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1. Introduction

Let p be a prime number and n a positive integer, and let q D pn. Let Fq

be the field of q elements and denote by F�
q the multiplicative subgroup of Fq .

Assume t and u are elements in F�
q with the property that u is in the subgroup

generated by t . The discrete logarithm of u with respect to the base t , written
logt u, is the least non-negative integer x such that tx D u.

In this paper we describe two methods to compute discrete logarithms, both of
which derive from the number field sieve (NFS) factoring algorithm described in
[Stevenhagen 2008] and [Lenstra and Lenstra 1993]. When factoring an integer
N with the NFS, we first choose a number ring R as in [Stevenhagen 2008] for
which there is a ring homomorphism � W R ! Z=N Z. Then we combine smooth
elements in R and in Z to obtain squares ˛1 D a2

1
2 R and ˛2 D a2

2
2 Z � R,

such that �.˛1/ D �.˛2/. If �.a1/ 6D ˙�.a2/, then the gcd of N and a0
1
�a2,

where a0
1

is a representative in Z for �.a1/, is a non-trivial factor of N . When
using the strategy to compute discrete logarithms in Fq , we choose either two
number rings or two polynomial rings, call them R1 and R2, such that there are
ring homomorphisms �1 W R1 ! Fq and �2 W R2 ! Fq . We then construct two
.q�1/-st powers ˛1 2 R1 and ˛2 2 R2 such that �1.˛1/D txu ��2.˛2/ for some
x. It follows that x � �logt u mod .q�1/. When the chosen rings are number
rings, the algorithm retains the title of number field sieve. In this case, if q is
prime, one of the rings can be taken to be Z as is done for factoring. However, it
is often advantageous to use two non-trivial extensions of Z instead (see Section
2.2). When the chosen rings are polynomial rings, the algorithm is known as
the function field sieve (FFS).

One difficulty encountered in the NFS and FFS discrete logarithm algorithms
is that in order to combine smooth elements in R1 into a .q�1/-st power which
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is mapped by �1 to a multiple of txu, it is necessary to find pre-images of t

and u under �1 which are smooth. This problem is the subject of Section 4 of
the paper. Sections 2 and 3 are devoted to descriptions of the NFS and FFS,
respectively, in the case that t and u come with smooth pre-images under �1.

The importance of the number field and function field sieves lies in the fact
that they are faster than other algorithms for computing discrete logarithms, both
asymptotically and in practice. The expected running time of the NFS of Section
2 is conjectured to be

Lq Œ1=3I .64=9/1=3
C o.1/�;

where

Lq ŒsI c�D exp.c.log q/s.log log q/1�s/

and the o.1/ is for q ! 1 subject to the constraint that n does not grow too fast
(see Section 2.8 for a precise formulation). The conjectured expected running
time of the FFS of Section 3 is

Lq Œ1=3I .32=9/1=3
C o.1/�; (1.1)

where again the o.1/ is for q ! 1, this time with the restriction that p does not
grow too fast (see Section 3.4). Taken together, the algorithms have a conjec-
tured running time of Lq Œ1=3I O.1/� for all finite fields. By contrast, no other
discrete logarithm algorithm has a proven or conjectural running time faster than
Lq Œ1=2I O.1/�. Coppersmith’s method for fields of characteristic two [Copper-
smith 1984], which predates the FFS by a decade and which also runs in time
(1.1), is considered here as a special case of the FFS (see Section 3.8).

In practice, the current record for computing logarithms in a prime field is
held by Kleinjung [Kleinjung 2007], who used the NFS as described in [Joux and
Lercier 2003] to compute logarithms in a field whose cardinality is a prime of
160 digits. In characteristic two, Joux and Lercier’s computation of logarithms
in the field of size 2613 � 3:399�10184 using the FFS [Joux and Lercier 2005a] is
the present record. Interest in computations of discrete logarithms in fields that
are neither prime nor of characteristic two is a relatively recent phenomenon,
spurred on in part by cryptographic applications. In particular, the fact that
the discrete logarithm problem on an elliptic curve over a prime field Fp can be
transported to the logarithm problem in an extension of Fp [Menezes et al. 1993],
[Frey et al. 1999], has focused attention on these fields. Joux and Lercier’s use
of the FFS to compute logarithms in the field of size 37080130 � 1:186 � 10167

[Joux and Lercier 2005b] is an indication that at current levels, the difficulty
of computing logarithms in these “intermediate” fields is comparable to that of
doing so in the prime and characteristic two cases.
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It often occurs in practice that more than one logarithm in a given field is
sought. When this is the case, the NFS and FFS can be split into a precom-
putation stage in which the logarithms of the ”small” elements in the field are
computed, and a fast reduction stage in which the desired logarithm is expressed
in terms of the precomputed values. We refer the reader to [Schirokauer 2005]
and [Joux and Lercier 2002] for descriptions of such versions of the NFS and
FFS and note that they use the the same basic structure and techniques and
have the same conjectural running times as the methods described in the present
paper.

2. The number field sieve (NFS)

2.1. Let p be an odd prime number. We adopt as a model for the finite field
Fp the set of non-negative integers less than p, with addition and multiplication
taken modulo p. Let B be some positive real number, and recall that an integer
is said to be B-smooth if each of its prime factors is at most B. We say that
an element in Fp is B-smooth if it is B-smooth as an integer. Let t and u be
elements in F�

p which are B-smooth and for which u 2 hti. In this section, we
describe how to use the NFS to compute, not the residue of logt u modulo .p�1/

as suggested in the introduction, but the residue of logt u modulo an odd prime
divisor l of p � 1. The reason for the restriction is given in Step 3 below. The
algorithm we present can be modified to compute the residue of logt u modulo
any prime power divisor of p � 1 [Schirokauer 1993]. Once these residues are
known, logt u is easily determined by means of the Chinese remainder theorem.
We note that to compute the residue of logt u modulo a power of a small prime,
the exponential-time methods described in [Pomerance 2008] are preferable to
the NFS. In what follows, therefore, we think of l as being large.

2.2. The NFS for prime fields. In addition to a prime p > 5, an odd prime
divisor l of p � 1, smoothness bound B, and elements t and u as described
above, the algorithm takes as input a parameter C � 1 and an integral parameter
d satisfying log2 p > d � 1. It outputs an integer x which is likely to be
congruent to logt u modulo l .

Step 1. Constructing the number rings. The idea of the NFS is to produce
a relation in Fp involving t and u by choosing two number rings which come
with maps to Fp and then building l-th powers in these rings in such a way that
they have the same image in Fp. The challenge is to find rings in which the
construction of suitable l-th powers requires as little work as possible.

