EXISTENCE AND CLASSIFICATION OF CM ABELIAN
VARIETES OVER C.

DAVID MANDELL FREEMAN

Let V = C9 be a complex vector space, and let A C V be a lattice.

Definition. A Riemann form on V/A is the imaginary part of a positive definite
Hermitian form H on V such that H(A) C R +iZ.

Equivalently, a Riemann form is a map E : V x V — R such that:

(a) E is R-bilinear,
(b) E is alternating,
(c) E
(d)

(u,v) € Z for u,v € A,
(u,v) — E(iu,v) is positive definite and symmetric,

The form H of the polarizations lecture is obtained by H(u,v) = E(iu,v) +
iFE(u,v). This H is positive definite if and only if E(iu,v) is positive definite.

Recall that H is positive definite if and only if the line bundle L(H,«) (from
the polarizations lecture) is ample. Furthermore, a complex manifold M admits
an ample line bundle if and only if M is projective, and any projective complex
manifold is an algebraic variety. Thus complex abelian varieties are exactly complex
tori that admit a Riemann form.

Some notation: let K be a CM field and ® = (¢1,. .., ¢4) be a CM type on K.
Then there is an isomorphism of R-algebras ® : K ® R — CY defined by setting

TRr — (T¢1($),...,T¢g(l‘))

and extending linearly to sums of tensors.

Theorem 1 (Existence). Let K be a CM field of degree 2g. For any CM type ®
of K, any fractional ideal a of Ok, and any £ € K satisfying

(1) €2 <0 (i.e., & is totally imaginary),
(2) Im ¢, (&) > 0 for all i,
(3) € € (am)Y = (au®D)~!, where
e V indicates the trace dual,
o 9 is the different of K,
e the equality holds since Oy, = D1,
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there exits an abelian variety that has CM by Ok, CM type ®, and a polarization
given by the Riemann form defined by

E:KxK — Q
(@(u), ®(v)) — Trgg(&uv)
for u,v € K, extended R-linearly to C9 x CY.

Proof. Let A = C9/®(a). Since ®(a) is a full-rank lattice in CY9, the manifold A
is a complex torus. We must check:

1. E is a Riemann form on C9/®(a).

(a) Obvious.
(b) Since ¢ is totally imaginary, we have

E(u’v) = TrK/Q(éT“}) = TrK/Q(%) = —E(v,u)

(¢) This is exactly the definition of “trace dual.”
(d) Follows from properties (1) and (2) of . (Trust me...)

2. A has CM by Og. Define the map

t: 0 — End(CY/d(a))
¢1(a) 0
a +— diag®(a) =
0 Pg(cx)

This defines the action of Ok on CY; since a is a (fractional) ideal we have Oga = a,
and thus the action factors through the quotient.

3. A has CM type ®. To determine the CM type we look at the action of Ok
induced by ¢ on the tangent space at the origin,

t: Og — End(A) — End(TpA) = End(C?) = Mat,,»,,(C)

When this action is diagonalized the CM type ¥ = (¢1,...,%4) of A is defined by
setting 1;(a) to be the ith diagonal entry of the resulting diagonal matrix. With
our definition of + above, this action is already diagonal, and it is easy to see that
1/)i(a):¢i(a),solll:<1>. [l

Remark. The conditions of Theorem 1 are not vacuous; namely, there always
exists a £ € K with properties (1)—(3). Given an o € K, we let 8 = a — &; then
is totally imaginary. We can then choose a unit v € Of such that Im d:(v6) >0
for all 4. Finally, we choose n € Z such that ny8 € (aa)V, and set & = ny0.

Definition. A CM-type ® of K is induced from a CM-subfield K’ C K if it is of
the form ® = {¢ : ¢|x € P’} for some CM-type &’ of K'. We call ® primitive if it
is not induced from a proper subfield of K.

Theorem 2 (Classification). Let (A, ) be an abelian variety over C with CM by Ok
and primitive CM type ®. Then there exists a fractional ideal a and an isomorphism
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0: A= C9/®(a) such that the following diagram commutes for every o € Ok :

A——2 > C9/2(a)

L(a)l l(diag @) (a)

A— % o /®(a)
Furthermore, if p is a polarization on A, and E is a Riemann form on C9/®(a)
corresponding to p via 0, then there exists a & € K satisfying (1)-(3) above such
that E is given as in Theorem 1.

Sketch of proof: Let § : A — ToA/A be the isomorphism from Richard’s talk
(i.e., the inverse of the exponential map). The map ¢ : O — End(A) induces an
action of Ok on Ty A and thus also on A. Since A has CM type &, we can choose a
basis of TpA 22 C9 such that Ok acts diagonally. If we choose a K-basis for A @ Q,
then we can identify A ® Q with K. Thus A is a nonzero Og-submodule of K i.e.,
a fractional ideal a.

