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1 Symmetric functions

1.1 Reminders on rings

Rings. All our rings are commutative with one. Thus, a ring is a set A
together with two specified elements 0 = 0A ∈ A, 1 = 1A ∈ A and two

binary operations A × A → A written (a, b) 7→ a + b and (a, b) 7→ ab with

the following properties, for all a, b, c ∈ A:

a + b = b + a, (a + b) + c = a + (b + c), a + 0 = a, (1)

ab = ba, (ab)c = a(bc), a · 1 = a,

a(b + c) = ab + ac.

Note that (1) says that (A, +, 0) is an abelian group.

Zero divisors and integral domains. An integral domain is a ring A such

that for all a, b ∈ A, if ab = 0 then a = 0 or b = 0; and such that 0 6= 1.

A nonzero element a of a ring A is called zero divisor if ab = 0 for some

b ∈ A. Thus, an integral domain is the same as a ring without zero divisors,

such that 0 6= 1.

Units and fields. An element a of a ring A is called invertible or a unit if

there exists b ∈ A such that ab = 1. If A is a ring, we write A× for the set of

units in A. Then (A×, ·, 1) is an abelian group. A field is a ring in which all

nonzero elements are invertible, and 0 6= 1. Equivalently, it is a ring A such

that A× = A r {0}.

Irreducible. An element a in a ring A is called irreducible if it is not a unit,

and for all b, c ∈ A such that a = bc one has that b or c is a unit.

Ring homomorphisms. Let A, B be rings. A map f : A → B is a ring homo-

morphism if f (a + b) = f (a) + f (b), f (ab) = f (a) f (b) for all a, b ∈ A and

f (1A) = 1B.

Polynomials. Let A be a ring and choose a symbol, say, X. We shall define a

new ring A[X]. The elements of A[X] are called polynomials over A in one

variable X and A[X] is called the polynomial ring.

An element of A[X] is a sequence (a0, a1, . . .) of elements of A with only

finitely many nonzero entries. An alternative and more usual notation is

(a0, a1, . . .) = a0 + a1X + a2X2 + · · · = Σ
k≥0

akXk.

We define addition and multiplication on A[X] by

(a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1, . . .),

(a0, a1, . . .)(b0, b1, . . .) = (c0, c1, . . .)
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where cn = ∑n
k=0

ak bn−k. In the usual notation:

Σ akXk + Σ bkXk = Σ(ak + bk) Xk,
(

Σ akXk
)(

Σ bkXk
)

= Σ ck Xk

with cn as before.

Let f = ∑k akXk ∈ A[X]. The elements ai ∈ A are called the coefficients

of f . The degree deg f of f is the greatest n ≥ 0 such that an 6= 0. The degree

of the zero polynomial is defined to be −∞. Note that nonzero constant

polynomials have degree 0. If f is of degree n then an is called the leading

coefficient and anXn the leading term of f . We call f monic if its leading

term is 1.

There is an injective ring homomorphism f : A → A[X] defined by f (a) =
(a, 0, 0, 0, . . .) in the unusual notation. We usually identify f (a) with a ∈ A.

The elements of f (A) are called the constant polynomials in A[X].

Examples. Every field is an integral domain, and every integral domain is a

ring:

{fields} ⊂ {integral domains} ⊂ {rings}.

Theorem 2: division with remainder for polynomials. Let f , g ∈ K[X] be poly-

nomials over a field K with g 6= 0. Then there are unique q, r ∈ K[X] such

that f = gq + r and deg(r) < deg(g).

Proof. Existence. There exist q, r ∈ K[X] such that f = gq + r because one

can put q = 0, r = f . Choose now q, r such that r has minimal degree and

write deg(g) = ℓ, deg(r) = m. We claim that m < ℓ. Suppose that on the

contrary m ≥ ℓ and write g = ∑k akXk, r = ∑k bkXk. Put

r1 = r − g bm a−1
ℓ Xm−ℓ, q1 = q + bm a−1

ℓ Xm−ℓ.

Then f = g1q + r1 but deg(r1) < deg(r), contradicting the minimality of

deg(r). This proves that deg(r) < deg(g) and finishes the proof of the exis-

tence.

Uniqueness. Let (qi, ri) (for i ∈ {1, 2}) both satisfy the conditions of

the proposition. Then g | gq1 − gq2 = ( f − r1) − ( f − r2) = r2 − r1 and

deg(r2 − r1) < deg(g). This implies r1 = r2 and thus proves uniqueness. �

1.2 Exercises

(1.1) Prove that every field is an integral domain.

(1.2) Give an example of a ring which is not an integral domain. Give an

example of an integral domain which is not a field. Give an example of a

field.

(1.3) Let A be a ring. Prove that A[X] is a ring. What are 0 and 1 in A[X]?

(1.4) Explicitly divide X5 − X3 by X2 + 2 with remainder. Also divide X5 by

X3 + 2X + 1.
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(1.5) Let f : A → B be a ring homomorphism.

(a) Prove that f (0A) = 0B.

(b) Prove that f is injective if and only if f−1(0B) = {0A}.

(c) Prove that if A is a field and B is nonzero, then f is injective.

(1.6) Prove that every finite integral domain is a field.

1.3 Solving by radicals

Let K be a field and f ∈ K[X]. If α ∈ K is such that f (α) = 0 then we call α

a zero or a root of f .

Definition 3. A field K is algebraically closed if every nonconstant polyno-

mial f ∈ K[X] has a root in K.

So R is not algebraically closed (choose f = X2 + 1).

Theorem 4. The field C of complex numbers is algebraically closed. �

This cannot be proved here. Clearly the proof needs some analysis, be-

cause the definition of R and C is analytic. The most common proof belongs

to complex analysis and uses the Cauchy residue theorem.

Exercise 6.19 outlines an almost entirely algebraic proof. The only an-

alytic part of it is the knowledge that every polynomial f ∈ R[X] of odd

degree has a real zero.

Lemma 5. Let K be an algebraically closed field. Let f ∈ K[X] be monic of

degree n. Then there exist α1, . . . ,αn ∈ K such that

f =
n

Π
i=1

(X −αi). (6)

Moreover, α1, . . . ,αn are unique up to reordering.(1)

Proof. Existence. Induction on n. It’s true for n = 0. Let n > 0. As K is

algebraically closed, there exists αn ∈ K such that f (αn) = 0. By division

with remainder (theorem 2) we can write

f = (X −αn) · g + r (7)

with g, r ∈ K[X] and deg r < deg(X −αn) = 1. So r is constant. Plugging αn

in for X in (7) gives 0 = f (αn) = r(α) = r. So r = 0 and f = (X −αn) · g.

By the induction hypothesis, we can write g = ∏n−1
i=1

(X −αi) and we find

(6).

Uniqueness. Induction on n. It’s true for n = 0. Let n > 0 and assume

n

Π
i=1

(X −αi) =
n

Π
i=1

(X −βi). (8)

(1) That is, if also f = ∏n
i=1(X − βi) with βi ∈ K then there exists π ∈ Sn such that

βi = απ(i) for all i.
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Choose here X = αn to obtain ∏n
i=1(αn − βi). So there exists i such that

αn = βi. After reordering the β j we may assume that αn = βn. Dividing

(1.19) by X −αn yields ∏n−1
i=1

(X −αi) = ∏n−1
i=1

(X −βi). By the induction hy-

pothesis, β1, . . . , βn−1 is a reordering of α1, . . . ,αn−1. Therefore, β1, . . . , βn

is a reordering of α1, . . . ,αn. �

Note that in lemma 118 the αi are not required to be distinct.

If α, β ∈ K, n > 0 are such that αn = β then we say that α is a root or

radical of β.

Definition 9. Let K be a field. A subfield L ⊂ K is called radically closed in

K if for all α ∈ K, n > 0, if αn ∈ L then α ∈ L.

In words, all radicals in K of elements of L are again in L.

If K is a field and A ⊂ K any subset then there clearly exists a smallest

radically closed subfield L of K containing A. Indeed, it is the intersection of

all radically closed subfields of K containing A. We say that L is the radical

closure in K of A.

A polynomial of degree (respectively) 2, 3, 4, 5 is called (respectively) a

quadric, cubic, quartic, quintic.

Example 10. You know that the roots of a quadric aX2 + bX + c are

−b ±
√

b2 − 4ac

2a
. (11)

The expression (11) is obtained from a, b, c and field operations (+,−,×,÷)

and radicals. More precisely, the expression (11) is in the radical closure of

{a, b, c}.

Definition 12. Let K be an algebraically closed field and let f ∈ K[X]. We say

that f is solvable or solvable by radicals if the radical closure of the set of

coefficients of f contains all roots in K of f .

So example 10 shows that every quadric is solvable. In this chapter, we

prove that all cubics and quartics are solvable. Later on we prove that some

(most) quintics are not.

1.4 Symmetric polynomials

Let A be a ring and consider A[T1, . . . , Tn], the ring of polynomials over A in

n variables.

Definition 13. The kth elementary symmetric function σk ∈ A[T1, . . . , Tk]
is defined by

σk = Σ
1≤i1<···<ik≤n

k

Π
j=1

Ti j
. �
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Examples:

σ0 = 1 = a single choice of the empty product,

σ1 = T1 + · · · + Tn, σ2 = Σ
1≤i< j≤n

Ti Tj, σn = T1 · · · Tn.

It is clear that
n

Π
i=1

(X + Ti) =
n

Σ
k=0

σk Xn−k.

The monic polynomial with roots T1, . . . , Tn is therefore

n

Π
i=1

(X − Ti) =
n

Σ
k=0

(−1)kσk Xn−k.

Definition 14. A polynomial f ∈ A[T1, . . . , Tn] is called symmetric if f =
f
(

u(T1), . . . , u(Tn)
)

for all permutations u of {T1, . . . , Tn}.

It is clear that, as the name already suggests, the elementary symmetric

polynomials σk are symmetric.

Remark 15. Let us say a bit more about definition 14.

Let U = Sym({T1, . . . , Tn}) be the symmetric group on {T1, . . . , Tn},

also known as the group of permutations of {T1, . . . , Tn} (see **). For f ∈
A[T1, . . . , Tn] and u ∈ U we write f ◦ u := f

(

u(T1), . . . , u(Tn)
)

. The map

f 7→ f ◦ u is then a ring automorphism of A[T1, . . . , Tn] which extends the

permutation u of the variables Ti.

The map

A[T1, . . . , Tn]× U −→ A[T1, . . . , Tn],

( f , u) 7−→ f ◦ u = f
(

u(T1), . . . , u(Tn)
)

is an example of a group action. We say that the group U acts on A[T1, . . . , Tn]
by ring automorphisms. In a nutshell, this means that f ◦ (uv) = ( f ◦ u) ◦ v
and ( f ▽ g) ◦ u = ( f ◦ u) ▽ (g ◦ u) for all f , g ∈ A[T1, . . . , Tn], u, v ∈ U,

▽ ∈ {+,×}.

Another way of saying that f is symmetric is that it is invariant under the

U-action.

Theorem 16: Main theorem on symmetric polynomials. Consider a symmetric

polynomial P ∈ A[T1, . . . , Tn]. Then there exists a polynomial f ∈ A[U1, . . . , Un]
such that

P = f
(

σ1(T1, . . . , Tn),σ2(T1, . . . , Tn), . . . ,σn(T1, . . . , Tn)
)

.

In words, P is a polynomial in the elementary polynomials in the Ti.

Example 17. Before proving theorem 16, we look at an example. The poly-

nomial ∑i T3
i is clearly symmetric. By theorem 16, it can be expressed in

terms of the σk = σk(T1, . . . , Tn). Let’s do that explicitly. We have

σ3
1 =

(

Σ
i

Ti

)3

=
(

Σ
i

T3
i

)

+ 3

(

Σ
i 6= j

T2
i Tj

)

+ 6σ3,
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σ1 σ2 =
(

Σ
i

Ti

)(

Σ
j<k

Tj Tk

)

=
(

Σ
i 6= j

T2
i Tj

)

+ 3σ3

so

σ3
1 − 3σ1 σ2 =

(

Σ
i

T3
i

)

− 3σ3 and Σ
i

T3
i = σ3

1 − 3σ1 σ2 + 3σ3.

Proof of theorem 16. We need some terminology. A monomial of degree k
is an expression Tk1

1
· · · Tkn

n such that k = ∑i ki. An A-linear combination of

degree k monomials is called a homogeneous polynomial of degree k.

It is enough to prove the theorem if P is homogeneous, so suppose it is.

We define a total ordering < on the set of degree k monomials as follows.

It is called the lexicographic ordering. We put T1 < · · · < Tn. Write

u = u1 · · · uk, v = v1 · · · vk

where ui, vi ∈ {T1, . . . , Tn} and ui ≤ ui+1, vi ≤ vi+1 for all i. Then u < v if

there exists j such that (u1, . . . , u j−1) = (v1, . . . , v j−1) but u j < v j.

We may write P = ∑u au u (a sum over degree k monomials u with au ∈
A). The leading monomial of P is the least u such that au 6= 0. Suppose the

theorem is false. Among the counterexamples, let P be one with maximal

leading monomial. This is a high-brow way of doing induction and works

because there are only finitely many degree k monomials.

Let u = Tk1

1
· · · Tkn

n be the leading monomial in P. We have ki ≥ ki+1 for

all i (interchanging Ti and Ti+1 in the term auu yields some term avv with

av = au and v ≥ u; this implies ki ≥ ki+1).

We aim to compare the leading monomial of P with that of Q := σ
ℓ1

1
· · ·σℓn

n .

The leading monomial of Q is the product of the leading monomials of the

factors which is

Tℓ1

1
(T1T2)

ℓ2 · · · (T1 · · · Tn)
ℓn = Tℓ1+···+ℓn

1
Tℓ2+···+ℓn

2
· · · Tℓn

n

and which becomes equal to u = Tk1

1
· · · Tkn

n by putting

ℓn := kn, ℓi := ki − ki+1 (i < n).

Now P, Q have equal leading monomials. So P − auQ has greater leading

monomial than P. Therefore, P − auQ is a polynomial in the σk. Also, Q is

and therefore, P is. This contradiction finishes the proof. �

Definition 18. A tuple (g1, . . . , gk) with gi ∈ A[T1, . . . , Tn] for all i is called a

symmetric tuple of polynomials if for every u ∈ Sym(t1, . . . , tn) there exists

v ∈ Sk such that gi ◦ u = gv(i) for all i.

In words, the effect on the gi of permuting the variables Tj is no more

than a permutation of the gi.

If gi is symmetric for every i, then (g1, . . . , gk) is a symmetric tuple of

polynomials; the converse is of course false.

The following is an obvious and very useful lemma.

Lemma 19: plugging in a symmetric tuple. Let (g1, . . . , gk) be a symmetric

tuple of polynomials, where gi ∈ A[T1, . . . , Tn] for all i. If f ∈ A[U1, . . . , Uk]
is symmetric then so is the element f (g1, . . . , gk) of A[T1, . . . , Tn]. �
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1.5 Quartic equations

Easier than proving that cubic equations are solvable is deducing from it that

quartic equations are solvable. So we begin with the latter. In the rest of this

chapter we work in C.

Theorem 20. Assume that cubic equations over C are solvable. Then so are

quartic ones.

Proof. Let f = ∑k akXk be a monic polynomial of degree 4 over an alge-

braically closed field K. Let L ⊂ K be the radical closure of the coefficients

a0, a1, a2, a3. We need to prove that all roots of f are in L.

Call those roots α, β, γ, δ (see lemma 118). So f = (X −α)(X −β)(X −
γ)(X−δ). We now viewα β, γ, δ as variables. Define polynomials k1, k2, k3 ∈
L[α, β, γ, δ] by

k1 = (α + β −γ − δ)2, k2 = (α −β + γ − δ)2, k3 = (α −β −γ + δ)2.

One immediately sees that (k1, k2, k3) is a symmetric tuple of polynomials.

For example, the permutation (α, β) takes k2 to (−α + β + γ − δ)2 = k3,

thanks to the second power! Lemma 19 tells us now that whenever h ∈
L[u1, u2, u3] is a symmetric polynomial, h(k1, k2, k3) is symmetric in α, β, γ, δ.

Consider the auxiliary polynomial g = (X − k1)(X − k2)(X − k3). Every

coefficient of g is, up to a sign, an (elementary) symmetric polynomial in the

ki. Therefore, every coefficient of g is symmetric in α, β, γ, δ.

By the main theorem of symmetric polynomials (theorem 16) every coef-

ficient of g is a polynomial in {σk(α, β, γ, δ)}k, that is, in {ak}k (because the

coefficients ak of f are, up to signs, the elementary symmetric polynomials

in α, β, γ, δ). So g ∈ L[X].
By the assumption that cubics are solvable, the roots ki of g are in L.

Define ℓ1, ℓ2, ℓ3, m by


















α + β −γ − δ = ℓ1

α −β + γ − δ = ℓ2

α −β −γ + δ = ℓ3

α + β + γ + δ = m.

(21)

Then ℓi is a square root of ki and is therefore in L. Also, m ∈ L because it is

a symmetric polynomial in α, β, γ, δ.

The system (21) is a non-degenerate system of linear equations over L in

unknowns α, β, γ, δ and solving it shows that α, β, γ, δ ∈ L as required. �

1.6 Roots of unity

For n ≥ 1 we have

{

x ∈ C

∣

∣

∣
xn = 1

}

=
{

exp
(

2π ik

n

) ∣

∣

∣
0 ≤ k < n

}

.

This set is written µn and its elements are called the nth (complex) roots of

unity. See figure 1.
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Figure 1. The five complex fifth roots of unity.

bC

bC

bC

bC

bC

Note that µn ∈ C× is a subgroup. It is a cyclic group of order n. Equiva-

lently, it is isomorphic to the additive group of Z/nZ.

Definition 22. A primitive n-th complex root of unity is an α ∈ µn which

generates µn as a group.

The following are equivalent for a complex number α:

(a) α is a primitive n-th complex root of unity.

(b) αn = 1 but αk 6= 1 whenever 0 < k < n.

(c) α is of the form exp
(

2π ik
n

)

with k ∈ Z coprime to n.

The number of primitive n-th complex roots of unity is written φ(n) and φ is

known as the Euler totient function. In elementary number theory you learn

that

φ(n) = n Π
p|n

p − 1

p

where the product is over the prime factors of n.

Definition 23. Let n ≥ 1. The n-th cyclotomic polynomial φn is

φn = φn(X) := Π
〈α〉=µn

(X −α)

(product over the primitive n-th complex roots of unity). �

In exercise 1.13 you prove that φn ∈ Q[X]. It can be proved that φn is

irreducible in Q[X] but we shall not use this result.

1.7 Cubic equations

Theorem 24. Cubic polynomials over C are solvable. More precisely, every

degree 3 polynomial over an algebraically closed field is solvable.

Corollary 25. Quartics over C are solvable.

Proof of corollary 25 This is immediate from theorems 20 and 24. �

First proof of theorem 24 Our first proof is not entirely correct and mainly

meant as something to marvel at. Consider a monic cubic X3 + aX2 + bX + c.
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On replacing X by X − a/3 one obtains a cubic of the form f = X3 + 3pX +
2q which it is therefore enough to solve. We claim that

3

√

−q +
√

q2 + p3 +
3

√

−q −
√

q2 + p3

is a root of f . Try it out and see that it works! Why aren’t we entirely happy

with this?

Second proof of theorem 24 The second proof is more correct and also

shows how one might have discovered it.