One approach, presented in [Joux and Lercier 2003], is to choose an irre-
ducible polynomial f1 of degree d with small, integral coefficients and a root
modulo p, call it m. The set of vectors .a0; : : : ; ad�1/2 Zd having the property



400 OLIVER SCHIROKAUER

that the polynomial
P

aiX
i has m as a root mod p is a lattice. Lattice reduction

techniques can, therefore, be used to obtain a polynomial f2 of degree d � 1,
having integral coefficients of size approximately p1=d and m as a root mod
p. We now proceed with the rings R1 D ZŒ˛1� and R2 D ZŒ˛2�, where ˛1 and
˛2 are roots in C of f1 and f2 respectively. Note that for j D 1; 2 the map
�j W Rj ! Fp that sends the element

P
bi j̨

i , with bi 2 Z, to the element in
f0; : : : ;p � 1g congruent to

P
bim

i mod p is a ring homomorphism.
A second method to choose rings for the NFS is to define m to be bp1=dc

and let f D
P

aiX
i where the coefficients a0; : : : ; ad are obtained by writing

p in the base m. In other words, 0 � ai <m and

p D

dX
iD0

aim
i :

Then f is irreducible [Brillhart et al. 1981] and we choose as our two rings Z

and R D ZŒ˛�, where ˛ 2 C satisfies f .˛/D 0. The required maps to Fp are the
canonical projection from Z and its extension � W R ! Fp which sends

P
bi˛

i ,
with bi 2 Z, to the element in f0; : : : ;p � 1g congruent to

P
bim

i mod p.
Despite the fact that of these two methods, the former is frequently the bet-

ter one in practice, we continue with the latter approach for the remainder of
the section. Not only does the resulting presentation more closely parallel the
usual formulation of the NFS algorithm for factoring, but the exposition is made
less cumbersome by having only one non-trivial extension of Z to handle. All
the techniques described for this one ring can be applied to the two non-trivial
extensions produced by the first method.

Proceeding, therefore, with f and R as above, we observe that

(i) the coefficients of f are bounded by p1=d ;
(ii) f has a root mod p of size at most p1=d ;
(iii) f is monic.

A fourth property, which f is not guaranteed to satisfy but which we assume
holds, is

(iv) l does not divide the discriminant of f .

The bounds in (i) and (ii) are critical to the running time analysis of the algorithm
as they determine a bound for the numbers tested for smoothness in the next
step. Properties (iii) and (iv) are not necessary to the algorithm but simplify our
exposition. See [Buhler et al. 1993] and [Schirokauer et al. 1996] for a version
of the algorithm that does not require that (iii) hold and [Schirokauer 1993] for
the modifications necessary if (iv) does not hold.
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Step 2. Sieving. Let O be the ring of integers of the number field Q.˛/ and
N W Q.˛/ ! Q the norm map. An element  2 O is said to be B-smooth if
N. / is B-smooth in Z, or equivalently, if each prime ideal dividing the ideal
generated by  lies over a rational prime � B. In this step, we use sieving
techniques to find the set S of elements .a; b/2 Z�Z such that jaj; jbj � C and
both a � b˛ and a � bm are B-smooth. This stage is exactly like the sieving
step in the NFS for factoring. We refer the reader to [Buhler et al. 1993] and
[Lenstra et al. 1993b] for details.

For a; b 2 Z satisfying jaj; jbj � C , we have

ja � bmj � C.p1=d
C 1/;

jN.a � b˛/.a � bm/j D jbdf .a=b/.a � bm/j � 2d .d C 1/C dp1=d :
(2.3)

The product of the bounds in .2.3/ then is a bound on the size of the integer
that must be B-smooth for a pair .a; b/ to be in S . When the values C and
d are chosen optimally, this product is significantly smaller than the size of
the candidates for smoothness in other index calculus algorithms, such as those
described in [McCurley 1990]and [Schirokauer et al. 1996]. It is for this reason
that the NFS is faster than these methods.

Step 3. Computing exponent vectors. Let �.B/ be the number of rational
primes � B and let q1; : : : ; q�.B/ be a list of these primes. Similarly, let ˘.B/
be the number of prime ideals of O which are either of norm � B and of degree 1
or lie over a rational prime � B dividing ŒO W R�, and let q1; : : : ; q˘.B/ be a list
of these ideals. As explained in [Buhler et al. 1993], for each .a; b/ 2 S , the
prime ideal factors of .a�b˛/ are contained in this list. For each rational prime
q and integer g, let vq.g/ be the exponent to which q divides g. Similarly, for
each prime ideal q � O and element  2 O, let vq. / be the exponent to which
q divides the ideal generated by  .

For .a; b/ 2 S , compute the vector Va;b of length �.B/C˘.B/C d whose
first �.B/ entries are

vq1
.a � bm/; : : : ; vq�.B/

.a � bm/;

whose next ˘.B/ entries are

vq1
.a � b˛/; : : : ; vq˘.B/

.a � b˛/;

and whose last d entries are the images of a � b˛ under the character maps
defined in the next paragraph. The values vqi

.a � bm/ can be read off of the
prime factorization of a � bm and are easily obtained from the sieve in Step 2.
The values vqi

.a � b˛/ can be read off of the prime factorization of N.a � b˛/

for all qi for which the localization of R at R\qi is integrally closed and hence
is a discrete valuation ring. In this case, the sieve in Step 2 again produces
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the needed entries. For the remaining prime ideals, each of which lies over a
prime dividing ŒO W R�, the desired values can be efficiently computed using the
method sketched in [Lenstra 1992] and described in detail in [Cohen 1993]. See
[Stevenhagen 2008, formula (7.4)] and [Buhler et al. 1993] for a discussion of
the relationship between the factorization of .a � b˛/ and N.a � b˛/.

Let

� D f 2 O j N. / 6� 0 mod lg:

Let " be the least common multiple of the orders of the multiplicative groups
.O=`/�, where ` ranges over the prime ideals lying above l . Since l does not
divide the discriminant of f and is therefore unramified in Q.˛/, we have for
all  2 � ,

 "
� 1 mod l: (2.4)

Let � W � ! lO= l2O be the map sending  to . " �1/C l2O: We obtain d maps

�j W � ! Z= lZ

by fixing a module basis fbj l Cl2OgjD1;:::;d for lO= l2O over Z= lZ and project-
ing � onto each coordinate. In other words, the �j are given by the congruence

 "
� 1 �

dX
jD1

�j . /bj l mod l2:

Since �. 0/D�. /C�. 0/ and �j .
0/D�j . /C�j .

