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ABSTRACT. We give an introductory account of the general algorithmic the-
ory of the zeta function of an algebraic set defined over a finite field.
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1. Introduction

Let Fq be a finite field of q elements and p its characteristic. Let X be
an algebraic set defined over Fq . For each positive integer k, let Nk denote
the number of Fqk -rational points on X . The zeta function Z.X / of X is the
generating function

Z.X /D Z.X;T /D exp
� 1X

kD1

Nk

k
T k

�
:
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552 DAQING WAN

The zeta function contains important arithmetic and geometric information con-
cerning X . It has been studied extensively in connection with the celebrated
Weil conjectures [1949].

Both practical applications and theoretical investigations make a good un-
derstanding of the zeta function from an algorithmic point of view increasingly
important. The aim of this paper is to present a brief introductory account of the
various fundamental problems and results in the emerging algorithmic theory
of zeta functions. We shall focus on general properties rather than on results
that are restricted to special cases. In particular, in most of this paper we do not
assume X to be smooth and projective, although in that case one can often say
more.

The contents are organized as follows. In Section 2 we review general prop-
erties of zeta functions from an algorithmic point of view. A naive effective
algorithm for computing the zeta function is given. If the characteristic p is
small, one can use Dwork’s p-adic method to obtain a polynomial time algo-
rithm for computing the zeta function in the case that the numbers of variables
and defining equations for X are fixed.

In Section 3, we show that the general case of algebraic sets can be reduced
in various ways to the case that X is a hypersurface. A more detailed discussion
of that crucial case is given in Section 4, with emphasis on the smooth projective
case. In Section 5 we consider the complex pure weight decomposition. Using
the LLL factorization algorithm and Deligne’s main theorem, we show that,
when the zeta function is given, one can compute in polynomial time how many
zeros and poles with a given complex absolute value it has. In Section 6, which
is devoted to the p-adic pure slope decomposition, we use the theory of Newton
polygons to obtain a similar result for the number of zeros and poles with a
given p-adic absolute value.

We conclude the paper by giving, in Section 7, an algorithm for the simpler
problem of computing the zeta function modulo p. This algorithm shares several
characteristic features with the general p-adic method for computing the full
zeta function that is presented in [Lauder and Wan 2008] in this volume. Section
7 may thus serve as an introduction to that article.

All algorithms in this paper are deterministic. Probabilistic algorithms will
not be discussed. Time is measured in bit operations.

2. Generalities on computing zeta functions

Let X be an algebraic set defined over a finite field Fq of q elements of
characteristic p. For computational purposes, we may assume that X is affine,
i.e., that it is the subset of affine n-space An defined by a system of polynomial
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equations: 8<:
f1.x1; : : : ;xn/D 0;
:::

fm.x1; : : : ;xn/D 0;

where fi 2 Fq Œx1; : : : ;xn�. Let

X.Fq/D fx D .x1; : : : ;xn/ 2 Fn
q jf1.x/D : : :D fm.x/D 0g

be the finite set of Fq-rational points on X . It is clear that the cardinality #X.Fq/

is effectively computable.
For algorithmic purposes, “giving” Fq means specifying p as well as an ir-

reducible polynomial h in one variable over Fp that defines Fq , so that q equals
pdeg h; elements of Fq are then represented as polynomials of degree less than
deg h in a formal zero of h, with coefficients from Fp. Giving X means spec-
ifying a system of m defining polynomials fi in n variables with coefficients
in Fq . Let d be the maximum of the total degrees of the polynomials fi . Then
the dense input size for X is O.m

�
dCn

n

�
log q/, which is O.m.d C 1/n log q/.

Our first fundamental problem is the following.

PROBLEM 2.1. Given Fq and X , compute the number #X.Fq/ in time polyno-
mial in the dense input size O.m.d C 1/n log q/.

This problem is trivial if q is fixed, so we may assume that q is large. In theory,
the problem of counting X.Fq/ can be reduced to the zero-dimensional case.
Namely, let Y be the zero-dimensional algebraic set defined by

ff1 D : : :D fm D 0; x
q
1

� x1 D : : :D xq
n � xn D 0g:

Then it is clear that

#X.Fq/D #Y .Fq/:

Following a suggestion of Eisenbud and Sturmfels, one may now compute a
Gröbner basis for Y , and its cardinality equals #Y .Fq/. However, as q gets large,
the cases where the Gröbner basis computation can be done efficiently are likely
to become increasingly exceptional. (See [Eisenbud 1995] for Gröbner bases.)

Let NFq denote a fixed algebraic closure of Fq . For each positive integer k, let
Fqk denote the unique subfield of NFq with qk elements. Let #X.Fqk / denote the
number of Fqk -rational points on X . The following problem is harder but more
interesting than Problem 2.1.

PROBLEM 2.2. Given Fq and X , compute the sequence of numbers #X.Fqk /

.k D 1; 2; : : :/.
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It may not be clear how a finite algorithm can compute an infinite sequence of
numbers, but this will be clarified below. As we shall see, one can encode the
entire sequence in a suitably defined generating function, which turns out to be
a rational function. This so-called zeta function of X is finite in nature and can
thus be written down in a finite amount of time. Actually doing this for given
X is the content of Problem 2.2.

A geometric point of X is an NFq-rational point of X . From the equality
1[

kD1

X.Fqk /D X.NFq/

we see that each geometric point of X will be counted somewhere in the se-
quence of numbers #X.Fqk /. This may explain why many of the subtle geo-
metric invariants associated with an algebraic variety X can be read off from its
zeta function, in addition to a wealth of arithmetic information.

DEFINITION 2.3. The zeta function of X is the generating function

Z.X /D Z.X;T /D exp
� 1X

kD1

T k

k
#X.Fqk /

�
:

The q-th power Frobenius map Frobq is the permutation of the set X.NFq/ of
geometric points of X defined by

FrobqW x D .x1; : : : ;xn/‘ xq
D .x

q
1
; : : : ;xq

n/:

The degree of a geometric point x is defined to be the smallest positive integer
d such that

Frobd
q .x/D x

or, equivalently, such that x 2 X.Fqd /. A closed point over Fq is the orbit of a
geometric point under Frobq . All geometric points belonging to a given closed
point have the same degree, and this common degree is called the degree of the
closed point. We denote by jX j the set of closed points of X over Fq , and,
for each positive integer k, by Mk.X / the number of closed points of X of
degree k. Since each closed point of degree k consists of exactly k points in
X.Fqk /, one deduces

#X.Fqk /D

X
d jk

dMd .X /:

Considering the logarithmic derivative of the zeta function, one finds the Euler
product expansion

Z.X /D

1Y
kD1

1

.1 � T k/Mk.X /
D

Y
x2jX j

1

1 � T deg.x/
2 1 C T ZŒŒT ��:
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As the Weil conjectures [1949] predict, the zeta function is a rational function.
The first proof, given by Dwork [1960], used p-adic analysis. The second proof,
given by Grothendieck, used the theory of `-adic cohomology, where ` is a prime
number different from p. These two proofs pioneered the general p-adic and
`-adic study of zeta functions over finite fields.