As in the first proof, we only need to solve f = X3 + 3pX + 2q. By

lemma 118 there are (unique) α, β, γ ∈ K such that f = (X − α)(X −
β)(X − γ). We need to prove that α, β, γ are in the radical closure L ⊂ K of

{p, q}. Let ω ∈ K be a primitive cube root of unity. Of course, ω ∈ L.

We next treat α, β, γ as variables. Consider polynomials u, v ∈ L[α, β, γ]
defined by

u = α + ωβ + ω2γ, v = α + ω2β + ωγ.

Claim: (u3, v3) is a symmetric tuple of polynomials (see definition 19).

Proof of claim. It is (assumed to be) known that the symmetric group on

α, β, γ is generated by {π2, π3} where π2 is the 2-cycle (β, γ) and π3 is the

3-cycle (α, β, γ). Therefore, it is enough to show that u3, v3 are (at most)

permuted under π3 and π2.

We have u ◦ π2 = v and v ◦ π2 = u. That is, π2 interchanges u with v. So

it interchanges u3 with v3 as required.

We have

u ◦ π3 = (α + ωβ + ω2γ) ◦ π3

= β + ωγ + ω2α = ω2(α + ωβ + ω2γ) = ω2u

and likewise v ◦ π3 = ωv. In particular, π3 preserves u3 and v3. The claim is

proved.

Lemma 19 and the claim imply that whenever h ∈ A[y1, y2] is a symmet-

ric polynomial, h(u3, v3) is symmetric in α, β, γ.

Consider the auxiliary polynomial g = (X − u3)(X − v3) ∈ K[x]. Any

coefficient of g is, up to a sign, an elementary symmetric function in u3, v3

and therefore symmetric in α, β, γ. By the main theorem on symmetric func-

tions (theorem 16) we find g ∈ L[σ2(α, β, γ),σ3(α, β, γ)][X] = L[p, q][X] =
L[X].

From now we treat α, β, γ as numbers. The polynomial g has degree 2

and is therefore solvable by example 10, that is, u3, v3 ∈ L. As L is closed

under taking cube roots we have u, v ∈ L. We have a non-degenerate system

of linear equations over L in unknowns α, β, γ











α + β + γ = 0

α + ωβ + ω2 γ = u

α + ω2 β + ωγ = v

and “solving” it for α, β, γ shows that α, β, γ ∈ L as well as required. �
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1.8 How to use Maple

This is not part of the course, but I recommend doing it. At a unix terminal,

type maple; you get a clever logo, and the prompt >. For example, you can

calculate ∑ T3
i in terms of elementary symmetric functions by the following

few lines:

> s1:=a+b+c; s2:=a*b+a*c+b*c; s3:=a*b*c;

s1 := a + b + c

s2 := a b + a c + b c

s3 := a b c

> expand(a^3+b^3+c^3-s1^3);

2 2 2 2 2 2

- 3 a b - 3 a c - 3 a b - 6 a b c - 3 a c - 3 b c - 3 b c

> expand(%+3*s1*s2);

3 a b c

> evalb(expand(s1^3-3*s1*s2+3*s3) = a^3+b^3+c^3);

true

Mathematica is very similar.

1.9 Exercises

(1.7) If f (X) = a0 Xn + a1 Xn−1 + · · · + an has roots α1, . . ., αn, what poly-

nomial has roots cα1, . . ., cαn?

(1.8) Let a, b, c ∈ C. Let K be the radical closure of {a, b, c} (that is, the

smallest subfield of C containing a, b, c and such that for all α ∈ C, n > 0,

if αn ∈ K then α ∈ K). Let L be the radical closure of {ab, bc, ca}. Prove

K = L.

(1.9) Prove that X5 − 3X3 − 8 is solvable by radicals.

(1.10) Let T1, . . . , Tn be variables. Express the polynomial

S = Σ
1≤i< j<k≤n

Ti Tj Tk (Ti + Tj + Tk)

in terms of the elementary symmetric polynomials σk(T1, . . . , Tn).

(1.11) Express each of the following in terms of the σk:

Σ
i

T2
i , Σ

i, j
T2

i Tj, Σ
i< j

T2
i T2

j .

(1.12) Let α, β, γ be the roots of the equation X3 + pX2 + q = 0. Find the

cubic polynomial equation whose roots are α3, β3, γ3.
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(1.13) Recall the cyclotomic polynomial φn(X) := ∏(X −α) where the

product is over the complex primitive n-th roots of unity.

(a) Prove ∏d|n φd(X) = Xn − 1 for all n ≥ 1. Here, the product is over the

positive divisors d of n.

(b) Prove φn(X) ∈ Q(X).

(c) Prove φn(X) ∈ Q[X].

(1.14) Write ε := exp(2π i/5) for the natural primitive 5th root of 1; it is

a root of the quartic f (X) = X4 + X3 + X2 + X + 1. Find the quadratic

equation whose two roots are ε + ε4 and ε2 + ε3, and hence give radical

formulas for cos(2π/5) and cos(4π/5).

(1.15) Let Sk = ∑i Tk
i be the power sum. Express Sk in terms of the elemen-

tary symmetric polynomials if k = 4, 5. Do it for k = 6, 7 if you know how to

use Maple or Mathematica.

(1.16)

(a) Put f = X6 + a X5 + a X + 1 ∈ C[X]. Find an explicit g ∈ C[y] such

that X−3 f (X) = g(X + X−1). Prove that f can be solved by radicals.

(b) Prove or disprove the following. Put h = X5 + a X4 + a X + 1 ∈ C[X].
Then h can be solved by radicals.

(1.17) Let L = C(T1, . . . , Tn) be the field of rational functions in n variables.

Let the symmetric group Sn act on L by permutation of the variables Ti. Let

σk ∈ L be the elementary symmetric polynomials in the Ti. Put

K = { f ∈ L | r( f ) = f for all r ∈ Sn},

M = C(σ1, . . . ,σk) ⊂ L.

In other words, M is the smallest subfield of L containing C and the Ti. Prove

that K = M.

(1.18) Prove Newton’s rule ∑n
k=0

(−1)kσk Sn−k = 0 where Sk = ∑i Tk
i is the

power sum.

(1.19) Let σi be the elementary symmetric functions of T1, . . . , Tn and τi the

elementary symmetric functions of T2
1

, . . . , T2
n . Prove:

τk =
2k

Σ
i=0

(−1)k+i σi σ2k−i.

(1.20) Suppose that the polynomial f = x2 + px + q ∈ C[x] factorizes as

f = (x + α)(x + β). Compute g = (x + α + β2)(x + β + α2) explicitly,

giving its coefficients in terms of p, q.
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2 Background on rings, fields and groups

Keywords: Field of fractions, rational function, ideal, generators of an

ideal, kernel, coset, prime ideal, maximal ideal, quotient ring, principal ideal,

PID, UFD, first isomorphism theorem for rings, characteristic, prime field,

Frobenius, left action, right action, permutation, symmetric group, faithful

action.

This chapter is a reminder and reference on rings, fields and groups.

You’re supposed to know most or all of this chapter already, and this chapter

is not detailed enough to learn the material if you haven’t seen it before. We

use the material in this chapter throughout the rest of the notes. If you’re

not yet familiar with the material in this chapter but still want to follow the

module then you’ll have to work very hard to catch up. A good place to learn

this material is chapter 3 in Concrete Abstract Algebra by Niels Lauritzen.

2.1 Fields of fractions

Exercise (2.1) Let A be an integral domain. Put

B =
{

(a, b) ∈ A × A
∣

∣ b 6= 0
}

and let ∼ be the binary relation on B defined by (a, b) ∼ (c, d) if and only if

ad = bc.

(a) Prove that ∼ is an equivalence relation. We denote the equivalence

class of (a, b) by a/b.

(b) Prove that the following are well-defined operations on B/∼:

a

b
· c

d
:=

a c

b d
,

a

b
+

c

d
:=

ad + bc

bd
.

Prove that this makes B/∼ into a field. It is called the field of fractions

of A and sometimes written Frac A.

(c) What goes wrong in the above if A is a ring which is not an integral

domain?

If K is a field, the field of fractions Frac K[X] of the polynomial ring is

written K(X). An element of K(X) is called a rational function, in analogy

with the observation that FracZ = Q.

2.2 Ideals and factorisation

A nonzero subset I of a ring A is said to be an ideal if

x − y ∈ I for all x, y ∈ I; (26)

ax ∈ I for all a ∈ A, x ∈ I. (27)

Note that (26) means precisely that I ⊂ A is an additive subgroup.

Exercise (2.2) Let A be a ring.
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(a) If x1, . . . , xn ∈ A then I := {∑n
k=1

ak xk | a1, . . . , an ∈ A} is an ideal

in A.

(b) Suppose that J is an ideal containing x1, . . . , xn. Prove that I ⊂ J.
Thus, I is the smallest ideal containing {x1, . . . , xn}. We call it the ideal

generated by x1, . . . , xn. It is written (x1, . . . , xn) or x1 A + · · ·+ xn A.

The kernel of a ring homomorphism f : A → B is defined to be ker( f ) :=
{a ∈ A | f (a) = 0}. Then ker( f ) is an ideal in A.

Let A be a ring and I ⊂ A an ideal. For a ∈ A we write a + I :=
{a + x | x ∈ I} (this is called a coset) and A/I := {a + I | x ∈ I}. We

have a + I = b + I if and only if a − b ∈ I. We put a ring structure on the

set A/I by (a + I) + (b + I) := (a + b) + I and (a + I)(b + I) := (ab) + I.
One should prove that this is well-defined, that is, if a1 + I = a2 + I then

a1b + I = a1b + I, and likewise for addition. One should also prove that this

makes A/I into a ring. This is the unique ring structure on the set A/I such

that the natural map A → A/I, a 7→ a + I is a ring homomorphism. Its

kernel is precisely I. This proves:

Proposition 28. Let I be an ideal in a ring A. Then there exists a ring B and

a surjective ring homomorphism A → B whose kernel is I. �

We call A/I the quotient ring of A by I.

Definition 29. Let I be an ideal in a ring A such that I 6= A. We call I a

prime ideal if ab ∈ I implies a ∈ I or b ∈ I. We call it a maximal ideal if for

every ideal J such that I ⊂ J ⊂ A we have I = J or J = A.

Proposition 30. Let I be an ideal in A.

(a) Then, I is a prime ideal if and only if A/I is an integral domain.

(b) Also, I is a maximal ideal if and only if A/I is a field. �

Definition 31. Let A be a ring. A principal ideal in A is an ideal of the form

aA with a ∈ A, that is, an ideal generated by a single element a. A principal

ideal domain or PID is an integral domain all of whose ideals are principal.

Proposition 32. The ring Z is a PID. If K is a field then K[X] is a PID. �

Exercise (2.3) Prove the second half of proposition 32, namely, that K[X]
is a PID for any field K. Hint: if I ⊂ K[X] is a nonzero ideal, let f ∈ I be

a nonzero of minimal degree. Use theorem 2 (division with remainder) to

prove that I = ( f ).

Proposition 33. Let A be a PID. Then for all nonzero a ∈ A, the following are

equivalent.

(1) The ideal (a) is a maximal ideal in A.

(2) The ideal (a) is a prime ideal in A.

(3) a is irreducible.
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Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. Proof of (3) ⇒ (1).

Consider an ideal I such that (a) ⊂ I ⊂ A, say, I = (b). Then a ∈ I, that is,

a = bc for some c ∈ A. By irreducibility of a, one among b, c is a unit in A. If

b is a unit then I = A. If c is a unit then (a) = I. �

Definition 34. Let A be an integral domain. We say that A is a unique fac-

torisation domain or UFD if the following holds. Every nonzero element

of A which is not a unit can be written a1 · · · an where ai is an irreducible

element of A, for all i. Moreover, if b1 · · · bm is another such factorisation,

then m = n and there exists π ∈ Sn such that for all i, we have an equality

of ideals (ai) = (bπ(i)).

Proposition 35. Every PID is a UFD. In particular, so are Z and K[X] for K a

field. �

2.3 Prime fields

Theorem 36: First isomorphism theorem for rings. Let f : A → B be a ring

homomorphism with kernel I and image C. Then C is a subring of B, and

there exists an isomorphism A/I → C defined by a + I 7→ f (a). �

Let A be a ring. Then there is a unique ring homomorphism θ: Z → A.

Indeed, we must have θ(1) = 1 and therefore, if n ∈ Z≥0 then θ(n) =
1 + · · · + 1 (n terms) and θ(−n) = −θ(n). Conversely, it should be clear

that this defines a homomorphism θ.

The kernel of θ is an ideal in Z, and therefore of the form nZ for a unique

n ∈ Z≥0; see proposition 32. We call n the characteristic of A.

Proposition 37. Let A be a ring. Then A contains a smallest subring. It is

isomorphic to Z/n where n is the characteristic of A.

Proof. First one proves that the image of fA: Z → A is the smallest subring

of A. By theorem 36, the first isomorphism theorem for rings, the image of

fA is isomorphic to Z/ ker( fA) = Z/nZ. �

Definition 38. Let K be a field. It is clear that there exists a smallest subfield

of K. It is called the prime subfield of K. A prime field is a field equal to its

own prime subfield.

Proposition 39.

(a) The fields Q and Z/p (for p a prime number) are prime fields. They

are the only prime fields up to isomorphism.

(b) Let K be a field of characteristic n and prime subfield K0. Then either

n = 0 or n is a prime number. If n = 0 then K0
∼= Q. If n = p is a prime

number then K0
∼= Z/p. �
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2.4 Exercises

(2.4) Let R be a ring. Prove that R is an integral domain if and only if it can

be embedded into a field. (We say that R can be embedded into a field if it

is isomorphic to a subring of a field).

(2.5) Suppose that f = Xn−1 + Xn−2 + · · · + 1 ∈ Q[X] is irreducible, with

n ≥ 1. Prove that n is a prime number.

(2.6) Let A be a ring of characteristic p (a prime number).

(a) Prove that the binomial coefficient (p
k) is divisible by p if 0 < k < p.

(b) Prove that F: A → A defined by F(a) = ap is a ring homomorphism. It

is called the Frobenius ring homomorphism. Hint: use the binomial

theorem.

(c) Is F necessarily injective? Surjective? Give a proof or a counterexam-

ple. Same question if A is a field.

(d) Prove (a1 + · · · + an)p = a
p
1
+ · · · + a

p
n for all ai ∈ A.

(e) Prove Fermat’s theorem that p | np − n for all integers n.

(2.7) Let Fq be a finite field of q elements. Prove the following identity in

Fq[X]:

Π
α∈Fq

(X −α) = Xq − X.

[Hint: F×
q is a group of q − 1 elements.]

(2.8) Prove that the polynomial ring K[X] over any field K has infinitely

many irreducible polynomials. Hint: Imitate Euclid’s proof that there are

infinitely many prime numbers.

(2.9) Let f : R → R be a ring homomorphism. Prove that f is the identity.

(You may use that f (1) = 1 but not that f is continuous). This result is quite

curious, since there are uncountably many homomorphisms C → C.

2.5 Group actions

Here is some simple background on group actions.

Definition 40. Let G be a group and X a set. A left G-action on X is a map

G × X → X written (g, x) 7→ g(x) = gx such that (gh)x = g(hx) for all

g, h ∈ G, x ∈ X.

Similarly, a right G-action on X is a map X × G → X written (x, g) 7→
(x)g = xg such that x(gh) = (xg)h for all g, h ∈ G, x ∈ X.

If (g, x) 7→ gx is a left G-action then (x, g) 7→ gx is not necessarily a right

action; but (x, g) 7→ g−1x is.

Let X be a set. A bijective map X → X is sometimes called a permuta-

tion of X. The set of permutations of X forms a group Sym(X) called the

symmetric group on X. Analogous to the distinction between left and right
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actions, one can and should choose whether to write sx or xs for all x ∈ X
and s ∈ Sym(X).

We write Sn for Sym({1, . . . , n}). Thus Sym(X) is isomorphic to Sn if X
has n elements.

The following proposition says that G-actions on X are ‘the same things’

as homomorphisms G → Sym(X).

Proposition 41. Let G be a group and X a set. There exists a unique bijection

between the set of left G-actions on X and the set of homomorphisms G →
Sym(X) (with permutations of X acting on the left) such that whenever the

action (g, x) 7→ g ◦ x corresponds to the homomorphism s: G → Sym(X)
then (sg)x = g ◦ x for all g ∈ G, x ∈ X.

Proof. Exercise. �

A G-action on X is said to be faithful if the corresponding homomorphism

G → Sym(X) is injective.

Exercise (2.10) Prove that a left G-action on X is faithful if and only if for

all nontrivial g ∈ G there exists x ∈ X such that gx 6= x.
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3 Field extensions

Keywords: Primitive polynomial, Gauss’ lemma, reduction mod p, Eisen-

stein, field extension, degree, primitive extension, algebraic element, tran-

scendental element, minimum polynomial, K-homomorphism, tower law.

3.1 Irreducibility criteria

In this section we shall learn a few methods for proving that a polynomial

over a field is irreducible. Some irreducible polynomials can be shown to be

irreducible by one or more of our criteria, some cannot.

Definition 42. Let A be a UFD. For example A = Z. A polynomial in A[X] is

called primitive if the ideal generated by its coefficients is A.

Lemma 43: Gauss’ lemma. Let A be a UFD and K = Frac A.

(a) If g, h ∈ A[X] are primitive then gh is primitive.

(b) Let f ∈ A[X] be non-constant. If f is irreducible in A[X] then it is

irreducible in K[X].

Proof. Proof of (a). Let p ∈ A be an irreducible element and write g =
∑i gi Xi, h = ∑i hi Xi. Since g, h are primitive, there are r, s ≥ 0 such that

p | g0, g1, . . . , gr−1, p ∤ gr,

p | h0, h1, . . . , hs−1, p ∤ hs.

The coefficient of Xr+s in gh is

r+s

Σ
k=0

gk hr+s−k =
( r−1

Σ
k=0

gk hr+s−k

)

+ gr hs +
( r+s

Σ
k=r+1

gk hr+s−k

)

. (44)

Now all factors hr+s−k in the last sum are in (p), and so are all factors gk

in the last sum but one. Also, (p) is a prime ideal not containing either of

gr, hs, hence not containing the middle term gr hs. Therefore, the coefficient

(44) is not in (p).
Thus no irreducible element of A divides all the coefficients of gh, so that

gh is primitive.

Proof of (b). Let g, h ∈ K[X] be such that f = gh. Then there are coprime

elements a, b ∈ A and primitive g1, h1 ∈ A[X] such that g/g1 and h/h1 are

constants in K, and a f = bg1h1. Now g1h1 is primitive by (a) and clearly

so is f . It immediately follows that both a, b are units in A; we may as well

assume they are 1. Then f = g1h1. As f is irreducible in A[X], one among

g1, h1 is a unit in A[X], say g1 is. Then g1 is constant and therefore so is g.

This proves that f is irreducible in K[X]. �

Example 45. Prove that f = X3 + 2X + 7 ∈ Q[X] is irreducible.

Solution. By proposition 43b (with A = Z and K = Q) it is enough to

prove that f is irreducible in Z[X]. Suppose f = gh with g, h ∈ Z[X] both
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nonconstant. We may suppose that deg g = 1, deg h = 2, say, g = aX − b,

h = cX2 + dX + e. Then ac = 1, say, a = c = 1. Then b is a root of g whence

of f . Also, be = 7, so b ∈ {−1, 1,−7, 7}. None of these four values is a root

of f . This contradiction finishes the proof. �

Example 46. Prove that f = X5 − 3X4 + 2X2 − X + 5 has no roots in Q.