0/, the maps � and �j

are homomorphisms on O�. We include in the vector Va;b the values �1.a�b˛/;

: : : ; �d .a � b˛/.
The role of the maps �j is to enable us to construct elements in O which

are l-th powers. In the next step, we produce an element  2 � such that
vq. / � 0 mod l for all prime ideals q 2 O and such that �. / D 0. If the
class number of K is prime to l , as we expect for large l , then  is certain to
generate the l-th power of a principal ideal and hence is the product of an l-th
power and a unit !. Since any l-th power is mapped to 0 by �, we find that
! is mapped to 0 as well. We claim that it is likely in this case that !, and in
turn  , is an l-th power. For more on the �j , including a precise formulation of
the above claim and a heuristic argument supporting it, see [Schirokauer 1993].
Finally, note that it is in order to calculate the �j that we need to work with a
single prime divisor of p � 1. If analogous, logarithmic maps with values in
Z=.p � 1/Z could be computed without factoring p � 1, then logt u could be
obtained without knowing the factorization of p � 1.
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Step 4. Linear algebra. Let Vt be the vector of length �.B/C˘.B/C d

whose first �.B/ entries are vq1
.t/; : : : ; vq�.B/

.t/ and whose last ˘.B/ C d

coordinates are all 0. Define Vu similarly, with u in place of t . Let A be the
matrix whose first column is Vt and remaining columns are the vectors Va;b .
Now solve the congruence

AX � �Vu mod l: (2.5)

If Vu is not in the column space of A, increase the parameter C in order to
enlarge the set S and, one expects, the rank of A.

When the parameters B;C , and d are chosen in order to minimize the time
required for the sieving in Step 2, subject to the constraint that C is large enough
that .2.5/ can be solved, one finds that the time required for Step 2 is equal to
r2Co.1/, where r is the column length of A and the o.1/ is for p ! 1. Since
one would like to be able to solve .2.5/ within the same amount of time, Gauss-
ian elimination, which requires O.r3/ steps, is not a good choice. Moreover,
Gaussian elimination is not practical for matrices of the size arising in current
implementations. Instead, it is best to use a method which takes advantage of
the fact that almost all the entries of A are 0. The most useful of these from
a theoretical standpoint is the coordinate recurrence method which is described
in [Wiedemann 1986] and which can be shown to solve .2.5/ in time r2Co.1/,
as desired. Combinations and adaptations of three other methods, the conjugate
gradient method, the Lanczos algorithm, and structured Gaussian elimination,
have had success in practice (see [Odlyzko 2000] for discussion and references).
Nevertheless, the linear algebra continues to be a significant practical concern
and accounts in part for the fact that computing discrete logarithms with the
NFS is more difficult than factoring, in which case the linear algebra is done
modulo 2.

The entries in a solution to .2.5/, excluding the first which corresponds to the
element t , can be indexed by the pairs .a; b/ 2 S . Let .x; : : : ;xa;b; : : :/ be one
such solution. Let

ı D txu
Q
.a � bm/xa;b and  D

Q
.a � b˛/xa;b ;

where t and u are thought of as integers. Then vq.ı/ � 0 mod l for all primes
q, and therefore ı is an l-th power. Similarly vq. / � 0 mod l for all prime
ideals q � O. In addition, �i. / D 0 for i D 1; : : : ; d . As remarked earlier, it
is likely that  is then an l-th power in O. We assume that this is the case; see
[Schirokauer 1993] for comments on how to weaken this assumption. Clearly,
ı is the l-th power of an element in R. The same may not be true of  . How-
ever, since f 0.˛/O � R, we see that both f 0.˛/lı and f 0.˛/l are l-th powers
of an element in R. Recall that � W R ! Fp is the ring homomorphism that
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satisfies �.˛/D �.m/. Since �.f 0.˛/lı/ and �.f 0.˛/l / are l-th powers and
�.f 0.˛/lı/ D txu�.f 0.˛/l /, we find that txu is an l-th power in F�

p and
conclude that x � �logt u mod l .

We observe that the smoothness of t and u is used in the algorithm to ensure
that these two elements appear in the relations constructed in Step 4. However, it
suffices to know two elements � and � in R such that �.�/D t and �.�/D u and
such that the ideals .�/ and .�/ in O factor over the set q1; : : : ; q˘.B/ introduced
in Step 3. In this case, the vectors Vt and Vu are replaced by vectors V� and V�

containing the exponents appearing in the prime ideal factorizations of .�/ and
.�/ in O, as well as the values �j .�/ and �j .�/, and the linear algebra yields
products Q

.a � bm/xa;b and �x�
Q
.a � b˛/xa;b ;

which are expected to be l-th powers.

EXAMPLE 2.6. Let p be the Mersenne prime 2127 � 1 discovered by Lucas in
1876. Since p is of the form re � s with r and s small in absolute value, we
can use the techniques of the special number field sieve described in [Lenstra
et al. 1993b]. The analysis given there reveals that the optimal value of d in the
present example is 3. We proceed to construct a cubic extension of Q by noting
the p divides 2129 � 4 D .243/3 � 4. Hence the polynomial f D X 3 � 4 has a
root m mod p which is close to p1=3 and has extremely small coefficients. It is,
therefore, ideally suited to our purpose, and we let R D ZŒ

3
p

4� and � W R ! Fp

be the map which sends 3
p

4 to 243. In Step 2, we look for pairs a; b such that
a�243b and N.a�b

3
p

4/D a3 �4b3 are both smooth. In Step 3, we encounter
a potential complication due to the fact that R is not the full ring of integers
O of Q.

3
p

4/, as demonstrated by the fact that . 3
p

4/2=2 is equal to 3
p

2 and so
is integral. This difficulty is readily handled, however, by observing that O D

ZŒ
3
p

2� and that the only prime dividing ŒO WR� is 2; see [Marcus 1977, Chapter 2].
Since 2 D .

3
p

2/3, there is only one prime ideal of O lying above 2 and its residue
degree is one. The exponent to which this ideal divides .a � b

3
p

4/ is therefore
equal to v2.N.a � b

3
p

4//: Thus all the entries in the exponent vectors Va;b in
Step 3 can be obtained from the factorizations of a � 243b and N.a � b

3
p

4/.
We consider briefly the computation of the residue of logt v modulo the

largest prime divisor of p � 1, a prime of eleven digits which we denote by
l and which divides p �1 only once. Since x3 �2 splits completely over Fl , the
value of " in .2.4/ is l �1. We note that O is a principal ideal domain, as is easily
seen by computing the Minkowski constant, and that � induces an injective Fl -
linear map from O�=.O�/l to lO= l2O, a fact which can be proved by showing
that . 3

p
2�1/�1 is the fundamental unit of O (see [Marcus 1977, Exercise 5.36])

and checking that �. 3
p

2 � 1/ 6D 0. Thus any element in the kernel of � is an
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l-th power. We conclude that the product
Q
.a � b

3
p

4/xa;b obtained in Step 4
is itself an l-th power and that the algorithm produces the desired residue.