THEOREM 2.4. The zeta function Z.X / is a rational function, i.e., it belongs to
Q.T /. If we write

Z.X;T /D
R1.X;T /

R2.X;T /
; .R1;R2/D 1; Ri 2 1 C T QŒT �;

then we have Ri 2 1 C T ZŒT �.

The rationality of Z.X / has an interesting consequence for the numbers
#X.Fqk /, as follows. Let ˇi and 
j denote the reciprocal zeros of R1.X / and
R2.X /, respectively, so that R1.X /D

Q
i.1�ˇiT / and R2.X /D

Q
j .1�
j T /.

Then one finds
1X

kD1

#X.Fqk /T k
D T

d log Z.X;T /

dT
D

X
j


j T

1 � 
j T
�

X
i

ˇiT

1 �ˇiT
:

This implies
#X.Fqk /D

X
j


 k
j �

X
i

ˇk
i for all k � 1:

As a corollary, one deduces that for each positive integer k one has

Z.X ˝ Fqk /D

Q
i.1 �ˇk

i T /Q
j .1 � 
 k

j T /
:

The integrality of the coefficients of Ri can be deduced from the rationality
of Z.X / and the following elementary result.

LEMMA 2.5. Let f 2 1 C T ZŒŒT �� be a rational function. Write

f D
f1

f2

; .f1; f2/D 1 fi 2 1 C T QŒT �:

Then fi 2 1 C T ZŒT �.

PROOF. This is usually derived from the so-called lemma of Fatou; see [Katz
1971]. Here we include two additional proofs.

One proof uses the Newton polygon or the Weierstrass factorization theo-
rem. Suppose some prime number ` occurs in the common denominator of the
coefficients of f1. Then the theory of Newton polygons shows that f1 has an
`-adic zero in the open unit disk jT j` < 1. But the power series f 2 1CT ZŒŒT ��
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is clearly analytic and nonzero in the open unit disk jT j` < 1. This gives the
desired contradiction.

A second proof, suggested by Hendrik Lenstra, uses Gauss’s lemma for power
series. The content cont.g/ of a nonzero power series g D

P
i aiT

i 2 ZŒŒT �� is
defined to be the greatest common divisor of its coefficients ai . Call g primitive
if cont.g/ D 1 or, equivalently, if g is not in the kernel of the natural map
ZŒŒT ��! F`ŒŒT �� for any prime number `. Since the rings F`ŒŒT �� are domains, the
product of any two primitive power series is primitive. One deduces

cont.g1g2/D cont.g1/cont.g2/;

which is Gauss’s lemma for power series.
Lenstra’s proof of Lemma 2.5 then proceeds as follow. Write f D g1=g2,

where gi 2 ZŒT � and .g1;g2/ D 1 in QŒT �. It is clear that cont.f / D 1. The
relation g1 D g2f implies that cont.g1/ D cont.g2/. Cancelling this common
factor, we may assume cont.g1/D cont.g2/D 1. Since g1 and g2 are relatively
prime over Q, there is a positive integer n such that

n 2 g1ZŒT �C g2ZŒT �� g2ZŒŒT ��;

the last inclusion because g1 D g2f . Write n D hg2 with h 2 ZŒŒT ��. Then

n D cont.n/D cont.h/cont.g2/D cont.h/:

Hence h is divisible by n. We conclude that g2.0/D ˙1. This implies 2.5. �

In order to actually compute the zeta function, it is useful to know an upper
bound for the total degree deg R1 C deg R2 of the zeta function. The following
explicit bound was proved by Bombieri [1978].

THEOREM 2.6. The total degree of Z.X / satisfies

deg R1 C deg R2 < .4d C 9/nCm;

where
d D max

1�j�m
deg.fj /:

Bombieri’s bound is a general purpose bound. Its proof depends on Dwork’s
p-adic method. It can be improved in various ways, especially when one takes
the Newton polytope of the defining polynomials fi into account, as was done
by Adolphson and Sperber [1988]. The bound is reasonably good as a function
of d , but the dependence on m can probably be significantly improved.

An easy consequence is the following result.

COROLLARY 2.7. The zeta function Z.X / is effectively computable.



ALGORITHMIC THEORY OF ZETA FUNCTIONS OVER FINITE FIELDS 557

This corollary is obvious in the special case that the zeta function Z.X / is known
to be a polynomial, or known to be the reciprocal of a polynomial, up to some
trivial known factors. In the general case, one can deduce Corollary 2.7 from
Theorem 2.4 and Theorem 2.6 in several ways, for instance by using the results
of Berlekamp and Massey on linear recurring sequences (see [Blahut 1998] for
more detail). Here we use a simple linear algebra argument explained to me by
Hendrik Lenstra.

Let D1 and D2 be upper bounds for the degree of the numerator and the
denominator of Z.X /, respectively. For instance, we can take Di D D D .4d C

9/nCm, by Theorem 2.6. Compute the first D1 C D2 C 1 terms of the power
series

Z.X /D 1 C z1T C z2T 2
C � � � C zD1CD2

T D1CD2 C � � �

by explicitly counting X.Fqk / for k � D1CD2. Write ai , bi for the coefficients
of R1 and R2 to be determined:

R1.X /D 1 C a1T C � � � C aD1
T D1 ;

R2.X /D 1 C b1T C � � � C bD2
T D2 :

The congruence

R2.X /Z.X /� R1.X / .mod T D1CD2C1/

gives a system of linear equations in the ai’s and the bi’s. This system has at
least one rational solution, and using linear algebra we can find one. Denote it
by

.a0
1; : : : ; a

0
D1

I b0
1; : : : ; b

0
D2
/:

Let
R0

1.X /D 1 C a0
1T C � � � C a0

D1
T D1 ;

R0
2.X /D 1 C b0

1T C � � � C b0
D2

T D2 :

Then, the congruence

R0
2.X /Z.X /� R0

1.X / .mod T D1CD2C1/

holds as well, and therefore

R2.X /R
0
1.X /� R2.X /R

0
2.X /Z.X /� R0

2.X /R1.X / .mod T D1CD2C1/:

Since each of R2R0
1

and R0
2
R1 has degree at most D1CD2, we deduce R2R0

1
D

R0
2
R1, so

R0
1
.X /

R0
2
.X /

D
R1.X /

R2.X /
D Z.X /:

Removing the greatest common factor of R0
1
.X / and R0

2
.X /, one obtains the

reduced form of Z.X /. The proof is complete.
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The above effective algorithm immediately implies the following.

