EXISTENCE AND CLASSIFICATION OF CM ABELIAN VARIETES OVER \mathbb{C} .

DAVID MANDELL FREEMAN

Let $V \cong C^g$ be a complex vector space, and let $\Lambda \subset V$ be a lattice.

Definition. A Riemann form on V/Λ is the imaginary part of a positive definite Hermitian form H on V such that $H(\Lambda) \subset \mathbb{R} + i\mathbb{Z}$.

Equivalently, a Riemann form is a map $E: V \times V \to \mathbb{R}$ such that:

- (a) E is \mathbb{R} -bilinear,
- (b) E is alternating,
- (c) $E(u,v) \in \mathbb{Z}$ for $u,v \in \Lambda$,
- (d) $(u, v) \mapsto E(iu, v)$ is positive definite and symmetric,

The form H of the polarizations lecture is obtained by H(u,v) = E(iu,v) +iE(u,v). This H is positive definite if and only if E(iu,v) is positive definite.

Recall that H is positive definite if and only if the line bundle $L(H,\alpha)$ (from the polarizations lecture) is ample. Furthermore, a complex manifold M admits an ample line bundle if and only if M is projective, and any projective complex manifold is an algebraic variety. Thus complex abelian varieties are exactly complex tori that admit a Riemann form.

Some notation: let K be a CM field and $\Phi = (\phi_1, \dots, \phi_q)$ be a CM type on K. Then there is an isomorphism of \mathbb{R} -algebras $\Phi: K \otimes \mathbb{R} \to \mathbb{C}^g$ defined by setting

$$x \otimes r \mapsto (r\phi_1(x), \dots, r\phi_q(x))$$

and extending linearly to sums of tensors.

Theorem 1 (Existence). Let K be a CM field of degree 2g. For any CM type Φ of K, any fractional ideal \mathfrak{a} of \mathcal{O}_K , and any $\xi \in K$ satisfying

- (1) $\xi^2 \ll 0$ (i.e., ξ is totally imaginary),
- (2) Im $\phi_i(\xi) > 0$ for all i, (3) $\xi \in (\mathbf{a}\overline{\mathbf{a}})^{\vee} = (\mathbf{a}\overline{\mathbf{a}}\mathfrak{D})^{-1}$, where
 - \(^{\text{V}}\) indicates the trace dual,
 - \mathfrak{D} is the different of K,
 - the equality holds since $\mathcal{O}_K^{\vee} = \mathfrak{D}^{-1}$,

Date: November 20, 2009.

there exits an abelian variety that has CM by \mathcal{O}_K , CM type Φ , and a polarization given by the Riemann form defined by

$$\begin{array}{ccc} E: K \times K & \to & \mathbb{Q} \\ (\Phi(u), \Phi(v)) & \mapsto & \mathrm{Tr}_{K/\mathbb{Q}}(\xi \bar{u}v) \end{array}$$

for $u, v \in K$, extended \mathbb{R} -linearly to $\mathbb{C}^g \times \mathbb{C}^g$.

Proof. Let $A = \mathbb{C}^g/\Phi(\mathfrak{a})$. Since $\Phi(\mathfrak{a})$ is a full-rank lattice in \mathbb{C}^g , the manifold A is a complex torus. We must check:

- 1. E is a Riemann form on $\mathbb{C}^g/\Phi(\mathfrak{a})$.
 - (a) Obvious.
 - (b) Since ξ is totally imaginary, we have

$$E(u, v) = \operatorname{Tr}_{K/\mathbb{O}}(\xi \bar{u}v) = \operatorname{Tr}_{K/\mathbb{O}}(\overline{-\xi u\bar{v}}) = -E(v, u)$$

- (c) This is exactly the definition of "trace dual."
- (d) Follows from properties (1) and (2) of ξ . (Trust me...)
- 2. A has CM by \mathcal{O}_K . Define the map

$$\alpha : \mathcal{O}_K \to \operatorname{End}(\mathbb{C}^g/\Phi(\mathfrak{a}))$$

$$\alpha \mapsto \operatorname{diag}\Phi(\alpha) := \begin{pmatrix} \phi_1(\alpha) & 0 \\ & \ddots & \\ 0 & & \phi_g(\alpha) \end{pmatrix}$$

This defines the action of \mathcal{O}_K on \mathbb{C}^g ; since \mathfrak{a} is a (fractional) ideal we have $\mathcal{O}_K\mathfrak{a} = \mathfrak{a}$, and thus the action factors through the quotient.

