and Section 18 for improved remainder-tree algorithms.

As discussed in Section 17, Schönhage and Vetter combined \mathbb{Z}_2 and \mathbb{R} to compute a quotient more quickly when the remainder was known in advance to be 0. A similar technique can be used to check more quickly whether a remainder is 0.

20. Small factors of a sequence

20.1. Input. Let *A* be a commutative ring. Let *s* be a positive integer, and let *t* be a nonnegative integer. The algorithm in this section is given nonzero polynomials $h_1, h_2, \ldots, h_s \in A[x]$ and monic coprime polynomials $f_1, f_2, \ldots, f_t \in A[x]$ with deg $f_i \ge 1$ for each *i*.

Here **coprime** means that $A[x] = f_i A[x] + f_j A[x]$ for every *i*, *j* with $i \neq j$; in other words, there exist $u, v \in A[x]$ with $f_i u + f_j v = 1$. (Warning: Some authors instead say **pairwise coprime**, reserving "coprime" for the notion that $A[x] = f_1 A[x] + f_2 A[x] + \cdots + f_t A[x]$.)

The importance of coprimality is the **Chinese remainder theorem**: the A[x]-algebra morphism from $A[x]/f_1 f_2 \cdots f_t$ to $A[x]/f_1 \times A[x]/f_2 \times \cdots \times A[x]/f_t$ is an isomorphism. In particular, if each of f_1, f_2, \ldots, f_t divides a polynomial h, then the product $f_1 f_2 \cdots f_t$ divides h. This is crucial for the speed of the algorithm.

20.2. Output. This algorithm figures out which f_i 's divide h_1 , which f_i 's divide h_2 , which f_i 's divide h_3 , etc.

As in Section 19, the name "small factors" comes from the important special case that A is a finite field and f_1, f_2, \ldots are all of the small primes in A[x]. Then this algorithm computes the small factors of h_1 , the small factors of h_2 , etc.

For example, say $A = \mathbb{Z}/2$, s = 4, t = 5, $h_1 = 101111 = 1 + x^2 + x^3 + x^4 + x^5$, $h_2 = 1101011$, $h_3 = 00001011$, $h_4 = 0001111$, $f_1 = 01$, $f_2 = 11$, $f_3 = 111$, $f_4 = 1101$, and $f_5 = 1011$. This algorithm finds all the factors of h_1 , h_2 , h_3 , h_4 among f_1 , f_2 , f_3 , f_4 , f_5 . Its output is (), (111), (01, 1011), (01, 11).

20.3. Speed. This algorithm uses $O(n(\lg n)^3 \lg \lg n)$ operations in *A*, where *n* is the total number of coefficients in $h_1, h_2, \ldots, h_s, f_1, f_2, \ldots, f_t$.

More precisely: Assume, as in Section 19, that d, m, j, k are nonnegative integers, that h_1, \ldots, h_s together have at most m coefficients, that f_1, \ldots, f_t together have at most d coefficients, that $s \le 2^j$, and that $t \le 2^k$. Then the algorithm uses at most $((104jk + j^2 + 109j + 12)m + 26dk + 24 \cdot 2^k)(\mu(2 \max\{d, m\}) + 1) + d + 4mj$ operations in A.

20.4. How it works. Figure out which of f_1, \ldots, f_t divide $h_1 \cdots h_s$, as explained in Section 19; write (g_1, g_2, \ldots) for this subsequence of (f_1, \ldots, f_t) . This uses at most $(2mj + 12m + 26dk + 24 \cdot 2^k)(\mu(2\max\{d, m\}) + 1) + d$ operations in A, leaving $(104jk + j^2 + 107j)m(\mu(2\max\{d, m\}) + 1) + 4mj$ operations for the remaining steps in the algorithm.

If s = 1, the answer is $(g_1, g_2, ...)$. There are no further operations in this case, and $(104jk + j^2 + 107j)m(\mu(2\max\{d, m\}) + 1) + 4mj$ is nonnegative.

Otherwise apply the algorithm recursively to h_1, h_2, \ldots, h_r and g_1, g_2, \ldots , and then apply the algorithm recursively to $h_{r+1}, h_{r+2}, \ldots, h_s$ and g_1, g_2, \ldots , where $r = \lceil s/2 \rceil$. This works because any f's that divide h_i also divide the product $h_1h_2 \cdots h_s$ and are therefore included among the g's.

The central point in the time analysis is that $\deg(g_1g_2\cdots) < m$. Indeed, g_1, g_2, \ldots are coprime divisors of $h_1 \cdots h_s$, so their product is a divisor of $h_1 \cdots h_s$; but $h_1 \cdots h_s$ is a nonzero polynomial of degree smaller than m. Thus there are at most min $\{m, t\}$ polynomials in g_1, g_2, \ldots , and the total number of coefficients in g_1, g_2, \ldots is at most min $\{2m, d\}$.

Define ℓ as the number of coefficients in h_1, h_2, \ldots, h_r , and define e as the smallest nonnegative integer with $\min\{m, t\} \leq 2^e$. Then $\ell \leq m$; $e \leq k$; and $2^e \leq 2m$, since $m \geq 1$. The recursive computation for $h_1, \ldots, h_r, g_1, g_2, \ldots$ uses at most

 $((104(j-1)e + (j-1)^{2} + 109(j-1) + 12)\ell + 26\min\{2m, d\}e + 24 \cdot 2^{e})$ $(\mu(2\max\{\min\{2m, d\}, \ell\}) + 1) + \min\{2m, d\} + 4\ell(j-1)$ $\leq ((104(j-1)k + (j-1)^{2} + 109(j-1) + 12)\ell + 52mk + 48m)$ $(\mu(2\max\{d, m\}) + 1) + 2m + 4\ell(j-1)$

operations in A by induction. Similarly, the recursive computation for $h_{r+1}, \ldots, h_s, g_1, g_2, \ldots$ uses at most

$$((104(j-1)k + (j-1)^2 + 109(j-1) + 12)(m-\ell) + 52mk + 48m)$$

(μ (2 max{d, m}) + 1) + 2m + 4(m-\ell)(j-1)

operations in A. The total is exactly $(104jk + j^2 + 107j)m(\mu(2\max\{d, m\}) + 1) + 4mj$ as desired.

Here is an example of how the algorithm works. To factor $h_1 = 101111$, $h_2 = 1101011$, $h_3 = 00001011$, and $h_4 = 0001111$ over $A = \mathbb{Z}/2$ using the primes 01, 11, 111, 1101, 1011, the algorithm first finds the factors 01, 11, 111, 1011 of $h_1h_2h_3h_4$ as explained in Section 19. It then recursively factors h_1 , h_2 using 01, 11, 111, 1011, and recursively factors h_3 , h_4 using 01, 11, 111, 1011.

At the first level of recursion in the same example: To factor h_3 , h_4 using 01, 11, 111, 1011, the algorithm finds the factors 01, 11, 1011 of h_3h_4 as explained in Section 19. It then recursively factors h_3 using 01, 11, 1011, and recursively factors h_4 using 01, 11, 1011.

20.5. The integer case. An analogous algorithm, given nonzero integers h_1, h_2, \ldots, h_s and coprime integers $f_1, f_2, \ldots, f_t \ge 2$, figures out which f_j 's divide h_1 , which f_j 's divide h_2 , which f_j 's divide h_3 , etc. The algorithm takes time $O(n(\lg n)^3 \lg \lg n)$, where *n* is the total number of input bits.

An important special case is that f_1, f_2, \ldots, f_t are the first t prime numbers. Then this algorithm computes the small factors of h_1 , the small factors of h_2 , etc.

20.6. History. I introduced this algorithm in [Bernstein 2005, Section 21] and [Bernstein 2002a]. The version in [Bernstein 2005] is slower but more general: it relies solely on multiplication, exact division, and greatest common divisors.

20.7. Improvements. There are many previous algorithms to find small factors: for example, Legendre's root-finding method (when the inputs are polynomials over a finite field), sieving (when the inputs are successive values of a polynomial), Pollard's p - 1 method, and Lenstra's elliptic-curve method. These algorithms, and their applications, are recurring topics in this volume. See [Bernstein 2002a] for a comparison of speeds and for further pointers to the literature. Combinations and optimizations of these algorithms are an active area of research.

Many applications discard inputs that are not **smooth**, i.e., that do not factor completely over the primes f_1, f_2, \ldots, f_t . One can identify and discard those inputs without factoring them. Franke, Kleinjung, Morain, and Wirth [2004, Section 4] published a smoothness-detection algorithm that typically takes time $O(n(\lg n)^2 \lg \lg n)$. My paper [Bernstein 2004b] explains a slight variant that always takes time $O(n(\lg n)^2 \lg \lg n)$: first compute $f = f_1 f_2 \cdots f_t$; then compute $f \mod h_1, f \mod h_2, \ldots$; then, for each i, compute $f^{2^{b_i}} \mod h_i$ by repeated squaring, for a sensible choice of b_i . The result is 0 if and only if h_i is smooth.

21. Continued fraction from fraction

21.1. Input. Let *A* be a field. Let *d* be a nonnegative integer. The algorithm in this section is given polynomials $f_1, f_2 \in A[x]$, not both zero.

Both f_1 and f_2 are assumed to be represented without leading zero coefficients, so the algorithm can see the degrees of f_1 and f_2 without any equality tests in A.