COROLLARY 2.8. For fixed n;m; d; q, the number #X.Fqk / can be computed
in time bounded by a polynomial in k.

We now estimate the output size of any algorithm computing Z.X /. Trivially,
#X.Fqk / � #An.Fqk / D qnk . Hence T � d log Z.X;T /=dT converges as a
complex power series for jT j < q�n, so its reciprocal poles ˇi and 
j are
bounded by qn in absolute value. Let D denote the total degree of Z.X /. Then
R1.X / D

Q
i.1 � ˇiT / and R2.X / D

Q
j .1 � 
j T / have altogether O.D/

coefficients, each of which is O.2DqnD/. Then, regardless of the input size
for X , the output size of the algorithm is O.nD2 log q/. There is no general
formula for the total degree D. However, for fixed m, Bombieri’s degree bound
.4d C 9/nCm is reasonably good, and it is comparable to the dense input size
O.m.d C 1/n log q/.

We shall be concerned with the case that m is fixed (or small). If m is large,
then the problem of computing #X.Fq/ is of a totally different, more combina-
torial nature. The fundamental question that we consider is the following.

PROBLEM 2.9. Given X with fixed m, compute the zeta function Z.X / in time
bounded by a polynomial in .d C 1/n log q.

Remarks. If X has a sizable automorphism group, then one can often speed
up the computation of Z.X / by using a suitable equivariant theory. Examples
include diagonal hypersurfaces, certain modular varieties, and certain Calabi–
Yau hypersurfaces. In this paper, we do not assume that X is given with any
additional structure of this sort.

Currently, the theory of zeta functions over finite fields comprises only two
types of methods that are powerful enough to prove the rationality of the zeta
function in the general case. These are the `-adic method and the p-adic method,
where ` denotes a prime number different from the characteristic p of the finite
field Fq . It is thus natural to try and exploit these general methods for algorithmic
purposes.

In the `-adic method one attempts to compute Z.X / mod `k using a suitable
`-adic trace formula. The zeta function Z.X / can be recovered from its reduc-
tion modulo a single large prime power `k , or from its reductions modulo many
small primes ` via the Chinese remainder theorem. Unfortunately, the available
`-adic trace formula is in the general case not yet effective. Thus the use of
the `-adic method is currently restricted to special varieties, such as curves and
abelian varieties. In the cases in which it can be used, the `-adic method usually
results in a polynomial time algorithm if d;m, and n are fixed; see [Schoof
1985; Elkies 1998; Poonen 1996] for the first examples. It is an important open
problem to make the `-adic method effective in the general case.
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In the p-adic method one attempts to compute Z.X / mod pk using a p-
adic trace formula, where pk is chosen so large that one can recover the zeta
function Z.X / from its reduction modulo pk . There are many p-adic trace
formulas. All of them can be made effective, although not all of them result
in efficient algorithms. The general feeling is that the p-adic method is quite
efficient if the characteristic p is suitably small, regardless of the size of the
field Fq of definition and regardless of the degree of X . In [Lauder and Wan
2008] in this volume, we present a p-adic algorithm that proves the following
theorem.

THEOREM 2.10. There is an algorithm that, given X , computes the zeta func-
tion Z.X / in time bounded by a polynomial in 2mdn2

pn.log q/n.

For fixed m and n, and small p—say, p D O..d log q/c/ for some positive
constant c—the algorithm of Theorem 2.10 runs in polynomial time, and it thus
provides a partial solution to Problem 2.9. In Section 7 below, we illustrate
some of the basic ideas of the p-adic method by treating an algorithm for the
easier problem of computing Z.X / mod p. For more details see [Lauder and
Wan 2008].

3. Reduction to hypersurfaces

For the computation of the zeta function, the general case of an affine alge-
braic set X defined by a system

f1.x/D : : :D fm.x/D 0

of m polynomial equations in n variables can be reduced to the case of an affine
hypersurface defined by one single equation. In the present section we discuss
various ways in which this reduction can be accomplished; not all of them are
very efficient.

The quickest theoretical reduction depends on the observation that any alge-
braic set is birational to an affine hypersurface. One then continues by induction
on the dimension. As it stands, this method is not very explicit. It may be of
interest to make it both explicit and efficient.

A second method, which is explicit, exploits the inclusion-exclusion princi-
ple, as follows. For a subset I � f1; 2; : : : ;mg, let H.I/ be the affine hypersur-
face defined by Y

i2I

fi D 0;

and let H.I/c be the complement of H.I/ in An. Thus,

H.I/D

[
i2I

ffi D 0g; H.I/c D

\
i2I

ffi ¤ 0g:
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In particular, we have H.∅/ D ∅ and H.∅/c D An. The inclusion-exclusion
principle implies that

Z.X /D

Y
I�f1;2;:::;mg

Z.H.I/c ;T /.�1/#I

:

Since

Z.H.I/c ;T /D
1

.1 � qnT /Z.H.I/;T /
;

we conclude that for m> 0 we have

Z.X /D

Y
I�f1;2;:::;mg

I¤∅

Z.H.I/;T /.�1/#I�1

;

where the factor 1 corresponding to I D ∅ has been dropped. Each factor of
the above product is now the zeta function of an affine hypersurface. Note that
this reduction uses 2m � 1 hypersurfaces, but they are all in the original affine
space An.

If we apply Theorem 2.6 to each factor in the above identity, then we find
that the total degree of Z.X / is bounded by

mX
kD1

�
m

k

�
.4kd C 9/nC1 < 2m.4md C 9/nC1:

In some cases where m is large this is better than what one obtains by applying
Theorem 2.6 directly.