One consequence of the special nature of f in this example is that we could
have computed generators for the prime ideals and unit group of O and explicitly
factored the smooth elements found in Step 2 into a product of powers of these
generators. In this case, we would not have needed the additive characters, but
would have constructed .p�1/-st powers by finding a dependency modulo p�1

among the vectors containing the exponents appearing in these factorizations.
In particular, we could have avoided factoring p�1. For more on this approach,
which may be particularly attractive for number fields of small discriminant, see
[Lenstra et al. 1993b; 1993a].

2.7. The NFS for general fields. Let p be a prime and n > 1, and let q D pn.
In this section, we briefly describe two methods for computing logarithms in Fq .
In the first, we build the NFS on top of a number field F of small discriminant
having Fq as a residue field. To find a suitable field, we look for a prime r

having the property that Q.�/, where � is a primitive r th root of unity, has a
subfield of degree n over Q in which p is inert. This subfield serves as F . If
the Extended Riemann Hypothesis holds, then we are guaranteed to find such a
prime r satisfying r < .log q/O.1/ [Shoup 1992]. One attractive feature of our
choice of F is that its ring of integers OF has an integral basis consisting of the
conjugates of the trace of � in F . See [Schirokauer 2000] for details. With F

in hand, we construct an extension of F of degree d by adjoining to it a root
˛ of the polynomial obtained by expanding p in base m, where m D bp1=dc.
Next, we look for pairs a; b 2 OF �OF such that a�b˛ and a�bm are both B-
smooth. As before, we consider approximately C 2 many pairs, chosen so that
for any candidate, the coefficients appearing in the expressions a D

P
aj tj and

b D
P

bj tj , where ft1; : : : ; tng is the integral basis specified above, are at most
C 1=n in absolute value. The B-smooth pairs can be identified using sieving
techniques or the elliptic curve factoring method [Lenstra 1987]. For each such
pair, as well as for t and u, we construct exponent vectors, including this time
the values of the additive characters for both F and F.˛/. Finally, we perform
linear algebra mod l to obtain an integer which is likely to be the residue of
logt u mod l .

In the second approach, proposed in [Joux et al. 2006], two number rings
with maps to Fq are obtained by letting f1 be any polynomial of degree n with
small coefficients which is irreducible mod p and letting f2 D f1 Cp. Then for
i D1; 2, we set Ri DZŒ˛i �, where ˛i 2C is a root of fi . Because f1 is irreducible
mod p, there exists v 2 Fq such that Fq D Fp.v/ and v is a root of the polynomial
in Fp ŒX � obtained by reducing the coefficients of f1 mod p. For i D 1; 2, we let
�i W Ri ! Fq be the map that sends ˛i to v. The natural next step in the NFS is to
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look for pairs a; b 2 Z�Z such that a�b˛1 and a�b˛2 are B-smooth. We might
expect this search to go more quickly than the corresponding step in the previous
approach, since ˛1 and ˛2 are of degree n over Q, whereas ˛ and m above are
of degrees dn and n respectively. However, this advantage is countered by the
fact that instead of having 2n coefficients a1; : : : ; an; b1; : : : ; bn available as
was the case before, there are only two parameters a and b to vary. In order to
increase the pool of smoothness candidates, it is necessary to expand the search
to include higher degree polynomials in ˛1 and ˛2. A bound on this degree
enters as a new parameter in the analysis of the method. Once enough pairs are
found, linear algebra is performed on the associated exponent vectors in order
to obtain the desired residue of logt u mod l .

2.8. Running time. We consider first the running time of the sieving stage
in the case that the field in which we compute is prime. As we have seen, the
candidates for smoothness in this case are bounded by

C.p1=d
C 1/ � .d C 1/C dp1=d

� 2dC dC1p2=d : (2.9)

Let x denote the right hand side of .2.9/. In order to be able to solve .2.5/,
we expect that the number of double-smooth pairs which are needed, call it N ,
is slightly larger than the length of the vectors Va;b appearing in Step 3. This
length is equal to �.B/C˘.B/Cd , which is bounded by .d C1/B Cd . Thus,
if d D Bo.1/ for p ! 1, we have

N D B1Co.1/: (2.10)

Let  .x;B/ be the number of positive integers � x which are B-smooth. We
adopt the critical assumption that the integers which are tested for smoothness
in Step 2 behave like random numbers with regard to the property of being B-
smooth. Then we can interpret the quotient xN= .x;B/ as the number of pairs
that need to be tested. The following theorem, which is copied verbatim from
[Buhler et al. 1993], tells us the optimal value for this quantity in the case that
.2.10/ holds.

THEOREM 2.11. Suppose g is a function defined for all y � 2 that satisfies
g.y/� 1 and g.y/D y1Co.1/ for y ! 1. Then as x ! 1,

xg.y/= .x;y/� Lx Œ1=2I
p

2 C o.1/�

uniformly for all y � 2. In addition,

xg.y/= .x;y/D Lx Œ1=2I
p

2 C o.1/�

for x ! 1 if and only if y D Lx Œ1=2I
p

2=2 C o.1/� for x ! 1.
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Theorem 2.11 reveals that if .2.10/ is valid, then

C 2
� Lx Œ1=2I

p
2 C o.1/�: (2.12)

In the best case that equality holds in .2.12/, the values of C and d which
minimize C satisfy

C D Lp Œ1=3I .8=9/1=3
C o.1/�;

d D
�
.3 C o.1// log p= log log p

�1=3
;

(2.13)

where the limit implicit in the o.1/ is for p !1. We thus arrive at the conjecture
that the number of pairs that need to be tested in Step 2 for the algorithm to
succeed is equal to

Lp Œ1=3I .64=9/1=3
C o.1/�: (2.14)

In [Buhler et al. 1993] and [Schirokauer 2000], the reader will find a much more
careful analysis in support of this claim. A quick calculation shows that when
.2.13/ holds, x D Lp Œ2=3I .64=3/1=3 C o.1/�, and a second calculation using
Theorem 2.11 reveals that the optimal value of B satisfies

B D Lp Œ1=3I .8=9/1=3
C o.1/�: (2.15)

Finally, investigation of the entire method in the case that .2.13/ and .2.15/ hold,
leads to the conjecture that .2.14/ not only represents the sieving time in Step
2 but is also a bound for the running time of the other steps of the algorithm.
We note that in the case of the special number field sieve exhibited in Example
2.6, the numbers being tested for smoothness are bounded in absolute value
by 2dC dC1p1=d . The fact that the power of p is smaller in this expression
than in .2.9/ results in a reduced running time of Lp Œ1=3I .32=9/1=3 C o.1/�.
The gain from .64=9/1=3 to .32=9/1=3 means that for large p, logarithms can
be computed in Fp when p is special in nearly the same amount of time as is
needed to handle a general prime field of size

p
p.