21.2. Output. This algorithm computes polynomials M_{11} , M_{12} , M_{21} , M_{22} in A[x] such that deg M_{11} , deg M_{12} , deg M_{21} , deg M_{22} are all at most d; $M_{11}M_{22} - M_{12}M_{21}$ is in $\{-1, 1\}$; and deg $(M_{21}f_1 + M_{22}f_2) < \max\{\deg f_1, \deg f_2\} - d$. In particular, $M_{21}f_1 + M_{22}f_2 = 0$ in the important case $d = \max\{\deg f_1, \deg f_2\}$.

This algorithm also computes a factorization of the matrix $M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$: polynomials $q_1, q_2, \dots, q_t \in A[x]$ with $M = \begin{pmatrix} 0 & 1 \\ 1 & -q_t \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -q_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix}$. In particular, $\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_t & 1 \\ 1 & 0 \end{pmatrix} M \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$. The reader may think of this equation as expanding f_1/f_2 into a continued fraction

$$q_1 + rac{1}{q_2 + rac{1}{\ddots + rac{1}{q_t + rac{g_2}{g_1}}}}$$

with $g_1 = M_{11}f_1 + M_{12}f_2$ and $g_2 = M_{21}f_1 + M_{22}f_2$; see Section 14.

Note for future reference that if deg $f_1 \ge \text{deg } f_2$ then deg $g_1 = \text{deg } f_1 - \text{deg } M_{22} \ge \text{deg } f_1 - d > \text{deg } g_2$; if also $M_{21} \ne 0$ then deg $g_1 = \text{deg } f_2 - \text{deg } M_{21}$. (Proof: deg $M_{12}g_2 < d + \text{deg } f_1 - d = \text{deg } f_1$, and $M_{22}g_1 = M_{12}g_2 \pm f_1$, so deg $M_{22}g_1 = \text{deg } f_1$. If $M_{21} \ne 0$ then deg $M_{21}f_1 \ge \text{deg } f_1 \ge \text{deg } f_1 - d > \text{deg } g_2$, and $M_{22}f_2 = g_2 - M_{21}f_1$, so deg $M_{22}f_2 = \text{deg } M_{21}f_1$.)

21.3. Speed. This algorithm uses $O(d(\lg d)^2 \lg \lg d)$ operations in A.

More precisely: Assume that $2d \le 2^k$ where k is a nonnegative integer. Then this algorithm uses at most $(46dk + 44(2^{k+1} - 1))(\mu(4d + 8) + 1)$ operations in A. This bound is pessimistic.

21.4. How it works. The desired matrix M is computed in nine steps shown below. The desired factorization of M is visible from the construction of M, as is the (consequent) fact that det $M \in \{-1, 1\}$.

There are several recursive calls in this algorithm. Most of the recursive calls reduce d; the other recursive calls preserve d and reduce deg f_2 . The time analysis inducts on $(d, \text{deg } f_2)$ in lexicographic order.

Step 1: fix the input order. If deg $f_1 < \deg f_2$: Apply the algorithm recursively to d, f_2 , f_1 to find a matrix C, of degree at most d, such that $\deg(C_{21}f_2 + C_{22}f_1) < \deg f_2 - d$. Compute $M = C \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. The answer is M.

Time analysis: By induction, the recursive computation of *C* uses at most $(46dk + 44(2^{k+1} - 1))(\mu(4d + 8) + 1)$ operations. The computation of *M* uses no operations: *M* is simply a reshuffling of *C*.

Step 2: check for large d. If deg $f_1 < d$: Apply the algorithm recursively to deg f_1 , f_1 , f_2 to find a matrix M, of degree at most deg $f_1 < d$, such that $M_{21}f_1 + M_{22}f_2 = 0$. The answer is M.

Time analysis: By induction, the recursive computation of M uses at most $(46(\deg f_1)k + 44(2^{k+1} - 1))(\mu(4(\deg f_1) + 8) + 1) \le (46dk + 44(2^{k+1} - 1))(\mu(4(\deg f_1) + 8))$ 1))($\mu(4d + 8) + 1$) operations.

Step 3: if no quotients are needed, stop. If deg $f_2 < \text{deg } f_1 - d$: The answer is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Time analysis: This computation uses $0 \le (46dk + 44(2^{k+1} - 1))(\mu(4d +$ (8) + 1) operations.

Step 4: focus on the top 2d coefficients. Define $i = \deg f_1 - 2d$. If i > 0: Apply the algorithm recursively to d, $|f_1/x^i|$, $|f_2/x^i|$ to find a matrix M, of degree at most d, such that $\deg(M_{21}|f_1/x^i| + M_{22}|f_2/x^i|) < \deg(|f_1/x^i|) - d =$ $\deg f_1 - i - d.$

The answer is *M*. Indeed, $x^{i}(M_{21} | f_{1}/x^{i} | + M_{22} | f_{2}/x^{i} |)$ has degree below deg $f_1 - d$; $M_{21}(f_1 \mod x^i)$ and $M_{22}(f_2 \mod x^i)$ have degree below d + i =deg $f_1 - d$; add to see that $M_{21}f_1 + M_{22}f_2$ has degree below deg $f_1 - d$.

Time analysis: By induction, the recursive computation of M uses at most $(46dk + 44(2^{k+1} - 1))(\mu(4d + 8) + 1)$ operations as claimed.

From now on, $0 \le \deg f_1 - d \le \deg f_2 \le \deg f_1 \le 2d$.

Step 5: handle degree 0. If d = 0 then deg $f_1 = \text{deg } f_2 = 0$; the answer is $\begin{pmatrix} 0 & 1 \\ 1 & -f_1/f_2 \end{pmatrix}$

Time analysis: This computation uses $2 \le (46dk + 44(2^{k+1} - 1))(\mu(4d +$ (8) + 1) operations as claimed.

From now on, $d \ge 1$, so $k \ge 1$.

Step 6: compute the first half of the continued fraction. Find a matrix C, of degree at most $\lfloor d/2 \rfloor$, with deg $(C_{21}f_1 + C_{22}f_2) < \deg f_1 - \lfloor d/2 \rfloor$, by applying this algorithm to $\lfloor d/2 \rfloor$, f_1 , f_2 . Compute $g_2 = C_{21}f_1 + C_{22}f_2$. Compute deg g_2 .

Time analysis: Note that $2\lfloor d/2 \rfloor \le d \le 2^{k-1}$. The recursive computation of C uses at most $(46(d/2)(k-1)+44(2^k-1))(\mu(4(d/2)+8)+1)$ operations by induction. The computation of $C_{21}f_1$ uses at most $3d\mu(3d)$ operations, since deg $C_{21} \leq d$ and deg $f_1 \leq 2d$. The computation of $C_{22} f_2$ uses at most $3d\mu(3d)$ operations. The computation of g_2 uses at most 2d additions, since deg $g_2 < 1$ deg $f_1 \leq 2d$. The computation of deg g_2 uses at most 2d equality tests.

Step 7: if no more quotients are needed, stop. If deg $g_2 < \text{deg } f_1 - d$: The answer is *C*. Time analysis: There are no operations here; for comparison, more than 0 operations are counted below.

From now on, deg $f_1 - d \le \deg g_2 < \deg f_1 - \lfloor d/2 \rfloor$.

Step 8: compute one more quotient. Compute $g_1 = C_{11}f_1 + C_{12}f_2$. Compute polynomials $q, r \in A[x]$ such that $g_1 = qg_2 + r$ and deg $r < \deg g_2$, as explained in Section 17. Compute deg r.

Problem: Section 17 considers division by monic polynomials; g_2 is usually not monic. Solution: Divide g_2 by its leading coefficient, and adjust q accordingly.

Observe that the matrix $\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} C = \begin{pmatrix} C_{21} & C_{22} \\ C_{11} - qC_{21} & C_{12} - qC_{22} \end{pmatrix}$ has degree at most deg f_1 – deg g_2 . (Proof: Recall that deg C_{22} = deg f_1 – deg g_1 ; so deg qC_{22} = deg q + deg C_{22} = (deg g_1 – deg g_2) + (deg f_1 – deg g_1) = deg f_1 – deg g_2 . Similarly, recall that deg $C_{21} \leq \deg f_2$ – deg $g_1 \leq \deg f_1$ – deg g_1 ; so deg $qC_{21} \leq \deg f_1$ – deg g_2 . Finally, all of $C_{11}, C_{12}, C_{21}, C_{22}$ have degree at most $\lfloor d/2 \rfloor < \deg f_1$ – deg g_2 .)

Time analysis: The computation of g_1 uses at most $6d\mu(3d) + 2d + 1$ operations, since deg $g_1 \le \deg f_1 \le 2d$. The division of g_2 by its leading coefficient uses at most 2*d* operations. The division of g_1 by the result uses at most $12(2d+2)(\mu(4d+2)+1)$ operations. The division of the quotient by the leading coefficient of g_2 uses at most d+1 operations since deg $q \le \deg f_1 - \deg g_2 \le d$. The computation of deg *r* uses at most 2*d* equality tests.

Step 9: compute the second half of the continued fraction. Find a matrix D, of degree at most deg g_2 -(deg f_1 -d), such that deg($D_{21}g_2$ + $D_{22}r$) < deg f_1 -d, by applying the algorithm recursively to deg g_2 - (deg f_1 -d), g_2 , r.

