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Abstract

We state the “main theorems of complex multiplication” and point out
notions to be defined during the seminar. We mention Kronecker’s Ju-
gendtraum and Honda-Tate theory as motivation.

These are notes of an introductionary talk for a seminar on complex
multiplication. Please email any errors or suggestions to marco.streng@gmail.com

1 Kronecker’s Jugendtraum

Kronecker-Weber Theorem. Let K/Q be a finite abelian Galois extension.
Then there is a positive integer n such that we have

KcCcQ(G)=Q(t:teG,(Q)n]) = Q(exp(?m%)).

In particular, we have K* = Q(t : t € G,,(Q)).

Hilbert’s twelfth problem (a.k.a. Kronecker’s Jugendtraum) is, for any num-
ber field F, to find an analogue of z — exp(27miz) when Q is replaced by F'.
Kronecker himself, with the theory of complex multiplication of elliptic curves,
gave a full answer for the case where F' is imaginary quadratic. With the the-
ory of complex multiplication of abelian varieties, Shimura and Taniyama [3]
generalized this to a partial answer for the case where F'is a CM field.

Definition. A CM field is a field K = Ky(y/7), where Ky is a totally real
number field and r € K is totally negative.

We denote the automorphism of K with fixed field Ky by z — T and note
that it equals complex conjugation for every embedding of K into C.

For a CM field K, we will obtain a large part of K2P by replacing G,,, above
by an abelian variety with complexr multiplication by K. This is the first halve
of the motivation for our seminar.



2 Abelian varieties and complex multiplication

Let k be a field. An abelian variety A/k is a proper connected group variety
over k. It is known that every abelian variety is smooth, projective, and commu-
tative. We use the notation g = dim(A) and k will always be the base field of A.

Examples.

e A 1-dimensional abelian variety is exactly the same as an elliptic curve.

e Every abelian variety over k = C is (as a complex manifold) isomorphic
to a complex torus, i.e. a manifold of the form C9/A, for a lattice A of
rank 2¢g in C9. A complex torus is an abelian variety if and only if it has
a positive definite Riemann form, as we will see in a later talk.

o If C'/k is a curve, then there exists an abelian variety J(C)/k called the
Jacobian such that for every field extension I/k with C(I) # 0, we have
J(C)(1) = Pic® ().

We define the category of abelian varieties by setting
Hom(A, B) = {k-variety morphisms (defined over k) s.t. 0 — 0}.

It is known that all elements of Hom(A, B) are homomorphisms of group va-
rieties, i.e. respect the group structure. An important object in the theory of
complex multiplication is the endomorphism ring End(A) = Hom(A4, A).

Definition. We say that A (of dimension g) has complex multiplication or
CM by an order O in a CM field K of degree 2g¢ if there exists an embedding
t: O — End(A).

Example. Consider the elliptic curve E : y? = 23+ 2 over a field k and assume
j € k satisfies j2 = —1. Let K = Q(i) and O = Z[i]. Then E has CM by O via
the embedding ¢ given by ¢(i)(z,y) = (—=x, jy).

Here is another important example of an endomorphism.

Example. Let A/F, be an abelian variety over a finite field. We define the
Frobenius endomorphism F, € End(A) as follows. Choose a projective model
of A with coeflicients in F,; (more intrinsic definitions exist, but this serves our
purpose of illustration). Then Fj is the morphism from A to itself that sends a
point . = (xg : - : xy) to 29 = (zd -+ : xd).

This example is important for (among other things) the second halve of our
motivation: Honda-Tate theory.

3 Honda-Tate theory

An isogeny is a surjective morphism of abelian varieties with a finite kernel.
An abelian variety is called simple if it is not isogenous to a product of lower-
dimensional abelian varieties. It is known that every abelian variety is isogenous
to a product of simple abelian varieties.



For a simple abelian variety, the Frobenius element Fj, in the ring End(A)
is an algebraic integer. Weil showed that all complex absolute values of this
algebraic integer are /g, and we call algebraic integers with this property Weil
q-numbers.

Theorem (Honda-Tate theory). There is a bijection

{simple abelian varieties over F,} . { Weil g-numbers}

150geny conjugation
A — F.