If one is willing to work with the slightly more general situation of L-func-
tions of exponential sums, then one can use the single polynomial

g.x;y/D y1f1.x/C � � � C ymfm.x/

in n C m variables. Let �p denote a fixed primitive p-th root of unity in an
extension field of Q. For each positive integer k, define the exponential sum

Sk.g/D

X
xi ;yj 2F

qk

�Trk.g.x;y//
p ;

where Trk denotes the absolute trace from Fqk to the prime field Fp. The L-
function associated to g is defined to be

L.g;T /D exp
� 1X

kD1

Sk.g/

k
T k

�
:

It is straightforward to check that

#X.Fqk /D
1

qmk
Sk.g/:
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This gives the desired reduction

Z.X /D L
�
g;

1

qm
T

�
:

Replacing fi by afi , one also deduces that

Z.X /D L
�
ag;

1

qm
T

�
for each nonzero a 2 Fq .

One can avoid the L-function in the above reduction by using the zeta func-
tion of the following Artin–Schreier hypersurface in AmCnC1:

Y W zp
� z D y1f1.x/C � � � C ymfm.x/:

In fact, a direct calculation gives that

#Y .Fqk /D

X
a2Fp

Sk.ag/D q.mCn/k
C

X
a2F�

p

Sk.ag/:

It follows that

Z.Y; q�mT /D
1

1 � qnT
�

Y
a2F�

p

L.ag; q�mT /D
1

1 � qnT
Z.X /p�1:

We obtain the formula

Z.X /D
�
.1 � qnT / � Z.Y; q�mT /

�1=.p�1/
:

For large p this reduction is not likely to be very efficient.
One can also use the affine hypersurface H � AmCn defined by

H W g.x;y/D y1f1.x/C � � � C ymfm.x/D 0:

As S. Gao observed, one has

#H.Fq/D qmCn�1
C #X.Fq/.q

m
� qm�1/:

This shows that for the purpose of counting rational points, we can work with a
single hypersurface in the affine space AmCn. In terms of zeta functions, Gao’s
formula says that

Z.H;T /D
Z.X; qmT /

.1 � qmCn�1T /Z.X; qm�1T /
:

One can inductively solve for Z.X / in terms of Z.H;T /. Doing this from the
complex point of view, one gets the infinite complex product

Z.X /D

1Y
kD0

.1 � qn�1�kT / �

1Y
kD0

Z.H; q�m�kT /:
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Doing it from the p-adic point of view, one gets the infinite p-adic product

1

Z.X /
D

1Y
kD0

.1 � qnCkT / �

1Y
kD0

Z.H; q1�mCkT /:

There is a standard manner, as in Hilbert’s tenth problem [Matiyasevich 1993],
to define X by means of a system of equations of degree two. For example, if
one of the equations defining X has a term ax1x3

3
x2

4
, with a 2 Fq , then one can

introduce new variables x1;3, x3;3, x4;4, x1;3;3;3, as well as new equations

x1;3 D x1x3; x3;3 D x2
3 ; x4;4 D x2

4 ; x1;3;3;3 D x1;3x3;3;

and replace the term ax1x3
3
x2

4
by ax1;3;3;3x4;4; and one can proceed similarly

with other terms. If one next applies Gao’s reduction, then one obtains a hyper-
surface H that is defined by a cubic polynomial.

An amusing application of Gao’s formula is the reduction of the Hasse–Weil
meromorphy conjecture to the case of a cubic hypersurface. Let the polynomials
fi have integer coefficients, and let the affine algebraic sets X and H be defined
as above, but now over Z. Let

�.X; z/D

Y
p prime

Z.X ˝ Fp;p
�z/

be the global complex Hasse–Weil zeta function of X ; it is defined for complex
numbers z whose real part is sufficiently large. The Hasse–Weil conjecture
asserts that �.X / can be extended to a meromorphic function on all of C. Gao’s
formula implies that

�.H; z/D
�.X; z � m/�.z C 1 � m � n/

�.X; z � m C 1/
;

where �.z/ is the Riemann zeta function. From this relation, one deduces by
induction or iteration that if the Hasse–Weil conjecture is valid for all cubic
hypersurfaces H , then it is valid for all algebraic sets X . (By contrast, for
Hilbert’s tenth problem on diophantine equations over the integers, one only
obtains a reduction to quartic hypersurfaces.) If we write

�.X; z/D

1X
kD1

ak.X /

kz

as a Dirichlet series, then Corollary 2.7 shows that each coefficient ak.X / is
effectively computable.
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4. Hypersurface examples

In this section, we focus on the crucial case of hypersurfaces. We discuss
them by increasing dimension.

EXAMPLE 1. Let X be the zero-dimensional hypersurface defined by f .x/D 0,
where f .x/ is a nonconstant monic polynomial over Fq in one variable. Write

f .x/D P1.x/
k1 � � � Pe.x/

ke ;

where the Pi.x/ are pairwise distinct monic irreducible polynomials in Fq Œx�

and the ki are positive integers. Then the Euler product reads

Z.X /D

eY
jD1

1

1 � T deg Pj .x/
:

It is not hard to show that one can compute Z.X / in polynomial time using
the Frobenius map. Note that if one factors the polynomial f .x/ first, one
does not get a polynomial time algorithm for computing Z.X /. This is be-
cause there is currently no known (deterministic) polynomial time algorithm for
factoring univariate polynomials over Fq if p is large, see [Wan 1999] for a
further discussion and for the close relation of Z.X / to various algorithms for
factoring univariate polynomials over finite fields. This example also occurred
as an exercise ascribed to Lenstra in [Cohen 1993, Chap. 6, Exerc. 8].

EXAMPLE 2. Let f .x1;x2/ 2 Fq Œx1;x2� be of degree d , and suppose that
the homogenization of f .x1;x2/ defines a smooth projective plane curve Cd

over Fq . The genus g of the curve Cd is well known to be

g D
.d � 1/.d � 2/

2
:

From the Riemann–Roch theorem one can deduce (see [Monsky 1970])

Z.Cd ;T /D
P .Cd ;T /

.1 � T /.1 � qT /
;

where P .Cd ;T / is a polynomial of degree 2g. Weil proved that we further have

P .Cd ;T /D

2gY
jD1

.1 � j̨ T /; j j̨ j D
p

q; j̨˛2gC1�j D q:

The Riemann–Roch theorem also shows that the special value P .Cd ; 1/ has the
following arithmetic meaning:

P .Cd ; 1/D #J.Cd /.Fq/ 2 Z>0;
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where J.Cd / is the Jacobian variety of Cd , which is a g-dimensional abelian
variety over Fq . All these results hold for any smooth projective geometrically
irreducible curve over Fq , not just for plane curves.