3. A has CM type Φ . To determine the CM type we look at the action of \mathcal{O}_K induced by ι on the tangent space at the origin,

$$\iota: \mathcal{O}_K \to \operatorname{End}(A) \to \operatorname{End}(T_0A) = \operatorname{End}(\mathbb{C}^g) = \operatorname{Mat}_{n \times n}(\mathbb{C})$$

When this action is diagonalized the CM type $\Psi = (\psi_1, \dots, \psi_g)$ of A is defined by setting $\psi_i(\alpha)$ to be the *i*th diagonal entry of the resulting diagonal matrix. With our definition of ι above, this action is already diagonal, and it is easy to see that $\psi_i(\alpha) = \phi_i(\alpha)$, so $\Psi = \Phi$.

Remark. The conditions of Theorem 1 are not vacuous; namely, there always exists a $\xi \in K$ with properties (1)–(3). Given an $\alpha \in K$, we let $\beta = \alpha - \bar{\alpha}$; then β is totally imaginary. We can then choose a unit $\gamma \in \mathcal{O}_{K_0}^*$ such that $\operatorname{Im} \phi_i(\gamma \beta) > 0$ for all i. Finally, we choose $n \in \mathbb{Z}$ such that $n\gamma\beta \in (\alpha\overline{\mathfrak{a}})^\vee$, and set $\xi = n\gamma\beta$.

Definition. A CM-type Φ of K is induced from a CM-subfield $K' \subset K$ if it is of the form $\Phi = \{\phi : \phi | K' \in \Phi'\}$ for some CM-type Φ' of K'. We call Φ primitive if it is not induced from a proper subfield of K.

Theorem 2 (Classification). Let (A, ι) be an abelian variety over \mathbb{C} with CM by \mathcal{O}_K and primitive CM type Φ . Then there exists a fractional ideal \mathfrak{a} and an isomorphism

 $\theta: A \xrightarrow{\sim} \mathbb{C}^g/\Phi(\mathfrak{a})$ such that the following diagram commutes for every $\alpha \in \mathcal{O}_K$:

$$A \xrightarrow{\theta} \mathbb{C}^g/\Phi(\mathfrak{a}) .$$

$$\downarrow^{(\operatorname{diag}\Phi)(\alpha)}$$

$$A \xrightarrow{\theta} \mathbb{C}^g/\Phi(\mathfrak{a}) .$$

Furthermore, if p is a polarization on A, and E is a Riemann form on $\mathbb{C}^g/\Phi(\mathfrak{a})$ corresponding to p via θ , then there exists a $\xi \in K$ satisfying (1)–(3) above such that E is given as in Theorem 1.

Sketch of proof: Let $\theta: A \to T_0A/\Lambda$ be the isomorphism from Richard's talk (i.e., the inverse of the exponential map). The map $\iota: \mathcal{O}_K \to \operatorname{End}(A)$ induces an action of \mathcal{O}_K on T_0A and thus also on Λ . Since A has CM type Φ , we can choose a basis of $T_0A \cong \mathbb{C}^g$ such that \mathcal{O}_K acts diagonally. If we choose a K-basis for $\Lambda \otimes \mathbb{Q}$, then we can identify $\Lambda \otimes \mathbb{Q}$ with K. Thus Λ is a nonzero \mathcal{O}_K -submodule of K, i.e., a fractional ideal \mathfrak{a} .

Let E be a Riemann form as in the statement. For any $u, v, x \in K$, the map $\xi_{u,v}: x \mapsto E(\Phi(x)\Phi(u), \Phi(v))$ is \mathbb{Q} -linear, so there is a function $\omega(u,v)$ such that $\xi_{u,v}(x) = \operatorname{Tr}_{K/\mathbb{Q}}(x\omega(u,v))$. Furthermore, one can use the properties (a)–(d) of E to show that ω is u-linear, v-anti-linear, and alternating, which implies that it is of the form $w(u,v) = \xi u\bar{v}$ for some ξ satisfying properties (1) and (3). Property (2) follows from positive definiteness of E. Thus $E(\Phi(u), \Phi(v)) = \operatorname{Tr}_{K/\mathbb{Q}}(\xi u\bar{v})$.