We now turn to the complexity of the methods described for non-prime fields.
To analyze the first approach, in which the NFS is built on top of a field F ,
we define the height of  2 OF by the formula h. / D maxfj� jg, where �
ranges over the embeddings of F into R. Then the norm of  is at most h. /n

in absolute value. The elements in OF that are tested for smoothness in this
version of the NFS are of the form bdf .a=b/.a�bm/ and are of height at most

2dC .dC1/=nrdC1p2=d :

Hence, the integers being tested for B-smoothness are bounded in absolute value
by

.2d/nC dC1q2=d r .dC1/n
� dnC dC1q2=d .log q/O.dn/:
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We see immediately that the way in which n grows as q ! 1 has an effect on
the running time of the algorithm. Indeed, if

n � o
� log q

log log q

�1=3
; (2.16)

then, when d D .log q= log log q/1=3, the factor dn.log q/O.dn/ is at most
Lq Œ2=3I o.1/�: In this case, it is conjectured that the algorithm runs in time
Lq Œ1=3I .64=9/1=3 C o.1/� as in the prime case. Moreover, if the little-oh in
(2.16) is replaced by a big-oh, the secondary constant .64=9/1=3 is lost but
the primary constant 1=3 is retained in the running time. We leave it as an
exercise to show more generally that if q ! 1 subject to the restriction that
n � O.log q= log log q/en for some constant en, then the running time is con-
jecturally equal to Lq Œmaxf1=3; .1 C en/=4gI O.1/�.

To analyze the second approach given, in which R1 is generated by a poly-
nomial f1 with small coefficients and R2 by the polynomial f2 D f1 C p, we
again seek a bound on the integers being tested for smoothness. Considering R1

first, we note that the norm of an element of the form
Pe

iD0 ai˛1
i is equal to the

resultant of f1 and the polynomial
P

aiX
i . This resultant, in turn, is equal to

the determinant of the associated Sylvester matrix and is therefore bounded in
absolute value by .nCe/nCeM nDe

1
, where M is a bound on the absolute value

of the coefficients ai and D1 is a bound, assumed to be small, on the absolute
value of the coefficients of f1. Combining this quantity with the corresponding
value for f2, we obtain a bound on the smoothness candidates of

.n C e/2.nCe/M 2n.pD1 C D2
1/

e: .2:17/

In order to compare this bound with the one arising in the prime field case, we
assume that the number of candidates tested is C 2. It follows that M < C 2=e,
and we can replace (2.17) with

x D .n C e/2.nCe/C 4n=e.pD1 C D2
1/

e: .2:18/

The constraint on C is then given, as before, by (2.12). It is now straight-
forward to verify that (2.12) and (2.18) can be simultaneously satisfied with
C D Lq Œ1=3I O.1/� if and only if n is bounded by O.log q= log log q/2=3 but
not bounded by O.log q= log log q/k for any k < 1=3. Indeed, for a given
n D .log q= log log q/en with 1=3 � en � 2=3, the bound e on the degree of
the polynomials in ˛1 and ˛2 that are tested for smoothness should be set equal
to d.log q= log log q/en�1=3/e. We refer the reader to [Joux et al. 2006] for
more details and conclude by remarking that the two NFS methods for general
fields which we have presented, taken in conjunction, conjecturally run in time
LŒ1=3I O.1/� so long as q ! 1 with n � O.log q= log log q/2=3:
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3. The function field sieve (FFS)

Adleman [1994] describes a function field analogue of the number field sieve
which he calls the function field sieve. In order to compute logarithms in a finite
field of characteristic p, the algorithm makes use of an algebraic extension of
Fp.X / in the same way that the number field sieve makes use of an algebraic
extension of Q. Like the number field sieve, it is conjectured to run in time
Lq Œ1=3I O.1/�, provided that the cardinality q of the finite field tends to 1 in a
restricted fashion. In this section, we give a sketch of the FFS and a conjecture
as to its complexity. We define a notion of smoothness for elements in Fq and
as we did in the preceding section, restrict ourselves to the special case that the
logarithm base and the element whose logarithm we seek are smooth. The algo-
rithm we describe below is not the one found in [Adleman 1994] but instead is a
modification of the simpler and improved version which is presented in [Adle-
man and Huang 1999] and which incorporates some of the techniques found
in the algorithm of Coppersmith for fields of characteristic two [Coppersmith
1984]. The relationship between the FFS and Coppersmith’s method is explored
in Section 3.8.

3.1. The FFS. Let p be a prime and q D pn. We begin by choosing a model for
the finite field Fq . Let g be a polynomial of minimal degree such that X n C g

is irreducible and at least one root of g in some algebraic closure of Fp is of
multiplicity one. Let f DX nCg and fix as a model for Fq the set of polynomials
in Fp ŒX � of degree < n, with addition and multiplication taken modulo f .

Recall that a polynomial in Fp ŒX � is said to be B-smooth if it factors into
irreducibles all of which are of degree at most B. Thinking of the elements of
Fq as polynomials, we can apply the notion of smoothness to elements in Fq .
The version of the FFS we now describe takes as input a smoothness bound
B � 1, two B-smooth elements t;u 2 F�

q satisfying u 2 hti, and two integral
parameters C � 0 and d � 1. It outputs logt u.

Step 1. Constructing an extension field. Let F D Fp.X /. We build an
extension of F by adjoining to it a root of a polynomial of degree d . The
special form of f allows us to find a suitable polynomial with particularly small
coefficients. Let k be the smallest multiple of d greater than or equal to n and
let H D Y d C X k�ng 2 Fp ŒX;Y �. The fact that g has a root of multiplicity
prime to d implies by Eisenstein’s criterion that H is absolutely irreducible. Let
F be an algebraic closure of F and let ˛ 2 F be a root of H , considered as a
polynomial in Y over Fp ŒX �. Let R D Fp ŒX �Œ˛� and denote by K the field of
fractions of R. Let � W R ! Fq be the map which sends an element h.X; ˛/ to
the polynomial of degree<n congruent to h.X;X k=d /mod f . Since f divides
.X k=d /d C X k�ng, we see that � is a ring homomorphism.
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Step 2. Sieving. Let N W K ! F be the norm map. We say that an element
in R is B-smooth if its image under N is B-smooth. Let S be the set of pairs
.a; b/ 2 Fp ŒX � � Fp ŒX � such that deg.a/ and deg.b/ are at most C and both
a � b˛ and a � bm are B-smooth. In this step, we use a sieve to identify the
elements in S . We refer the reader to [Gao and Howell 1999; Gordon 1993b;
Joux and Lercier 2002; Thomé 2001] for details and note that testing candidates
for smoothness is of no consequence to the complexity analysis of the algorithm
as it is possible to factor polynomials in polynomial time using the algorithm of
[Berlekamp 1970].