Compute
$$M = D\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} C$$
. Observe that $M_{21}f_1 + M_{22}f_2 = \begin{pmatrix} 0 & 1 \end{pmatrix} M\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} =$
 $\begin{pmatrix} 0 & 1 \end{pmatrix} D\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} C\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} D_{21} & D_{22} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} D_{21} & D_{22} \end{pmatrix} \begin{pmatrix} g_2 \\ r \end{pmatrix} =$
 $D_{21}g_2 + D_{22}r$.

The answer is *M*. Indeed, the degree of *D* is at most deg $g_2 - \deg f_1 + d$, and the degree of $\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} C$ is at most deg $f_1 - \deg g_2$, so the degree of *M* is at most *d*; and deg $(M_{21}f_1 + M_{22}f_2) = \deg(D_{21}g_2 + D_{22}r) < \deg f_1 - d$.

Time analysis: Note that deg g_2 – (deg $f_1 - d$) \leq deg $f_1 - \lfloor d/2 \rfloor - 1 - (deg f_1 - d) \leq \lfloor d/2 \rfloor$. By induction, the recursive computation of D uses at most

$$(46(d/2)(k-1) + 44(2^{k}-1))(\mu(4(d/2) + 8) + 1))$$

operations. The computation of qC_{21} uses at most $(d + 1)\mu(d + 1)$ operations since deg $qC_{21} \le \deg f_1 - \deg g_2 \le d$. The computation of qC_{22} uses at most $(d + 1)\mu(d + 1)$ operations since deg $qC_{22} = \deg f_1 - \deg g_2 \le d$. The computation of $C_{11} - qC_{21}$ uses at most d + 1 operations. The computation of $C_{12} - qC_{22}$ uses at most d + 1 operations. The multiplication of D by $\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} C$ uses at most $(8d + 16)(\mu(4d + 8) + 1)$ operations.

Totals: at most $(46d(k-1)+44(2^{k+1}-2))(\mu(4d+8)+1)$ operations for the recursive computations of *C* and *D*, and at most $(46d+42)\mu(4d+8)+45d+44 \le (46d+44)(\mu(4d+8)+1)$ operations for everything else. The grand total is at most $(46dk+44(2^{k+1}-1))(\mu(4d+8)+1)$ operations as claimed.

21.5. The integer case. A more complicated algorithm, given a nonnegative integer *d* and given integers f_1 , f_2 not both zero, computes a (factored) 2×2 integer matrix *M* with entries not much larger than 2^d in absolute value, with determinant in $\{-1, 1\}$, and with $|M_{21}f_1 + M_{22}f_2| < \max\{|f_1|, |f_2|\}/2^d$. This algorithm takes time $O(n(\lg n)^2 \lg \lg n)$, where *n* is the total number of input bits.

The main complication here is that the answer for the top 2*d* bits of f_1 and f_2 is, in general, not exactly the answer for f_1 and f_2 . One has to check whether $|M_{21}f_1 + M_{22}f_2|$ is too large, and divide a few more times if it is.

21.6. History. Almost all of the ideas in this algorithm were published by Lehmer [1938] in the integer case. Lehmer made the crucial observation that the top 2*d* bits of f_1 and f_2 determined approximately *d* bits of the continued fraction for f_1/f_2 . Lehmer suggested computing the continued fraction for f_1/f_2 by computing a small part of the continued fraction, computing another quotient, and then computing the rest of the continued fraction.

Shortly after fast multiplication was widely understood, Knuth [1971b] suggested replacing "a small part" with "half" in Lehmer's algorithm. Knuth proved that the continued fraction for f_1/f_2 could be computed within a $O((\lg n)^4)$ factor of multiplication time. Schönhage [1971] streamlined the Lehmer–Knuth algorithm and proved that the continued fraction for f_1/f_2 could be computed within a $O(\lg n)$ factor of multiplication time.

The $(\lg n)^3$ disparity between [Knuth 1971b] and [Schönhage 1971] arose as follows. Knuth lost one $\lg n$ factor from continually re-multiplying matrices $\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix}$ instead of reusing their products M; another $\lg n$ factor from doing a binary search, again with no reuse of partial results, to determine how much of the continued fraction of f_1/f_2 matched the continued fraction of $\lfloor f_1/2^i \rfloor / \lfloor f_2/2^i \rfloor$; and one more $\lg n$ factor from an unnecessarily crude analysis. Moenck [1973] claimed to have a simplified algorithm covering both the integer case and the polynomial case. In fact, Moenck's algorithm does not work in the integer case, does not work in the "nonnormal" situation of a quotient having degree different from 1, and does not work except when deg f_1 is a power of 2. The errors in [Moenck 1973] begin on page 143, where the "degree" function mapping an integer A to $\lfloor \lg |A| \rfloor$ is claimed to be a homomorphism.

Brent, Gustavson, and Yun [1980, Section 3] outlined a simplified algorithm for the polynomial case. Strassen [1983, page 16] stated the remarkably clean algorithm shown above (under the assumption deg $f_1 \ge \text{deg } f_2$), with one omission: Strassen's algorithm recurses forever when $d = \text{deg } f_1 = \text{deg } f_2 = 0$.

21.7. Improvements. There are many opportunities for FFT caching and FFT addition in this algorithm.

One can replace $\lfloor d/2 \rfloor$ in this algorithm by any integer between 0 and d-1. The optimal choice depends heavily on the exact speed of multiplication.

It is often helpful (for applications, and for recursion inside this algorithm) to compute $M_{21}f_1 + M_{22}f_2$, and sometimes $M_{11}f_1 + M_{12}f_2$, along with M. One can often save time by incorporating these computations into the recursion. For example, when M is constructed from D, q, C, one can compute $M_{21}f_1 + M_{22}f_2$ as $D_{21}g_2 + D_{22}r$, and one can compute $M_{11}f_1 + M_{12}f_2$ as $D_{11}g_2 + D_{12}r$.

One can often save time by skipping M_{11} and M_{21} , and working solely with M_{12} , M_{22} , $M_{11}f_1 + M_{12}f_2$, $M_{21}f_1 + M_{22}f_2$. Applications that need M_{11} and M_{21} can use formulas such as $M_{11} = ((M_{11}f_1 + M_{12}f_2) - M_{12}f_2)/f_1$. In [Knuth 1997, page 343] this observation is credited to Gordon H. Bradley.

Some applications need solely $M_{11}f_1 + M_{12}f_2$ and $M_{21}f_1 + M_{22}f_2$. The algorithm, and some of its recursive calls, can be sped up accordingly.

Often f_1 and f_2 have an easily detected common factor, such as x or x - 1. Dividing out this factor speeds up the algorithm, perhaps enough to justify the cost of checking for the factor in the first place.

22. Greatest common divisor

22.1. Input. Let *A* be a field. The algorithm in this section is given polynomials $f_1, f_2 \in A[x]$.

22.2. Output. This algorithm computes $gcd{f_1, f_2}$: in other words, a polynomial g such that $gA[x] = f_1A[x] + f_2A[x]$ and such that g is monic if it is nonzero.

This algorithm also computes polynomials $h_1, h_2 \in A[x]$, each of degree at most max{deg f_1 , deg f_2 }, such that $g = f_1h_1 + f_2h_2$.

In particular, if f_1 and f_2 are coprime, then g = 1; h_1 is a reciprocal of f_1 modulo f_2 ; and h_2 is a reciprocal of f_2 modulo f_1 .

22.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in *A*, where *n* is the total number of coefficients in f_1, f_2 .

22.4. How it works. If $f_1 = f_2 = 0$ then the answer is 0, 0, 0. Assume from now on that at least one of f_1 and f_2 is nonzero.

Define $d = \max\{\deg f_1, \deg f_2\}$. Apply the algorithm of Section 21 to compute $M_{11}, M_{12}, M_{21}, M_{22}$ in A[x], of degree at most d, with $M_{11}M_{22}-M_{12}M_{21} = \pm 1$ and $M_{21}f_1 + M_{22}f_2 = 0$.

Compute $u = M_{11}f_1 + M_{12}f_2$. Note that $\pm f_1 = M_{22}u$ and $\mp f_2 = M_{21}u$, so $uA[x] = f_1A[x] + f_2A[x]$. In particular, $u \neq 0$.

Compute g = u/c, $h = M_{11}/c$, and $h_2 = M_{12}/c$, where *c* is the leading coefficient of *u*. Then *g* is monic, and $gA[x] = f_1A[x] + f_2A[x]$, so $g = gcd\{f_1, f_2\}$. The answer is g, h_1, h_2 .

22.5. The integer case. An analogous algorithm, given integers f_1 and f_2 , computes $gcd\{f_1, f_2\}$ and reasonably small integers h_1, h_2 with $gcd\{f_1, f_2\} = f_1h_1 + f_2h_2$. This algorithm takes time $O(n(\lg n)^2 \lg \lg n)$, where *n* is the total number of input bits.

22.6. History. See Section 21. This application has always been one of the primary motivations for studying the problem of Section 21.