Weil’s result implies that the map is well-defined. Tate showed that it is
injective. Honda used the theory of complex multiplication to show that every
element on the right has a power that is in the image of the map. Tate used
this to show that the map is surjective.

The surjectivity result is constructive and we can look at algorithmic aspects
during the seminar. The Frobenius endomorphism (as an algebraic integer)
determines the number of rational points of the corresponding abelian variety.
This implies that, by applying this construction to suitable Weil g-numbers, one
can obtain abelian varieties of which the group of rational points is suitable for
discrete logarithm based cryptography.

4 The Hilbert class field

Let K be any number field. Then (inside an algebraic closure of K'), there is a
largest unramified abelian Galois extension Hg of K and it is called the Hilbert
class field of K.

Here ‘unramified’ not only means unramified at all finite primes, but also at
all infinite primes (meaning that real embeddings stay real). As CM fields have
no real embeddings, this is not relevant if K is a CM field.

There is a well defined bijection

Clx — Gal(Hx/K)

given by the Artin map
p — Frob,.

Here the Frobenius automorphism Frob, is the unique automorphism of Hg
satisfying (for B a prime of Hy lying over p)

Frob, (z) 2 2NV®)  (mod )

for all z € K* coprime to . In other words, it is a lift of the N(p)-th power
Frobenius automorphism of the residue field of 3.



5 The first main theorem for elliptic curves

Now suppose K is imaginary quadratic and let Ok be its maximal order. Let
FE be an elliptic curve over a field k£ of characteristic 0 with CM by O via
t: Ox — End(A). Then ¢ induces an embedding of K into k via the tangent
space of E at 0 (as we will see in another talk). We identify K with its images
in k£ and End(4) ® Q.

Theorem. With the notation and assumptions above, we have
Hig = K(j(E)) C k.
Moreover, the Artin map ¢ : Clxg — Gal(Hg /K) is given by

¥([a])j(E) = j(E/Ela])
for all ideals a C Ok.

Here we define the a-torsion subgroup FE[a] of E by
Ela] = NacaEla]

and note that quotients of elliptic curves by finite subgroups exist.

Complex analytically, we can take E = C/Ok and note that j(C/(Z + 7Z)
is a complex analytic function of 7. This gives the complex analytic description
Hyg = K(j((VD + D)/2)) of Hg and answers Hilbert’s twelfth problem for
unramified extensions of imaginary quadratic number fields.

6 What do we need for the higher dimensional
analogue?

Moduli and polarizations

An important object in the previous theorem is the j-invariant, i.e. the moduli
space of elliptic curves. Abelian varieties in general have too many automor-
phisms for a moduli space to exist. Actually, CM abelian varieties of dimension
g > 2 always have infinitely many automorphisms, since the unit group O, has
rank g — 1.

To solve this problem, we look at abelian varieties together with a polar-
ization ¢. Polarizations will be defined in a later talk. For elliptic curves, we
can forget about them, because every elliptic curve has a unique polarization of
degree 1.

By j(A4,¢), we will mean the isomorphism class of (A, ) or, equivalently,
the point corresponding to (A, ) in the coarse moduli space of polarized abelian
varieties (which we will also define later). By F(j(A,)), we will mean the
smallest field containing F' over which the point in the moduli space is defined,
or, equivalently, the field of moduli of (A, ¢) as defined in [3].



CM types and type norms

Next, recall that (in the elliptic case), we generated an extension of K by taking
elements from k. The connection between those two fields was given by an
embedding K — k induced via the tangent space. In general, such a connection
is given by CM types and the type norm.

Definition. Let K be a CM field of degree 2g and L'/Q a normal extension. A
CM type ® of K with values in L’ is a set of g embeddings of K into L’ of which
no two are complex conjugate to each other (recall that complex conjugation is
a well defined automorphism of K).

Suppose k has characteristic 0 and A/k has CM by K via ¢. Then in some
way (we will see the details in another talk, but it has to do with diagonalizing
the representation of K on the tangent space of A) we assign to (A4,:) a CM
type ® of K with values in k and we say that (A, ) is of type ®.