Step 3. Computing valuation vectors. Let MF be the set of discrete valuations
of F of degree � B (see [Stichtenoth 1993] for background information on
discrete valuations and places in function fields). Let MK be the set of discrete
valuations of K which are extensions of the valuations in MF . For each .a; b/2

S , we construct a vector Va;b containing the values v.a � bm/ for all v 2 MF ,
and v.a � b˛/ for all v 2 MK .

The valuations in MF , excluding the valuation at 1 which we denote by
v1, are in one-to-one correspondence with the irreducible polynomials in F .
Indeed, for each such polynomial h, we obtain a valuation vh whose value at an
element  is the exponent to which h divides  . Thus, to determine vh.a�bm/

for some pair .a; b/ 2 S , it suffices to factor .a � bm/ into irreducibles, a task
already accomplished in Step 2. Since vh.a � bm/D 0 for all h of degree >B,
and since for all  2 F , X

h irreducible

deg.h/vh. /D �v1. /;

we see that v1.a � bm/ is obtained immediately.
Let v be an element in MK which does not lie over v1. Let Q D f 2

K j v. / > 0g be the associated place. As was the case with the NFS, if the
localization of R at R \ Q is a discrete valuation ring, then v.a � b˛/ can be
read off the factorization of N.a � b˛/. If not, v.a � b˛/ can be computed
by a method that uses Newton polygons to construct a fractional power series
containing the information needed to evaluate v. This technique is discussed in
detail in [Adleman and Huang 1999].

In the case that v is an extension of v1, we proceed by homogenizing H

with respect to a new variable Z and dehomogenizing with respect to either X

or Y . Doing so yields a new polynomial H 0. Renaming variables, we obtain
a domain Fp ŒU;V �=H

0.U;V / whose field of fractions K0 is isomorphic to K

under a map which sends the places associated to the extensions of v1 to finite
places in K0. The associated valuations can now be computed with the Newton
polygon method alluded to above.
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Step 4. Linear algebra. Let Vt be the vector of length jMF jCjMK j whose first
jMF j entries are the values v.t/ for v 2 MF and whose remaining coordinates
are 0’s. Define Vu in the same way but with t replaced by u. Let A be the matrix
whose first column is Vt and remaining columns are the vectors Va;b , and solve
the congruence

AX � �Vu mod .q�1/=.p�1/: (3.2)

Unlike what we encountered with the NFS, the linear algebra this time is done
modulo a number which may be composite. See [McCurley 1990; Schirokauer
1993] for some comments on this situation. We continue under the assumption
that we are able to produce a solution .x; : : : ;xa;b; : : :/.a;b/2S to (3.2). Let

ı D txu
Y
.a � bm/xa;b and  D

Y
.a � b˛/xa;b ;

where t and u are thought of here as elements in Fp ŒX �. Since

v.ı/� 0 mod .q�1/=.p�1/ for all v 2 MF ;

we know that ı is a product of an element in F�
p and a .q�1/=.p�1/-st power.

Since any such power in F�
q is in F�

p, we find that �.ı/ 2 F�
p. Let h be the

gcd of .q�1/=.p�1/ and the class number of K. If h D 1, then the fact that
v. /� 0 mod .q�1/=.p�1/ for all v 2 MK implies that  is the product of an
an element in F�

p and a .q�1/=.p�1/-st power. Hence, �. / 2 F�
p. In this case,

txu D �.ı/�. /�1 D � for some � 2 F�
p, and we have

x � �logt u mod .q�1/=.p�1/:

All that remains is the computation of a logarithm in F�
p, namely logt 0 � where

t 0 D t .q�1/=.p�1/: This can be accomplished with the NFS or one of the methods
described in [Pomerance 2008]. If h > 1, we adopt the modification presented
in [Schirokauer 2002].

EXAMPLE 3.3. Let q D 2127 and assume we are trying to compute logarithms
in Fq . We adopt as our model for Fq the set of polynomials of degree at most
126, with addition and multiplication done modulo f D X 127 C X C 1. The
same optimization that was used in our NFS example indicates that we should
let d D 3. Taking advantage of the special form of f , we let

H D Y 3
C X 2.X C 1/:

The map � in this case sends ˛ to X 43 and the pairs of polynomials tested for
smoothness in Step 2 are of the form a3 C b3X 2.X C 1/ and a C bX 43.

We consider the problem of computing the valuation vectors described in Step
3. We do not give citations for the statements made below but refer the reader
to [Stichtenoth 1993, Chapter III] for the theorems on which they are based.
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Let F D F2.X /. Let PX and PX C1 be the places of F corresponding to the
irreducible polynomials X and X C1 respectively, and let P1 be the place of F

at infinity. Let Q be a place of K lying over a place P of F other than PX , PX C1

or P1, and let vQ be the associated valuation. Since ˛3 D X 2.X C 1/ in K,
we see that vQ.˛/D 0. It follows that R\Q is integrally closed, and therefore,
the values vQ.a C b˛/ can be read off of the factorization of N.a C b˛/. Since
K is a pure cubic extension of F and vX .X 2.X C 1// and vX C1.X

2.X C 1//

are both prime to ŒK W F �, we find that PX and PX C1 are totally ramified in
K. It follows that there is only one place, with residue degree one, lying above
each of these places. We conclude, by the same reasoning given for the prime
lying above 2 in Example 2.6, that vQ.a C b˛/D vX .N.a C b˛//, where Q is
the lone place above PX and vQ0.a C b˛/D vX C1.N.a C b˛//, where Q0 lies
over PX C1. We note that in the latter case, R \ Q0 is a discrete valuation ring.
Indeed, H is non-singular at the point .1; 0/. By contrast H is singular at .0; 0/
and the local ring R \ Q is not integrally closed, as is made explicit by the fact
that ˛2=X is a cube root of X.X 2 C 1/.