Solution. Clearly, a factorisation f = g1 · · · gk exists with gi ∈ Z[X] irre-

ducible. Suppose that f has a root in Q. Then some gi has. By Gauss’ lemma,

gi is irreducible in Q so it must be of degree 1, say, gi = aX − b. Then

X5 − 3X3 + 2X2 − X + 5 = f = (aX − b)(c0X4 + · · · + c4)

for some ci ∈ Z. By looking at the first and last coefficients we find ac0 = 1

(say a = 1) and 5 = −bc4. So the root b of gi = X − b is an integer, and a

divisor of 5. So b is in {−1, 1,−5, 5}. Try them all and find that none is a

root of f . �

Theorem 47. Let f ∈ Z[X]. Let Fp = Z/(p) and let φ: Z → Fp be the

natural map. Denote the extension Z[X] → Fp[X] by φ too. Suppose that

φ( f ) is irreducible in Fp[X] and has the same degree as f . Then f ∈ Q[X] is

irreducible.

Proof. Note that f is not constant (otherwise φ( f ) isn’t irreducible). We

may also suppose that f is primitive; for otherwise, divide it by the gcd of its

coefficients, which is coprime to p by (1). By proposition 43b (with A = Z

and K = Q) it is enough to prove that f is irreducible in Z[X].
Suppose f = gh with g, h ∈ Z[X]. Then φ( f ) = φ(g)φ(h). As φ( f )

is assumed to be irreducible in Fp[X] one among φ(g), φ(h) has the same

degree as φ( f ), say φ(g) has. Then deg g ≥ degφ(g) = degφ( f ) = deg f .

It follows that f is irreducible in Z[X] as required. �

Example 48: Irreducible polynomials over F2. We will compute all irreducible

polynomials in F2[X] of degree d ≤ 4.

d = 1. Such polynomials are always irreducible and they are X, X + 1.

d = 2. Irreducible polynomials of degree ≥ 2 are not divisible by X nor

X + 1, that is, the constant coefficient is not 0 and the sum of the coefficients

is not 0. For d = 2 only

X2 + X + 1

remains which is indeed irreducible.

d = 3. From now on we write, for example, 1101 instead of X3 + X2 + 1.

A polynomial of degree 3 is irreducible if and only if it has no linear factor.

So

1101 and 1011

is a complete list of irreducible polynomials of degree 3.

d = 4. The polynomials of degree 4 without linear factor are 11001,

10101, 10011, 11111. The only reducible polynomial among them is (X2 +
X + 1)2 = (111)2 = 10101. So

11001, 10011 and 11111
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is a complete list of irreducible polynomials of degree 4.

Applying theorem 47 we find lots of irreducible polynomials over Q. For

example, 3X4 + 5X3 − 2X2 + 5 is irreducible in Q[X] because mod 2 it is

11001 which is irreducible.

Theorem 49: Eisenstein. Let A be a UFD, K = Frac A. Let p ∈ A be an

irreducible element. Let f = ∑m
i=0 ai Xi ∈ A[X] be a nonconstant primitive

polynomial satisfying

(1) am 6∈ (p),

(2) ai ∈ (p) for 0 ≤ i ≤ m − 1,

(3) a0 6∈ (p2).

(We call f Eisenstein at p). Then f is irreducible in A[X] and K[X].

Proof. By Gauss’ lemma, it is enough to prove that f is irreducible in A[X].
Suppose g, h ∈ A[X] are such that f = gh. Write g = ∑ bi Xi, h = ∑ ci Xi.

We have a0 = b0 c0. By assumptions (2) and (3) precisely one of b0, c0 is in

(p). Say b0 ∈ (p) and c0 6∈ (p).
By induction on k we shall prove that bk ∈ (p) if k < m. It is true for

k = 0. Let 0 < k < m. Then

(p) ∋ ak =
k

Σ
i=0

bi ck−i =
( k−1

Σ
i=0

bi ck−i

)

+ bk c0.

The factors bi in the last sum are all in (p). It follows that bk c0 ∈ (p). As

(p) is a prime ideal not containing c0 it must contain bk. This proves that

bk ∈ (p) whenever k < m. We have g 6∈ pA[X], for otherwise f ∈ pA[X],
contradicting (1). Thus g has the same degree as f . As f is assumed to be

primitive and nonconstant, it is irreducible in A[X] as promised. �

Example 50. Let p be a prime number. We shall prove that the cyclotomic

polynomial

φp(X) = Xp−1 + Xp−2 + · · · + 1 =
Xp − 1

X − 1

is irreducible. We have

φp(Y + 1) =
(Y + 1)p − 1

Y
=

p

Σ
k=1

(

p

k

)

Yk−1.

This is an Eisenstein polynomial at p hence is irreducible.

Example 51. We shall prove that f = X5 + Y4 + Y3 is irreducible in Q[X, Y]
and Q(Y)[X]. In Eisenstein’s criterion, put A = Q[Y], so that K = Q(Y).
Then f is Eisenstein at the irreducible element p = 1 + Y and the claim

follows.

3.2 Field extensions

Notation 52. Let A be a ring. The notation A[x1, . . . , xn] has two possible

meanings both of which we shall encounter. Firstly, it may denote the ring of
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polynomials over A in n variables x1, . . . , xn. The second meaning is that a

ring B containing A is understood, containing x1, . . . , xn; then A[x1, . . . , xn]
denotes the smallest subring of B containing A ∪ {x1, . . . , xn}.

In order to make it clear which meaning applies, we agree that elements

of rings are denoted by small or greek letters except if they are variables, in

which case they are denoted by capital letters. Thus for A[X] the first notion

is meant, for A[x] the second is.

The same story applies to fields instead of rings and round brackets (·)
instead of square ones [·]. For example, K(X) := Frac K[X] is the field of

rational functions over a field K, but K(x) indicates that a field L ⊃ K and

an element x ∈ L have been specified earlier on, and K(x) is the smallest

subfield of L containing K ∪ {x}.

We always have A[x1, . . . , xn] ⊂ A(x1, . . . , xn) because every field is a

ring. If A(x1, . . . , xn) is defined then it equals Frac A[x1, . . . , xn].

A field extension or simply extension is a pair (K, L) of a field L and a

subfield K. Other notations are K ⊂ L and L/K.

Example 53. Here is a baby example of a field extension, aiming to get us

used to field extensions and the questions that interest us. Our methods can

be shortened in many places once we know more of the theory to come, so

don’t take our solution as the last word.

(a) Prove that
√

2 ∈ R is irrational.

(b) Prove that 1,
√

2 are independent over Q.

(c) Let K = {a + b
√

2 ∈ R | a, b ∈ Q}. Prove that K is a subfield of R.

(d) Let L be a subfield of K. Prove that L = Q or L = K.

(e) Prove that Q[
√

2] = Q(
√

2) = K.

(f) Define σ: K → K by σ(a + b
√

2) = a − b
√

2. Prove that σ is a field

automorphism of K.

(g) Let φ be a field automorphism of K. Prove that φ(
√

2) is either
√

2 or

−
√

2.

(h) Prove that φ = 1 or φ = σ .

Solution. (a). Suppose not:
√

2 = p/q with p, q ∈ Z coprime. Then 2q2 =
p2. Then p2 is even, so p is even. Then p2 is divisible by 4, hence so is 2q2.

So q is even, contradiction.

(b). This is immediate from (a).

(c). Let x, y ∈ K. We must show that x − y, xy and x−1 are in K (if

x 6= 0). For x − y this is easy. For xy, write x = a + b
√

2, y = c + d
√

2 with

a, b, c, d ∈ Q. Then

xy = (a + b
√

2)(c + d
√

2) = (ac + 2bd) + (ad + bc)
√

2 ∈ K.

For x−1, we have

1

x
=

1

a + b
√

2

a − b
√

2

a − b
√

2
=

a − b
√

2

a2 − 2b2
∈ K.
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(d). By proposition 39 we know that Q is the smallest subfield of K.

Suppose that L 6= Q, say, x = a + b
√

2 ∈ L r Q with a, b ∈ Q. Then b 6= 0

and
√

2 = (x − a)b−1 ∈ L. So, for all c, d ∈ Q we have c + d
√

2 ∈ L. So

L = K.

(e). The inclusion Q[
√

2] ⊂= Q(
√

2) is trivial. The inclusion Q(
√

2) =
K holds because K is a field by (c). Finally K ⊂ Q[

√
2] is clear from the

definition of K.

(f). In order to show that σ is a ring homomorphism K → K, we must

show σ(1) = 1, σ(x + y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y) for all

x, y ∈ K. Writing x = a + b
√

2, y = c + d
√

2 we have

σ(x)σ(y) = (a − b
√

2)(c − d
√

2) = (ac + 2bd) − (ad + bc)
√

2

= σ
(

(ac + 2bd) + (ad + bc)
√

2
)

= σ
(

(a + b
√

2)(c + d
√

2)
)

= σ(xy).

Do the other cases yourself. Finally, we observe that σ is bijective and is

therefore a ring (hence field) automorphism of K.

(g). We have

(φ(
√

2))2 = φ(
√

2
2
) because φ is a field automorphism

= φ(2)

= 2 because φ is a field automorphism.

So φ(
√

2) is a square root of 2 in K. In other words, it is a zero of the

polynomial X2 − 2 = (X −
√

2)(X +
√

2) and must therefore be
√

2 or −
√

2.

(h). For all a, b ∈ Q, we have φ(a + b
√

2) = a + bφ(
√

2). So if φ

preserves
√

2 then φ = 1. Also, if φ changes the sign of
√

2 then φ = σ . �

Let L be a ring containing a field K. (Often L is a field too). On L we

can then put a structure of a vector space over K as follows. Addition in the

vector space L is addition in the ring L. Scalar multiplication (a, x) 7→ ax
(a ∈ K, x ∈ L) is a particular case of multiplication in the ring L. Convince

yourself that this makes L into a vector space over K.

If K ⊂ L are fields, we define the degree [L : K] := dimK(L), that is, the

dimension of L as vector space over K. It is a positive integer or infinite.

Example 54. As we saw in example 53, {1,
√

2} is a Q-basis for Q(
√

2) and

therefore [Q(
√

2) : Q] = 2.

Example 55. We have [K : K] = 1 for all fields. Conversely, if [L : K] = 1

then L = K.

3.3 Primitive extensions

A field extension L/K is said to be primitive if there exists α ∈ L such that

L = K(α).



24 MA3D5 Galois Theory

Definition 56. Let K ⊂ L be fields and α ∈ L. We say that α is algebraic

over K if there exists a nonzero polynomial f ∈ K[X] such that f (α) = 0.

Otherwise we call α transcendental over K.

Example 57. The complex numbers e and π are transcendental over Q. For e
this was proved by Hermite in 1873, and for π by von Lindemann in 1882.

These results don’t belong to Galois theory but rather a branch of number

theory. Not much more is known; for example, it is unknown whether e + π

is transcendental.

Exercise (3.1) In this exercise, we will see that transcendental elements

behave just as variables.

Let K be a field and α an element of a larger field. Suppose that α is

transcendental over K. Then there exists a unique isomorphism of fields

h: K(X) → K(α) such that h(X) = α and h(c) = c for all c ∈ K.

The case of algebraic α behaves as follows.

Proposition 58. Let K be a field and α be an element of a larger field. Suppose

that α is algebraic over K. Let f ∈ K[X] be a monic polynomial of minimal

degree such that f (α) = 0. Write n = deg f . Then:

(a) f is unique.

(b) f is irreducible over K.

(c) A polynomial g ∈ K[X] satisfies g(α) = 0 if and only if g is a multiple

of f .

(d) The elements 1,α,α2, . . . ,αn−1 are a K-basis of K(α).

(e) [K(α) : K] = n.

(f) K(α) = K[α].

Proof. Proof of (a). Let f1, f2 both satisfy the requirements, and suppose

that f1 6= f2. Then deg( f1) = deg( f2). Let c be the leading coefficient of

f1 − f2 and put g = c−1( f1 − f2). Then deg(g) < deg( f1) = deg( f2). By

the assumption that f1(α) = 0 and f2(α) = 0 we have g(α) = 0, which is a

contradiction because deg( f1) is minimal.

Proof of (b). Let f = gh with g, h ∈ K[X]. We need to prove that g or

h is invertible in K[X]. We may suppose that g and h are monic. We have

0 = f (α) = g(α) · h(α), so g(α) = 0 or h(α) = 0; say g(α) = 0. Then

deg(g) ≥ deg( f ) because deg( f ) is minimal among all monic polynomials in

K[X] vanishing at α. It follows that g = f and h = 1 as required.

Proof of (c). Let g ∈ K[X]. If g is a multiple f h of f (h ∈ K[X]) then

certainly g(α) = 0. As to the converse, suppose that g(α) = 0. By division

with remainder (theorem 2) there are q, r ∈ K[X] such that g = q · f + r
and deg(r) < deg( f ). Now r(α) = 0. But there are no nonzero polynomials

in K[X] vanishing at α of degree smaller than f , so r = 0. So g = q · f as

required.

Proof of (d). We need to prove that 1,α,α2, . . . ,αn−1 are spanning and

independent.
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Independent. Suppose ∑n−1
k=0

ck αk = 0 with ck ∈ K, not all zero. On

defining g ∈ K[X] by g = ∑n−1
k=0

ck Xk we have g(α) = 0 and deg(g) <

deg( f ). If c is the leading coefficient of g then c−1g is monic and we obtain

a contradiction as deg( f ) is minimal. This proves independent.

Spanning. Let A be the subspace of K(α) spanned by 1,α,α2, . . . ,αn−1.

If we show that A is a field it will follow that A = K(α). First we prove

K[α] ⊂ A. Let β ∈ K[α], say, β = ∑k ck αk with ck ∈ K. Put g = ∑k ck Xk.

By division with remainder (theorem 2) there are q, r ∈ K[X] such that g =
q · f + r and deg(r) < deg( f ). Then β = g(α) = r(α) ∈ A. This proves that

K[α] ⊂ A. In order to prove that A is a field, let β ∈ A be nonzero. The

map L: A → A, γ 7→ βγ is a K-linear map. Moreover, L is injective, because

L(γ) = 0 implies βγ = 0 and therefore γ = 0. Thus, L is an injective linear

map from a finite dimensional vector space A over K to itself, and therefore

is surjective by things you learned in linear algebra. So there exists δ ∈ A
such that L(δ) = 1, that is, βδ = 1, and therefore β has an inverse δ ∈ A.

This proves that A is a field and the proof of spanning is complete.

Parts (e) and (f) follow immediately from (d). �

Definition 59. Let K be a field and let α be an algebraic element of a field

extension of K. The monic polynomial f ∈ K[X] of minimal degree such

that f (α) = 0 (which is unique by proposition 58a) is called the minimum

polynomial over K of α, and is written f = mpK(α). The degree of mpK(α)
is written degK(α) and called the degree over K of α.

Exercise (3.2) Let K ⊂ L be fields. Let f ∈ K[X] be irreducible and let

α ∈ L be a root of f . Prove that f is the minimum polynomial of α over K.

Example 60. Let f = X3 + X + 1 and let α be an element in a field contain-

ing Q such that f (α) = 0. It can be shown that f ∈ Q[X] is irreducible.

Therefore, {1,α,α2} is a Q-basis of Q(α) by proposition 58d. Thus α−2 is of

the form c0 + c1 α + c1 α2 for unique c0, c1, c2 in Q. Here is how to find the

ci.

The polynomials f and g := X2 are coprime so there are unique polyno-

mials p, q ∈ Q[X] such that p f + qg = 1 and deg q < deg f . We find p, q
by Euclid’s algorithm for polynomials. The result is (1 − X) · f + (X2 − X +
1) · g = 1. Substituting α for X gives (1 −α) · f (α) + (α2 −α + 1) ·α2 = 1,

whence α−2 = α2 −α + 1.

3.4 Existence and uniqueness of primitive extensions

Definition 61. Let L1/K and L2/K be two field extensions. By a K-homo-

morphism f : L1 → L2 we mean a ring homomorphism f such that f (c) =
c for all c ∈ K. The set of K-homomorphisms from L1 to L2 is written

HomK(L1, L2).

Let K, L be fields and let σ: K → L be a ring homomorphism. We call

(σ , K, L) a field extension (in the wide sense). This is indeed very similar

to a field extension (in the usual or narrow sense) because L/σ(K) is a field
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extension, and it is easy to prove that σ is injective, whence K and σ(K)
are isomorphic. Conversely, every field extension L/K gives rise to a field

extension (i, K, L) in the wide sense by putting i: K → L to be the inclusion.

Most notions and results about field extensions in the narrow sense ex-

tend to extensions in the wide sense. We won’t always make the generalisa-

tions explicit and you should be able to reconstruct and use the generalisa-

tions yourself when necessary.

In order to be complete and consistent one would have to state and prove

everything about extensions in the wide sense rather than the narrow sense.

On the other hand, for field extensions in the narrow sense the notation is

simpler.

For example, the generalisation of definition 61 is as follows. If (σ1, K, L1)
and (σ2, K, L2) are field extensions of K in the wide sense then a K-homomor-

phism f : L1 → L2 is by definition a ring homomorphism such that σ2 ◦ f =
σ1.

The following easy result shows a crucial property of ring homomor-

phisms and an analogous property of K-homomorphisms. Parts (a) and (b)

are analogous.

Lemma 62.

(a) Let s: A → B be a homomorphism of rings and f ∈ Z[X] a polynomial.

Then s( f (a)) = f (s(a)) for all a ∈ A.

(b) Let L1/K and L2/K be field extensions. Let s: L1 → L2 be a K-homo-

morphism and let f ∈ K[X] be a polynomial. Then s( f (a)) = f (s(a))
for all a ∈ L1.

(c) Let K(α)/K and K(β)/K be field extensions with α and β algebraic

over K. Let s: K(α) → K(β) be a K-isomorphism such that s(α) = β.

Then α and β have the same minimum polynomial over K.

Proof. (a). Write f = ∑i ci Xi with ci ∈ Z. Then

s( f (a)) = s Σ
i

ci ai = Σ
i

s(ci ai) = Σ
i

s(ci) s(ai)

= Σ
i

ci s(ai) = Σ
i

ci s(a)i = f (s(a)).

(b). Write f = ∑ ci Xi with ci ∈ K. Then

s( f (a)) = s Σ ci ai = Σ s(ci) s(a)i because s is a ring homomorphism

= Σ ci s(a)i because s is a K-homomorphism

= f (s(a)).

(c). Let f be the minimum polynomial of α over K. By (b) we have

0 = s(0) = s( f (α)) = f (s(α)) = f (β). By exercise 3.2, f is the minimum

polynomial of β as well. �

A strong converse to (c) is proposition 63b below.

Note that every minimum polynomial is irreducible by proposition 58b.

A converse to this is part (a) of the following proposition.
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Proposition 63. Let K be a field and let f ∈ K[X] be an irreducible monic

polynomial. Then the following hold.

(a) There exists an element α in a larger field whose minimum polynomial

over K is f .

(b) Consider two primitive field extensions K(α)/K and K(β)/K such that

α and β have equal minimum polynomials over K. Then there exists a

unique K-isomorphism h: K(α) → K(β) such that h(α) = β.

(c) Consider two field extensions K(α)/K and L/K with α algebraic over

K. Then there exists a bijection

φ: HomK

(

K(α), L
)

→
{

roots in L of mpK(α)
}

defined by φ(g) = g(α).

Remark 64. The polynomial X2 + 1 ∈ R[X] is irreducible. By proposition 63a

there exists an extension R(α) of R such that the minimum polynomial of α

is X2 + 1. Of course, we know this field: it is C.

