MA3D5 Galois Theory assignment sheet 1

Marco Streng

6th October 2011

The deadline for these problems is **5:00 pm on Thursday 20 September**. Please hand in your work to the MA3D5 Galois Theory box outside the Undergraduate Office. Prove everything you claim, and give references and names of theorems whenever appropriate.

- 1. (a) Is $\mathbb{Z}/27\mathbb{Z}$ a field? (Prove your answer.)
 - (b) Give two distinct polynomials $f_1, f_2 \in \mathbf{F}_3[X]$ such that $f_i(x) = 1$ for all $x \in \mathbf{F}_3$.
 - (c) Give an irreducible polynomial of degree 3 in $\mathbf{F}_3[X]$. (Don't forget to prove that it is irreducible.)
 - (d) Give an example of a field with 27 elements. What is its characteristic? What is its prime subfield?
- 2. (a) Prove that $X^9 + 6X^2 + 18 \in \mathbf{Z}[X]$ is Eisenstein. Deduce that it is irreducible in $\mathbf{Z}[X]$ and $\mathbf{Q}[X]$.
 - (b) Prove that $X^3 + X + 1 \in \mathbf{F}_7[X]$ is irreducible. Conclude that $X^3 6X + 8 \in \mathbf{Q}[X]$ is irreducible.
 - (c) Prove that $g(X) = X^4 + 1 \in \mathbf{Q}[X]$ is irreducible. Hint: what can you say about g(X+1)?
- 3. (a) Find the minimal polynomials over **Q** of the complex numbers $i, \sqrt{2}$, $i\sqrt{2}$ and $\alpha = \frac{1+i}{\sqrt{2}}$.
 - (b) What are the degrees of these algebraic numbers?
 - (c) List the conjugates in ${\bf C}$ of these algebraic numbers.
 - (d) Prove $\mathbf{Q}(\sqrt{2},i) = \mathbf{Q}(\alpha)$. Hint: what can you say about α^2 and $(\alpha^2-1)\alpha$?
- 4. (a) Let α denote the image of X in $\mathbb{Q}[X]/(X^3+2X+2)$. Express each of α^3 , $1/\alpha$, and $1/(\alpha^2+1)$ in the form $a+b\alpha+c\alpha^2$ with $a,b,c\in\mathbb{Q}$.
 - (b) Let β denote the image of X in $\mathbf{F}_2[X]/(X^3+X+1)$. Express each of β^4 and $1/(\beta+1)$ in the form $a+b\beta+c\beta^2$ with $a,b,c\in\{0,1\}$.