22.7. Improvements. See Section 21.

The reader may have noticed that Section 21 and this section use division in $A((x^{-1}))$ and division in **R**. What about **Q**₂? Answer: There are several "binary" algorithms to compute greatest common divisors of integers. See, e.g., [Sorenson 1994] and [Knuth 1997, pages 338–341; Exercises 4.5.2–38, 4.5.2– 39, 4.5.2–40]. Stehlé and Zimmermann recently [2004] introduced a particuarly clean "binary" gcd algorithm and proved that it takes time $O(n(\lg n)^2 \lg \lg n)$. The Stehlé–Zimmermann algorithm, given an odd integer f_1 and an even integer f_2 , expands f_1/f_2 into what one might call a **simple 2-adic continued fraction**: a continued fraction with all quotients chosen from the set

$$\{\pm 1/2, \pm 1/4, \pm 3/4, \pm 1/8, \pm 3/8, \pm 5/8, \pm 7/8, \ldots\}.$$

My initial impression is that this algorithm supersedes all previous work on gcd computation.

23. Interpolator

23.1. Input. Let *A* be a field. Let *t* be a nonnegative integer. The algorithm in this section is given polynomials $f_1, f_2, \ldots, f_t \in A[x]$ and nonzero coprime polynomials $g_1, g_2, \ldots, g_t \in A[x]$.

23.2. Output. This algorithm computes $h \in A[x]$, with deg $h < \deg g_1 g_2 \cdots g_t$, such that $h \equiv f_1 \pmod{g_1}, h \equiv f_2 \pmod{g_2}, \dots, h \equiv f_t \pmod{g_t}$.

In particular, consider the special case that each g_j is a monic linear polynomial $x - c_j$. The answer h is a polynomial of degree below t such that $h(c_1) = f_1(c_1), h(c_2) = f_2(c_2), \dots, h(c_t) = f_t(c_t)$. Finding h is usually called **interpolation** in this case, and I suggest using the same name for the general case. Another common name is **Chinese remaindering**.

23.3. Speed. This algorithm uses $O(n(\lg n)^2 \lg \lg n)$ operations in A, where n is the total number of input coefficients.

23.4. How it works. For t = 0: The answer is 0.

Compute $G = g_1 \cdots g_t$ as explained in Section 12.

Compute $G \mod g_1^2, \ldots, G \mod g_t^2$ as explained in Section 18.

For each *j* divide $G \mod g_j^2$ by g_j , as explained in Section 17, to obtain $(G/g_j) \mod g_j$. Note that G/g_j and g_j are coprime; thus $((G/g_j) \mod g_j)$ and g_j are coprime.

Compute a (reasonably small) reciprocal p_j of $((G/g_j) \mod g_j) \mod g_j$, as explained in Section 22. Compute $q_j = f_j p_j \mod g_j$ as explained in Section 17.

Now compute $h = (q_1/g_1 + \cdots + q_t/g_t)G$ as explained in Section 13. (Proof that, modulo g_j , this works: $h \equiv q_j(G/g_j) \equiv f_j p_j(G/g_j) \equiv f_j p_j(G/g_j) \mod g_j \equiv f_j$.)

23.5. The integer case. An analogous algorithm, given integers f_1, f_2, \ldots, f_t and given nonzero coprime integers g_1, g_2, \ldots, g_t , computes a reasonably small integer *h* such that $h \equiv f_1 \pmod{g_1}, h \equiv f_2 \pmod{g_2}, \ldots, h \equiv f_t \pmod{g_t}$. The algorithm takes time $O(n(\lg n)^2 \lg \lg n)$, where *n* is the total number of input bits.

23.6. History. Horowitz [1972] published most of the above algorithm, in the special case that each g_j is a monic linear polynomial. Horowitz did not have a fast method (for large *t*) to compute $(G/g_1) \mod g_1, \ldots, (G/g_t) \mod g_t$ from *G*. Moenck and Borodin [1972, page 95] suggested the above solution in the ("single-precision") integer case; see also [Borodin and Moenck 1974, page 381].

The special case t = 2 was published first by Heindel and Horowitz [1971], along with a different essentially-linear-time interpolation algorithm for general *t*. The Heindel–Horowitz algorithm is summarized below; it takes time $O(n(\lg n)^3 \lg \lg n)$.

23.7. Improvements. When g_j is a linear polynomial, $(G/g_j) \mod g_j$ has degree 0, so p_j is simply $1/((G/g_j) \mod g_j)$, and q_j is $(f_j \mod g_j)/((G/g_j) \mod g_j)$. More generally, whenever g_j is very small, the algorithm of this section provides very small inputs to the modular-reciprocal algorithm of Section 22.

When g_j is a monic linear polynomial, $(G/g_j) \mod g_j$ is the same as $G' \mod g_j$, where G' is the derivative of G. Borodin and Moenck [1974, Sections 8–9] suggested computing $G' \mod g_1, \ldots, G' \mod g_t$ as explained in Section 18, instead of computing $G \mod g_1^2, \ldots, G \mod g_t^2$.

More generally, if g_j and its derivative g'_j are coprime, then $(G/g_j) \mod g_j$ is the same as $(g'_j)^{-1}G' \mod g_j$. One can compute $G' \mod g_1, \ldots, G' \mod g_i$; compute each reciprocal $(G')^{-1} \mod g_j$; and compute $q_j = f_i g'_i (G')^{-1} \mod g_j$.

Another way to compute $(G/g_j) \mod g_j$, published by Bürgisser, Clausen, and Shokrollahi [1997, pages 77–78], is to first compute $G/g_1 + \cdots + G/g_t$ as explained in Section 13, then compute $(G/g_1 + \cdots + G/g_t) \mod g_j = (G/g_j) \mod g_j$ for all *j* as explained in Section 18.

When t = 2, one can use the algorithm of Section 22 to simultaneously compute a reciprocal p_2 of $g_1 = G/g_2$ modulo g_2 and a reciprocal p_1 of $g_2 = G/g_1$ modulo g_1 . The answer is then $(f_1p_1 \mod g_1)g_2 + (f_2p_2 \mod g_2)g_1$. It might be faster to compute $(f_1p_1g_2 + f_2p_2g_1) \mod g_1g_2$.

One can skip the computation of p_1 when $f_1 = 0$. One can reduce the general case to this case: interpolate 0, $f_2 - f_1$, $f_3 - f_1$, ..., $f_t - f_1$ and then add f_1 to the result. In particular, for t = 2, the answer is $f_1 + ((f_2 - f_1)p_2 \mod g_2)g_1$, if f_1 is small enough for that answer to be in the right range.

The Heindel–Horowitz algorithm interpolates pairs, then pairs of pairs, etc. This may be better than the Horowitz–Borodin–Moenck algorithm for small *t*.

One can cache the reciprocals p_j for subsequent interpolations involving the same g_1, \ldots, g_t .

24. Coprime base

24.1. Input. Let *A* be a field. Let *t* be a nonnegative integer. The algorithm in this section is given monic polynomials $f_1, f_2, \ldots, f_t \in A[x]$.

24.2. Output. This algorithm computes a coprime base for $\{f_1, f_2, ..., f_t\}$: coprime monic polynomials $g_1, g_2, ... \in A[x]$ such that each f_j can be factored as a product of powers of $g_1, g_2, ...$ In fact, the algorithm computes the **natural coprime base** for $\{f_1, f_2, ..., f_t\}$: the unique coprime base that does not contain 1 and that can be obtained from $f_1, f_2, ..., f_t$ by multiplication, exact division, and greatest common divisors.

Sample application: Given a polynomial $f_1 \in (\mathbb{Z}/2)[x]$, compute a $(\mathbb{Z}/2)$ -basis (f_2, \ldots, f_t) for the vector space $\{h \in (\mathbb{Z}/2)[x] : (f_1h)' = h^2\}$. Then the

natural coprime base for f_1, \ldots, f_t contains all irreducible divisors of f_1 . See [Göttfert 1994].

Many applications also want **factorization into coprimes**: the factorization of each f_j over the coprime base g_1, g_2, \ldots . These factorizations can be computed quickly by an extension of the algorithm of Section 20.

24.3. Speed. This algorithm uses $O(n(\lg n)^7 \lg \lg n)$ operations in *A*, where *n* is the total number of input coefficients.

24.4. How it works. Exercise for the reader! Three hints: (1) There is no need for any subroutines other than multiplication, exact division, and greatest common divisors. (2) The natural coprime base for $\{f^a, f^b\}$ is $\{f^{\text{gcd}\{a,b\}}\}-\{1\}$; one can use a left-shift gcd algorithm. (3) Given coprime g_1, g_2, \ldots one can quickly construct a *very small* set having natural coprime base $\{g_1, g_2, \ldots\}-\{1\}$.

24.5. The integer case. An analogous algorithm computes the natural coprime base of a set of positive integers f_1, f_2, \ldots, f_t . This algorithm takes time $O(n(\lg n)^7 \lg \lg n)$, where *n* is the total number of input bits.

Sample application: If f_1 has at most *n* bits then one can, in time $n(\lg n)^{O(1)}$, find the maximum integer *k* such that f_1 is a *k*th power. The idea is as follows: compute good approximations f_2, f_3, \ldots to $f_1^{1/2}, f_1^{1/3}, \ldots$; factor f_1, f_2, f_3, \ldots into coprimes; and compute the greatest common divisor of the exponents of the factorization of f_1 . See [Bernstein et al. 2007] for details.