Usually we define C to be R×R (as a set) with specific ring structure. If

you try to prove proposition 63a by a similar method (that is, first you define

K(α) to be Kn as a set, and then you give it some ring structure) you end up

in a mess. The right way to prove it is given below and is a first highlight of

abstract ring theory.

In Galois theory the proof of this proposition is not relevant though; we

can and will use proposition 63 without understanding its proof. We provide

the proof for completeness’ sake.

Proof. Proof of (a). By proposition 58b, f is irreducible in K[X]. By proposi-

tions 32 and 33, the ideal ( f ) ⊂ K[X] generated by f is therefore maximal.

By proposition 30 this implies that L := K[X]/( f ) is a field. Let p: K[X] → L
be the natural map: p(g) = g + ( f ). Put α = p(X). Then f (α) = 0 because

f (α) = f (X + ( f )) = f (X) + ( f ) = ( f ) = 0.

Proof of (b). Existence. Define the ring homomorphism θ: K[X] → K(α)
by θ(g) = g(α) and θ(c) = c for all c ∈ K.

Let I = kerθ and let θ(K[X]) denote the image of θ. By proposition 36

(first isomorphism theorem) there is a ring homomorphism θ′: K[X]/I →
θ(K[X]) defined by θ′(g + I) = θ(g); it satisfies θ′(X + I) = α.

By proposition 58c we have I = ( f ). Also, θ(K[X]) = K[α] = K(α) by

proposition 58f. Thus, we have a K-isomorphism θ′: K[X]/I → K(α) taking

X + I to α. Likewise, there exists a K-isomorphism θ′′: K[X]/I → K(α)
taking X + I to β. The quotient of θ′ and θ′′ is a K-isomorphism K(α) →
K(β) taking α to β. This proves existence.

Uniqueness. Let g and h be K-isomorphisms K(α) → K(β) taking α to

β, Then g, h agree on K ∪ {α} hence on K(α), that is, g = h. This proves

uniqueness and thereby (b).

Proof of (c). Write f = mpK(α). Firstly, note that φ(g) is always a root

of f by lemma 62c.

That φ is injective is proved the way unicity is in part (b).

Finally, we prove that φ is surjective. Let β ∈ L be a root of f . By (b),

there exists a K-isomorphism g: K(α) → K(β) taking α to β. Then g is



28 MA3D5 Galois Theory

certainly a K-homomorphism K(α) → L, and φ(g) = g(α) = β. �

3.5 The tower law

Next we consider a tower of three fields K ⊂ L ⊂ M. Then M is a vector

space over both L and K. In order to distinguish the two we say K-basis,

spanning over L and so on.

Theorem 65: Tower law. Let K ⊂ L ⊂ M be fields. Then [M : K] is finite if

and only if [M : L] and [L : K] are both finite. If they are then

[M : K] = [M : L][L : K].

Proof. Suppose that [M : K] is finite. Let z1, . . . , zn be a K-basis of M. Then

the zi span M as an L-vector space, so [M : L] < ∞. Suppose that [L :

K] = ∞. Then there are infinitely many K-linearly independent elements

in L; they are also in M and show that [M : K] = ∞, a contradiction. So

[L : K] < ∞.

In the remaining part of the proof, we assume that [M : L] and [L : K]
are finite. Let x1, . . . , xm be an L-basis of M and y1 . . . , yℓ a K-basis of L. To

finish the proof, we shall prove that B = {xi y j | 1 ≤ i ≤ m, 1 ≤ j ≤ ℓ} is a

K-basis of M. We must show that they span and that they are independent.

Spanning. Let z ∈ M. We may write z = ∑i ai xi (ai ∈ L) because the xi

span M over L. We may write ai = ∑ j bi j y j (bi j ∈ K) because the y j span L
over K. We get z = ∑i ai xi = ∑i(∑ j bi j y j) xi = ∑i j bi j xi y j. This proves that

B spans M over K.

Independent. Let ∑i j bi j xi y j = 0 and bi j ∈ K. We need to prove that bi j =
0 for all i, j. We have 0 = ∑i(∑ j bi j y j) xi, which is a linear combination of

the xi whose coefficients ai := ∑ j bi j y j are in L. As the xi are L-independent,

we find ai = 0 for all i. Now fix i, and consider the equation 0 = ∑ j bi j y j.

The right hand side is a K-linear combination of the y j. As the y j are K-

independent, we find bi j = 0 for all j as promised. �

Example 66. Recall that we proved in example 53d that there are no fields

properly between Q and K := Q(
√

2). Prove this again using the tower law.

Solution. We know already that [K : Q] = 2. Suppose that Q ⊂ L ⊂ K are

fields. The tower law gives 2 = [K : Q] = [K : L][L : Q]. But 2 is prime so

either [K : L] = 1 or [L : Q] = 1. The first case implies that L = K and the

second that L = Q. �

Example 67. Put α =
√

2 +
√

5.

(a) Find a monic f ∈ Q[X] of degree 4 such that f (α) = 0.

(b) Prove Q(
√

2,
√

5) = Q(α).

(c) Prove
√

5 6∈ Q(
√

2).

(d) Prove that f is irreducible.
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Solution. (a). We have

2 = (
√

2)2 = (α −
√

5)2 = α2 − 2
√

5α + 5,

2
√

5α = α2 + 5 − 2, (68)

20α2 = (α2 + 3)2

so f = (X2 + 3)2 − 20X2 does it.

(b). The inclusion ⊃ is obvious. By (68) we have

√
5 =

α2 + 3

2α
∈ Q(α).

It follows that
√

2 = α −
√

5 ∈ Q(α). This proves the reverse inclusion ⊂.

(c). Suppose that
√

5 ∈ Q(
√

2), say
√

5 = a + b
√

2 with a, b ∈ Q. Then

5 = (a + b
√

2)2 = (a2 + 2b2) + (2ab)
√

2.

We know that 1,
√

2 are linearly independent over Q so 2ab = 0 so

5 = a2 or 5 = 2b2

both of which are absurd.

(d). We know that [Q(
√

2,
√

5) : Q(
√

2)] = 2 by (c) and [Q(
√

2) : Q] = 2.

Q(
√

2,
√

5) = Q(α)

Q(
√

2)

Q

2

2

4

By the tower law we find [Q(α) : Q] = 4. By proposition 58 the degree of

the minimum polynomial g of α over Q has degree 4. It is also a divisor of f
by (a) so f = g. So f is irreducible. (It is harder to prove f to be irreducible

by the methods of section 3.1). �

3.6 Exercises

(3.3) In example 48 we computed the irreducible polynomials in F2[X] of

degree ≤ 4. Compute those of degree 5.

(3.4)

(a) Prove that h := X3 + 6 X − 11 ∈ Z[X] is irreducible.

(b) Prove that s := X13 + X10 + X7 + X4 + 1 has no roots in Q. Hint: Use

Gauss’ lemma.

(c) Prove that r := X5 + X2 + 1 ∈ F2[X] is irreducible. (Hint: if reducible,

it must have a linear or quadratic factor. Try them all.) Deduce that the

lift X5 + X2 + 3 ∈ Q[X] is irreducible.

(d) Prove that f := X7 + 6 X3 + 12 ∈ Z[X] is Eisenstein. Deduce that it is

irreducible in Z[X] and in Q[X].
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(e) Prove that g := 2 X10 + 4 X5 + 3 ∈ Q[X] is irreducible. Hint: which

related polynomial is Eisenstein? Use the result of exercise (3.5) below.

(f) Prove that X8 + (Y4 − 1) X3 + (Y4 − Y) is irreducible in Q(Y)[X].

(3.5) Let K be a field. Let a, b, c, d ∈ K be such that ad − bc 6= 0. Let

f ∈ K[X] be a polynomial of degree n > 1.

(a) Prove that the expression

g(X) := (cX + d)n f
( aX + b

cX + d

)

is in K[X] and of degree ≤ n.

(b) Prove that f is irreducible if and only if g is irreducible of degree n.

(3.6) Prove that the cyclotomic polynomial φn is irreducible over Q if n is

power of a prime number.

(3.7) Let K be a field, A a nonzero ring, f : K → A a ring homomorphism.

(a) Prove that f is injective. Note: by definition, we have f (1K) = 1A. One

often writes f (t) instead of t if t ∈ K, and calls A a K-algebra.

(b) Prove that A becomes a vector space over K on defining addition in (the

vector space) A to be addition in (the ring) A, and scalar multiplication

to be (t, u) 7→ ( f (t)) u (t ∈ K, u ∈ A).

(c) Let a ∈ A. Prove that the map A → A, u 7→ au is K-linear.

(3.8) Let A be an integral domain containing a field K. Let a ∈ A be

nonzero. Recall from exercise (3.7) that A is a vector space over K and

that the map

ma: A −→ A,

x 7−→ ax

is K-linear. Assume that A has finite K-dimension.

(a) Prove that ma is injective.

(b) Prove that ma is surjective.

(c) Prove that A is a field.

(3.9) Consider fields K ⊂ L ⊂ K(X) and suppose that K 6= L. Prove that

[K(X) : L] < ∞.

(3.10) Let a be an element in an extension of Q such that a3 + 3a + 3 = 0.

Express each of 1/a, 1/(1 + a) and 1/(1 + a2) in the form c2a2 + c1a + c0

with ci ∈ Q.

(3.11) Consider the polynomials f = X5 + X2 + 3, g = X3 + 2 over Q.

Using the Euclidean algorithm, find p, q ∈ Q[X] such that p f + qg = 1, with

q of degree ≤ 4. Find h ∈ Q[X] such that if f (α) = 0 (that is, α is a root of f
in some field extension) then h(α) = g(α)−1.

(3.12) Put α = 81/4 ∈ R and β = α +α2.
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(a) Prove that Q(α) = Q(β). [Hint: express β(β − 2α2) in terms of α.]

(b) Compute [Q(α) : Q] and prove your result.

(3.13) Let L/K be an algebraic field extension. Let λ ∈ L be nonzero and

such that λ and λ2 have the same minimum polynomial over K. Prove that λ

is a root of unity.

(3.14) Let L ⊃ K be a field extension such that [L : K] = 2.

(a) If K has characteristic 2, prove that there exists β ∈ L r K such that

β2 ∈ K or β2 + β ∈ K.

(b) If K has characteristic 6= 2, prove that there exists β ∈ L r K such that

β2 ∈ K.

(3.15) Let p be a prime number and α = cos(2π/p). Prove [Q(α) : Q] =
(p − 1)/2.

(3.16) Let K be a field. Let α be an element in a larger field whose minimum

polynomial over K has odd degree. Prove that K(α) = K(α2).

(3.17) (a) Let α = 5
√

2 ∈ R. Prove [Q(α) : Q] = 5.

(b) Let β = α +α3. Use the tower law to prove Q(α) = Q(β).

(3.18) Suppose that K ⊂ L is a field extension. Let α ∈ L be algebraic over

K of degree m and β ∈ L be algebraic over K of degree n.

(a) Prove that α + β is algebraic over K of degree ≤ mn.

(b) If m, n are coprime, prove [K(α, β) : K] = mn.

(c) Let α := 21/2 ∈ R, β := 51/3 ∈ R, γ := α + β. Prove Q(α, β) = Q(γ).

(d) Prove that γ is of degree 6 over Q.

(e) Compute the minimal polynomial of γ over Q.

(3.19) Let ε = exp(2π i/7), α = ε +ε2 +ε4, β = ε3 +ε5 +ε6.

(a) Compute the elementary symmetric polynomials in α, β and prove that

they are in Q.

(b) Find d ∈ Q such that α ∈ Q(
√

d).

(c) Compute the elementary symmetric polynomials in ε,ε2,ε4 and prove

that they are in Q(α). (So the 7-gon can be constructed by solving

quadratics and a single cubic).

(3.20) Prove that the 13th roots of unity can be obtained by solving a single

cubic equation and some quadrics.

(3.21) Let p be a prime number. Prove that for any field K and any a ∈ K,

the polynomial f (X) = Xp − a is either irreducible, or has a root.

[Hint: If f = gh, factorise g, h into linear factors over a bigger field, and

consider their constant terms.]

(3.22) Let p be a prime number and K a field over which Xp − 1 splits

into linear factors. Suppose that L/K is a field extension, and that α ∈ L
has minimal polynomial f ∈ K[X] of degree n coprime to p. Prove that
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K(α) = K(αp); find a counterexample if K does not contain all the pth

roots of 1. [Hint: argue on the degree [K(α) : K(αp)] and use the result of

exercise (3.21).]

(3.23) Let K ⊂ L be an extension having degree [L : K] = n coprime to a

prime number p. Let a ∈ K. Prove that a is a pth power in K if and only if it

is in L.
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4 Foundations of Galois theory

4.1 Closure correspondences

In this subsection, we fix two disjoint sets A, B and a subset R ⊂ A× B, often

known as a binary relation. For all X ⊂ A and Y ⊂ B we define

X† := {b ∈ B | (a, b) ∈ R for all a ∈ X},

Y∗ := {a ∈ A | (a, b) ∈ R for all b ∈ Y}.
(69)

Let P(A) be the power set, that is, the set of subsets of A. We have thus two

maps †: P(A) → P(B) and ∗: P(B) → P(A).

Remark 70. A better but somewhat pedantic approach is to replace P(A) by

P(A) × {1} and P(B) by P(B) × {2}. Here 1 and 2 are labels indicating

whether we’re thinking of a subset of A or one of B. The empty set is a

subset of both A and B, but that’s the only ambiguity not ruled out by our

assumption that A and B are disjoint.

Proposition 71.

(a) For all X ⊂ A, we have X ⊂ X†∗.

(b) For all Y ⊂ B, we have Y ⊂ Y∗†.

(c) For all X1 ⊂ X2 ⊂ A, we have X†
1
⊃ X†

2
.

(d) For all Y1 ⊂ Y2 ⊂ B, we have Y∗
1 ⊃ Y∗

2 .

(e) For all X ⊂ A, we have X† = X†∗†, or briefly, †∗† = †.
(f) For all Y ⊂ B, we have Y∗ = Y∗†∗, or briefly, ∗†∗ = ∗.

Proof. These are almost trivial as we shall see. We write out the proofs in

detail.

Proof of (a). Let a ∈ X and b ∈ X†. Then (a, b) ∈ R by definition of †. As

this is true for all such b, it implies that a ∈ X†∗ by definition of ∗.

Proof of (c). Let b ∈ X†
2
. Then (a, b) ∈ R for all a ∈ X2, by definition of

†. So (a, b) ∈ R for all a ∈ X1 (because X1 ⊂ X2). This means that b ∈ X†
1

as

required.

Proof of (e). By (a) we have X ⊂ X†∗. Applying (c) with X1 = X and

X2 = X†∗ gives X† ⊃ X†∗†. In order to prove the reverse inclusion, let

b ∈ X†. By definition of ∗ then, (a, b) ∈ R for all a ∈ X†∗. In other words,

b ∈ X†∗†.
The remaining three parts follow by interchanging (A, †) and (B, ∗). �

The (A, †)–(B, ∗) symmetry mentioned in the above proof is often useful.

We call a subset X ⊂ A closed if and only if it is of the form Y∗. This is

equivalent to saying that X = X†∗, by proposition 71f. Closed subsets of B
are defined likewise.

Proposition 72. There is a bijection from the set of closed subsets of A to the

set of closed subsets of B, given by X 7→ X†, and whose inverse is Y 7→ Y∗.



34 MA3D5 Galois Theory

Proof. Almost immediate from proposition 71. �

Of course, X† is defined for all subsets X of A. But the formula X 7→ X†

in proposition 72 assumes that X is closed.

Let us call the bijection given by proposition 72 the closure correspon-

dence. Each time we have two sets A, B and a subset R ⊂ A × B, there is a

closure correspondence.

There are lots of closure correspondences in mathematics, and we touch

upon some of them in exercises 4.2–4.4. But the most famous of all is a

particular closure correspondence called the Galois correspondence which is

at the centre of Galois theory.

Exercises

(4.1) Use the notation of this subsection.

(a) Prove that A is closed. Is ∅ ⊂ A necessarily closed?

(b) Prove that if X1, X2 ⊂ A are closed, then so is X1 ∩ X2. What about

any number of Xi?

(c) Give an example where X1, X2 ⊂ A are closed but X1 ∪ X2 is not.

— ∼ —

To get a feel for closure correspondences in general, we look at a few exam-

ples not used later on in the lectures.

(4.2) [Standard representation of GL(n)]. Let K be a field of at least 3

elements. Let V = Kn, G = GL(n, K) and consider the binary relation R =
{(v, g) ∈ V × G | g(v) = v}. Prove that the closed subsets of V are precisely

the vector subspaces of V. If K has 2 elements, describe the closed subsets of

V in similar terms.

(4.3) [Downsets]. Let (P,≤) be an ordered set. (Some people say partially

ordered set when we say ordered set). Let A = B = P and let R ⊂ A × B
be the binary relation given by R = {(a, b) ∈ A × B | a < b}. Prove that a

subset X ⊂ A is closed if and only if for all x, y ∈ A, if y ∈ X and x ≤ y then

x ∈ X. Also, if X ⊂ A is closed, then X† equals the complement P r X.

(4.4) [Affine varieties]. Let A = Cn and let B = C[X1, . . . , Xn] be the ring

of polynomials in n variables. If a = (a1, . . . , an) ∈ A and f ∈ B, we can

evaluate f at a to obtain a complex number f (a) = f (a1, . . . , an). Consider

the binary relation R = {(a, f ) ∈ A × B | f (a) = 0}. Prove that if a subset

I ⊂ B is closed, then it is a radical ideal (an ideal J in a ring S is said to be

radical if for all f ∈ S and all n > 0, if f n ∈ J then f ∈ J).

The converse is also true and known as Hilbert’s Nullstellensatz: see the

book Undergraduate algebraic geometry by Miles Reid for a one-page proof.

4.2 The Galois correspondence

Definition 73. Let K ⊂ M be fields. The Galois group Gal(M/K) is the

group of field automorphisms of M which fix every element of K.
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It is not hard to show that Gal(M/K) is a group under composition.

Example 74. Here are some examples of Galois groups Gal(M/K).
(a). If K = M then the Galois group is trivial.

(b). Suppose K = R, M = C. Then the Galois group has order 2, and

consists of the trivial element and complex conjugation.

(c). Suppose K = Q, M = Q(
√

2) ⊂ R. Again the Galois group has order

2 as we proved in example 53.

(d). Suppose K = Q and M = Q(α) where α = 21/3 is the real cube root

of 2. We claim that Gal(M/K) is trivial. Let s ∈ Gal(M/K). Then s(α) is a

cube root of 2 and is in R because M ⊂ R. But α is the only cube root of 2

in R so s(α) = α. It follows that s = 1 because M is generated by α.

(e). Let n ≥ 1. Then the Galois group Gal(C(X)/C(Xn)) is cyclic of order

n and generated by s: X 7→ exp(2π i/n) X.

(f). Let K be a field. It can be shown that Gal(K(X)/K) consists of those

K-automorphisms of K(X) taking X to a rational function of the form

aX + b

cX + d

with a, b, c, d ∈ K, ad − bc 6= 0. This group is usually denoted PGL(2, K).

For the rest of this section, we fix a field extension N/K and write G =
Gal(N/K). We now introduce some notation that we use nearly always when

considering a field extension.

We define a binary relation R ⊂ G × N by

R = {(g, x) ∈ G × N | g(x) = x}.

Let †: P(G) → P(N) and ∗: P(N) → P(G) be the maps as in (69). Explicitly:

for H ⊂ G and L ⊂ N we define

H† := {x ∈ N | g(x) = x for all g ∈ H},

L∗ := {g ∈ G | g(x) = x for all x ∈ L}.