The `-adic method can be made effective in the case of curves and abelian
varieties. One can then use the Chinese remainder theorem as mentioned be-
fore. In this way, one obtains an algorithm for computing Z.Cd ;T / with run-
ning time O

�
.log q/�d

�
, where �d is in general an exponential function of d ;

see [Schoof 1985; Pila 1990]. Thus, for fixed d , the `-adic method computes
the zeta function Z.Cd ;T / in polynomial time, although the algorithm is still
doubly exponential in d . For hyperelliptic curves, the exponent �d has been
improved to a polynomial in d ; see [Adleman and Huang 1996]. On the other
hand, using the p-adic algorithm in [Lauder and Wan 2008], one can compute
the zeta function Z.Cd ;T / in time .dp log q/O.1/, which is polynomial in d but
exponential in log p. In particular, the zeta function Z.Cd ;T / can be computed
in polynomial time if p D O

�
.d log q/O.1/

�
. This example is important because

of its many applications in number theory and cryptography; see [Koblitz 1989;
Blake et al. 2000]. For special types of curves in small characteristic, more
practical versions of various p-adic algorithms have been designed by a num-
ber of authors; see [Satoh 2000; Kedlaya 2001; Lauder and Wan 2002; Denef
and Vercauteren 2002], and the references listed in those papers. Restricting
Problem 2.9 to plane curves, we obtain the following.

PROBLEM 4.1. Given a smooth projective plane curve Cd over Fq , compute
Z.Cd ;T / in time O

�
.d log q/c

�
, where c is an explicit absolute positive con-

stant.

EXAMPLE 3. Let f .x1; : : : ;xn/ 2 Fq Œx1; : : : ;xn� be of degree d , and suppose
that the homogenization of f defines a smooth projective hypersurface Hd of
dimension n � 1 over Fq . Then by the Weil conjectures [Deligne 1974] we can
write

Z.Hd ;T /D
P .Hd ;T /

.�1/nQn�1
jD0.1 � qj T /

;

where P .Hd ;T / 2 1 C T ZŒT � is a polynomial of degree

D D
1

d
f.d � 1/nC1

C .�1/nC1.d � 1/g

(see [Monsky 1970]) and

P .Hd ;T /D

DY
jD1

.1 � j̨ T /; j j̨ j D
p

q
n�1

; j̨˛DC1�j D qn�1:
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This higher dimensional example is undoubtedly more difficult than the previous
example of curves, and it has attracted a smaller amount of attention. Both
theoretically and computationally, and from an applied point of view, our un-
derstanding of this case leaves a great deal to be desired. In particular, the `-adic
method has not been made effective for higher dimensional smooth projective
hypersurfaces. We do know that by the p-adic algorithm in [Lauder and Wan
2008], the zeta function Z.Hd ;T / can be computed in time .dnp log q/O.n/ for
any .n�1/-dimensional hypersurface Hd , not necessarily smooth or projective.
This gives a polynomial time algorithm for small p and fixed n. In the smooth
projective case, it should be possible to improve the exponent O.n/ by finer p-
adic cohomological methods. In fact, Lauder [2004b; 2004a] has gone further
and used the deformation method on the cohomology space to show that the zeta
function can be computed in time .dnp log q/O.1/ for suitable smooth projective
.n�1/-dimensional hypersurface Hd . It would be interesting to explore possible
applications of higher dimensional hypersurfaces. As a special case of Problem
2.9, we have the following.

PROBLEM 4.2. Given a smooth projective .n � 1/-dimensional hypersurface
Hd defined over Fq , compute Z.Hd ;T / in time bounded by a polynomial in
.d C 1/n log q.

Lauder’s recent results solve this problem if p is small.

5. Pure weight decomposition

In this section, we consider the problem of computing the numbers of zeros
and poles of Z.X / with a given complex absolute value, for any algebraic set
X defined over Fq . Let R.X;T / be the numerator or the denominator of the
zeta function Z.X /.

Over the complex numbers C, we can write

R.X;T /D

Y
i

.1 �˛iT /;

where each ˛i is a nonzero algebraic integer. Define the weight of a nonzero
complex number ˛ by

w.˛/D logq.˛ N̨ /;

where N̨ denotes the complex conjugate of ˛. An elementary archimedean esti-
mate shows that

#X.Fqk /D O.qk dim X /;
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where the implied constant depends on the degree of X . As in Section 2, one
deduces the elementary estimate

j˛i j � qdim X ; w.˛i/� 2 dim X:

The following much deeper result is a consequence of Deligne’s main theorem
on the Weil conjectures [Deligne 1980].

THEOREM 5.1. The weights of the reciprocal roots ˛i of R.X;T / are integers
in the interval Œ0; 2 dim X �. That is, for each ˛i , there is an integer wi with
0 � wi � 2 dim X such that

˛i N̨ i D qwi :

In particular, each ˛i is an `-adic unit for all prime numbers ` 6D p. Further-
more, each ˛i and its Galois conjugates have the same weight.

The last part of the theorem can be deduced from the first part in an elementary
manner, as shown in the following result of Lenstra.

LEMMA 5.2. Let f 2 QŒT � be an irreducible polynomial. Suppose ˛ and ˇ are
two complex roots of f with ˛ N̨ 2 Q and ˇ Ň 2 Q. Then ˛ N̨ D ˇ Ň.

PROOF. Let ˛ N̨ D a, ˇ Ň D b, and deg.f /D n> 0. We need to show that a D b.
Since there is a field isomorphism Q.˛/Š Q.ˇ/ that sends ˛ to ˇ, we have

NQ.˛/=Q.˛/D NQ.ˇ/=Q.ˇ/;

where N denotes the norm map. From a 2 Q and Q.˛/D Q. N̨ / one deduces

an
D NQ.˛/=Q.a/D NQ.˛/=Q.˛/NQ. N̨ /=Q. N̨ /D NQ.˛/=Q.˛/

2:

Similarly,
bn

D NQ.ˇ/=Q.ˇ/
2:

Putting the above together, one deduces that an D bn. Since a � 0 and b � 0,
we conclude that a D b. �

For an integer w with 0 � w � 2 dim X , let

R.w;X;T /D

Y
w.˛i /Dw

.1 �˛iT /:

This is called the pure weight w part of R.X;T /. By the above theorem of
Deligne, each R.w;X;T / is a polynomial in 1 C T ZŒT �. The pure weight
decomposition is

R.X;T /D

2 dim XY
wD0

R.w;X;T /; R.w;X;T / 2 1 C T ZŒT �:
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THEOREM 5.3. Given the zeta function Z.X /, one can compute all pure parts
R.w;X;T / in polynomial time.