24.6. History. I published this algorithm in [Bernstein 2005], after a decade of increasingly detailed outlines. No previous essentially-linear-time algorithms were known, even in the case t = 2. My newer paper [Bernstein 2004a] outlines an improvement from $(\lg n)^7$ to $(\lg n)^4$.

References

- [AFIPS 17] (no editor), AFIPS conference proceedings, volume 17: 1960 Western Joint Computer Conference. ISSN 0095–6880. See [Estrin 1960].
- [AFIPS 28] (no editor), AFIPS conference proceedings, volume 28: 1966 Spring Joint Computer Conference, Spartan Books, Washington. See [Stockham 1966].
- [AFIPS 29] (no editor), AFIPS conference proceedings, volume 29: 1966 Fall Joint Computer Conference, Spartan Books, Washington. See [Gentleman and Sande 1966].
- [AFIPS 33] (no editor), AFIPS conference proceedings, volume 33, part one: 1968 Fall Joint Computer Conference, December 9–11, 1968, San Francisco, California, Thompson Book Company, Washington. See [Yavne 1968].
- [ICM 1971.3] (no editor), Actes du congrès international des mathématiciens, tome 3, Gauthier-Villars Éditeur, Paris. MR 54:5. See [Knuth 1971b].

- [Aho 1973] Alfred V. Aho (chairman), Proceedings of fifth annual ACM symposium on theory of computing: Austin, Texas, April 30–May 2, 1973, Association for Computing Machinery, New York. See [Moenck 1973].
- [Anderssen and Brent 1976] Robert S. Anderssen and Richard P. Brent (editors), *The complexity of computational problem solving*, University of Queensland Press, Brisbane. ISBN 0–7022–1213–X. URL: http://web.comlab.ox.ac.uk/oucl/work/richard. brent/pub/pub031.html. See [Brent 1976a].
- [Beeler et al. 1972] Michael Beeler, R. William Gosper, and Richard Schroeppel, HAK-MEM, Artificial Intelligence Memo No. 239, Massachusetts Institute of Technology. URL: http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html. Citations in this document: §16.7.
- [Bergland 1968] Glenn D. Bergland, "A fast Fourier transform algorithm for real-valued series", *Communications of the ACM* 11, 703–710. ISSN 0001–0782. URL: http:// cr.yp.to/bib/entries.html#1968/bergland-real. Citations in this document: §2.9.
- [Bernstein 1987] Daniel J. Bernstein, "New fast algorithms for π and e", paper for the Westinghouse competition, distributed widely at the Ramanujan Centenary Conference. URL: http://cr.yp.to/papers.html#westinghouse. Citations in this document: §12.7.
- [Bernstein 1998] Daniel J. Bernstein, "Detecting perfect powers in essentially linear time", *Mathematics of Computation* **67**, 1253–1283. ISSN 0025–5718. MR 98j:11121. URL: http://cr.yp.to/papers.html#powers. Citations in this document: §6.6.
- [Bernstein 2001] Daniel J. Bernstein, "Multidigit multiplication for mathematicians". URL: http://cr.yp.to/papers.html#m3. Citations in this document: §2.8, §3.8, §4.10, §4.10.
- [Bernstein 2002a] Daniel J. Bernstein, "How to find small factors of integers". URL: http://cr.yp.to/papers.html#sf. Citations in this document: §20.6, §20.7.
- [Bernstein 2002b] Daniel J. Bernstein, "Pippenger's exponentiation algorithm". URL: http://cr.yp.to/papers.html#pippenger. Citations in this document: §10.7.
- [Bernstein 2003] Daniel J. Bernstein, "Computing logarithm intervals with the arithmetic-geometric-mean iteration". URL: http://cr.yp.to/papers.html#logagm. ID 8f92 b1e3ec7918d37b28b9efcee5e97f. Citations in this document: §16.7.
- [Bernstein 2004a] Daniel J. Bernstein, "Research announcement: Faster factorization into coprimes". URL: http://cr.yp.to/papers.html#dcba2. ID 53a2e278e21bcbb7287 b81c563995925. Citations in this document: §24.6.
- [Bernstein 2004b] Daniel J. Bernstein, "How to find smooth parts of integers". URL: http://cr.yp.to/papers.html#smoothparts. ID 201a045d5bb24f43f0bd0d97fcf5355a. Citations in this document: §20.7.
- [Bernstein 2004c] Daniel J. Bernstein, "Removing redundancy in high-precision Newton iteration". URL: http://cr.yp.to/papers.html#fastnewton. ID def7f1e35fb654671 c6f767b16b93d50. Citations in this document: §6.8, §7.7, §9.7, §10.7, §10.7.

- [Bernstein 2004d] Daniel J. Bernstein, "Scaled remainder trees". URL: http://cr.yp.to/ papers.html#scaledmod. ID e2b8da026cf72d01d97e20cf2874f278. Citations in this document: §18.9.
- [Bernstein 2005] Daniel J. Bernstein, "Factoring into coprimes in essentially linear time", *Journal of Algorithms* 54, 1–30. ISSN 0196–6774. URL: http://cr.yp.to/ papers.html#dcba. ID f32943f0bb67a9317d4021513f9eee5a. Citations in this document: §20.6, §20.6, §24.6.
- [Bernstein 2007] Daniel J. Bernstein, "The tangent FFT", pp. 291–300 in [Boztas and Lu 2007]. URL: http://cr.yp.to/papers.html#tangentfft. ID a9a77cef9a7b77f9b8b305 e276d5fe25. Citations in this document: §2.9.
- [Bernstein et al. 2007] Daniel J. Bernstein, Hendrik W. Lenstra, Jr., and Jonathan Pila, "Detecting perfect powers by factoring into coprimes", *Mathematics of Computation* **76**, 385–388. Citations in this document: §24.5.
- [Borodin and Moenck 1974] Allan Borodin and Robert T. Moenck, "Fast modular transforms", *Journal of Computer and System Sciences* 8, 366–386; older version, not a subset, in [Moenck and Borodin 1972]. ISSN 0022–0000. MR 51:7365. URL: http:// cr.yp.to/bib/entries.html#1974/borodin. Citations in this document: §12.7, §13.6, §17.9, §18.8, §23.6, §23.7.
- [Borwein and Borwein 1987] Jonathan M. Borwein and Peter B. Borwein, *Pi and the AGM*, Wiley, New York. ISBN 0–471–83138–7. MR 89a:11134. Citations in this document: §16.7.
- [Borwein et al. 2000] Jonathan M. Borwein, David M. Bradley, and Richard E. Crandall, "Computational strategies for the Riemann zeta function", *Journal of Computational* and Applied Mathematics 121, 247–296. ISSN 0377–0427. MR 2001h:11110. URL: http://www.sciencedirect.com/science/article/B6TYH-4118GDF-F/1/64371ba75fa0 e923ba6b231779fb0673. Citations in this document: §12.7.
- [Bostan et al. 2003] Alin Bostan, Grégoire Lecerf, and Éric Schost, "Tellegen's principle into practice", pp. 37–44 in [Hong 2003]. URL: http://cr.yp.to/bib/entries.html# 2003/bostan. Citations in this document: §18.9.
- [Bostan et al. 2004] Alin Bostan, Grégoire Lecerf, Bruno Salvy, Éric Schost, and Bernd Wiebelt, "Complexity issues in bivariate polynomial factorization", pp. 42–49 in [Gutierrez 2004]. URL: http://cr.yp.to/bib/entries.html#2004/bostan. Citations in this document: §18.9.
- [Boztas and Lu 2007] Serdar Boztas and Hsiao-Feng Lu (editors), Applied algebra, algebraic algorithms and error-correcting codes: 17th international symposium, AAECC-17, Bangalore, India, December 2007, proceedings, Lecture Notes in Computer Science 4851, Springer-Verlag, Berlin. See [Bernstein 2007].
- [Brauer 1939] Alfred Brauer, "On addition chains", Bulletin of the American Mathematical Society 45, 736–739. ISSN 0273–0979. MR 1,40a. URL: http://cr.yp.to/bib/ entries.html#1939/brauer. Citations in this document: §10.7.