Definition 75. As in section 4.1, we can talk about closed subsets of G and

closed subsets of N. Let F denote the set of closed subsets of N and G the set

of closed subsets of G.

As a particular case of proposition 72 we get:

Proposition 76. There exists a bijection F → G given by H 7→ H† and whose

inverse is L 7→ L∗. �

Of course, proposition 76 is virtually worthless unless we can determine

which subsets of G or N are closed. Two easy restrictions are as follows:

Exercise (4.5) Prove that every element of G is a subgroup of G. Prove that

every element of F is a subfield of N containing K.
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Because of exercise 4.5, an element of G (that is, a closed subset of G)

is called a closed subgroup of G. Also, an element of F is called a closed

intermediate field. In general, if P ⊂ Q ⊂ R are fields then we say that Q
is an intermediate field of the extension P ⊂ R.

4.3 The closed fields and subgroups

Proposition 77. Let K ⊂ L ⊂ M ⊂ N be fields. If [M : L] = n < ∞ then

[L∗ : M∗] ≤ n.

Proof. Induction on n, the case n = 1 being trivial. If there exists a field

L0 properly between L and M, then the induction hypothesis tells us that

[L∗ : L∗
0] ≤ [L0 : L] and [L∗

0 : M∗] ≤ [M : L0]. Therefore

[L∗ : M∗] = [L∗ : L∗
0][L

∗
0 : M∗] ≤ [L0 : L][M : L0] = [M : L].

So suppose now that there are no fields between L and M. Then M is of the

form L(α) for some α ∈ M. Let f ∈ L[X] be the minimum polynomial for

α over L. By proposition 58 we have deg( f ) = [M : L] = n. Consider the

set Y of roots of f in M. Then #Y ≤ n. We define a map E: L∗/M∗ → N
(evaluation at α) by

E(gM∗) := g(α).

We need to show that this is well-defined, that is, if gM∗ = hM∗ then g(α) =
h(α). Indeed, if g = hk with k ∈ M∗, then g(α) = h(k(α)) = h(α), showing

that E is well-defined.

For all g ∈ L∗ we have

0 = g(0) because g is a field automorphism

= g( f (α)) because f (α) = 0

= f (g(α)) because g ∈ L∗ and f ∈ L[X]

which proves that E takes values only in Y. If we can prove that E: L∗/M∗ →
Y is injective , then it follows that [L∗ : M∗] = #(L∗/M∗) ≤ #Y ≤ n and we

will be done.

In order to prove that E is injective, assume that E(gM∗) = E(hM∗), that

is, g(α) = h(α). Then g−1h(α) = α. Now g−1h preserves L pointwise (as

both g and h do) and it preserves α, so it preserves L(α) = M pointwise.

So g−1h ∈ M∗, that is, gM∗ = hM∗. This proves that E is injective and the

proof is finished. �

Proposition 78. Let G = Gal(N/K) and let J ⊂ H ⊂ G be subgroups such

that [H : J] = n < ∞. Then [J† : H†] ≤ n.

Proof. Let g ∈ H and x ∈ J†. Then g(x) depends only on the coset C := gJ
(and x) and we shall write C(x) := g(x) in the proof that follows.

Let u0, . . . , un ∈ J†. We need to prove that u0, . . . , un are H†-dependent,

that is, we need to find a0, . . . , an ∈ H†, not all zero, such that ∑i ai ui = 0.

Write H/J = {C1, . . . , Cn}. Consider the equations

n

Σ
i=0

ai · C j(ui) = 0 for all j ∈ {1, . . . , n}. (79)
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These are n linear equations (with coefficients in J†) in n + 1 unknowns ai

which for the moment are allowed to be in J†. By linear algebra, there is a

nonzero solution (ai)i to (79). Pick a nonzero solution with #{i | ai = 0}
maximal. After rescaling and renumbering we may suppose that a0 = 1. The

proof will be finished by proving that ai ∈ H† for all i. To this end, let g ∈ H.

We need to show that g(ai) = ai for all i.
Applying g to (79) gives

n

Σ
i=0

g(ai) · g(C j(ui)) = 0 for all j ∈ {1, . . . , n}.

Now {gC1, . . . , gCn} = {C1, . . . , Cn}; only the order may be different. So

n

Σ
i=0

g(ai) · C j(ui) = 0 for all j ∈ {1, . . . , n}.

This means that (g(ai))i is another solution to (79). Put bi := g(ai) − ai.

Then (bi)i is a solution to (79) with more zero entries than (ai)i because

b0 = g(a0) − a0 = g(1) − 1 = 1 − 1 = 0 (and bi = 0 whenever ai = 0). But

we took {i | ai = 0} to be maximal, so bi = 0 for all i. So g(ai) = ai for all i
and the proof is finished. �

4.4 The main theorem of Galois theory

For a group G acting on a field M we write

MG := {x ∈ M | g(x) = x for all g ∈ G}.

The automorphism group of a field M is written Aut(M).

Definition 80. The field extension M/K is said to be a Galois extension if

there exists a subgroup G ⊂ Aut(M) such that K = MG. We also say that M
is Galois over K in this case.

Let us repeat this important definition in different words. The exten-

sion M/K is Galois if and only if, for all x ∈ M not in K, there exists

g ∈ Gal(M/K) such that g(x) 6= x. Also, M/K is Galois if and only if K
is a closed intermediate field of the extension M/K.

The most important theorem in the course is the following:

Theorem 81. Let M/K be a finite Galois extension and let G, F, G, †, ∗ be as

usual, as explained in section 4.2.

(a) The set of subgroups of G is precisely G. The set of intermediate fields

of M/K is precisely F.

(b) (Main theorem of Galois theory). There exists a bijection from the set

of subgroups of G to the set of intermediate fields of M/K given by

H 7→ H† and whose inverse is L 7→ L∗.

(c) Let H ⊂ J ⊂ G be subgroups. Then [J : H] = [H† : J†].
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Proof. Proof of (a). Recall that every element of F is an intermediate field of

M/K by exercise 4.5. In order to prove the converse, let L be a subfield of

M containing K. Note that K = K∗† because M/K is Galois. Therefore

[L∗† : K] = [L∗† : K∗†]
≤ [K∗ : L∗] by proposition 78

≤ [L : K] by proposition 77.

Also, L ⊂ L∗† by proposition 71b and [L : K] < ∞. Therefore L = L∗†

and L ∈ F. The proof that every subgroup of G is closed is similar. This

finishes the proof of (a). Part (b) follows immediately from part (a) and

proposition 76. Part (c) is an exercise. �

Remark 82. Theorem 81 can be extended to infinite field extensions but this

is not on our syllabus. It turns out that again all intermediate fields are

closed, but the subgroups of G are not necessarily closed. Instead, G becomes

a topological group and a subgroup of G is closed in our sense if and only if

it is closed in the topological sense.

4.5 Examples

There are three ways to obtain examples of field extensions M/K:

(a) Let M be a known field and let G be a subgroup of Aut(M). Then put

K = MG.

(b) Let N be a known field, for example C. Define M, K ⊂ N by specifying

generators.

(c) Let K be a known field. Let M be obtained by adjoining a root of a

specified irreducible polynomial in K[X] as can be done in an essentially

unique way by proposition 63. Make a tower of fields if necessary by

repeating the process.

The techniques provided by this chapter suffice to deal with examples as in

(a). Examples of (b) and (c) (which are essentially equivalent to each other)

are best dealt with after the next two chapters though we shall already work

out one such example below.

Example 83: Subgroups of S3. If you deal with a Galois extension whose

Galois group isomorphic to S3, the symmetric group on 3 objects, it may be

useful to know its subgroups and some more properties which we collect

here without proof.

Let G be a group generated by s, t and suppose that s, t have order 2

and st has order 3. Then G is isomorphic to S3. An isomorphism is given by

φ: G → S3, φ(s) = (12), φ(t) = (23). Here are all subgroups of S3.

1

〈sts〉 〈s〉 〈t〉 〈st〉

S3
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Example 84. Let K = C(X) be the field of rational functions in z over C. Let

ω = exp(2π i/3). Define s, t ∈ Gal(K/C) by

s(X) = X−1, t(X) = ω X−1.

Put G := 〈s, t〉, the group generated by s and t. By theorem 81b, there exists

a bijection between the subgroups of G and the fields between K and KG:

the intermediate field corresponding to a subgroup H of G is KH.

(a) Prove K〈s〉 = C(X + X−1).

(b) Prove G ∼= S3.

(c) List the subgroups of G (by giving generators) and the corresponding

fields between K, KG (by generators).

Warning. The symbols s, t are not functions of one variable. If they were

then one would have, for example,

s(1 + X) = (1 + X)−1 (???)

which is wrong. Correct is

s(1 + X) = s(1) + s(X) = 1 + X−1

because s is a field automorphism.

Solution. (a). Write u = X + X−1. We have C(u) ⊂ K〈s〉 because

s(u) = s(X + X−1) = s(X) + s(X−1) = X−1 + X = u.

By theorem 81c we have [K : K〈s〉] = #〈s〉 = 2. On writing d = [K : C(u)]
we have d ≤ 2 because X is a root of the degree 2 polynomial

Y2 − uY + 1

in C(u)[Y]. By the tower law we must have d = 2 and K〈s〉 = C(u).

C(X) = K

K〈s〉

C(w)

d

2

(b). We have st(X) = s(ωX−1) = ωX so st has order 3. Now G is

generated by s, t and the orders of s, t, st are 2, 2, 3, so G ∼= S3.

(c). The subgroups of G were listed in example 83. Each subgroup H ⊂ G
corresponds to an intermediate field KH by theorem 81. We claim that each

intermediate fields is generated over C by a single function f as follows.

subgroup 1 〈s〉 〈t〉 〈sts〉 〈st〉 G

f X X + X−1 X + ωX−1 X + ω2X−1 X3 X3 + X−3
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Let us explain an algorithm for finding KH by the example of H = G. We

immediately see that C ⊂ KG. But KG is bigger than C and we need to find

more elements in KG.

Step 1. Choose any element α of K. Let us choose α = X.

Step 2. Compute the orbit A = {h(α) | h ∈ H}. In our case, this is

{

X, ω X, ω2 X, X−1, ω X−1, ω2 X−1
}

.

Step 3. Choose a symmetric function f in #A variables and substitute the

elements of the orbit A for those variables. The result is an element of KH.

In our example, let us choose f = U1 + · · · + U6, the sum of six variables.

Plugging the elements of A in gives f (A) = 0.

Step 4. Find out if KH is generated by the element(s) we found. Well, KG

is not generated by C∪ {0}.

In unsuccesful cases like this we go back to step 3 or step 1 and repeat.

Let us next take f to be the sum of the squares. The sum of the squares

of the elements of A is again 0. Still no luck! But the sum of the cubes is

3(X3 + X3). Therefore we have C(X3 + X−3) ⊂ KG. In fact, these fields are

equal. In part (a) we saw an example of how to prove that two fields like

this are equal. �

Example 85. Here is a baby example of things discussed at length in chap-

ter 6. Let L/K be an extension of degree 2 and suppose that K has charac-

teristic 6= 2. Prove that L/K is Galois and that its Galois group is of order 2.

Solution. Letα be an element of L but not of K. Then L = K(α) (by the tower

law for example). Let f ∈ K[X] be the minimum polynomial of α over K.

Then deg f = 2 by proposition 58. Since X −α divides f in L[X] there exists

β ∈ L such that f = (X −α)(X − β). Therefore the minimum polynomial

of β is also f . By uniqueness of field extensions (proposition 63b) there

exists h ∈ Gal(L/K) such that h(α) = β. We have α 6= β because otherwise

K[X] ∋ f = (X −α)2 = X2 − 2αX + α2 so 2α ∈ K so α ∈ K because 2

is invertible in K, a contradiction. It follows that L/K is Galois. The Galois

group is of order 2 by theorem 81c. �

4.6 Exercises

(4.6) In this exercise you will fill some gaps in example 84.

(1) Prove that K〈st〉 = C(X3).

(2) Prove that KG = C(v) where v = X3 + X−3.

(3) Compute the minimum polynomial of u = X + X−1 over C(v).

(4.7) Let K be a field and M = K(Z) the field of rational functions in a

variable Z. Let G ⊂ Gal(M/K) be the subgroup generated by

s: Z 7→ 1 − Z and t: Z 7→ Z−1

and L = MG.
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(a) Prove that the orders of (respectively) s, t, st are (respectively) 2, 2, 3.

[It follows that there is an isomorphism G → S3, s 7→ (12), t 7→ (23),
don’t prove this.]

(b) Write

y =
Z3 − 3Z + 1

Z(Z − 1)
.

Prove M〈st〉 = K(y).

(c) Prove y + s(y) = 3.

(d) Deduce from (c) that L = K(w) where w = y s(y). [This can be done

without many calculations.]

(e) List all subgroups of G (by group generators) and the corresponding

intermediate fields (by field generators). Proofs are not necessary.

(f) Let P ⊂ Q be fields. Let a ∈ P and write

f = (X3 − 3X + 1) − a X(X − 1) ∈ P[X].

Suppose that f has a root u ∈ Q. Prove that there are v, w ∈ Q such

that f = (X − u)(X − v)(X − w). Prove also that if char P 6= 3 then

Q/P is Galois.

(4.8) Finish the proof of theorem 81a, that is, prove that every subgroup of

G is closed.

(4.9) Prove theorem 81c, that is, [J : H] = [H† : J†].

(4.10) Let M/K be an extension of degree d < ∞. Suppose that Gal(M/K)
has t elements. Prove that t ≤ d. Prove that t = d if and only if M/K is

Galois.

(4.11) Let n ≥ 1. Prove that the extension C(X)/C(Xn) is Galois. Prove

that Q(X)/Q(X3) is not.

(4.12) In this exercise you prove that every finite group is (isomorphic to) a

Galois group. Let G be a finite group.

(a) Suppose that G acts faithfully on a field M (recall that faithful means

that if g ∈ G is such that g(x) = x for all x ∈ M then g = 1). Let

K = MG := {x ∈ M | g(x) = x for all g ∈ G}. Prove that M/K is

Galois and that Gal(M/K) ∼= G.

(b) Prove that there exists a field M and a faithful G-action on it. Hint: Let

G act on Q(X1, . . . , Xn) for appropriate n by permuting the variables.

(4.13) Let K ⊂ N be fields and write G = Gal(N/K).

(a) Suppose that K ⊂ L ⊂ M ⊂ N are fields. Suppose that L is closed and

that [M : L] = n < ∞. Then M is also closed, and [L∗ : M∗] = n

(b) Let H ⊂ J ⊂ G be subgroups. Suppose that H is closed and that

[J : H] = n < ∞. Then J is also closed, and [H† : J†] = n.

(4.14) Let K ⊂ M be fields and write G = Gal(M/K).

(a) Prove that all finite subgroups of G are closed.
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(b) Suppose that M/K is Galois and let L be an intermediate field of M/K
with [L : K] finite. Prove that M/L is Galois.

(4.15) Let K be an infinite field, M = K(X), G = Gal(M/K).

(a) Prove that M is Galois over K.

(b) Prove that the only closed subgroups of G are the finite subgroups and

G itself.

(4.16) Consider the field extension Q(X)/Q. Prove that the intermediate

field Q(X2) is closed but Q(X3) is not.

(4.17) Let K ⊂ L ⊂ M be fields with L/K and M/L Galois. Assume that

any automorphism of L/K can be extended to M. Prove that M/K is Galois.

(4.18) Let M/K be a finite extension and let G, F, G, †, ∗ be as usual. Prove

that all subgroups of G are closed. Describe all closed intermediate fields.

(4.19) Let K be a field and n ≥ 1. Let GL(n, K) be the group of invertible

n × n matrices or equivalently, the group of invertible K-linear maps from Kn

to itself.

(a) Prove that there exists a GL(2, K)-action on the field K(X) by K-auto-

morphisms, defined by
(

a b
c d

)

(X) =
aX + b

cX + d
.

(b) Prove that an element of GL(2, K) acts trivally on K(X) if and only if it

is scalar. Notation: we let H denote the group of scalar elements and

put

PGL(2, K) := GL(2, K)/H.

We have shown that PGL(2, K) is a subgroup of Gal(K(X), K).

(c) Prove that PGL(2, K) = Gal(K(X)/K). Notation: as usual, PGL(2, K)
acts on the set of 1-dimensional linear subspaces of K2. Instead of the

subspaces

K(a
1
), respectively, K(1

0
)

where a ∈ K we simply write a, respectively, ∞. Thus we obtain a

Gal(K(X)/K)-action on K ∪ {∞}. Roughly, it is given by

(

a b
c d

)

(t) =
at + b

ct + d

for all t ∈ K ∪ {∞}.

(4.20) Let K be a field. The degree of a rational function r ∈ K(X) is defined

to be max(deg p, deg q) where p, q ∈ K[X] are any coprime polynomials such

that p/q = r.

(a) Prove that if r ∈ K(X) is not in K then [K(X) : K(r)] is the degree of r
in the above sense.

(b) Deduce that if r, s ∈ K(X) then deg(r ◦ s) = deg(r) deg(s) where ◦
denotes composition (s substituted for X in r).
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(4.21) Let K be a field of characteristic 6= 3 and write L = K(X). Let α ∈ K
be a primitive cube root of unity. Define s, t ∈ Gal(K(X)/K) by

s(X) = αX, t(X) =
−X + 1

2X + 1

and write G = 〈s, t〉. (You may wish to skip parts (a) and (b) and instead

simply assume that G has 12 elements).

(a) Prove: G preserves {0, 1,α,α2} where we use the Gal(K(X)/K)-action

on K ∪ {∞} constructed in exercise 4.19.

(b) Prove that G is isomorphic to the alternating group A4.

(c) Find p, q ∈ K[X] of degree at most 12 such that r := p/q is in LG but

not in K. Hint: why does the G-orbit of X3 have at most 4 elements?

(d) Deduce that L = K(r).

(4.22) Let K be a finite field of q elements. Recall that G := Gal(K(X)/K)
consists of the elements taking X to

aX + b

cX + d

for some a, b, c, d ∈ K with ad − bc 6= 0. Define s ∈ G by s(X) = X + 1 and

H ⊂ G by

H =
{

X 7→ aX + b
∣

∣ a, b ∈ K, a 6= 0
}

.

(a) Prove K(X)〈s〉 = K( f ) where f = Xq − X. Hint: either use that the

characteristic of K is a prime number dividing q, or that Xq − X =
∏a∈K(X − a).

(b) Prove K(X)H = K( f q−1).

(c) Find g such that K(X)G = K(g).



44 MA3D5 Galois Theory

5 Normal subgroups and stability

Keywords: Algebraic extensions; finite extensions; finitely generated; nor-

mal subgroup; stable intermediate field.

5.1 Algebraic field extensions

Definition 86. A field extension K ⊂ L is said to be algebraic if every element

of L is algebraic over K. A field extension K ⊂ L is called finite if its degree

[L : K] is finite.

Proposition 87. Every finite field extension is an algebraic extension.

Proof. Let L/K be a finite extension, say, of degree n. Let α ∈ L. We must

prove that α is algebraic over K. Now 1,α,α2, . . . ,αn are n + 1 elements

in the n-dimensional vector space L over K and are therefore independent.

That is, we have ∑n
i=0 ci α

i = 0 for some ci ∈ K, not all zero. Write f =

∑n
i=0 ci Xi ∈ K[X]. Then f (α) = 0 and f is nonzero. This proves that α is

algebraic over K as required. �

Proposition 88. Let M/K be fields. Let L be the set of elements of M that are

algebraic over K. Then L is a subfield of M.