Let E be a Riemann form as in the statement. For any u,v,z € K, the map
Euw : T +— E(®(x)P(u),®(v)) is Q-linear, so there is a function w(u,v) such that
&uw(®) = Trgjg(aw(u,v))." Furthermore, one can use the properties (a)—(d) of E
to show that w is u-linear, v-anti-linear, and alternating, which implies that it is of
the form w(u,v) = &uv for some ¢ satisfying properties (1) and (3). Property (2)
follows from positive definiteness of E. Thus E(®(u), ®(v)) = Trg g ({u). O

If € is as in the construction above, then we have
(1) degp := #kerp = [(a@D) "' : £Ok].

Definition. Let (4,¢,p) and (A’,/,p") be polarized abelian varieties together with
a CM structure. An isomorphism (of varieties) f : A — A’ is an isomorphism be-
tween polarized abelian varieties (A, ¢, p) and (A’, !, p’) if the following two diagrams
commute for all o« € Og:

~

f
—_—

=
£
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~
-
§\
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a2
]
o <——

> <——
’E\

~

Let K be a CM field, and let

A/C an abelian variety,
S(K)=<(A,t,p):  t:Og — End(A), / =,
p a polarization

and let Sq(K) = {(4,¢,p) € S(K) : degp = d}.

rm sweeping things under the rug here — this is where we use the primitive hypothesis on
®, to guarantee that E is what Lang calls “®-admissible.”
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Let
a C Ok a fractional ideal,
T(K)=1q(a,9,8): ® a CM type of K, ,
¢ € Ok satistying (1)—(3).
and let

Ty(K) = {(a,®,&) € T(K) : [(aaD) " : €O] = d}.
Theorem 3 (Finiteness). For any CM field K and any d € Zsq, Sq(K) is finite.

Proof sketch: By Theorem 1, there is a map x : T(K) — S(K). By Theorem
2, the map x is surjective. By (1) the map x induces a surjection from Ty(K)
to Sq(K). We claim that that there is a finite set Uyg(K) C Ty(K) such that
X : Ug(K) — S4(K) is surjective.

First, there are finitely many CM types on K, so the number of possible ® is
already finite.

Second, for v € K, the map x — ®(u)z gives an isomorphism x(a,®,&) =
x(ua, @, (u)~1¢). Thus y remains surjective when we restrict the possible a to
contain one representative of each ideal class of Ok, which is a finite set.

Third, for any given a there are finitely many ideals EOk with [(a@D) ™! : EOk] =
d. For each such ideal, pick (if possible) a generator & with properties (1)—(3).
Any ¢ with the desired properties is equal to vy for some totally positive v € O, .
(Totally positive by property (1), a unit because degree = d.)

Suppose v,v’ are totally positive in Ok, If there is some u € OF such that
uuvéy = v'&p, then x(a, ®,v8p) = x(a, ®,v'&). Inother words, if v’ /v € Nk, i, (O%),
then the polarizations defined by v and v are isomorphic. Thus we can fix £, and
restrict the choice of £ in the domain of x to & times coset representatives of
O%k,/Nk/k,(OF), and x remains surjective. But this quotient is finite (the norm
group contains (O )?), so we have restricted to a finite set of &. O

Theorem 4 (Algebraicity). Any polarized abelian variety over C with CM by Ok
is isomorphic to one defined over a number field.

Hand-wavy argument: Consider the (coarse?) moduli space M of polarized
abelian varieties over C. Let (A4,1,p) € Sg(K) (where d = degp). Since Sy(K) is
finite, we can choose an affine open U C M containing all the points correspond-
ing to elements of S4(K) and write the coordinates of the point corresponding to
(A,¢,p) as (J1(A,,p), ..., Jn(A,1,p)). Now form the polynomials

HZ(J’J) = H (.’I}—]Z(A, L7p))

(Ase,p)€Sa(K)

for i = 1,...,n. Now any ¢ € Autg(C) (the group of ring automorphisms of
C) permutes S4(K), so H;(z) is fixed by Autg(C) and thus has coefficients in Q.
Thus the j;(A, ¢, p) are algebraic, and it follows from some more moduli theory that
(A, 1, p) can be defined over a finite extension of L = Q(j1 (4, t,p), ..., jn(A,t,p)).

O
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If A is an elliptic curve, then we can make the above precise: we have n = 1, j;
is the j-invariant, and A can be defined over Q(j(A)).

Theorem 5 (Isogeny). Let (A,¢),(B,3) be two abelian varieties over C with CM
by Ok . If A and B have the same CM type ®, then A and B are isogenous.

Proof. By Theorem 2, we can write A = C9/®(a) and B = C9/®(b). An isogeny
from A to B is given by a matrix M € Mat,(C) such that M®(a) C ®(b). It is
clear that if @ € ba™! then diag ®(«) is such a matrix. O

The isogeny constructed in the above proof is a c-multiplication, where ¢ =
aab™! and (B,)) is a c-transform of (A,1). We will learn what these terms mean
in a future talk.
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