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Recap

Recall that a primitive nth root of unity in a field K is an element of K∗ of order n, and that
the n-th cyclotomic polynomial is defined as Φn =

∏
ζ(X − ζ) ∈ C[X], where ζ ranges over the

primitive nth roots of unity in C. We have

Φn =
Xn − 1∏
d|n,d6=n Φd

,

so a long division and induction show that Φn is a monic polynomial in Z[X] for all n. Recall
also that if K has a primitive nth root of unity ζ, then it has exactly φ(n) and they are ζk where
k ranges over the integers coprime to n modulo n.

Irreducibility of Φn

Let ζ ∈ C be a primitive nth root of unity and f = fQ
ζ ∈ Q[X] its minimal polynomial over Q.

Then f divides Φn (because Φn(ζ) = 0), so all roots of f are of the form ζk with k coprime to n,
It follows that Q(ζ) ∼= Q[X]/(f) is the splitting field of f and is Galois over Q. This also defines
an injective map

Gal(Q(ζ)/Q)→ (Z/nZ)∗ (1)

σ 7→ k, where σ(ζ) = ζk.

It is straightforward to check that this map is a homomorphism. The order of the domain is
deg f and the order of the codomain is deg Φn, so the polynomial Φn is irreducible if and only if
this map is surjective.

Theorem 1. The homomorphism (1) is an isomorphism and Φn is irreducible.

Proof. We only need to show that this injective homomorphism is surjective. Then it will follow
that Φn is irreducible. To show surjectivity of this homomorphism, it suffices to show for every
prime p - n that p mod n is in the image (because k is a product of such primes). In other
words, it suffices to show that ζp is a conjugate of ζ.

Let f be the minimal polynomial of ζ and g the minimal polynomial of ζp. Then f and g are
irreducible monic divisors of Φn, so by Gauss’ Lemma they are in Z[X]. Note that ζ is also a
root of g(Xp), so f divides g(Xp). This divisibility then also holds modulo p, i.e., if f, g ∈ Fp[X]
are the reductions of f and g modulo p, then f(X) | g(Xp) in Fp[X]. Next, note that Fp[X] has
a (Frobenius) endomorphism x 7→ xp (because the binomial coefficients are divisible by p) and
that it restricts to the identity on the coefficients in Fp (by Fermat’s little theorem). We find
g(X)p = g(Xp), so f | gp, and we conclude that f and g are not coprime in Fp[X].
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Now suppose that ζp is not a conjugate of ζ, i.e., that f and g are distinct irreducible
polynomials. Then fg divides Xn − 1, so fg divides Xn − 1 ∈ Fp[X]. As f and g are not
coprime, the polynomial Xn − 1 ∈ Fp[X] has a square factor d2 for d = gcd(f, g). This implies
that d is a common factor of Xn − 1 and its derivative nXn−1 ∈ Fp[X]. But as n is invertible
modulo p, these polynomials are coprime (−(Xn − 1) + n−1nXn−1 = 1), contradiction.

Abelian extensions of Q

The isomorphism (1) shows that Q(ζ)/Q is an abelian extension, i.e., a Galois extension with
abelian Galois group.

Proposition 2. Let L/K be an abelian extension and M an intermediate field. Then M/K is
also an abelian extension.

Proof. As the group Gal(L/K) is abelian, all its subgroups are normal. By the fundamental
theorem of Galois theory, this implies that M/K is Galois. Its Galois group is a quotient of the
abelian group Gal(L/K), hence is abelian as well.

We conclude that all subfields of Q(ζ) for all roots of unity ζ are abelian over Q. The converse
is the famous Kronecker-Weber theorem, but its proof uses algebraic number theory.

Theorem 3 (Kronecker-Weber theorem). Every abelian extension of Q is contained in Q(ζ) for
some root of unity ζ.

(In)constructibility of the regular n-gon

Recall that a finite extension L/K with char(K) = 0 is called constructible if and only if there
exists some tower of fields K = K0 ⊂ K1 ⊂ · · · ⊂ Ks with L ⊂ Ks and [Ki+1 : Ki] ∈ {1, 2}. By
the tower law, all constructible extensions have degree a power of two. A point (x, y) in the plane
can be constructed from (0, 0) and (1, 0) if and only if Q(x, y)/Q is a constructible extension.

Theorem 4. Let n > 2 be an integer. It is possible to construct a regular n-gon from two points
in the plane by ruler and compass if and only if n is of the form 2m

∏k
i=1 pi, where the pi are

distinct Fermat primes, i.e., primes of the form 2ji + 1.

Proof. By standard ruler and compass constructions that we skip, there is no loss of generality
in assuming that the two given points are (0, 0) and (1, 0), and that (0, 0) is the centre of the
n-gon and (1, 0) one of its vertices. In this case, constructibility of the whole n-gon is equivalent
to constructibility of just the vertex (x, y), where x = cos(2πi/n) and y = sin(2πi/n). Indeed, if
we can construct (x, y), then by repeating the construction with (1, 0) replaced with the previous
vertex, we find all vertices.

Let ζ = exp(2πi/n) = x + iy. Then x = 1
2 (ζ + ζ−1) and y = 1

2i (ζ − ζ−1), so we find
Q(ζ, i) = Q(x, y, i). As this field has degree 1 or 2 over Q(x, y) and over Q(ζ), the extension
Q(x, y)/Q is constructible if and only if Q(ζ)/Q is.

Write n = 2m
∏k
i=1 p

mi
i for distinct odd primes pi and mi ≥ 1. The degree of Q(ζ) is

φ(n) = 2m−1
∏k
i=1(pi− 1)pmi−1

i . In particular, if mi > 1 or pi− 1 is not a power of 2, then φ(n)
is not a power of 2, so Q(ζ) is not constructible. This proves the “only if”.

Now assume n is of the form in the theorem. Then Q(ζ)/Q is an abelian extension of
degree a power of 2. By the structure theorem for finite abelian groups, we can find subgroups
{id} = As ⊂ As−1 ⊂ · · · ⊂ A1 ⊂ A0 = Gal(Q(ζ)/Q) such that [Ai : Ai+1] = 2. By taking
Ki = Q(ζ)Ai , we find that Q(ζ)/Q is a constructible extension, so the n-gon is constructible.
This proves the “if”.
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