Proof. Let α, β ∈ L. We must prove K(α, β) ⊂ L. As α is algebraic over

K, we have [K(α), K] < ∞ by proposition 58e. Since β is algebraic over

K it certainly is over K(α) and it follows that [K(α, β) : K(α)] is finite. By

the tower law, [K(α, β) : K] is finite as well. By proposition 87, K(α, β) is

algebraic over K. This implies K(α, β) ⊂ L as promised. �

5.2 Exercises

(5.1) Let α ∈ C be a root of X3 +
√

3 X +
√

5. Which of our theorems

guarantee(s) that α is algebraic over Q? Find a nonzero f ∈ Q[X] explicitly

such that f (α) = 0.

(5.2) Let K be a field and let α be an element of a larger field. Prove that α

is algebraic over K if and only if [K(α) : K] < ∞.

(5.3) Give an example of an infinite algebraic extension.

(5.4) Prove that a field extension is finite if and only if it is algebraic and

finitely generated. (A field extension is said to be finitely generated if it is

of the form K ⊂ K(α1, . . . ,αn)).

(5.5) Let K ⊂ L ⊂ M be fields. Let α ∈ M and suppose that L/K is alge-

braic. Prove: if α is algebraic over L then it is algebraic over K.
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5.3 Normal subgroups and stability

Let K ⊂ M be fields and f ∈ K[X]. We say that f factors completely over

M or splits into linear factors over M if all monic irreducible divisors of f
in M[X] have degree 1. Equivalently, f is of the form c(X − a1) · · · (X − ak)
for some c ∈ K× and ai ∈ M.

If in addition to this ai 6= a j whenever i 6= j then we say that f splits into

distinct linear factors over M.

Proposition 89. Suppose that M/K is Galois and f is a monic irreducible

polynomial over K having a root u in M. Then f splits into distinct linear

factors over M.

Proof. Let u1, . . . , ur be the distinct elements of {φ(u) | φ ∈ Gal(M/K)}.

Each ui is a root of f and so we have r ≤ deg f . Write g = (X − u1) · · · (X −
ur). In order to show that g ∈ K[X], observe that any automorphism of

M/K merely permutes the ui. It follows that any coefficient of g is fixed

by all automorphisms of M/K, hence is in K because M/K is Galois. By

proposition 58 it follows that f divides g in K[X]. Since also deg g ≤ deg f
we deduce f = g. By construction, g factors over M into distinct linear

factors; hence so does f . �

Recall that a subgroup H of a group G is called normal if gHg−1 = H for

all g ∈ G. If H is a normal subgroup of G then G/H is a group.

Definition 90. Let K ⊂ L ⊂ M be fields. We say that L is stable (relative to

K and M) if φ(L) ⊂ L for all φ ∈ Gal(M/K).

Although for stable L the definition only gives φ(L) ⊂ L it is even true

that φ(L) = L because also φ−1(L) ⊂ L.

Theorem 91. Let K ⊂ L ⊂ M be fields. Suppose that M/K is finite and Galois

and write G = Gal(M/K). Then the following are equivalent.

(a) L∗ is a normal subgroup of G.

(b) L is stable (relative to K and M).

(c) L is Galois over K.

If these are true then G/L∗ is isomorphic to Gal(L/K).

Proof. Proof of (b) ⇒ (a). We must show that if s ∈ G and t ∈ L∗ then

s−1ts ∈ L∗. That is, given x ∈ L we must prove s−1ts(x) = x or its equivalent

ts(x) = s(x). But this is true since x ∈ L and L is stable, whence s(x) ∈ L.

Proof of (a) ⇒ (b). The proof is essentially the above read backwards.

Given any x ∈ L and s ∈ G we must prove s(x) ∈ L. That is, we must show

ts(x) = s(x) for all t ∈ H or its equivalent s−1ts(x) = x. But this is true

because x ∈ L and s−1ts ∈ L∗.
Proof of (b) ⇒ (c). Let x ∈ L. We must find φ ∈ Gal(L/K) such that

φ(x) 6= x. As M/K is Galois, there exists σ ∈ Gal(L/K) such that σ(x) 6= x.

We have σ(L) = L because L is stable. Define φ to be the restriction of σ to
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L. Then φ has the required properties.

Proof of (c) ⇒ (b). Note that L/K is finite and therefore algebraic by

proposition 87. Let u ∈ L and s ∈ Gal(M/K). We know that u is algebraic

over K; let f be its minimum polynomial over K. By proposition 89, f factors

completely in L. Since s(u) is a root of f , it must be in L.

Proof of the final statement. We shall define a group homomorphism

h: G = Gal(M/K) → Gal(L/K). If s ∈ G then h(s) will be the restriction

of s to L. It is clear that h is a group homomorphism. The kernel of h is L∗

so by the first isomorphism theorem for groups, the image of h is isomor-

phic to G/L∗. Also, G/L∗ and Gal(L/K) have equal (finite) cardinalities by

theorem 81c and the result follows. �

5.4 Exercises

(5.6) Let t ∈ Gal(N/K). Let L, M be intermediate fields and H, J ⊂ G be

subgroups.

(a) If M = t(L) then L∗ = t−1M∗t.

(b) If t−1Ht = J then H† = t(J†).

(5.7) Let G = Gal(M/K) and L a closed intermediate field. Show

{g ∈ G | g(L) = L} = {g ∈ G | gL∗ = L∗g}.

(5.8) Give an example of fields K ⊂ L ⊂ M such that M/K is Galois, L is

closed, L/K is Galois, yet L is not stable.
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6 Splitting fields

Keywords: Splitting field; derivative; separable.

6.1 Splitting fields

Definition 92. Let K ⊂ M be fields and let f ∈ K[X]. We say that M is a

splitting field for f over K if f factors completely over M and M is generated

by K and the roots of f in M.

This is the usual name though it would be more consistent to call it a

splitting extension.

If there is no need to call attention to the polynomial we shall simply say

that M is a splitting field over K.

Note that by exercise 5.4, any splitting field over K is of finite degree

over K.

Example 93. Consider f = X3 − 2. The complex roots of f are α, αε, αε2

where α = 3
√

2 ∈ R and ε = exp(2π i/3) ∈ C. It follows that L := Q(α,

αε, αε2) is a splitting field for f over Q. We only need two generators:

L = Q(α,ε). So far we have no method of proving that L is Galois over Q;

from the results in this chapter, it will follow almost immediately that it is.

Proposition 94: Existence and uniqueness of splitting fields.

(a) Let f be a polynomial over a field K. Then there exists a splitting field

for f over K.

(b) For all i ∈ {1, 2}, let Mi/Ki be a splitting field for fi ∈ Ki[X] over

Ki. Let s: K1[X] → K2[X] be an isomorphism such that s(K1) = K2,

s(X) = X and s( f1) = f2. Then the restriction of s to K1 extends to an

isomorphism M1 → M2.

Proof. Proof of (a). Induction on the degree of f . If f is constant then M = K
will do. Suppose now that the degree of f is positive. Let g be an irreducible

factor of f . By proposition 63 there exists an extension K(α)/K such that

g(α) = 0. There exists a polynomial h with coefficients in K(α) such that

f = (X −α) · h. By the induction hypothesis, there exists a splitting field L
for h over K(α). We claim that L is a splitting field for f over K. Indeed, f
factors completely over L because h does. Moreover, L is generated by K(α)
and the roots of h; it follows that L is generated by the roots of f . This proves

that our claim that L is a splitting field for f over K.

Proof of (b). Induction on d = [M1 : K1]. If d = 1 then f1 factors

completely over K1. Therefore so does f2 over K2 and M2 = K2.

Let now d > 1. We may assume that f1 has an irreducible factor g1 of

degree greater than 1. Write g2 = s(g1). For all i ∈ {1, 2}, let αi be a root

of gi in Mi. By proposition 63 the isomorphism s: K1 → K2 can be extended

to an isomorphism K1(α1) → K2(α2). Then Mi is a splitting field for fi

over K(αi) for all i ∈ {1, 2} (exercise). Since [M1 : K1(α1)] < [M1 : K1]
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the induction hypothesis implies that our isomorphism K1(α1) → K2(α2)
extends to an isomorphism M1 → M2. �

Definition 95. The derivative of a polynomial f ∈ K[X] in one variable is

defined as follows: writing f = ∑≥0 an Xn we put f ′ = ∑≥1 n an Xn−1.

Exercise (6.1) Let f , g ∈ K[X], a, b ∈ K. Prove that (a f + bg)′ = a f ′ + bg′

and ( f g)′ = f ′g + f g′.
(This is a straightforward calculation. You shouldn’t use anything you

may have learned in analysis about differentiation.)

Proposition 96. Let K be a field, a ∈ K and f ∈ K[X]. Then (X − a)2 divides

f in K[X] if and only if X − a divides both f and f ′.

Proof. Proof of ⇒. If f = (X − a)2g then f ′ = (X − a)
(

2g + (X − a)g′
)

,

which is divisible by X − a and of course so is f .

Proof of ⇐. Suppose that X − a divides both f and f ′. By theorem 2

there are q, r ∈ K[X] such that f = (X − a)2q + r and deg r < 2. Since

X − a | f we have r = (X − a)c for some constant c ∈ K. Differentiation

gives f ′ = (X − a)
(

2g + (X − a)g′
)

+ c. Since X − a | f ′ we find c = 0. It

follows that f = (X − a)2q as required. �

Proposition 97. Let K be a field let f ∈ K[X] be irreducible. Then the follow-

ing are equivalent.

(1) Let a be an element of a larger field L. Then f is not divisible by

(X − a)2 in L[X]. In words: f has no multiple root in any larger field.

(2) In some splitting field of f over K, f factors into distinct linear factors.

(3) f ′ 6= 0.

Proof. (1) ⇒ (2) is clear.

Proof of (2) ⇒ (3). Suppose on the contrary that f ′ = 0. Let L/K be

a splitting field for f . As f is not constant, it has a root a ∈ L. Therefore

X − a divides both f and f ′ in L[X]. By proposition 96, (X − a)2 divides f , a

contradiction.

Proof of (3) ⇒ (1). Since f is irreducible over K it generates a maximal

ideal ( f ) ⊂ K[X] by proposition 33. We have f ′ 6∈ ( f ) by the assumption

that f ′ 6= 0. Therefore there are p, q ∈ K[X] such that p f + q f ′ = 1. It

follows that in L[X], f , f ′ have no common factor of the form X − a. By

proposition 96, (X − a)2 does not divide f . �

Definition 98. An irreducible polynomial f ∈ K[X] is called separable if it

satisfies the equivalent conditions of proposition 97. An element α, algebraic

over K, is said to be separable over K if its minimum polynomial is separa-

ble over K. An algebraic field extension L/K is said to be separable if all

elements of L are separable over K. To avoid ambiguity we shall not define

separability over K of a polynomial unless it is irreducible over K.

Example 99. Here is the simplest example of a nonseparable extension.
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Let p be a prime number and F a field of characteristic p. Let L = F(T),
the field of rational functions in a variable T. Put K = F(Tp). Write g = Xp −
Tp ∈ K[X]. We shall prove that g is irreducible over K and not separable.

In order to prove that g is irreducible over K, it is helpful to write U
instead of Tp. We get g = Xp − U which is Eisenstein at U in F[U] = F[Tp]
and is therefore irreducible over K.

On the other hand, g = (X − T)p so g has multiple roots in its splitting

field. Therefore, g is not separable.

Notice also that L is a splitting field for g over K. The Galois group for

L/K is trivial because if s ∈ Gal(L/K) then s takes the root T of g to a root

of g; the only possibility is s(T) = T.

Exercise (6.2) Let f ∈ K[X] be irreducible.

(a) Suppose that the characteristic of K is 0. Then f is separable.

(b) Suppose that the characteristic of K is a prime number p. Then f is

inseparable if and only if there exists a polynomial g such that f =
g(Xp).

The following is the second most important result in our course. The

implications [2 ⇒ 1] and [3 ⇒ 1] are often used in applications.

Theorem 100. Let M/K be a finite field extension. The following are equiv-

alent:

(1) M/K is Galois.

(2) M/K is separable and a splitting field.

(3) M/K is a splitting field for a polynomial f whose irreducible factors are

separable.

Proof. Proof of (1) ⇒ (2). Let u be an element of M and f its minimum

polynomial over K. By proposition 89, f factors over M into distinct linear

factors. Therefore u is separable over K. As this is true for every u ∈ M, the

extension M/K is separable.

Let v1, . . . , vr be a K-basis of M, let fi be the minimum polynomial of

vi over K, and write g = f1 · · · fr. By proposition 89 again, each fi factors

completely in M and hence so does g. This shows that M is a splitting field

of g over K.

Proof of (2) ⇒ (3). Suppose that M is a splitting field of f over K. Let

f = f1 · · · fr be the factorisation of f into irreducible factors over K. Each

fi is the minimum polynomial for an element in M which is by assumption

separable over K. Hence each fi is separable over K.

Proof of (3) ⇒ (1). Suppose that M is a splitting field over K of a poly-

nomial f whose irreducible factors are separable. Let G = Gal(M/K). By

exercise 4.10, in order to prove that M/K is Galois, it suffices to prove that

#G ≥ [M : K]. We shall show this by induction on d = [M : K]. If d = 1

there is nothing to prove.

Suppose now that d > 1. Let g be an irreducible factor of f of degree

greater than 1; such a g exists because d > 1. Let u ∈ M be a root of g. Let

u1, . . . , ur be the roots of g in M (say, u = u1), and let i be such that 1 ≤
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i ≤ r. By proposition 63 (uniqueness of primitive extensions) there exists a

K-isomorphism hi: K(u) → K(ui) taking u to ui. Now [M : K(ui)] = d/r < d
so by the induction hypothesis, there are at least d/r ways to extend hi to

a K-automorphism of M. As i varies this yields d distinct elements of G as

required. �

6.2 Actions of Galois groups

In order to determine the structure of a Galois group in practice, it is useful

to embed it into Sn. This can be done as follows. See section 2.5 for the

basics on group actions.

Lemma 101. Let L/K be an extension and write G = Gal(L/K). Let U ⊂ L
be a G-invariant subset of L; then the G-action on L restricts to a G-action

on U, that is, to a homomorphism s: G → Sym(U).

(a) Suppose that L = K(U), that is, L is generated over K by U. Then s is

injective.

(b) Suppose that L/K is a splitting field for f ∈ K[X] and that U is the set

of roots in L of f . Then U is G-invariant and L = K(U). In particular,

G acts faithfully on U.

Proof. (a). Suppose that g ∈ G is such that s(g) = 1. Then g preserves U
pointwise. Therefore g preserves any element in the ring K[U] by proposi-

tion 62b and indeed any element in the field K(U) = L. This shows that

g = 1 and that s is injective.

(b). Proof that U is G-invariant. Let u ∈ U, s ∈ G. Then f (s(u)) =
s( f (u)) = s(0) = 0 where the first equality is by lemma 62b. This shows

s(u) ∈ U as required.

Proof that the G-action on U is faithful. Note that this means by definition

that the corresponding homomorphism G → Sym(U) is injective. It is true

by part (a) and the fact that L = K(U). �

6.3 Examples

Example 102. Let n ≥ 1 and let ε ∈ C be a primitive n-th root of unity. Prove

that Q(ε)/Q is Galois.

Solution. Let f = Xn − 1. By (2) ⇒ (1) in theorem 100 it suffices to prove

that Q(ε)/Q is separable and a splitting field of f .

We have the factorisation

f =
n−1

Π
i=0

(X −εi).

To prove this, observe that X −εi divides f in C[X]. Therefore the least com-

mon multiple ∏n−1
i=0

(X − εi) divides f . The argument is finished by looking

at the leading terms.
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But each root εi is in Q(ε). It follows that f factors completely over Q(ε).
Also, Q(ε) is generated by Q and the roots 1,ε, . . . ,εn−1 of f , thus proving

that Q(ε) is a splitting field for f over Q.

Moreover, Q(ε)/Q is separable because the characteristic is 0. By (2) ⇒
(1) in theorem 100, Q(ε)/Q is Galois.

Alternatively, one can avoid the characteristic 0 argument because we

have even proved that f splits into distinct linear factors over Q(ε) which

again implies that Q(ε)/Q is Galois by (3) ⇒ (1) in theorem 100. �

The surprise in the above example is that all roots of Xn − 1 can be ex-

pressed in terms of just one of them.

Example 103. Put L = Q(
√

2,
√

5) ⊂ C.

(a) Prove that L/Q is Galois.

(b) Which standard group is isomorphic to the Galois group G = Gal(L/Q)?

(c) List all subgroups of G (by generators) and the corresponding interme-

diate fields (also by generators).

Solution. (a). It is clear that L is a splitting field over Q of (X2 − 2)(X2 − 5).
Also, L is separable over Q because the characteristic is 0. By theorem 100,

L/Q is Galois.

(b). Let G, F, G, †, ∗ be as usual. Every element of G takes
√

2 into

{−
√

2,
√

2} and
√

5 into {−
√

5,
√

5}. Moreover, an element of G is deter-

mined by where it takes
√

2 and
√

5. Therefore, there are at most 4 elements

of G, which we can already identify as follows, although we don’t know yet

whether they exist.

s ∈ G s(
√

2) s(
√

5)

1
√

2
√

5

a
√

2 −
√

5

b −
√

2
√

5

c −
√

2 −
√

5

In example 67 we already showed that [L : Q] = 4. By (a), L/Q is Galois,

so by theorem 81 G has precisely 4 elements. Therefore, the elements in the

table exist. From the table it is clear that G ∼= (Z2)
2.

(c). Prove yourself that the answer is as follows.

subgroup 1 〈a〉 〈b〉 〈c〉 G

field L Q(
√

2) Q(
√

5) Q(
√

10) Q
�

Example 104: Subgroups of D8. Let n ≥ 1. The dihedral group D2n of order

2n is the group of permutations of Z/n of the form x 7→ a + x or x 7→ a − x
(with a ∈ Z/n). We will freely use the following properties of D8. It is

generated by s, t defined by s(x) = x + 1, t(x) = −x. The subgroups of D8
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are the following.

1

〈t〉 〈s2t〉 〈s2〉 〈st〉 〈s3t〉

〈s2, t〉 〈s〉 〈s2, st〉

G

(105)

Example 106: Biquadratic equation. Let L/K be a splitting field of

f = (X2 − p)2 − q.

Let G = Gal(L/K) and suppose #G ≥ 8. Let β ∈ L be such that β2 = q. Let

α1,α2 ∈ L be such that α2
1

= p + β, α2
2

= p −β.

(a) Prove that f = (X −α1)(X + α1)(X −α2)(X + α2) and that f has 4

distinct roots.

(b) Let Γ be the graph whose vertices are the roots of f in L and such that

θ1,θ2 are adjacent whenever θ1 +θ2 6= 0.

Prove that G acts faithfully on Γ . Draw Γ . You may now assume that

the automorphism group of Γ is isomorphic D8. Prove that G = Aut(Γ).

(c) Prove that there are unique s, t ∈ G such that

s(α1) = α2, s(α2) = −α1, t(α1) = α1, t(α2) = −α2.

(d) Define γ = α1α2, δ1 = α1 +α2, δ2 = α1 −α2. For each H ∈ G define

H0 ∈ F to be the field in the corresponding slot in figure 2. Prove that

H† ⊃ H0 for all H ∈ G.

(e) Prove that if H1 ⊂ H2 ⊂ G are groups and [H2 : H1] = 2 then [H0
1

:

H0
2
] ≤ 2.