- [Brent 1976a] Richard P. Brent, "The complexity of multiple-precision arithmetic", pp. 126–165 in [Anderssen and Brent 1976]. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub032.html. Citations in this document: §12.7, §16.6.
- [Brent 1976b] Richard P. Brent, "Fast multiple-precision evaluation of elementary functions", *Journal of the ACM* 23, 242–251. ISSN 0004–5411. MR 52:16111. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub034.html. Citations in this document: §16.7.
- [Brent 1976c] Richard P. Brent, "Multiple-precision zero-finding methods and the complexity of elementary function evaluation", pp. 151–176 in [Traub 1976]. MR 54: 11843. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub028.html. Citations in this document: §6.8, §8.6, §9.6, §9.7, §16.7.
- [Brent and McMillan 1980] Richard P. Brent and Edwin M. McMillan, "Some new algorithms for high-precision computation of Euler's constant", *Mathematics of Computation* 34, 305–312. ISSN 0025–5718. MR 82g:10002. URL: http://web. comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub049.html. Citations in this document: §12.7.
- [Brent et al. 1980] Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun, "Fast solution of Toeplitz systems of equations and computation of Padé approximants", *Journal of Algorithms* 1, 259–295. ISSN 0196–6774. MR 82d:65033. URL: http: //web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub059.html. Citations in this document: §21.6.
- [Bruun 1978] Georg Bruun, "z-transform DFT filters and FFTs", *IEEE Transactions on Acoustics, Speech, and Signal Processing* 26, 56–63. ISSN 0096–3518. URL: http://cr.yp.to/bib/entries.html#1978/bruun. Citations in this document: §2.9.
- [Buell 2004] Duncan A. Buell (editor), Algorithmic number theory: 6th international symposium, ANTS-VI, Burlington, VT, USA, June 2004, proceedings, Lecture Notes in Computer Science 3076, Springer-Verlag, Berlin. ISBN 3–540–22156–5. See [Franke et al. 2004], [Stehlé and Zimmermann 2004].
- [Bürgisser et al. 1997] Peter Bürgisser, Michael Clausen, and Mohammed Amin Shokrollahi, Algebraic complexity theory, Springer-Verlag, Berlin. ISBN 3–540– 60582–7. MR 99c:68002. Citations in this document: §2.3, §4.9, §11.8, §12.8, §23.7.
- [Buhler 1998] Joe P. Buhler (editor), Algorithmic number theory: ANTS-III, Lecture Notes in Computer Science 1423, Springer-Verlag, Berlin. ISBN 3–540–64657–4. MR 2000g:11002. See [Haible and Papanikolaou 1998].
- [Burnikel and Ziegler 1998] Christoph Burnikel and Joachim Ziegler, *Fast recursive division*, MPI research report I-98-1-022. URL: http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022. Citations in this document: §17.9, §17.9, §17.9.
- [Cantor and Kaltofen 1991] David G. Cantor and Erich Kaltofen, "On fast multiplication of polynomials over arbitrary algebras", *Acta Informatica* 28, 693–701. ISSN 0001–5903. MR 92i:68068. URL: http://www.math.ncsu.edu/~kaltofen/biblio graphy/. Citations in this document: §4.9.

- [Chudnovsky and Chudnovsky 1990] David V. Chudnovsky and Gregory V. Chudnovsky, "Computer algebra in the service of mathematical physics and number theory", pp. 109–232 in [Chudnovsky and Jenks 1990]. MR 92g:11122. Citations in this document: §12.7, §12.7.
- [Chudnovsky and Jenks 1990] David V. Chudnovsky and Richard D. Jenks (editors), *Computers in mathematics*, Lecture Notes in Pure and Applied Mathematics 125, Marcel Dekker, New York. ISBN 0–8247–8341–7. MR 91e:00020. See [Chudnovsky and Chudnovsky 1990], [Gosper 1990].
- [Cook 1966] Stephen A. Cook, On the minimum computation time of functions, Ph.D. thesis, Department of Mathematics, Harvard University. URL: http://cr.yp.to/bib/ entries.html#1966/cook. Citations in this document: §4.9, §6.7, §10.7.
- [Cooley and Tukey 1965] James W. Cooley and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series", *Mathematics of Computation* 19, 297–301. ISSN 0025–5718. MR 31:2843. URL: http://cr.yp.to/bib/entries.html# 1965/cooley. Citations in this document: §2.8.
- [Crandall and Fagin 1994] Richard Crandall and Barry Fagin, "Discrete weighted transforms and large-integer arithmetic", *Mathematics of Computation* 62, 305–324. ISSN 0025–5718. MR 94c:11123. URL: http://cr.yp.to/bib/entries.html#1994/cran dall. Citations in this document: §2.9, §4.10.
- [Dixon 1982] John D. Dixon, "Exact solution of linear equations using *p*-adic expansions", *Numerische Mathematik* 40, 137–141. ISSN 0029–599X. MR 83m:65025. URL: http://cr.yp.to/bib/entries.html#1982/dixon. Citations in this document: §17.9.
- [Duhamel and Hollmann 1984] Pierre Duhamel and H. Hollmann, "Split-radix FFT algorithm", *Electronics Letters* **20**, 14–16. ISSN 0013–5194. URL: http://cr.yp.to/bib/entries.html#1984/duhamel. Citations in this document: §2.9.
- [Duhamel and Vetterli 1990] Pierre Duhamel and Martin Vetterli, "Fast Fourier transforms: a tutorial review and a state of the art", *Signal Processing* 19, 259–299. ISSN 0165–1684. MR 91a:94004. URL: http://cr.yp.to/bib/entries.html#1990/duhamel. Citations in this document: §2.9.
- [Estrin 1960] Gerald Estrin, "Organization of computer systems—the fixed plus variable structure computer", pp. 33–40 in [AFIPS 17]. URL: http://cr.yp.to/bib/entries.html#1960/estrin. Citations in this document: §12.7.
- [Fiduccia 1972] Charles M. Fiduccia, "Polynomial evaluation via the division algorithm: the fast Fourier transform revisited", pp. 88–93 in [Rosenberg 1972]. URL: http://cr.yp.to/bib/entries.html#1972/fiduccia-fft. Citations in this document: §2.8.
- [Franke et al. 2004] Jens Franke, Thorsten Kleinjung, François Morain, and T. Wirth, "Proving the primality of very large numbers with fastECPP", pp. 194–207 in [Buell 2004]. URL: http://www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/ large.ps.gz. Citations in this document: §20.7.
- [Fürer 2007] Martin Fürer, "Faster integer multiplication", pp. 57–66 in [Johnson and Feige 2007]. URL: http://www.cse.psu.edu/~furer/. Citations in this document: §3.8.

- [Gauss 1866] Carl F. Gauss, Werke, Band 3, Königlichen Gesellschaft der Wissenschaften, Göttingen. URL: http://134.76.163.65/agora_docs/41929TABLE_OF_ CONTENTS.html. Citations in this document: §2.8, §2.8.
- [Gentleman and Sande 1966] W. Morven Gentleman and Gordon Sande, "Fast Fourier transforms for fun and profit", pp. 563–578 in [AFIPS 29]. URL: http://cr.yp.to/bib/entries.html#1966/gentleman. Citations in this document: §2.8, §2.9.
- [Göttfert 1994] Rainer Göttfert, "An acceleration of the Niederreiter factorization algorithm in characteristic 2", *Mathematics of Computation* 62, 831–839. ISSN 0025–5718. MR 94g:11110. Citations in this document: §24.2.
- [Gosper 1990] William Gosper, "Strip mining in the abandoned orefields of nineteenth century mathematics", pp. 261–284 in [Chudnovsky and Jenks 1990]. MR 91h:11154. URL: http://cr.yp.to/bib/entries.html#1990/gosper. Citations in this document: §12.7, §12.7.
- [Gregory 1980] Robert T. Gregory, Error-free computation: why it is needed and methods for doing it, Robert E. Krieger Publishing Company, New York. ISBN 0–89874–240–4. MR 83f:65061. Citations in this document: §17.9.
- [Gutierrez 2004] Jamie Gutierrez (editor), *Proceedings of the 2004 international symposium on symbolic and algebraic computation*, Association for Computing Machinery, New York. ISBN 1–58113–827–X. See [Bostan et al. 2004].
- [Haible and Papanikolaou 1997] Bruno Haible and Thomas Papanikolaou, Fast multiprecision evaluation of series of rational numbers, Technical Report TI-7/97, Darmstadt University of Technology; see also newer version [Haible and Papanikolaou 1998]. URL: http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/papanik/ Welcome.html. Citations in this document: §12.7.
- [Haible and Papanikolaou 1998] Bruno Haible and Thomas Papanikolaou, "Fast multiprecision evaluation of series of rational numbers", pp. 338–350 in [Buhler 1998]; see also older version [Haible and Papanikolaou 1997]. MR 2000i:11197. URL: http://cr.yp.to/bib/entries.html#1998/haible.
- [Hehner and Horspool 1979] Eric C. R. Hehner and R. Nigel Horspool, "A new representation of the rational numbers for fast easy arithmetic", *SIAM Journal on Computing* 8, 124–134. ISSN 0097–5397. MR 80h:68027. URL: http://cr.yp.to/bib/ entries.html#1979/hehner. Citations in this document: §17.9.
- [Heideman et al. 1985] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus, "Gauss and the history of the fast Fourier transform", *Archive for History of Exact Sciences* 34, 265–277. ISSN 0003–9519. MR 87f:01018. URL: http://cr.yp.to/bib/ entries.html#1985/heideman. Citations in this document: §2.8.
- [Heindel and Horowitz 1971] Lee E. Heindel and Ellis Horowitz, "On decreasing the computing time for modular arithmetic", pp. 126–128 in [Hennie 1971]. URL: http:// cr.yp.to/bib/entries.html#1971/heindel. Citations in this document: §23.6.
- [Hennie 1971] Fred C. Hennie (chairman), *12th annual symposium on switching and automata theory*, IEEE Computer Society, Northridge. See [Heindel and Horowitz 1971].