PROOF. By the LLL factorization algorithm [Lenstra et al. 1982], the poly-
nomial R.X;T / can be factored as a product of irreducible polynomials in
polynomial time:

R.X;T /D

Y
i

gi.T /;

where each factor

gi 2 1 C T ZŒT �

is irreducible over Q. Write

gi.T /D 1 C ai1T C � � � C aiei
T ei D

eiY
jD1

.1 �ˇij T /; aiei
6D 0:

By Deligne’s theorem 5.1, each ˇij is pure of some integer weight wi . Hence
a2

iei
D

Q
j ˇij

Ň
ij D qei wi , and therefore

aiei
D ˙

p
q

wi ei 2 Z:

One can recover the integer weight wi from

wi D 2
logq jaiei

j

ei
:

The pure weight w part of Z.X / is then

R.w;X;T /D

Y
wi Dw

gi.T /: �

Clearly, for each irreducible factor gi.T / of R.X;T /, the map ˇij ‘ Ň
ij D

qwi=ˇij permutes the reciprocal roots of gi.T /. This gives the following func-
tional equation.

COROLLARY 5.4. For each w, the pure weight part R.w;X;T / satisfies

R.w;X; 1=.qwT //D ˙q�wd.w;R/=2T �d.w;R/R.w;X;T /;

where d.w;R/ denotes the degree of R.w;X;T /.

The following is also immediate from Theorem 5.3.

COROLLARY 5.5. Given the zeta function, the degrees d.w;R/ of all pure
weight parts R.w;X;T / can be computed in polynomial time.
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The pure degrees d.w;R/ contain important geometric information about the
variety X . For instance, if R2 denotes the denominator of Z.X /, then

d.2 dim X;R2/

is the number of top-dimensional components of X ˝ NFq . If X is a geometrically
irreducible curve and R1 denotes the numerator of Z.X /, then d.1;R1/ is twice
the genus of the nonsingular model of X . If X is smooth and projective, the
pure degrees d.w;R/ are geometric invariants, that is, they depend only on
X ˝ NFq . In fact, in this smooth projective case, they are given by the `-adic
Betti numbers, as shown in the proof of the following result.

COROLLARY 5.6. For any smooth projective variety X defined over Fq , the
`-adic Betti numbers of X can be effectively computed, where ` 6D p.

PROOF. For a smooth projective variety X over Fq , the `-adic trace formula
states

Z.X /D

2 dim XY
iD0

det.I � .FrobjH i.X ˝ NFq;Q`//T /
.�1/i�1

;

where Frob denotes the geometric Frobenius map. By the Weil conjectures as
proved in [Deligne 1974], each (complex) eigenvalue of Frob acting on H i has
weight equal to i . Thus, the i -th Betti number

Bi.X; `/D dimQ`
H i.X ˝ NFq;Q`/

is given by the formula

Bi.X; `/D

�
d.i=2;R1/ if i is odd,
d.i=2;R2/ if i is even,

where R1 and R2 are the numerator and denominator of Z.X /, respectively.
The corollary follows. �

Let Y be a smooth projective scheme over Z and let X DY ˝Fp be the reduction
modulo p of Y . The cohomological comparison theorem shows that for all
large primes p, the pure degrees d.w;R.X;T // depend only on the geometry
of Y ˝ NQ, not on the chosen large prime p.

If X is singular or open, the pure degrees d.w;R/ may not be geometric
invariants, as it may happen that a root and a pole of Z.X / have a quotient that
is a root of unity. On the other hand, it is clear that the pure difference degrees
d.w;R1/�d.w;R2/ are geometric invariants, where we recall that R1 and R2

denote the numerator and the denominator of Z.X /, respectively.
It would be interesting to know if the pure degrees d.w;R/ can be computed

in polynomial time without the zeta function being given. Even for a singular
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plane curve this seems to be unknown. In the case of a smooth projective com-
plete intersection there is a well-known formula showing that the pure degrees
can be computed from the total degree of Z.X / and the dimension of X ; see
Example 3 of Section 4 for the case of a smooth projective hypersurface and
[Deligne and Katz 1973, pp. 39–61] for the general smooth projective complete
intersection case.

For arbitrary X over Fq , not necessarily smooth or projective, Grothendieck
[1968] has shown that for ` 6D p there is a similar `-adic formula in terms of
`-adic cohomology with compact support:

Z.X /D

2 dim XY
iD0

det.I � .FrobjH i
c .X ˝ NFq;Q`//T /

.�1/i�1

:

But in this generality, even the conjectured independence of the `-adic Betti
numbers on ` is unknown. The following result of Katz [2001] provides weak
evidence in this direction. It gives an explicit upper bound for the `-adic Betti
numbers with compact support that is independent of `. It is obtained by means
of an inductive reduction to the Bombieri–Adolphson–Sperber degree bound for
Z.X /, which in turn is p-adic in nature.

THEOREM 5.7. Let the polynomials f1; : : : ; fm form a system of defining equa-
tions for the affine algebraic set X , and put d D maxi deg.fi/. Then, for every
prime number ` 6D p, we haveX

i�0

dimQ`
H i

c .X ˝ NFq;Q`/� 2mC2.md C 3/nC1:

Turning to global zeta functions, it may be of interest to point out that the real
parts of the zeros of the classical Riemann zeta function �.z/ are not known to
be effectively computable in a finite region. To make this precise, denote, for
real numbers w 2 .0; 1/ and t > 0, by d.w; �I t/ the number of zeros of �.z/ that
lie on the line segment

Re.z/D w; 0 � Im.z/� t:

For any given t , there are only finitely many w for which d.w; �I t/ > 0. The
following computational problem is now analogous to finding the pure weight
decomposition: given t , determine the finitely many positive integers among the
numbers d.w; �I t/, for 0 �w� 1, as well as approximations to the correspond-
ing numbers w. No effective algorithm for doing this is currently available. The
main difficulty is caused by the possibility of a multiple zero or zeros that are
very close to each other, see [Odlyzko 1994]. Of course, the Riemann hypothesis
says that d.w; �I t/D 0 for all t and all w 6D 1=2.
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6. Pure slope decomposition

In the previous section, we considered the problem of purity decomposition of
Z.X / from the complex point of view. One can also consider the purity decom-
position from a nonarchimedean point of view. If ` is a prime number different
from p, then Deligne’s Theorem 5.1 shows that Z.X / is already pure from an
`-adic point of view. Thus, we will consider the remaining p-adic case in this
section. Let R.X;T / again denote either the numerator or the denominator of
Z.X /.

