MA3D5 Galois Theory assignment sheet 4

Marco Streng

17th November 2011

The deadline for these problems is **4:00 pm on Thursday 1 December**. Please hand in your work to the MA3D5 Galois Theory box outside the Undergraduate Office. Prove everything you claim, and give references and names of theorems whenever appropriate.

- 1. Find all subfields of $K = \mathbf{Q}(\sqrt[6]{2})$, where $\sqrt[6]{2}$ is the positive sixth root of 2 in **R**. [Hint: K/\mathbf{Q} is not Galois, so find a good field M to do Galois theory with. To save yourself some work, don't list all subgroups of $\operatorname{Gal}(M/\mathbf{Q})$ but only the ones that correspond to fields contained in K.]
- 2. In this exercise we shall see an example of a finite extension of fields that is not primitive. Let p be a prime number and $K = \mathbf{F}_p(X, Y) = (\mathbf{F}_p(X))(Y)$ the field of rational functions in two variables over \mathbf{F}_p .
 - (a) Let $f \in K[T]$ be the polynomial $T^p X$. Let L/K be a splitting field for f. How many roots does f have in L, and what are their multiplicities? Show that f is irreducible over K and inseparable, and deduce that L/K is an inseparable extension of degree p.
 - (b) Now let $g \in L[U]$ be the polynomial $U^p Y$. Let M be a splitting field of g over L. Show that M/L is inseparable of degree p, and deduce $[M : K] = p^2$.
 - (c) Show that any $\alpha \in M$ satisfies $\alpha^p \in K$. Deduce that M/K is not primitive.
- 3. Let $f = X^3 + X^2 + 1$ and $g = Y^3 + Y + 1$ be polynomials over \mathbf{F}_5 .
 - (a) Show that f and g are both irreducible over \mathbf{F}_5 . Show that the fields $K = \mathbf{F}_5[X]/(f)$ and $L = \mathbf{F}_5[Y]/(g)$ are isomorphic.
 - (b) Let $\alpha \in K$ be the class of X and $\beta \in L$ the class of Y, so that $f(\alpha) = 0$ and $g(\beta) = 0$. Let $\gamma = 2\alpha^2 + \alpha + 3 \in K$. What is $g(\gamma)$? Hint: to check if your answer is correct, see if (c) makes sense.
 - (c) Deduce that there is a field isomorphism $\phi: L \to K$ with $\phi(\beta) = \gamma$.
 - (d) Give the set of all $\psi(\beta) \in K$ as ψ ranges over the set of field isomorphisms $L \to K$. Hint: what are the automorphisms of K? You don't need to express $\psi(\beta)$ as a linear combination of $\alpha^2, \alpha, 1$, just give a formula from which it can be computed.
- 4. (a) Give a generator of $\mathbf{F}_{13}^* = (\mathbf{Z}/13\mathbf{Z})^*$.
 - (b) Give the unique subgroup of order 3 of $(\mathbf{Z}/13\mathbf{Z})^*$.

Consider the regular tridecagon T (13-sided polygon) in the plane with centre O = (0,0)and a vertex V = (1,0). We know (exactly as in 3(b) of assignment sheet 2) that it is not possible to construct T by ruler and compass starting from only $\{O, V\}$. Label the vertices V_0, V_1, \ldots, V_{12} starting with $V_0 = V$ and going anti-clockwise.

Let $C = \frac{1}{3}(V_1 + V_3 + V_9)$ be the centre of mass of the triple of vertices $\{V_1, V_3, V_9\}$.

(c) Prove that it is possible to construct C starting from only $\{O, V\}$. Hint: how does the number $\zeta_{13} + \zeta_{13}^3 + \zeta_{13}^9$ relate to C, and why is (b) part of this problem?