- [Hong 2003] Hoon Hong (editor), Proceedings of the 2003 international symposium on symbolic and algebraic computation, Association for Computing Machinery, New York. ISBN 1–58113–641–2. See [Bostan et al. 2003].
- [Horowitz 1972] Ellis Horowitz, "A fast method for interpolation using preconditioning", *Information Processing Letters* 1, 157–163. ISSN 0020–0190. MR 47:4413. URL: http://cr.yp.to/bib/entries.html#1972/horowitz. Citations in this document: §13.6, §23.6.
- [Jebelean 1993] Tudor Jebelean, "An algorithm for exact division", *Journal of Symbolic Computation* 15, 169–180. ISSN 0747–7171. MR 93m:68092. URL: http://cr.yp.to/bib/entries.html#1993/jebelean. Citations in this document: §17.9.
- [Jebelean 1997] Tudor Jebelean, "Practical integer division with Karatsuba complexity", pp. 339–341 in [Kuechlin 1997]. Citations in this document: §17.9.
- [Johnson and Feige 2007] David S. Johnson and Uriel Feige (editors), Proceedings of the 39th annual ACM symposium on theory of computing, San Diego, California, USA, June 11–13, 2007, Association for Computing Machinery, New York. ISBN 978–1–59593–631–8. See [Fürer 2007].
- [Johnson and Frigo 2007] Steven G. Johnson and Matteo Frigo, "A modified split-radix FFT with fewer arithmetic operations", *IEEE Transactions on Signal Processing* **55**, 111–119. Citations in this document: §2.9.
- [Karatsuba 1999] Ekatharine A. Karatsuba, "Fast evaluation of hypergeometric functions by FEE", pp. 303–314 in [Papamichael et al. 1999]. MR 2000e:65030. URL: http://cr.yp.to/bib/entries.html#1999/karatsuba. Citations in this document: §12.7.
- [Karatsuba and Ofman 1963] Anatoly A. Karatsuba and Y. Ofman, "Multiplication of multidigit numbers on automata", *Soviet Physics Doklady* 7, 595–596. ISSN 0038–5689. URL: http://cr.yp.to/bib/entries.html#1963/karatsuba. Citations in this document: §4.9, §4.9.
- [Karp 1972] Richard M. Karp (chairman), 13th annual symposium on switching and automata theory, IEEE Computer Society, Northridge. See [Moenck and Borodin 1972].
- [Karp and Markstein 1994] Alan H. Karp and Peter Markstein, *High-precision division and square root*, Technical Report HPL-93-42(R.1); see also newer version [Karp and Markstein 1997]. URL: http://www.hpl.hp.com/techreports/93/HPL-93-42.html.
- [Karp and Markstein 1997] Alan H. Karp and Peter Markstein, "High-precision division and square root", ACM Transactions on Mathematical Software 23, 561– 589; see also older version [Karp and Markstein 1994]. ISSN 0098–3500. MR 1 671 702. URL: http://www.hpl.hp.com/personal/Alan_Karp/publications/publica tions.html. Citations in this document: §7.7.
- [Knuth 1969] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 1st edition, 1st printing, Addison-Wesley, Reading; see also newer version [Knuth 1971a]. MR 44:3531.
- [Knuth 1971a] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 1st edition, 2nd printing, Addison-Wesley, Reading; see also

older version [Knuth 1969]; see also newer version [Knuth 1981]. MR 44:3531. Citations in this document: §12.7.

- [Knuth 1971b] Donald E. Knuth, "The analysis of algorithms", pp. 269–274 in [ICM 1971.3]. MR 54:11839. URL: http://cr.yp.to/bib/entries.html#1971/knuth-gcd. Citations in this document: §12.7, §12.7, §21.6, §21.6.
- [Knuth 1981] Donald E. Knuth, *The art of computer programming, volume 2: seminumerical algorithms*, 2nd edition, Addison-Wesley, Reading; see also older version [Knuth 1971a]; see also newer version [Knuth 1997]. ISBN 0–201–03822–6. MR 83i:68003.
- [Knuth 1997] Donald E. Knuth, *The art of computer programming, volume 2: seminu-merical algorithms*, 3rd edition, Addison-Wesley, Reading; see also older version [Knuth 1981]. ISBN 0–201–89684–2. Citations in this document: §4.10, §5.7, §6.6, §11.7, §21.7, §22.7.
- [Knuth 2000] Donald E. Knuth (editor), Selected papers on analysis of algorithms, CSLI Publications, Stanford. ISBN 1–57586–212–3. MR 2001c:68066. See [Knuth and Papadimitriou 1981].
- [Knuth and Papadimitriou 1981] Donald E. Knuth and Christos H. Papadimitriou, "Duality in addition chains", *Bulletin of the European Association for Theoretical Computer Science* 13, 2–4; reprinted in [Knuth 2000]. ISSN 0252–9742. Citations in this document: §2.3.
- [Kogge 1974] Peter M. Kogge, "Parallel solution of recurrence problems", *IBM Journal of Research and Development* 18, 138–148. ISSN 0018–8646. MR 49:6552. URL: http://cr.yp.to/bib/entries.html#1974/kogge. Citations in this document: §12.7.
- [Kogge and Stone 1973] Peter M. Kogge and Harold S. Stone, "A parallel algorithm for the efficient solution of a general class of recurrence equations", *IEEE Transactions* on Computers 22, 786–793. ISSN 0018–9340. URL: http://cr.yp.to/bib/entries.html# 1973/kogge. Citations in this document: §12.7, §12.7.
- [Kollerstrom 1992] Nick Kollerstrom, "Thomas Simpson and 'Newton's method of approximation': an enduring myth", *British Journal for the History of Science* 1992, 347–354. URL: http://www.ucl.ac.uk/sts/nk/newtonapprox.htm. Citations in this document: §6.7.
- [Krishnamurthy 1977] E. V. Krishnamurthy, "Matrix processors using *p*-adic arithmetic for exact linear computations", *IEEE Transactions on Computers* 26, 633–639. ISSN 0018–9340. MR 57:7963. URL: http://cr.yp.to/bib/entries.html#1977/krish namurthy. Citations in this document: §17.9.
- [Kuechlin 1997] Wolfgang Kuechlin (editor), Symbolic and algebraic computation: IS-SAC '97, Association for Computing Machinery, New York. ISBN 0–89791–875–4. See [Jebelean 1997].
- [Kung 1974] H. T. Kung, "On computing reciprocals of power series", Numerische Mathematik 22, 341–348. ISSN 0029–599X. MR 50:3536. URL: http://cr.yp.to/bib/ entries.html#1974/kung. Citations in this document: §6.7.

- [Lehmer 1938] Derrick H. Lehmer, "Euclid's algorithm for large numbers", American Mathematical Monthly 45, 227–233. ISSN 0002–9890. URL: http://links.jstor.org/ sici?sici=0002-9890(193804)45:4<227:EAFLN>2.0.CO;2-Y. Citations in this document: §21.6.
- [Lenstra and Tijdeman 1982] Hendrik W. Lenstra, Jr. and Robert Tijdeman (editors), *Computational methods in number theory I*, Mathematical Centre Tracts 154, Mathematisch Centrum, Amsterdam. ISBN 90–6196–248–X. MR 84c:10002. See [Turk 1982].
- [Lundy and Van Buskirk 2007] Thomas J. Lundy and James Van Buskirk, "A new matrix approach to real FFTs and convolutions of length 2^k", *Computing* **80**, 23–45. ISSN 0010–485X. Citations in this document: §2.9.
- [Martens 1984] Jean-Bernard Martens, "Recursive cyclotomic factorization a new algorithm for calculating the discrete Fourier transform", *IEEE Transactions on Acoustics, Speech, and Signal Processing* **32**, 750–761. ISSN 0096–3518. MR 86b:94004. URL: http://cr.yp.to/bib/entries.html#1984/martens. Citations in this document: §2.9.
- [Moenck 1973] Robert T. Moenck, "Fast computation of GCDs", pp. 142–151 in [Aho 1973]. URL: http://cr.yp.to/bib/entries.html#1973/moenck. Citations in this document: §21.6, §21.6.
- [Moenck and Borodin 1972] Robert T. Moenck and Allan Borodin, "Fast modular transforms via division", pp. 90–96 in [Karp 1972]; newer version, not a superset, in [Borodin and Moenck 1974]. URL: http://cr.yp.to/bib/entries.html#1972/moenck. Citations in this document: §12.7, §17.9, §18.8, §23.6.
- [Montgomery 1985] Peter L. Montgomery, "Modular multiplication without trial division", *Mathematics of Computation* 44, 519–521. ISSN 0025–5718. MR 86e: 11121. Citations in this document: §17.9, §17.9.
- [Montgomery 1992] Peter L. Montgomery, An FFT extension of the elliptic curve method of factorization, Ph.D. thesis, University of California at Los Angeles. URL: http://cr.yp.to/bib/entries.html#1992/montgomery. Citations in this document: §2.9, §18.9.
- [Nicholson 1971] Peter J. Nicholson, "Algebraic theory of finite Fourier transforms", *Journal of Computer and System Sciences* 5, 524–547. ISSN 0022–0000. MR 44:4112. Citations in this document: §3.7.
- [Nussbaumer 1980] Henri J. Nussbaumer, "Fast polynomial transform algorithms for digital convolution", *IEEE Transactions on Acoustics, Speech, and Signal Processing* 28, 205–215. ISSN 0096–3518. MR 80m:94004. URL: http://cr.yp.to/bib/ entries.html#1980/nussbaumer. Citations in this document: §3.7.
- [Papadimitriou 1994] Christos M. Papadimitriou, Computational complexity, Addison-Wesley, Reading, Massachusetts. ISBN 0201530821. MR 95f:68082. Citations in this document: §3.6.
- [Papamichael et al. 1999] Nicolas Papamichael, Stephan Ruscheweyh, and Edward B. Saff (editors), Computational methods and function theory 1997: proceed-

ings of the third CMFT conference, 13–17 October 1997, Nicosia, Cyprus, Series in Approximations and Decompositions **11**, World Scientific, Singapore. ISBN 9810236263. MR 2000c:00029. See [Karatsuba 1999].