Let Cp be the completion of a fixed algebraic closure of Qp. Over Cp, we
can write

R.X;T /D

Y
i

.1 �˛iT /;

where each ˛i is a nonzero algebraic integer in Cp. Define the slope of a nonzero
element ˛ 2 Cp by

s.˛/D ordq.˛/D � logq j˛jp;

where j � jp denotes the p-adic absolute value, normalized such that jpj D 1=p.
The slopes s.˛i/ are nonnegative rational numbers since the ˛i are algebraic
integers. One immediately derives the bound

0 � s.˛i/� s.˛i N̨ i/D w.˛i/� 2 dim X:

This bound can be improved somewhat. Deligne’s integrality theorem [1973,
pp. 384–400] states that qdim X =˛i is an algebraic integer. We deduce the fol-
lowing result.

THEOREM 6.1. The slopes s.˛i/ are rational numbers in Œ0; dim X �.

Other than in the complex absolute value case, ˛i and its Galois conjugates over
Q may have different slopes. Of course, each ˛i and its Galois conjugates over
Qp do have the same slope. The slopes s.˛i/ are not integers (or half integers)
in general. They are merely rational numbers. It would be interesting to get
good bounds for the denominators of the slopes s.˛i/.

For a rational number s with 0 � s � dim X , let

R.s;X;T /D

Y
s.˛i /Ds

.1 �˛iT /:

This is called the pure slope s part of R.X;T /. We have the p-adic purity
decomposition

R.X;T /D

Y
s2Q

R.s;X;T /:

The question is then to understand each pure slope part R.s;X;T /.
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Note that in general, the pure slope parts R.s;X;T / do not have coefficients
in Z any more. The theory of Newton polygons implies that R.s;X;T / is a
polynomial in 1 C T . NQ \ Zp/ŒT �, as we shall see now.

Write

R.X;T /D 1 C a1T C � � � C aeT e
D

eY
iD1

.1 �˛iT /; ae 6D 0:

DEFINITION 6.2. The Newton polygon NP.R/ of R.X;T / is the lower convex
hull in the plane R2 of the points

.k; ordq.ak//; k D 0; 1; : : : ; e:
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Figure 1. Newton polygon

A basic property of the Newton polygon is the following result; see [Koblitz
1984].

THEOREM 6.3. The polynomial R.X;T / 2 1CT ZŒT � has exactly h reciprocal
zeros ˛i with slope ordq.˛i/ D s (counting multiplicities) if and only if NP.R/
has a side of slope s and horizontal length h. Furthermore, the coefficients of
R.s;X;T / are in Zp for each s.

The following is an immediate consequence.

COROLLARY 6.4. Let d.s;R/ denote the degree of R.s;X;T /. Then, d.s;R/

is the horizontal length of the slope s side of NP.R/. In particular, when Z.X /

is given, the p-adic pure degrees d.s;R/ can be computed in polynomial time.

It would be interesting to know if the p-adic pure degrees d.s;R/ can be com-
puted in polynomial time without the zeta function being given. This amounts
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to computing the Newton polygons of the numerator and the denominator of
the zeta function. Even in a very well-behaved situation such as the smooth
projective hypersurface case, we do not have a complete answer in general; see
[Wan 2004] for a theoretical introduction to Newton polygons for zeta functions
and L-functions. In the smooth projective case, the p-adic pure degrees d.s;R/

are geometric invariants.
If X is the good reduction modulo p of some smooth projective scheme

over Z, the p-adic pure degrees d.s;R/ depend not just on the geometry of
the generic fibre Y ˝ NQ, but also on the chosen prime p. Thus, the p-adic
pure degrees d.s;R/ contain arithmetic information on Y . They are related
to but much deeper than the topological Hodge numbers of Y ˝ Q defined
in terms of the De Rham cohomology of Y ˝ Q; see [Mazur 1972] for an
introductory account. Describing the variation of d.s;R/ as p varies is a very
subtle arithmetic problem, already in the special case that Y ˝ Q is an elliptic
curve.

As a polynomial with coefficients in Zp, the pure slope part R.s;X;T / can-
not be written down in a finite amount of time. However, given R.X;T /, one
can compute the pure slope parts R.s;X;T / modulo any given power of p in
polynomial time using the Newton polygon and Hensel lifting. Note that here
we do not factor R.X;T / into a product of irreducible factors over Qp, which
is a harder problem.

7. Zeta functions modulo p

In [Lauder and Wan 2008] a p-adic algorithm for computing the zeta function
Z.X / is given, where p is the characteristic of Fq . In this final section, we
describe some of the basic ideas behind that algorithm by showing how Z.X /

may be computed modulo p. The method expands the outline given in [Wan
1999].

Without loss of generality we may restrict to hypersurfaces. Thus, let X be
the affine hypersurface defined by a polynomial f .x1; : : : ;xn/ over Fq of total
degree d in n variables. Let Ad be the Fq-vector space of polynomials in x1,
. . . , xn of total degree at most d that are divisible by the product x1 � � � xn:

Ad D .x1 � � � xnFq Œx1; : : : ;xn�/�d :

It has a row basis Ee consisting of monomials

Ee D fxu
ju D .u1; : : : ;un/; ui � 1; juj � dg;

where
xu

D x
u1

1
� � � xun

n ; juj D u1 C � � � C un:
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One computes that

dimFq
Ad D

�
d

n

�
:

DEFINITION 7.1. Let � be the p-th power Frobenius map acting on Fq:

�.a/D ap; a 2 Fq:

Let  p be the ��1-linear operator on the Fq-vector space Fq Œx1; : : : ;xn� defined
by

 p

�X
u

auxu

�
D

X
u

��1.au/ p.x
u/;

where

 p.x
u/D

�
xu=p; if pju,
0; otherwise.