We will also need the reflex and the type norm of a CM type. The type
norm is the map

K—L: zw~ qu(x)
pcP
The field K’ C L' generated by the image is a CM field (as we will see in a
later talk) and is called the reflez field of (K, ®). At some point, we will see the
definition of the reflex type of (K, ®), which is a CM type @’ of K’ with values
in K and can be viewed as the set of ‘inverses’ of elements of ®. We will see
that the reflex field of (K’, ®') is a subfield of K.

We define the type norm Ng on unit and ideal groups as follows. For a field
F, let Ir be the group of invertible fractional ideals of Op. The type norm Ng
is given by

Ne: K* — (K')*
xr H¢(;v) and

pe®
Nq> ZIK — IK/

a — o suchthat d'Op =[] cq ¢(a)Or .

The fact that the type norm is well defined on ideals needs a proof (which
we do not give in this talk). It is easy to see that Ng(x)Ne(x) = N(z) and
Ng(a)Ng(a) = N(a)Ok:, where N = Ng,q denotes the norm, taking positive
values in Q.

7 The main theorems of complex multiplication

The first main theorem

We can now formulate the main theorems of complex multiplication.



The first main theorem of complex multiplication. Given a CM field F
with a CM type U, let (K, ®) be the reflex of (F, V), let A be an abelian variety
over a field k O F with CM by Ok wvia v of type ®, and let ¢ be a polarization
of A. Let CMpyg = F(](A, g@)) Cck.

Then CMp,y is the unramified abelian extension of F' corresponding to Ir/Hp ,
where

dp € K* such that
Hry = a€lp: Nq,(a):uOK,
pft = N(a)
C Pp={z0p:2€F*}.

Moreover, the Artin isomorphism
IF/HF,\II — Gal(CMF7\1//F)

18 given by
U(a)j(A, ) = j(A/A[LNy(a)], N(a)p)
for all a C O in Ir.

Here, as in the elliptic case, we set

A[L(C)} = m’yécA[L(’Y)]

for ideals ¢ C Ok and it is possible to take quotients of abelian varieties by this
finite subgroup (as we may see later in the seminar). We will see that N(a)p
induces a polarization on the quotient.

The case g = 1. If F is an imaginary quadratic field, then we can identify
F and K via ¥ = Ny. If we do that, then Ng is the identity map. Moreover,
we can leave out the polarizations from the notation, since we can take ¢ to
be the unique polarization on the elliptic curve A of degree 1. We then get the
previous “first main theorem” back.

Existence. We will see in later talks that everything after ‘let’ in the theorem
actually exists, so that the theory of complex multiplication actually constructs
the abelian extension corresponding to Hp y for given F, W.

This result in the literature This theorem is due to Shimura and Taniyama
and is “Main Theorem 1” on page 112 of their book [3].
Actually, Shimura and Taniyama [3] only state the fact that CMpg g is the
class field corresponding to Hr . The explicit Galois action is in the proof.
Also, Shimura and Taniyama [3] restrict to the case where ¥ is a primitive
CM type of F. However, this restriction can be removed as shown by Shimura

2].



The second main theorem of complex multiplication

The second main theorem of complex multiplication is the following generaliza-
tion of the first main theorem. It requires more knowledge of class field theory
than just the Hilbert class field. Let I (b) be the group of invertible fractional
ideals of F' that are coprime to b.

Our first formulation of the second main theorem of complex multi-
plication. Given a CM field F with a CM type U, let (K, ®) be the reflex of
(F,0), let A be an abelian variety over a field k O F with CM by Ok via ¢ of
type ®, and let ¢ be a polarization of A.

Given an ideal b C Ok. Lett € A(k) be a point with annihilator b and let b
be the smallest positive integer in b N Z.

Let CMpw(b) = F(j(A, ¢, t)) C k.

Then CM g ¢ (b) is the abelian extension of F' corresponding to Ir(b)/Hr w(b),
where

Ju € K* such that

Ny (a) = pOk,

pE = N(a),

w=1 (modb)

C Ppb)={20p:2€ F*,z=1 (modb)}.

Hp)q/(b) = aEIF(b):

Moreover, the Artin isomorphism
s given by

P(a)j(A,o,t) = j(A/A[LNg(a)], N(a)g,t)
for alla C OF in Ip(b).