- [Pollard 1971] John M. Pollard, "The fast Fourier transform in a finite field", *Mathematics of Computation* 25, 365–374. ISSN 0025–5718. MR 46:1120. URL: http://cr.yp.to/bib/entries.html#1971/pollard. Citations in this document: §3.7.
- [Rosenberg 1972] Arnold L. Rosenberg (chairman), *Fourth annual ACM symposium on theory of computing*, Association for Computing Machinery, New York. MR 50:1553. See [Fiduccia 1972].
- [Salamin 1976] Eugene Salamin, "Computation of π using arithmetic-geometric mean", *Mathematics of Computation* **30**, 565–570. ISSN 0025–5718. MR 53:7928. Citations in this document: §16.7.
- [Schönhage 1966] Arnold Schönhage, "Multiplikation großer Zahlen", Computing 1, 182–196. ISSN 0010–485X. MR 34:8676. URL: http://cr.yp.to/bib/entries.html# 1966/schoenhage. Citations in this document: §4.9.
- [Schönhage 1971] Arnold Schönhage, "Schnelle Berechnung von Kettenbruchentwicklungen", Acta Informatica 1, 139–144. ISSN 0001–5903. URL: http://cr.yp.to/bib/ entries.html#1971/schoenhage-gcd. Citations in this document: §21.6, §21.6.
- [Schönhage 1977] Arnold Schönhage, "Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2", Acta Informatica 7, 395–398. ISSN 0001–5903. MR 55:9604. URL: http://cr.yp.to/bib/entries.html#1977/schoenhage. Citations in this document: §3.7.
- [Schönhage 2000] Arnold Schönhage, "Variations on computing reciprocals of power series", *Information Processing Letters* 74, 41–46. ISSN 0020–0190. MR 2001c: 68069. Citations in this document: §6.8.
- [Schönhage and Strassen 1971] Arnold Schönhage and Volker Strassen, "Schnelle Multiplikation großer Zahlen", *Computing* 7, 281–292. ISSN 0010–485X. MR 45:1431. URL: http://cr.yp.to/bib/entries.html#1971/schoenhage-mult. Citations in this document: §3.7.
- [Schönhage and Vetter 1994] Arnold Schönhage and Ekkehart Vetter, "A new approach to resultant computations and other algorithms with exact division", pp. 448–459 in [van Leeuwen 1994]. MR 96d:68109. URL: http://cr.yp.to/bib/entries.html#1994/ schoenhage-exact. Citations in this document: §17.9.
- [Schönhage et al. 1994] Arnold Schönhage, Andreas F. W. Grotefeld, and Ekkehart Vetter, *Fast algorithms: a multitape Turing machine implementation*, Bibliographisches Institut, Mannheim. ISBN 3–411–16891–9. MR 96c:68043. Citations in this document: §6.8.
- [Sieveking 1972] Malte Sieveking, "An algorithm for division of powerseries", *Computing* 10, 153–156. ISSN 0010–485X. MR 47:1257. URL: http://cr.yp.to/bib/entries.html#1972/sieveking. Citations in this document: §6.7.

- [Simpson 1740] Thomas Simpson, Essays on several curious and useful subjects in speculative and mix'd mathematics, illustrated by a variety of examples. URL: http:// cr.yp.to/bib/entries.html#1740/simpson. Citations in this document: §6.7.
- [Sorenson 1994] Jonathan Sorenson, "Two fast GCD algorithms", *Journal of Algorithms* **16**, 110–144. ISSN 0196–6774. MR 94k:11135. Citations in this document: §22.7.
- [Stehlé and Zimmermann 2004] Damien Stehlé and Paul Zimmermann, "A binary recursive gcd algorithm", pp. 411–425 in [Buell 2004]. Citations in this document: §22.7.
- [Stockham 1966] Thomas G. Stockham, Jr., "High-speed convolution and correlation", pp. 229–233 in [AFIPS 28]. URL: http://cr.yp.to/bib/entries.html#1966/stockham. Citations in this document: §2.8, §4.9, §4.10.
- [Stone 1973] Harold S. Stone, "An efficient parallel algorithm for the solution of a tridiagonal linear system of equations", *Journal of the ACM* 20, 27–38. ISSN 0004–5411. MR 48:12792. URL: http://cr.yp.to/bib/entries.html#1973/stone. Citations in this document: §12.7, §12.7, §12.7, §12.7.
- [Strassen 1969] Volker Strassen, "Gaussian elimination is not optimal", Numerische Mathematik 13, 354–356. ISSN 0029–599X. MR 40:2223. URL: http://cr.yp.to/bib/ entries.html#1969/strassen. Citations in this document: §11.7, §11.8.
- [Strassen 1973] Volker Strassen, "Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten", *Numerische Mathematik* 20, 238–251. ISSN 0029–599X. MR 48:3296. Citations in this document: §17.8.
- [Strassen 1981] Volker Strassen, "The computational complexity of continued fractions", pp. 51–67 in [Wang 1981]; see also newer version [Strassen 1983]. URL: http://cr.yp.to/bib/entries.html#1981/strassen.
- [Strassen 1983] Volker Strassen, "The computational complexity of continued fractions", *SIAM Journal on Computing* 12, 1–27; see also older version [Strassen 1981]. ISSN 0097–5397. MR 84b:12004. URL: http://cr.yp.to/bib/entries.html# 1983/strassen. Citations in this document: §12.8, §12.8, §21.6.
- [Sylvester 1853] James J. Sylvester, "On a fundamental rule in the algorithm of continued fractions", *Philosophical Magazine* 6, 297–299. URL: http://cr.yp.to/bib/ entries.html#1853/sylvester. Citations in this document: §12.7.
- [Toom 1963] Andrei L. Toom, "The complexity of a scheme of functional elements realizing the multiplication of integers", *Soviet Mathematics Doklady* **3**, 714–716. ISSN 0197–6788. Citations in this document: §4.9.
- [Traub 1976] Joseph F. Traub, Analytic computational complexity, Academic Press, New York. MR 52:15938. See [Brent 1976c].
- [Turk 1982] Johannes W. M. Turk, "Fast arithmetic operations on numbers and polynomials", pp. 43–54 in [Lenstra and Tijdeman 1982]. MR 84f:10006. URL: http://cr.yp.to/bib/entries.html#1982/turk. Citations in this document: §3.7.

- [van der Hoeven 1999] Joris van der Hoeven, "Fast evaluation of holonomic functions", *Theoretical Computer Science* 210, 199–215. ISSN 0304–3975. MR 99h:65046. URL: http://www.math.u-psud.fr/~vdhoeven/. Citations in this document: §12.7.
- [van der Hoeven 2001] Joris van der Hoeven, "Fast evaluation of holonomic functions near and in regular singularities", *Journal of Symbolic Computation* **31**, 717–743. ISSN 0747–7171. MR 2002j:30037. URL: http://www.math.u-psud.fr/~vdhoeven/. Citations in this document: §12.7.
- [van der Hoeven 2006] Joris van der Hoeven, "Newton's method and FFT trading". URL: http://www.math.u-psud.fr/~vdhoeven/. Citations in this document: §7.7, §9.7.
- [van Leeuwen 1994] Jan van Leeuwen (editor), Algorithms ESA '94: second annual European symposium, Utrecht, The Netherlands, September 26–28, 1994, proceedings, Lecture Notes in Computer Science 855, Springer-Verlag, Berlin. ISBN 3–540–58434–X. MR 96c:68002. See [Schönhage and Vetter 1994].
- [Vetterli and Nussbaumer 1984] Martin Vetterli and Henri J. Nussbaumer, "Simple FFT and DCT algorithms with reduced number of operations", *Signal Processing* **6**, 262–278. ISSN 0165–1684. MR 85m:65128. URL: http://cr.yp.to/bib/entries.html# 1984/vetterli. Citations in this document: §2.9.
- [Wang 1981] Paul S. Wang (editor), SYM-SAC '81: proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Computation, Snowbird, Utah, August 5– 7, 1981, Association for Computing Machinery, New York. ISBN 0–89791–047–8. See [Strassen 1981].
- [Weinberger and Smith 1958] Arnold Weinberger and J. L. Smith, "A logic for high-speed addition", *National Bureau of Standards Circular* 591, 3–12. ISSN 0096–9648. URL: http://cr.yp.to/bib/entries.html#1958/weinberger. Citations in this document: §12.7.
- [Yavne 1968] R. Yavne, "An economical method for calculating the discrete Fourier transform", pp. 115–125 in [AFIPS 33]. URL: http://cr.yp.to/bib/entries.html#1968/ yavne. Citations in this document: §2.9.
- [Ypma 1995] Tjalling J. Ypma, "Historical development of the Newton-Raphson method", SIAM Review 37, 531–551. ISSN 1095–7200. MR 97b:01003. Citations in this document: §6.7.

DANIEL J. BERNSTEIN DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE M/C 249 THE UNIVERSITY OF ILLINOIS AT CHICAGO CHICAGO, IL 60607–7045 djb@cr.yp.to