Define
 q D  r

p D  p ı � � � ı p

to be the r -th iterate of  p, where q D pr .

Since �r is the identity on Fq , the operator  q is actually Fq-linear, although  p

is only ��1-linear. The operator  q is a left inverse of the q-th power Frobenius
map on Fq Œx� D Fq Œx1; : : : ;xn�. For any polynomial g 2 Fq Œx�, multiplication
by g is also an Fq-linear map from Fq Œx� to itself.

LEMMA 7.2. The Fq-linear composed operator  q ı f q�1 maps the finite di-
mensional Fq-subspace Ad of Fq Œx� to itself ; here f q�1 denotes multiplication
by f q�1. Similarly, the ��1-linear composed operator  p ı f p�1 maps Ad to
itself , and we have the relation

 q ıf q�1
D . p ıf p�1/r :

PROOF. Let h 2 Ad . Then h has degree at most d , so f q�1h has degree at most
d.q � 1/C d D dq. Thus, the degree of  q.f

q�1h/ is at most d . Furthermore,
if h is divisible by x1 � � � xn, then  q.f

q�1h/ is also divisible by x1 � � � xn. This
proves that  q.f

q�1h/ 2 Ad . The proof of the second part of the lemma is the
same. To prove the last part, we write

q � 1 D .p � 1/C p.p � 1/C � � � C pr�1.p � 1/:

This gives

f .x/q�1
D

r�1Y
iD0

f � i

.xpi

/p�1;
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where f � i

.x/ denotes the polynomial obtained by applying � i to the coeffi-
cients of f . Using the easily checked relation

 p ı g� .xp/D g.x/ ı p;

one deduces

 q ıf q�1
D  r

p ı

r�1Y
iD0

f � i

.xpi

/p�1
D . p ıf p�1/r : �

THEOREM 7.3. Let X be the affine hypersurface defined by a polynomial
f .x1; : : : ;xn/ over Fq of total degree d in n variables. Then we have the
congruence formula

.Z.X /.�1/n

mod p/D det.I � . q ıf q�1
jAd /T /:

Before we prove this result, we first recall some facts on L-functions in charac-
teristic p. Let g 2 Fq Œx� D Fq Œx1; : : : ;xn�. For a geometric point x 2 An.NFq/,
the product g.x/g.xq/ � � � g.xqdeg.x/�1

/ is an element of Fq that clearly depends
only on the orbit (the closed point) of x under the q-th power Frobenius map.
We define the L-function of g by

L.g;T /D

Y
x

1

1 � g.x/g.xq/ � � � g.xqdeg.x/�1
/T deg.x/

2 1 C T Fq ŒŒT ��;

where x runs over the set of closed points of the affine space An over Fq .
For a real number c, write Ac for the finite dimensional Fq-subspace of Fq Œx�

generated by the monomials of total degree at most c that are divisible by the
product x1 � � � xn. If the total degree of g is at most e, one checks as in the
above lemma that the operator  q ı g maps the subspace Ae=.q�1/ to itself.
Furthermore, the (matrix of the) induced map  q ı g on the quotient vector
space x1 � � � xnFq Œx�=Ae=.q�1/ is strictly triangular with respect to the monomial
basis fxujui � 1; juj > e=.q � 1/g. Thus, the composed operator  q ı g acting
on the infinite dimensional Fq-vector space x1 � � � xnFq Œx� has a well defined
characteristic power series det.I �. q ıgjx1 � � � xnFq Œx�/T /, which is given by
the polynomial

det.I � . q ı gjx1 � � � xnFq Œx�/T /D det.I � . q ı gjAe=.q�1//T /:

The characteristic p version of Dwork’s trace formula for the affine space An,
as given in [Wan 1996], implies that

L.g;T /.�1/n�1

D det.I � . q ı gjx1 � � � xnFq Œx�/T /

and thus
L.g;T /.�1/n�1

D det.I � . q ı gjAe=.q�1//T /:
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The reader is referred to [Lauder and Wan 2008] to see the Dwork trace formula
over the n-torus, which is cleaner than the Dwork trace formula over the affine
n-space An.

We now return to the proof of the theorem. Taking g Df q�1 and e Dd.q�1/,
we deduce that e=.q � 1/D d and

L.f q�1;T /.�1/n�1

D det.I � . q ıf q�1
jAd /T /:

For a geometric point x 2 An.NFq/, one has

g.x/g.xq/ � � � g.xqdeg.x/�1

/D f .x/q
deg.x/�1;

which is 0 or 1 according as x 2 X.NFq/ or not. It follows that L.f q�1;T / is the
reduction modulo p of the zeta function of the complement of X in An. Hence
for n> 0 we obtain

L.f q�1;T /D .1=Z.X / mod p/:

Substituting this into the above formula for L.f q�1;T /.�1/n�1

, we obtain the
theorem.

COROLLARY 7.4. The zeta function Z.X / modulo p can be computed in time
bounded by a polynomial in p

�
d
n

�
log q.

PROOF. Recall that q D pr . Let M1 be the matrix of the ��1-linear map
 p ıf p�1 with respect to the row monomial basis Ee of Ad . That is,

. p ıf p�1/.Ee/D EeM1:

Then, by the ��1-linearity of  p ıf p�1, we deduce

. p ıf p�1/2.Ee/D . p ıf p�1/.EeM1/D EeM1M ��1

1 ;

where M ��1

1
is obtained from M1 by applying ��1 to each entry (and similarly

with M ��i

1
below). By iteration, one finds that the matrix of the Fq-linear map

 q ıf q�1
D . p ıf p�1/r

with respect to the row basis Ee is given by

Mr D M1M ��1

1 � � � M ��.r �1/

1 :

The matrix M1 can be written down in time .p
�
d
n

�
log q/O.1/. It follows that the

matrix Mr can also be computed in time .p
�
d
n

�
log q/O.1/. The zeta function

modulo p is essentially just the characteristic polynomial of the matrix Mr :

.Z.X /.�1/n

mod p/D det.I � Mr T /:
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The corollary is proved. Alternatively, applying �r�1 to the above congruence
formula, we have

.Z.X /.�1/n

mod p/D det.I � M �r �1

1 � � � M �
1 M1T /:

This formula may be slightly more efficient from a computational point of view.
If p is small, that is, p D .

�
d
n

�
log q/O.1/, the above corollary gives a poly-

nomial time algorithm for computing Z.X / modulo p. If p is large, we do not
get a polynomial time algorithm. �
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