Here j is a point in the moduli space of polarized abelian varieties together
with a point of order b. By the point ¢ on the quotient abelian variety, we mean
the image of ¢ under the quotient morphism.

The first main theorem as a special case. If we take b = 1, then t = 0
on A and we can leave out ¢,b, and b from the notation. This gives us the first
main theorem as a special case of the second.

Existence. Again, everything after ‘let’ really exists (as we will see) so that
the theory of complex multiplication actually constructs the abelian extension
corresponding to Hp y(b) for given F, ¥, b.

The case g = 1. If F' is an imaginary quadratic number field, and we identify
F and K via ¥ = Ny, then one sees

H(b) = Pp(b) N Ir(b),



where
Pp(b) ={20p:z € F*;x =1 (mod b)}.

This shows that for F imaginary quadratic, we have that CM (b) is the ray class
field for the modulus b and that we have F2P = UC M (b).

The class fields obtained by complex multiplication. In general, we
don’t get all abelian extensions of F' by complex multiplication, since H(b) is
not all of Pp(b) N Ip(b). Which fields we can obtain is studied in [2] and is an
interesting subject for a talk in the seminar.

Kronecker’s Jugendtraum. This is not actually an analogue of the map
z + exp(2miz) yet, but it comes very close. It does give A([)[b] as an analogue

of G,,,(Q)[n]. Moreover, we may see in a later talk how to use this theorem to
express the field CMp ¢ (b) in terms of Weierstrass o functions.

This result in the literature. The theorem as stated above is different
from the original formulation as “Main Theorem 2” on page 118 of Shimura
and Taniyama’s book [3] in the sense that it gives CMp ¢ (b) directly over K
instead of over CMpy. We give a formulation in Section 9 below that looks
more like the one in [3].

The statement as above follows from the proof of the result in [3]. The fact
that we do not need to assume ¥ to be primitive is again in [2].

There is also an adelic formulation in [3] and [1]. We may give that formu-
lation at a later stage in the seminar.

8 Frobenius morphisms of reductions of CM abelian
varieties

The most important ingredient in the proof of the main theorem is the formula
of Shimura and Taniyama that gives the Frobenius morphism of the reduction
of a CM abelian variety.

Frobenius morphisms. Here is a more general version of the Frobenius mor-
phism than the one we had before: if A/k is an abelian variety over a field of
characteristic p and ¢ is a power of p, and we assume A to be given as a pro-
jective variety, then let A@ be the variety obtained by raising the coefficients
of A to the ¢-th power. We get a morphism of abelian varieties

F,:A — Al

z — a9

by raising the coordinates of x to the ¢-th power. In the case ¢ = #k, we get
the Frobenius endomorphism that we mentioned before.



Reduction. Now suppose that A/k is an abelian variety over a number field,
again given by a projective model. Then we can get a reduction of A modulo
a prime P of k by reducing the coefficients of A and if this reduction is ‘well
behaved’ in some way that we will see in a later talk, then A has good reduction.
We can extend this notion to sets of abelian varieties and their ‘Hom’-s. We
will see that the ‘Hom’-s are finitely generated as abelian groups, hence every
finite set of abelian varieties has good reduction at almost all primes.

In fact, a possible subject for a later time in our seminar is the fact that
every abelian variety with CM has potential good reduction, that is, a model
over some field extension such that it has good reduction at every prime.

Theorem (Shimura-Taniyama [3, §13]). Let A be an abelian variety over a
number field k with complex multiplication by Ok via v of type ® and assume
that A and its endomorphism ring have good reduction (and possibly some more
assumptions?) at a prime P of k.

Let (F,0) be the reflex of (K, ®), assume k D F and let p = PBNF. Let A
be the reduction of A modulo B and let ¢ = N(p).

Then we have

1. The map Fy : A — A s a quotient of A by A[LNg(p)].

2. The endomorphism Fy(qpy € End(A) is the reduction modulo B of an
endomorphism o(m) for some m € Ok. Moreover, we have

TOk = Nu (N r(B)).

One of our goals in the seminar is to prove this result.