Finally, we consider P1. Homogenizing the curve Y 3 C X 2.X C 1/ with
respect to a third variable Z and dehomogenizing with respect to X yields the
curve Y 3 C Z C 1. Let ˇ be a root of V 3 C U C 1 in an algebraic closure of
F2.U /. Let E D F2.U /.ˇ/ and note that the map  W K ! E given by

 .X /D 1=U and  .˛/D ˇ=U

is an isomorphism. The place P1 �F is mapped by to the place PU of F2.U /

corresponding to the polynomial U . To determine the splitting behavior of this
place in E, we look at the splitting behavior of the image of the polynomial
V 3CU C1 in the residue field of PU . This image is V 3C1, which is the product
of a linear factor and an irreducible quadratic factor over F2. We conclude that
PU splits into a place of degree 1 and a place of degree 2 in E. Let v1 and
v2 be the corresponding valuations and observe that any element of the form
a C b˛ 2 K, where a and b are polynomials in X , is mapped to an element in
E of the form U ".a0 C b0ˇ/ for some ", where a0 and b0 are polynomials in U .
We can now use the fact that v1.a

0 C b0ˇ/ is the exponent to which U appears
in the norm of .a0 C b0ˇ/ in F2ŒU � and that v2.a

0 C b0ˇ/ D 0 to complete the
computation of the valuation vector for the pair .a; b/.

3.4. Running time. In the analysis of the FFS, we adopt the same assumption
as we did in the the case of the NFS, namely that the elements being tested for
smoothness behave as random elements. In this case, the elements are polyno-
mials in Fp ŒX � and so to make use of our assumption, we need results concerning
the probability that a polynomial of degree M picked at random is B-smooth.
Such results can be found in [Bender and Pomerance 1998] and reveal that the
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probability of interest is, roughly speaking, equal to the probability that an inte-
ger of size at most pM is pB-smooth. It follows that the size of the factor base
and number of pairs .a; b/ tested in Step 2 should be asymptotically equal to
the analogous quantities in the special number field sieve. Note that we use the
special NFS here because it and the FFS both make use of a small field extension
obtained by taking advantage of a special representation of Fq . Since the linear
algebra problem is the same in both the special NFS and FFS, we arrive at the
conjecture that the running time of the FFS, like that of the special NFS, is

Lq Œ1=3I .32=9/1=3
C o.1/�: (3.5)

In [Adleman and Huang 1999], the authors provide a heuristic argument in sup-
port of this conjecture which analyzes the FFS directly and does not proceed by
analogy with the NFS.

The only obstruction to our conjecture is the requirement that the smoothness
bound be at least one. As a consequence, we find that the factor base in the
algorithm is at least size p and the linear algebra in Step 4 requires at least p2

many steps. As q ! 1, it may be the case that p2 is greater than .3.5/ and
that .3.5/ is therefore not valid. The reader can easily check that this does not
happen if

p � no.
p

n/ (3.6)

as q ! 1. It may, however, happen if .3.6/ is relaxed to

p � nO.
p

n/: (3.7)

In this case the consequences are not so dramatic as the primary constant of
1/3 in .3.5/ is retained in the running time of the algorithm. Outside the range
defined by .3.7/, however, the FFS no longer runs in time Lq Œ1=3I O.1/�. For
these fields, the time required by the algorithm is p2Co.1/; see [Schirokauer
2002].

Since p DLq ŒsI c� if and only if nDc�1.log q= log log q/1�s , we see from the
above discussion that for q ! 1 such that n � .log q= log log q/e, the FFS runs
conjecturally in time Lq Œmaxf1=3; 1�egI O.1/�. Combining this result with that
for the NFS presented in Section 2.8 , we conjecture that the algorithm which
chooses for a given q the faster of the NFS and FFS runs in time Lq Œ1=3I O.1/�

for all fields.

3.8. Coppersmith’s algorithm. Coppersmith [1984] presents a method for
computing logarithms in fields of characteristic two which has a conjectural
expected running time of Lq Œ1=3I c C o.1/�, where q is the cardinality of the
field, the o.1/ is for q ! 1, and c is a constant which is equal to .32=9/1=3 in
the case that a certain quantity appearing in the algorithm is close to a power of
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two, and which is slightly larger otherwise. Coppersmith includes in his article
a description of how to use his method to compute logarithms in the finite field
considered in Example 3.3. He uses the same model for Fq as we give and
observes that for any pair .a; b/ 2 F2ŒX �� F2ŒX �,

.a C bX 33/4 � a4
C b4X.X C 1/ mod .X 127

C X C 1/: (3.9)

Thus, for each .a; b/ for which both sides of .3.9/ are smooth, we obtain a
relation in Fq involving only polynomials of degree at most the smoothness
bound. Each such relation yields a linear relation among the logarithms of the
elements appearing in it. If t and u are smooth, then once enough relations are
found, logt u can be determined using linear algebra mod .q�1/.

Assume now that we decide to compute logarithms in Fq with the FFS with
d D 4, instead of the optimal value of 3. Then H D Y 4 C X.X C 1/ and
m D X 33. Let ˛;R;K and � be as given in the description of the FFS in
Section 3.1, and observe that K is a purely inseparable extension of F2.X /.
The norm map N W K ! F2.X / in this case sends  2 K to  4 and is additive
as well as multiplicative. Since the norm of any element in the kernel of � is in
.X 127 C X C 1/, we see that for any pair ı;  2 R such that �.ı/D �. /,

N.ı/� N. / mod .X 127
C X C 1/:

In the case that ı D a C bX 33 and  D a C b˛, we obtain congruence .3.9/.
Thus, finding a; b such that the norms of a C bX 33 and a C b˛ are smooth, as
required by the FFS, is equivalent to finding a; b such that both sides of .3.9/
are smooth. In this way, we see that Coppersmith’s algorithm is a special case of
the FFS in which the extension field disappears and the relations can be realized
in the base ring F2ŒX �.

4. General discrete logarithms

Let p be a prime and q D pn, and let R1 and R2 be rings, together with maps
�1 W R1 ! Fq and �2 W R2 ! Fq , chosen for use in the NFS or FFS discrete log-
arithm algorithm. As we have seen, these methods proceed in two stages. First,
sieving techniques are used to find pairs of smooth elements .ı1; ı2/ 2 R1 �R2

satisfying �1.ı1/D �2.ı2/, and then a linear algebra computation produces the
desired logarithm. We note that the particular logarithm problem being tackled
comes into play in the second stage but has no bearing on the search in the
first stage. In fact, once sufficiently many smooth pairs are collected, the linear
algebra can be tailored to produce logt u for any t and u so long as they are
the images in Fq of smooth elements in R1 or R2. In this section we discuss
how to proceed if either t or u is an element for which we do not have a smooth
pre-image under �1 or �2.
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We begin with the case that u fails to come with a smooth pre-image. One
approach to this difficulty is to replace R1 or R2 by a ring S that does contain a
known smooth pre-image of u. The challenge is to do so while retaining all the
desired features of the replaced ring. In the original adaptation of the number
field sieve to the discrete logarithm problem, Gordon [1993a] provides a suitable
method in the case that the field is prime and u is represented by a moderately
sized integer. To make use of the strategy, a reduction step is performed first
in which a value z is found such that tzu is represented by an integer with
moderately sized factors. The algorithm runs in time Lp Œ1=3I .64=9/13 C o.1/�

for p ! 1, but is not used in practice due to the fact that the entire NFS must
be run multiple times in order to compute a single logarithm.