(f) Prove that H† = H0 for all H ∈ G.

Solution. (a). The factorisation of f follows from

(X −α1)(X +α1)(X −α2)(X +α2) = (X2 −α2
1)(X2 −α2

2)

= (X2 − (p + β))(X2 − (p −β)) = (X2 − p)2 −β2

= (X2 − p)2 − q = f .

Suppose that f has precisely r distinct roots. So r ≤ 4. As G consists of

K-automorphisms and f ∈ K[X] we have that G acts on the set of roots of f .

This action is faithful because L is generated by the roots of f . Thus we have

an injective homomorphism G → S4. So 8 = #G ≤ #Sr = r! so r ≥ 4.

(b).

bC

bC bC

bC

α1α2

−α1 −α2

The graph Γ .
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Figure 2.

K

k(α1) k(α2) k(β, γ) k(δ1) k(δ2)

k(β) k(βγ) k(γ)

k

(107)

A

B
L

D
E

F

C
G

H
I

J

Let g ∈ G. We have seen in (a) that g permutes the roots in L of f , that is,

the vertices of Γ . In order to prove that it takes edges to edges, let θ1,θ2 be

vertices of Γ , that is, roots of f . Then

g(θ1), g(θ2) are adjacent ⇐⇒ g(θ1) + g(θ2) = 0

⇐⇒ g(θ1 +θ2) = 0

⇐⇒ θ1 +θ2 = 0

⇐⇒ θ1,θ2 are adjacent.

This proves that G acts on Γ . The action is faithful by the same argument as

in (a).

In other words, we have an injective homomorphism G → Aut(Γ). We

may assume that Aut(Γ) is isomorphic to D8, in particular, has 8 elements.

We know that G has at least 8 elements. Therefore G has precisely 8 elements

and G = Aut(Γ).
(c). In (b), we already identified G with D8. One easily checks that the

elements of G corresponding to what we called s and t in example 104 act

precisely on the roots of f the way specified.

(d). Note that s(p + β) = s(α2
1
) = α2

2
= p −β so s(β) = −β. Similarly,

we have t(p + β) = t(α2
1
) = α2

1
= p + β so t(β) = β. So

s(β) = −β, s(γ) = −γ, t(β) = β, t(γ) = −γ.

The required inclusion H† ⊃ H0 follows easily except for K(δi) which we

handle as follows: st(δ1) = st(α1 + α2) = s(α1 −α2) = α2 − (−α1) =
α2 +α1 = δ1 and similarly for K(δ2).

(e). We do this case by case. In general, one proves that [L(θ) : L] ≤ 2 by

writing down a quadratic equation over L satisfied by θ.

In case B we have [K(α1) : K(β)] ≤ 2 by the equation α2
1

= p + β (the

cases are indicated next to the edges in figure 2). The same equation handles

the cases A, B, C.

The equation β2 = q settles cases E, F, H. We have γ2 = α2
1
α2

2
= (p +

β)(p − β) = p2 − q which handles J, D. We get (βγ)2 = q(p2 − q) which

settles case I.
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Consider next case G. We have δ2
1

= (α1 + α2)
2 = α2

1
+ 2α1α2 + α2

2
=

(p + β) + 2γ + (p −β) = 2(p + γ). The equation

δ2
1 = 2(p + γ) (108)

shows that δ1 is of degree at most 2 over K(γ).
Finally, we consider case L of L/K(δ1). The characteristic is not 2 by

part (a). So (108) implies that γ ∈ K(δ1). Therefore (X −α1)(X −α2) =
X2 − (α1 + α2)X + α1α2 = X2 − δ1X + γ ∈ K(δ1)[X]. This handles the

case L.

The remaining cases are similar to the ones we have done.

(f). Let H ∈ G. Then there is a chain of groups 1 = H0 ⊂ H1 ⊂ H2 ⊂
H3 = G such that #Hk = 2k for all k and such that H is one of the Hi. By

(e) we have [H0
i : H0

i+1
] ≤ 2. Multiplying over all i ∈ {0, 1, 2} and the tower

law yields

8 = [L : K] = [H0
0 : H0

3 ] =
2

Π
i=0

[H0
i : H0

i+1] ≤ 23 = 8.

So equality holds throughout. The same is true for H†
i so H†

i = H0
i for all i.

In particular, H† = H0. �

Example 109. Let ε be a complex primitive fifth root of unity. Put L = Q(ε)
and G = Gal(L/Q).

(a) Prove that there exists a unique s ∈ G such that s(ε) = ε2.

(b) Prove that G is generated by s, and write down all subgroups of G by

generators.

(c) Prove that Q(ε) = Q(α) where α = ε +ε2.

Solution. (a). Uniqueness. The extension L/Q is generated by ε so any

element of G is determined by what it does with ε. This proves uniqueness

of σ .

Existence. Both ε and ε2 are roots of the irreducible polynomial φ5 ∈
Q[X]. By uniqueness of primitive extensions (proposition 63b) there exists a

Q-isomorphism s: Q(ε) → Q(ε2) taking ε to ε2. Then s2(ε) = s(ε2) = ε4 and

s4(ε) = (ε4)4 = ε16 = ε. Therefore s is bijective and s ∈ G.

(b). In part (a) we already saw that s4 = 1 and s2 6= 1, so s is of order

4. In example 102 we proved that L/Q is Galois. By theorem 81, the main

theorem of Galois theory, it follows that #G = [L : Q] = 4. Therefore

G = 〈s〉. The subgroups are 1, G and 〈s2〉.
(c). We know that L/Q is Galois. In particular, Q(α) = Q(ε) would be

equivalent to Q(α)∗ = Q(ε)∗, that is, to H = 1 where we define H = Q(α)∗.
Suppose that to the contrary H 6= 1. Then s2 ∈ H so ε + ε2 = α = s2(α) =
s2(ε + ε2) = ε4 + ε8 = ε4 + ε3 whence ε + ε2 − ε3 − ε4 = 0, a contradiction

as the minimum polynomial of ε is X4 + X3 + · · · + 1. This proves H = 1 as

required.

Another solution to (c) would be to express ε explicitly in terms of α but

that is likely to be more work. �



MA3D5 Galois Theory 55

Example 110. Let K ⊂ C be the complex splitting field for f = X3 − 2 over

Q and put G = Gal(K/Q).

(a) Prove that K/Q is Galois.

(b) Prove that f is irreducible over Q.

(c) Prove [K : Q] = 6.

(d) Prove that #G = 6.

(e) Prove G ∼= S3.

(f) List the subgroups of G and the intermediate fields.

Solution. (a). By assumption K/Q is a splitting field. It is also separable

because the characteristic is 0. Now apply (2) ⇒ (1) in theorem 100.

(b). The polynomial f ∈ Z[X] is Eisenstein at 2. Apply proposition 49.

(c). Put α = 3
√

2, ω = exp(2π i/3). Then K = Q(α,ω). Also [Q(α) : Q] =
3 because f is irreducible of degree 3 by (b) and α is a root of f . Moreover

[K : Q(α)] = 2 because ω is a root of X2 + X + 1 but is not in R while

Q(α) ⊂ R. Using the tower law we find [K : Q] = [K : Q(α)][Q(α) : Q] =
2 × 3 = 6.

(d). Immediate from (a), (c) and the main theorem of Galois theory, the-

orem 81.

(e). The Galois group G acts faithfully on the set of roots of f , which is a

set of three elements. That gives us an injective homomorphism φ: G → S3.

But G has 6 elements by (d), and S3 has 6 elements too. So φ is bijective.

(f). Inspection of the isomorphism from (e) suggests that we define s, t ∈
G by s(ω) = t(ω) = ω2, s(α) = α, t(α) = αω2. We find the following

intermediate fields.

subgroup 1 〈s〉 〈t〉 〈sts〉 〈st〉 G
field K Q(α) Q(αω) Q(αω2) Q(ω) Q

As an example we prove that K〈s〉 = Q(α). We have s(α) = α so K〈s〉 ⊃ Q(α).
Also

[K〈s〉 : Q] = [G : 〈s〉] = 3 = [Q(α) : Q]

which proves K〈s〉 = Q(α). �

6.4 Exercises

(6.3) Give another solution to exercise 85 by using the results of this section.

Namely, if K is a field of characteristic 6= 2 and L/K is an extension of degree

2 then L is Galois over K.

(6.4) Let K(α) = L be an algebraic extension of a field K and suppose that

mpK(α) splits over L into distinct linear factors (that is, is a product of linear

polynomials over L and has no multiple roots in L). Prove that # Gal(L/K) =
[L : K] two ways: (1) using no more than the results up to and including

chapter 3; (2) using at least one theorem in the present chapter.
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(6.5) Let K ⊂ L ⊂ M be fields with L/K normal (possibly of infinite degree)

and M/L a splitting field of a polynomial with coefficients in K whose irre-

ducible factors over L are separable. Prove that M is Galois over K. [Hint:

use exercise 4.17 and proposition 94b].

(6.6) Let K be a field and f ∈ K[X] (not necessarily irreducible). Prove

that f has a multiple root in some larger field if and only if f and f ′ have a

common factor (of degree > 1).

(6.7) If α1, . . . ,αr are separable over K, prove that K(α1, . . . ,αr) is separable

over K.

(6.8) Let K = R(T), the field of rational functions in one variable. Let

P ⊂ R[T] be the ideal generated by t.

(a) Prove that P is a prime ideal.

(b) Prove that f = X4 − T ∈ R[T][X] is Eisenstein at P.

(c) Let L be a splitting field for f over K. Prove that L contains a square

root i of −1. Prove [L : K] = 8.

(d) Let α ∈ L be a root of f . Prove that every g ∈ G := Gal(L/K) pre-

serves A = {α,αi,αi2,αi3}. Prove that every g ∈ G preserves the

graph with vertex set A and (unoriented) edges {α ik,α ik+1} where

k ∈ {0, 1, 2, 3}. Deduce that G ∼= D8.

[Hint: you may assume that D8 is the automorphism group of the

above graph, and has 8 elements.]

(e) Give two generators of G and their values at i, α. List all subgroups

of G (by group generators), and the corresponding intermediate fields

(by field generators). Show either in inclusion diagrams as on page 73

of the printed notes. Give a full proof for just one of the most difficult

subgroups (choose yourself) and no proofs for the others.

(6.9) Let L ⊂ C be the splitting field of X4 − 2. Prove that L = Q(i + 4
√

2).
[Hint: Find at least five elements of the Gal(L/Q)-orbit of i + 4

√
2.]

(6.10) Let M/K be a splitting field of a polynomial f ∈ K[X] of degree n.

Prove that [M : K] divides n!.

(6.11) (a) Let K ⊂ L ⊂ M be fields with L a splitting field over K. Prove

that L is stable.

(b) Let M be a splitting field over K and L an intermediate field. Prove that

L is a splitting field over K if and only if L is stable. Show also that

G/L∗ ∼= Gal(L/K).

(6.12) Suppose that f = X4 − 2cX2 + d2 ∈ k[x] is irreducible with c, d ∈ k.

Show that if α ∈ L is a root of f in some extension field L, then so is d/α,

and deduce that K = k(α) is already a splitting field of f .

(6.13) Let K be a field. Suppose that f = x4 − a ∈ K[x] has no root in K but

is reducible. Prove that there exists r ∈ K such that a = r2 or a = −4 r4.

(6.14) Suppose that f = X4 − 2aX2 + b ∈ k[X] is irreducible, and let K be
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a splitting field for f over k; prove that [K : k] = 4 or 8.

(6.15) Let K be the splitting field of X12 − 1 over Q. Calculate [K : Q]
and find an explicit Q-basis for K. Prove that K is also the splitting field of

(X4 − 1)(X3 − 1) over Q.

(6.16) Let f = X6 + 3, α ∈ C, f (α) = 0, K = Q(α), g = X6 + 2, M ⊂ C

a splitting field of g over Q, L = Q(
√
−2,

√
−3) ⊂ C. Clearly, f and g are

irreducible over Q by Eisenstein.

(a) Prove that K contains all 6-th roots of unity.

(b) Prove that K is a splitting field over Q.

(c) Prove L ⊂ M.

(d) Prove [L : Q] = 4.

(e) Prove [M : Q] = 12.

(6.17) (a) Let f = X3 − 3 X − 1. Prove that f is irreducible in Q[x].

(b) Prove directly that if α ∈ C is a root of f then so is 2 −α2.

(c) Let α ∈ C be a root of f and put K = Q(α). Prove that K/Q is a Galois

extension. [Hint: use theorem 100].

(d) Choose yourself a nontrivial element of G = Gal(K/Q) and write down

its matrix with respect to the Q-basis (1,α,α2) of K.

(6.18) Let ε = exp(2π i/7) ∈ C. You may use the fact that ε has degree 6

over Q. We put

α = ε +ε6, β = ε2 +ε5, γ = ε3 +ε4.

(a) Prove Q(α) ⊂ Q(ε) and [Q(ε) : Q(α)] ∈ {1, 2} and use the Tower Law

to deduce that α is of degree 3 or 6 over Q.

(b) Compute the polynomial f = (X −α)(X − β)(X − γ) explicitly and

hence prove that it is in Z[X].

(c) Prove that α is of degree 3 over Q.

(d) Find explicitly an r ∈ Z[X] such that r(α) = β.

(e) Prove that Q(α) is Galois over Q.

(6.19) In this exercise, you prove that C is algebraically closed (and more).

Let K be a field of characteristic 0 such that every polynomial in K[X] of

odd degree has a root in K. Let L/K be a finite Galois extension such that

every polynomial in L[X] of degree 2 has a root in L.

For a polynomial f , let r( f ) denote the greatest n ≥ 0 such that 2n divides

the degree of f .

Let f ∈ K[X] be monic. Let M be a splitting field for f over K. Write

f = ∏n
i=1(X − ai) with ai ∈ L. For c ∈ K, define

gc(X) = Π
1≤i< j≤n

(X − ai − a j − caia j).

(a) Prove that if the degree of f is even then r(g) < r( f ).

(b) Prove that gc ∈ K[X].
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(c) Prove that if f is not constant then it has a root in L. [Hint: induction

on r( f )].

(d) Prove that L is algebraically closed.

(e) Deduce that C is algebraically closed.

(6.20) Let L/K be a finite field extension. Let f ∈ K[x] be irreducible of

degree p, a prime number. Suppose that f is reducible in L[x]. Prove that p
divides [L : K].

(6.21) Let K be a field and f = X4 + p X2 + q ∈ K[X] a polynomial. Let

α ∈ K be such that X −α | f .

(a) Suppose that the characteristic of K is not 2. Prove that there exists

β ∈ K such that (X −α)(X −β) | f .

(b) Suppose that the characteristic of K is 2. Prove again that there exists

β ∈ K such that (X −α)(X −β) | f .

(6.22) For each of the following polynomials f , determine the Galois group

Gal(K/Q) where K is a splitting field of f over Q, and all intermediate fields.

(a) X4 − 8X2 + 8.

(b) X4 − 8X2 + 4.

(c) X4 − 22 X2 + 25.

(d) X6 + X3 + 1.

(6.23) In this exercise you generalise the results of this section to infinite

families of polynomials, with an application to algebraic closures.

We say that L/K is a splitting field for an infinite set of polynomials

{ fi | i ∈ I} ⊂ K[X] if every fi factors completely over L, and L is generated

over K by the set of those α ∈ L for which fi(α) = 0 for some i ∈ I.

(a) Analogous to proposition 94, prove that a splitting field for { fi | i ∈ I}
exists and is unique. (This involves a set theoretic difficulty; use Zorn’s

lemma. If you don’t like set theory, simply assume that I is countable,

say, I = N. For uncountable I the Galois theoretic part of the proof is

the same.)

(b) Let L/K be an algebraic extension. Analogous to theorem 100, prove

that L/K is Galois if and only if L/K is a splitting field for a family of

separable irreducible polynomials over K.

(c) We say that L is an algebraic closure of K if L/K is algebraic and

L is algebraically closed. Prove that if L/K is a splitting field of all

polynomials in K[X], then L is algebraically closed. [Hint: use the

result of exercise 5.5]. Deduce that every field has an algebraic closure

and that it is unique (in what sense?).

(6.24) Let ε be a complex primitive 7th root of unity. Put L = Q(ε) and

G = Gal(L/Q).

(a) Say why we already know that L/Q is Galois of degree 6.

(b) Prove that there exists a unique element s ∈ G such that s(ε) = ε3.

(c) Prove that s has order 6.

(d) Prove that G = 〈s〉.
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(e) Give a generator for the group Q(α)∗ ⊂ G where α = ε +ε−1. Deduce

that the degree of α over Q is 3.

(f) Compute the minimum polynomial over Q of α.

(g) Give all subgroups of G and the corresponding fields, both by gener-

ators. (You should prove your results but you don’t have to say how

you found them). Hint: if H is a subgroup of G, use the algorithm of

example 81 to find elements of H†.

(h) Prove that X2 + 7 factors completely over L.
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7 Finite fields

7.1 Finite subgroups of K×

Proposition 111. Let K be a field. Let G ⊂ K× be a finite subgroup of the

multiplicative group of K. Then G is cyclic.

In particular, if K is a finite field then K× is a finite group and therefore

cyclic by proposition 111.

We shall give two proofs of proposition 111. The first proof relies on a

little theory of finite abelian groups and is as follows.

First proof of proposition 111. Suppose that G is not cyclic. The theory of

finite abelian groups tells us that then G contains a subgroup H isomorphic

to Cp × Cp with p > 1 and Cp a cyclic group of order p. Then all elements of

H are roots of Xp − 1, so H has at most p elements, a contradiction. �

We now prepare for the second proof of proposition 111, not relying on

any results about finite abelian groups. Let G be a finite group. The order of

an element a ∈ G is #〈a〉. The exponent e(G) is the least common multiple

of the orders of the elements of G. Equivalently, it is the least d > 0 such

that ad = 1 for all a ∈ G.

Lemma 112. Let G be a finite abelian group.

(a) Then G has an element of order e(G).

(b) If #G = e(G) then G is cyclic.

Proof. Proof of (a). Write

e = e(G) = pk1

1
· · · p

kℓ
k

where the pi are distinct prime numbers. By the definition of exponent, there

exists ai ∈ G whose order is divisible by p
ki
i . On replacing ai by a power if

necessary, we may assume that the order of ai is p
ki
i . Put b = a1 · · · ak. We

claim that b has order e. We clearly have be = 1. Conversely, suppose that

bm = 1 for some m ≥ 1. Let 1 ≤ i ≤ ℓ and write q = e · p
−ki
i . Then

1 = bmq = (a1 · · · aℓ)
mq =

(

Π
j 6=i

a
mq
j

)

· a
mq
i = a

mq
i

so the order of ai is a divisor of mq, that is, pki
i divides m. As this is true for

all i, we find e | m thus proving that the order of b is e.
Proof of (b). Let b ∈ G be an element of order e(G), which exists by (a).

Then G is generated by b. �

Second proof of proposition 111. Let e be the exponent of G. Then ae = 1

for all a ∈ G by Lagrange’s theorem. Therefore every element of G is a root

of Xe − 1. This polynomial has at most e roots and therefore #G ≤ e. By

lemma 112b G is cyclic. �
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7.2 Finite fields

If p is a prime number, we write Fp := Z/(p). Warning: later we shall define

Fq for more values of q, but in these cases it is not Z/(q).
Let K be a finite field. Then its characteristic is a prime number p be-

cause otherwise K would contain a copy of Q. So the prime subfield of K is

isomorphic to Fp. Let us assume it is Fp.