Sketch of the proof of the main theorem. Using the first part of this
result, we can sketch the proof of the main theorem. If we don’t worry about
the polarization ¢ or the point ¢, then we see j(A)7 = j(AD) = j(A/A[tNy(p)]).
This shows the identity

w([a])J(Av 2 t) = J(A/A[LN\P(a)]a 5017 t)

already modulo details and modulo 93, where ¢’ is the induced polarization on
the quotient. One of our goals is to fill in the details and give the proof of the
main theorem. We only need good reduction at all but finitely many primes for
this.

Sketch of the proof of Honda’s result. If we use the second part of the
above theorem, then we can see how to obtain an abelian variety corresponding
to a given Weil g-number if we can write it as a type norm. In fact, given a
Weil g-number 7, if we can write a power of m as a type norm of an ideal in
a CM field, and show the existence of abelian varieties with CM of that type,
and show that it has potential good reduction, then a power of 7 is a Frobenius
endomorphism for the reduction of such an abelian variety, which is a result of
Honda.



9 The second main theorem revisited

For the second formulation of the second main theorem, we look at the relative
extension CM (b)/CM and its Galois group (Hpw N Ip(b))/Hpw(b). Let

M(b) = {1 € K*, i € Q" coprime to b}/(O})'".
We find injective morphisms
Ny ZHF,\yﬂIF(b)HM(b), and

Nq/ : (HF,\I/ ﬂ[p(b))/HF,q;(b) — M(b)/(M(b) N1 + b)

Let N be the image of the second map. Note that every element of N has a
representative pu € Ok.

The case ¢ = 1. If F is imaginary quadratic, then the maps Ny are iso-
morphisms and the group M (b)/(M(b) N1 + b) is naturally isomorphic to
(Op/b)*/O%. For g > 2, it is an interesting question what N is and if we
can find such a nice presentation of the group. We hope to see an answer during
the seminar.

The normalized Kummer variety. The normalized Kummer variety of a
polarized abelian variety (A, ¢)/k is a morphism of varieties V' : A — @ that is
a quotient of A by the action of Aut(A4,¢) and satisfies some rationality condi-
tions such as that @ is defined over P(j(A, )), where P is the prime field of k.
We may give a definition later in the seminar, it is in [3]. If A has CM by K of
a primitive CM type, then Aut(A4, p) = (O%)%".

Our second formulation of the main theorem of complex multiplica-
tion. Given a CM field F with a CM type U, let (K, ®) be the reflex of (F, V),
let A be an abelian variety over a field k O F with CM by Ok wvia v of type P,
and let V : A — Q be its normalized Kummer variety.

Given an ideal b C Ox, let t € A(k) be a point with annihilator b, and let b
be the smallest positive integer in b N Z.

Then CMp g (b) = CMpg(V(t)) C k is the same abelian extension of F as
in the first formulation of the second main theorem.

Moreover, the Artin isomorphism

N — Gal(CMp,y(b)/CMp.y)

is given by
PV (t) =V (ut)
forallpe N.

Existence. Again, everything after ‘let’ really exists (as we will see) so that the
theory of complex multiplication can actually construct the abelian extension

10



corresponding to Hp ¢ (b).

The case g = 1. If A is an elliptic curve over a field of characteristic different
from 2 and 3, then A has a model over P(j(A)) of the form A : y* = 23+ az +0.
Let n = #0%/2. We then have Q@ = P! and V is the n-th power of the
x-coordinate map.

In complex analytic terms, we can take this x to be

Loo(r, 1) if go(7) =0,

ga(r) ¥
z.(t) = gQET;@(Ta t)? if g3(7) =0, and
Z;(:) p(7,t)  otherwise,

for every t € E(C) = C/(Z + 7Z).

For an imaginary quadratic field K of discriminant D and a positive integer
b, let 7 = L(V/D + D). Recall that CM(b) is the ray class field of K for the
modulus b. Then this shows that we have

CM(b) = K(j(7), z-(1/)).

This gives a full solution to Kronecker’s Jugendtraum for imaginary quadratic
fields.

This result in the literature. In [3] (“Main Theorem 2 on page 118”), the
fact that CMp w(V (t)) is the correct field is stated without the explicit Galois
action, but the explicit Galois action is in the proof.

The assumption that ¥ is primitive is there, but can be removed as shown
in [2].
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