A second approach, which has its origins in Coppersmith’s paper [1984] on
computing discrete logarithms in characteristic two and is the method currently
employed in practice, uses as its building block the following technique. Let 
be an element in R1 and assume .ı1; ı2/ 2 R1 � R2 satisfies

(i)  jı1
(ii) ı1= and ı2 are smooth.
(iii) �1.ı1/D �2.ı2/.

Then �1. / D �2.ı2/=�1.ı1= / in Fq , and since ı2 and ı1= are smooth, the
logarithms of their images can be computed. Hence, the logarithm of �1. / can
be determined.

At first glance, it might appear that this strategy is sufficient for computing
logt u for arbitrary u. Indeed, given the fact that only one pair of smooth el-
ements is needed, the algorithm should be faster than those described earlier.
The problem is that if we set the smoothness bound equal to the one used in the
NFS or FFS, then for most u, any pre-image of u in R1 will be so large that,
because of condition (i), the time needed to find ı1 and ı2 will greatly exceed
the time need to compute the logarithms of �2.ı2/ and �1.ı1=u/ in Fq .

The solution is to repeat the process multiple times, with more moderate ex-
pectations each time. In particular, we adopt a sequence of smoothness bounds
B1 > � � �>Bk D B, where B is the smoothness bound used in the NFS or FFS.
Initially, we follow the above approach to reduce the problem of computing
logt u to the problem of computing the logarithms of a collection of images of el-
ements in R1 and R2 of norm size at most B1. Here, size refers to absolute value
in the case of the NFS and degree in the case of the FFS. We then implement
the procedure for each of these elements, using the bound B2, thereby reducing
the problem to the computation of logarithms of images of elements with norm
size at most B2. After k rounds of descent, the original problem is reduced to
the one which can be solved by the NFS or FFS. In fact, if we work back up
the tree making all the necessary substitutions, we obtain B-smooth elements
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�1; �
0
1

2 R1 and �2; �
0
2

2 R2 such that u D �1.�1/�1.�
0
1
/�1�2.�2/�2.�

0
2
/�1:

Given this representation of u, the valuation vector Vu is easily produced and
logt u can be computed with one running of the NFS or FFS.

One difficulty that arises in the analysis of this descent technique is that,
because smoothness bounds are used that are larger than those in the NFS or
FFS, the time required to sieve with all the primes of size up to such a bound
dominates the entire computation. It thus becomes necessary to factor smooth-
ness candidates individually. When using the reduction in conjunction with
the NFS, for instance, these factorizations must be done with the elliptic curve
factoring method and are costly. Nevertheless, Commeine and Semaev [2006]
have shown that in the case of a prime field Fp the descent runs conjecturally in
time Lp Œ1=3I 31=3 Co.1/� for p ! 1. This is faster than the NFS of Section 2.
On the FFS side, where polynomials can be factored quickly using polynomial
gcd’s, Joux and Lercier [2005a] provide an analysis showing that the running
time of the reduction is bounded by that of the FFS of Section 3 so long as
p � nO.

p
n/. Recall that this is the entire range in which the FFS runs in time

Lq Œ1=3I O.1/�. Though it does not seem unlikely that the descent approach will
lead to an LŒ1=3I O.1/� reduction for all fields, the details in cases other than
those cited have yet to be worked out.

In practice, the descent method appears to be very fast, as a look at any of
the implementation announcements cited in the introduction will reveal. This
may seem surprising, particularly in the NFS case, given our comments con-
cerning the large smoothness bounds that are used and the apparent need to test
smoothness candidates individually. However, an initial reduction step [Joux
and Lercier 2003], which we do not describe here, and the use of sieving tech-
niques despite the large bounds, speed the method up greatly. In this context,
we note that condition (i) forces the search for smooth elements to take place in
a lattice when working over Z, or the analogous structure when working over
Fp ŒX �. For example, when the reduction is applied to  2 R1 in the case that
R1 D ZŒ˛� for some algebraic integer ˛ and the elements tested for smoothness
are linear in ˛, the search is confined to the lattice

f.a; b/ 2 Z2
j a � b˛ � 0 mod  g:

Sieving over a lattice structure is regularly done in implementations of the NFS
and FFS and does not pose a difficulty. See [Pollard 1993] for an introduction
to the subject.

We conclude this section by addressing the question of what to do if we know
of no smooth element in R1 or R2 which maps to the base t . One way to proceed
is to pick elements in F�

q until a primitive element t 0 with a known smooth pre-
image in R1 or R2 is found. The desired logarithm can then be determined by
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means of the identity

logt u �
logt 0 u

logt 0 t
mod .q�1/:

If q D p is prime and the Extended Riemann Hypothesis (ERH) holds, then
we are assured of finding such a t 0 by testing the elements in F�

p represented
by the integers � .log p/O.1/ [Shoup 1992]. More generally, and again under
the assumption that the ERH is true, a primitive element in F�

q having a smooth
pre-image in the ring OF introduced in Section 2.7 can be obtained in time
.log q/O.n/ [Buchmann and Shoup 1996]. If one represents Fq as a quotient of
Fp ŒX � and searches for t 0 among the elements in F�

q represented by polynomials
in Fp ŒX � of small degree, one is certain of succeeding within .np/O.1/ trials
[Shoup 1992]. Thus, we see that so long as n � o.log q= log log q/1=3 or p �

no.
p

n/, finding a primitive element with smooth pre-image can be accomplished
without affecting the running time of the NFS or FFS.

In the event that we are unable to switch primitive elements, there is a second
option. We can apply to t the descent reduction just described for handling u.
Doing so produces a representation of t as the product of the images of smooth
elements, or their inverses, from R1 and R2. Such a representation can then be
used to obtain a valuation vector Vt , which in turn can be incorporated into the
linear algebra computation. This approach highlights the fact that, although t

and u have different positions in the logarithm problem, they are incorporated
in the same way into the NFS and FFS methods described in this paper.
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