Write [K : Fp] = n. Then K has precisely pn elements because, as we

learned in linear algebra, there exists an isomorphism of vector spaces over

Fp between K and (Fp)n. The latter has pn elements.

Example 113. Let f ∈ Fp[X] be monic and irreducible. By proposition 63

there exists a field extension Fp(α)/Fp such that f is the minimum polyno-

mial of α. Then Fp(α) is a field of pn elements where n = deg( f ).

As an example of this, let us take p = 2 and f = X2 + X + 1. By propo-

sition 58, {1,α} is an F2-basis of F2(α). Thus F2(α) has four elements

0, 1,α, 1 +α. The multiplication table is as follows.

0 1 α 1 +α

0 0 0 0 0

1 0 1 α 1 +α

α 0 α 1 +α 1

1 +α 0 1 +α 1 α

Proposition 114. Let K ⊂ L be finite fields. Then there exists α ∈ L such that

L = K(α).

Proof. By proposition 111 we know that the multiplicative group L× of L is

cyclic. Say it is generated by α. Then L = K(α). �

We shall prove that for every power q of a prime number there exists a

field of q elements and, conversely, any two such fields are isomorphic. The

main step is in the following.

Proposition 115. Let p be a prime number and K/Fp an extension. Let n ≥ 1

and write q = pn. Then #K = q if and only if K/Fp is a splitting field of the

polynomial g = Xq − X.

Proof. Proof of ⇐. Recall from exercise 2.6 the Frobenius endomorphism

F: K → K defined by F(a) = ap. Let A = {a ∈ K | Fn(a) = a}. Then A is a

subfield of K because if a, b ∈ A then Fn(a + b) = Fn(a) + Fn(b) = a + b and

likewise for multiplication of a, b or inverting a. Also, A contains the roots

of g. Therefore, A contains the subfield of K generated by the roots of g.

Since K is a splitting field of g, we find K ⊂ A. It follows that K = A, and

that every element of K is a root of g. But g has no multiple roots in K by

proposition 96 and the observation that g′ = −1. Therefore #K = deg g = q.

Proof of ⇒. Let #K = q. Then the multiplicative group K× has order

q − 1. Therefore uq−1 = 1 for all u ∈ K×. Therefore uq = u for all u ∈ K.

Every element of K is a root of g. But deg g = #K so we must have g =
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∏(X − a), the product being over the elements a of K. This shows that K/Fp

is a splitting field of g as required. �

We know that splitting fields exist and are unique up to isomorphism.

This proves the following.

Theorem 116. Let q > 1 be a power of a prime number. Then there exists a

field of q elements. Any two such are isomorphic. �

A field of q elements is usually written Fq. This is justified by the fact

that such a field depends only on q up to isomorphism; but no particular

field in its isomorphism class is meant specifically. If you would like a model

for Fq (q = pn and p a prime number) to do calculations, you look for an

irreducible polynomial f ∈ Fp[X] of degree n (exercise: prove that such f
exists). Then Fq

∼= Fp[X]/( f ).
Next we consider what Galois theory says about a finite extension of a

finite field.

Theorem 117. Let K ⊂ L be finite fields. Then L/K is Galois and its Galois

group is cyclic.

Proof. We may assume Fp ⊂ K ⊂ L. Let F: L → L be Frobenius, F(a) = ap.

You proved in exercise 2.6 that F is an injective ring endomorphism. As L is

finite, F is surjective as well. Therefore F is an element of the Galois group

G = Gal(L/Fp).
Write pn = #L = q and g = Xq − X. By proposition 115, L/Fp is a

splitting field of g. This proves that Fn = 1. No lower power of F is the

identity because if Fk = 1, k ≥ 1 then L is contained in the splitting field of

Xpk − X and k ≥ n.

In exercise 4.10 you proved that [L : Fp] ≥ #G and that equality implies

that L/Fp is Galois. But we have just seen that #G ≥ #〈F〉 = [L : Fp]. This

proves that L/Fp is Galois and that its Galois group is the cyclic group 〈F〉.
Now K is an intermediate field for L/Fp hence closed by the main theo-

rem of Galois theory. Thus L/K is also Galois. Its Galois group is a subgroup

of the cyclic group Gal(L/Fp) and is therefore itself cyclic. �

Exercises

(7.1) Let K ⊂ L be finite fields. Prove that L is separable over K.

(7.2) Let p be a prime number and a, b ≥ 1. Prove that Fpa can be embedded

into Fpb (that is, is isomorphic to a subfield of Fpb) if and only if a | b. [Hint:

For ⇐ use theorem 117. Before you find the intermediate field isomorphic

to Fpa you find the corresponding subgroup].

(7.3) Find a generator of the multiplicative group F×
31

.

(7.4) For each d in {3, 5, 7, 9}, find at least one irreducible f ∈ F2[X] such

that if α is a root of f in an extension of F2, then #〈α〉 = d, where 〈α〉 is the
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multiplicative group generated by α.

(7.5) Let p be a prime number and a ≥ 1. Prove that there exists an irre-

ducible polynomial f ∈ Fp[X] of degree a. [Hint: The degree of an algebraic

extension of the form K(α)/K equals the degree of the minimum polynomial

of α over K].

(7.6) Let Fq be a finite field of q elements and let a ≥ 1. Write g = Xqa − X.

(a) Prove that there exists an irreducible polynomial in Fq[X] of degree a.

(b) Prove that g has no multiple roots in any field extension.

(c) Let a ≥ 1. Prove that g is the product of all irreducible monic polyno-

mials in Fq[X] whose degree divides a.

(d) Let hd(q) be the number of monic irreducible f ∈ Fq[X] of degree d.

Prove

Σ
d|a

d hd(q) = qa. (118)

(e) Prove that there exists a polynomial Ha ∈ Q[Y] such that ha(r) = Ha(r)
for all prime powers r.

(f) Let f ∈ Fq[X] be of degree d. Prove that f is irreducible if and only if f

is coprime to Xqa − X whenever a < d. (This gives a fast algorithm to

check irreducibility.)

(7.7) Let K be a field of characteristic p > 0. Let f = Xp − X − a ∈ K[X].

(a) Prove f (X) = f (X + 1).

(b) Prove: f has no multiple roots in any field extension.

(c) Suppose f has no root in K. Then f is irreducible.
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8 Radical extensions

Keywords: Normal closure, solvable group, commutator, radical extension,

solvable extension.

8.1 Normal closures

Definition 119. Let K ⊂ L ⊂ M be fields with L/K finite. We say that M is a

normal closure of L/K if:

◦ The field M is a splitting field over K.

◦ No field other than M between L and M is a splitting field over K.

Proposition 120. Let L/K be a finite extension. Then there exists a normal

closure M of L/K. If L/K is separable then M/K is Galois. Any two normal

closures of L/K are L-isomorphic.

Proof. Let v1, . . ., vr be a K-basis of L. Let fi = mpK(vi) and f = f1 · · · fr.

Existence. Let M be a splitting field for f over L. Then M is also a

splitting field for f over K (exercise). If L/K is separable then fi is separable

over K whence M/K is Galois by theorem 100. Any splitting field M′ of L/K
in between L and M must split each fi for they each acquire a root in L. This

shows that M = M′ and thus that M is a normal closure of L/K.

Uniqueness. Let Mi be a normal closure of L/K for all i ∈ {1, 2}. Then

Mi is a splitting field over L of f . By uniqueness of splitting fields (proposi-

tion 94) M1 and M2 are L-isomorphic. �

8.2 Solvable groups

Definition 121. Let G be a group. We say that G is solvable if there are

subgroups G = A0 ⊃ A1 ⊃ · · · ⊃ Ar = 1 such that for all i, Ai+1 is normal

in Ai and Ai/Ai+1 is abelian.

If G is solvable and finite, then by inserting more Ai we can arrange for

Ai/Ai+1 to be cyclic and such that its order is a prime number.

Proposition 122. Let G be a group and H ⊂ G a subgroup.

(a) If G is solvable then so is H.

(b) If G is solvable and H is a normal subgroup of G then G/H is solvable.

(c) If H is normal in G and H and G/H are solvable then G is solvable.

(d) Every abelian group is solvable.

Proof. Proof of (a). Let G = A0 ⊃ A1 ⊃ · · · ⊃ Ar = 1 be such that for

all i, Ai+1 is normal in Ai and Ai/Ai+1 is abelian. Set Bi = H ∩ Ai. Then

H = B0 ⊃ B1 ⊃ · · · ⊃ Br = 1 and Bi+1 is normal in Bi and Bi/Bi+1 is a

subgroup of an abelian group Ai/Ai+1 and thereby abelian itself. This shows

that H is solvable.

Part (b) is similar. Parts (c) and (d) are easy. �
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For elements a, b of a group we write [a, b] = aba−1b−1. Such elements

are called commutators.

Lemma 123. Every element of the alternating group A5 is a commutator.

Proof. Every element of A5 is of the form (i jk), (i j)(kℓ) or (i jkℓm) where

i, j, k, ℓ, m ∈ {1, 2, 3, 4, 5} are distinct. The following calculations finish the

proof:

[(i jℓ), (ikm)] = (i jℓ)(ikm)(iℓ j)(imk) = (i jk),

[(i jk), (i jℓ)] = (i jk)(i jℓ)(ik j)(iℓ j) = (i j)(kℓ),

[(i j)(km), (imℓ)] = (i j)(km)(imℓ)(i j)km(iℓm) = (i jkℓm). �

Proposition 124. The symmetric group S5 and the alternating group A5 are

not solvable.

Proof. By proposition 122 it is enough to prove that A5 is not solvable. Sup-

pose that it is: A5 = B0 ⊃ B1 ⊃ · · · ⊃ Br = 1 with Bi+1 normal in Bi and

Bi/Bi+1 abelian. Let f : B0 → B0/B1 denote the natural homomorphism. As

B0/B1 is abelian we have for all a, b ∈ B0

1 = f (a) f (b) f (a)−1 f (b)−1 = f (aba−1b−1) = f ([a, b])

so [a, b] ∈ B1. But all elements of A5 are commutators by lemma 123 so

B1 = B0. Continuing this way we find A5 = Bi for all i, a contradiction. �

Lemma 125. Let p be a prime number. Let H ⊂ Sp be a subgroup containing

a p-cycle and at least one transposition (i j). Then H = Sp.

Proof. Exercise. �

8.3 Radical extensions

Definition 126. An extension L/K is a radical extension if L has the form

K(u1, . . . , um) where for all i there exists ℓi > 0 such that

uℓi
i ∈ K(u1, . . . , ui−1).

It is clear that a radical extension is of finite degree. By inserting further

u’s if necessary we can arrange that the ℓi are prime numbers.

Definition 127. An extension L/K is a solvable extension if there exists a

radical extension M/K with L ⊂ M.

The main result on solvable extensions is the following.

Theorem 128. Let L/K be a solvable extension of characteristic 0. Then

Gal(L/K) is a solvable group.
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Our proof of theorem 128 depends on three lemmas which don’t assume

the characteristic to be 0.

Lemma 129. Let K ⊂ L ⊂ M be fields. Suppose that L/K is a radical exten-

sion and M is the normal closure of L/K. Then M/K is a radical extension.

Proof. This is easy using exercise 6.5. �

Lemma 130. Let p be a prime number and L a splitting field of Xp − 1 over

K. Then Gal(L/K) is abelian.

Proof. If the characteristic is p then Xp − 1 = (X − 1)p and L = K. Suppose

now that the characteristic is not p. Let ε be a root of Xp − 1 different from

1. Then Xp − 1 has p distinct roots 1,ε,ε2, . . . ,εp−1. Therefore L = K(ε). An

automorphism of L/K is determined by what it does to ε. Say s, t ∈ Gal(L/K)
take ε to εi, respectively, ε j. Then st and ts both take ε to εi j. Thus st = ts
and Gal(L/K) is abelian. �

Lemma 131. Let K be a field in which Xn − 1 factors completely. Let a ∈ K
and let L be a splitting field for Xn − 1 over K. Then Gal(L/K) is abelian.

Proof. Let u be a root in L of Xn − a. Then L = K(u) because the other roots

of Xn − a are of the form uα where α is a root of Xn − 1 and is hence in

K. Thus, an element of Gal(L/K) is determined by what it does to u. Let

s, t ∈ Gal(L/K) and write s(u) = α u, t(u) = β u where α, β are roots in K
of Xp − 1. Then st and ts both take u to α β u. Thus Gal(L/K) is abelian. �

Proof of theorem 128. Let M/K be a radical extension such that L ⊂ M.

If K0 denotes the closure K∗† with respect to L/K nothing in the problem

is changed if we replace K by K0. Hence we may assume that K = K0, that

is, L is Galois over K.

If N denotes a normal closure of M/K then N is a radical extension of

K by lemma 129. Thus, changing notation again, we may assume that M is

Galois over K (by theorem 100 and because the characteristic is 0).

Since Gal(L/K) is a quotient of Gal(M/K) and quotients of solvable

groups are solvable by proposition 122, we have only to show that Gal(M/K)
is solvable. Thus we may henceforth forget about L.

As M/K is radical, we may suppose that M = K(u1, . . . , un) where for all

i there exists a prime number pi such that u
pi

i ∈ K(u1, . . . , ui−1). We argue

by induction on n. Write p = p1, u = u1; then up ∈ K. Let M0 be a splitting

field for Xp − 1 over M. Let M1 be the subfield of M0 generated by K and

the roots of Xp − 1.
M0

M M1

K

If we show that Gal(M0/K) is solvable, it will follow that Gal(M/K) is, again

because a quotient of a solvable group is solvable. Now M1 is a Galois ex-
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tension of K with an abelian Galois group by lemma 130. Hence it will

sufice to show that Gal(M0/M1) is solvable, for a group is solvable if a nor-

mal subgroup and its quotient group are solvable (proposition 122c). Now

M0 = M1(u1, . . . , un) for M0 is generated over K by the u’s and the roots

of Xp − 1 and the latter are already in M1. Write G = Gal(M0/M1) and let

H = M1(u)∗ ⊂ G be the subgroup corresponding to M1(u). Since Xp − 1

factors completely in M1, M1(u) is a splitting field for Xp − u
p
1

over M1

and hence is Galois with abelian Galois group by lemma 131. Thus G/H
is abelian. To prove that G is solvable it remains finally to show that H is

solvable. This follows from our inductive assumption, for M0 is a radical ex-

tension of M1 generated by a chain u2, . . . , un as before with n − 1 elements.

This completes the proof of theorem 128. �

Using theorem 128 we can easily construct an unsolvable field extension

L/K. Let S5 act on L = Q(X1, . . . , X5) by permuting the variables and put

K = LS5 . Then Gal(L/K) ∼= S5 hence is an unsolvable group; therefore L/K
is an unsolvable extension.

We shall give a more satisfying example with K = Q with the help of the

following lemma.

Lemma 132. Let p be a prime number and let f ∈ Q[X] be an irreducible

polynomial of degree p and with precisely two nonreal complex roots. Let

L/Q be the complex splitting field of f . Then Gal(L/K) ∼= Sp.

Proof. Let H = Gal(L/K). Then H acts faithfully on the set of complex roots

of f . Thus H ⊂ Sp. Also [L : K] is divisible by p because if α ∈ L is a

root of f then [Q(α) : Q] = p. But #H = [L : K] so H contains a p-cycle.

Complex conjugation restricts to an element of Gal(L/K) = H ⊂ Sp which

is a transposition. Lemma 125 now implies that H = Sp. �

We claim that f = x5 − 6x + 3 is not solvable. It is irreducible over Q by

Eisenstein’s criterion and a crude inspection of its graph reveals that it has

exactly two nonreal roots. Hence its splitting field over Q has Galois group

S5 by lemma 132. Therefore f is not solvable by theorem 128.



68 MA3D5 Galois Theory

9 Index

action 17

algebraically closed 5, 57

algebraic closure 58

algebraic element 24

algebraic extension 44

algorithm 40

auxiliary polynomial 9, 11

basis 24

binary relation 33

characteristic 16

closed 33, 35

closed intermediate field 36

closed subgroup 36

closure correspondence 34

coefficient 4

commutator 65

coset 15

cubic 6, 10

cyclotomic polynomial 10, 21

degree of an element 25

degree of an extension 23, 24

degree of a polynomial 4

degree of a rational function 42

derivative 48

division with remainder 4

Eisenstein’s criterion 21

Eisenstein polynomial 21

elementary symmetric function 6

exponent of a group 60

extension 22, 25

factors completely 45

faithful action 18

field 3

field extension 22, 25

field of fractions 14

field of rational functions 14

finite extension 44

finitely generated extension 44

Frobenius 17, 61

Galois extension 37, 45, 49

Galois group 34

Gauss 19

generators of an ideal 15

Hermite 24

ideal 15

integral domain 3

intermediate field 36

invertible 3

irreducible 3, 15, 24

kernel 15

K-homomorphism 25

leading coefficient 4

leading term 4

Lindemann 24

main theorem of Galois theory 37

maple 12

mathematica 12

maximal ideal 15, 15

minimum polynomial 25

monic 4

normal closure 64

normal subgroup 45, 45

permutation 17

polynomial 3

power set 33

prime subfield 16

prime ideal 15, 15

prime subfield 16

primitive extension 23

primitive nth root of unity 10

primitive polynomial 19

principal ideal 15

principal ideal domain 15

quadric 6

quartic 6, 9

quotient ring 15

quintic 6, 67

radical 6

radical closure 6

radical extension 65

radically closed 6

rational function 14

reducible 3

ring 3

ring homomorphism 3

root 5, 6

root of unity 9, 50

separable polynomial 48, 49

separable element 48

separable extension 48, 49

solvable extension 65

solvable group 64

solvable polynomial 6

splits completely 45
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splitting field 47, 49, 58

stable 45, 45

symmetric polynomial 7

symmetric tuple 8

tower 28

tower law 28

transcendental element 24

unique factorisation domain 16

unit 3

vector space 23

zero 5

zero divisor 3

A[x] (generated ring) 21

A[X] (polynomial ring) 3

A× (units in a ring) 3

deg f (degree of a polynomial) 4

degK(α) (degree of an element) 25

e(G) (exponent of a group) 60

F (Frobenius) 17

Frac A (field of fractions) 14

Fq (field of q elements) 62

F (closed subsets of N) 35

φ (Euler function) 10

φn (cyclotomic polynomial) 10

G (closed subsets of G) 35

Gal(L/K) (Galois group) 34

[G : H] (index of groups)

HomK(L1, L2) (K-homomor-

phisms) 25

K(x) (generated field) 21

K(X) (field of rational functions) 14

L/K, K ⊂ L, (K, L) (extension) 22

[L : K] (degree of extension) 23

mpK(α) (minimum polynomial) 25

µn (nth roots of unity) 9

MG (field of invariants) 37

Sn (symmetric group) 17

Sym(X) (symmetric group) 17

σk (elementary symmetric

functions) 6

#X (cardinality of X)

( f ) (ideal generated by f ) 15

f ′ (derivative) 48

a | b (a divides b)

X† (closed subset) 33, 35

Y∗ (closed subset) 33, 35

In figure 3 you can find a list of differences in notation and terminology

between Irvin Kaplansky’s Fields and rings, our notes and those of Miles Reid

which were used in recent years.

Figure 3. Comparison of terminology.

Kaplansky We Reid

finite normal extension finite Galois extension Galois extension

split closure normal closure normal closure

none none normal extension

set of closed F = set of closed none
intermediate fields intermediate fields

set of closed subgroups G = set of closed none
subgroups

set of intermediate fields set of intermediate fields F

set of subgroups set of subgroups G

stable intermediate field stable intermediate field none