If ξ is as in the construction above, then we have

(1)
$$\deg p := \# \ker p = [(\mathfrak{a}\overline{\mathfrak{a}}\mathcal{D})^{-1} : \xi \mathcal{O}_K].$$

Definition. Let (A, ι, p) and (A', ι', p') be polarized abelian varieties together with a CM structure. An isomorphism (of varieties) $f: A \to A'$ is an isomorphism between polarized abelian varieties (A, ι, p) and (A', ι', p') if the following two diagrams commute for all $\alpha \in \mathcal{O}_K$:

$$\begin{array}{ccc}
A & \xrightarrow{f} & A' & & A & \xrightarrow{f} & A' \\
\iota(\alpha) \downarrow & & \downarrow \iota'(\alpha) & & p \downarrow & \downarrow p' \\
A & \xrightarrow{f} & A' & & \hat{A} & \stackrel{\hat{f}}{\leftarrow} & \hat{A}'
\end{array}$$

Let K be a CM field, and let

$$S(K) = \left\{ (A, \iota, p) : \begin{array}{c} A/\mathbb{C} \text{ an abelian variety,} \\ \iota : \mathcal{O}_K \hookrightarrow \operatorname{End}(A), \\ p \text{ a polarization} \end{array} \right\} / \cong,$$

and let $S_d(K) = \{(A, \iota, p) \in S(K) : \deg p = d\}$

¹I'm sweeping things under the rug here — this is where we use the primitive hypothesis on Φ , to guarantee that E is what Lang calls " Φ -admissible."

Let

$$T(K) = \left\{ (\mathfrak{a}, \Phi, \xi) : \begin{array}{l} \mathfrak{a} \subset \mathcal{O}_K \text{ a fractional ideal,} \\ \Phi \text{ a CM type of } K, \\ \xi \in \mathcal{O}_K \text{ satisfying (1)-(3).} \end{array} \right\},$$

and let

$$T_d(K) = \{(\mathfrak{a}, \Phi, \xi) \in T(K) : [(\mathfrak{a}\overline{\mathfrak{a}}\mathcal{D})^{-1} : \xi \mathcal{O}_K] = d\}.$$

Theorem 3 (Finiteness). For any CM field K and any $d \in \mathbb{Z}_{>0}$, $S_d(K)$ is finite.

Proof sketch: By Theorem 1, there is a map $\chi: T(K) \to S(K)$. By Theorem 2, the map χ is surjective. By (1) the map χ induces a surjection from $T_d(K)$ to $S_d(K)$. We claim that that there is a finite set $U_d(K) \subset T_d(K)$ such that $\chi: U_d(K) \to S_d(K)$ is surjective.

First, there are finitely many CM types on K, so the number of possible Φ is already finite.

Second, for $u \in K$, the map $x \mapsto \Phi(u)x$ gives an isomorphism $\chi(\mathfrak{a}, \Phi, \xi) \cong \chi(u\mathfrak{a}, \Phi, (u\bar{u})^{-1}\xi)$. Thus χ remains surjective when we restrict the possible \mathfrak{a} to contain one representative of each ideal class of \mathcal{O}_K , which is a finite set.

Third, for any given \mathfrak{a} there are finitely many ideals $\xi \mathcal{O}_K$ with $[(\mathfrak{a}\overline{\mathfrak{a}}\mathcal{D})^{-1}:\xi \mathcal{O}_K]=d$. For each such ideal, pick (if possible) a generator ξ_0 with properties (1)–(3). Any ξ with the desired properties is equal to $v\xi_0$ for some totally positive $v \in \mathcal{O}_{K_0}^*$. (Totally positive by property (1), a unit because degree =d.)

Suppose v,v' are totally positive in $\mathcal{O}_{K_0}^*$. If there is some $u \in \mathcal{O}_K^*$ such that $u\bar{u}v\xi_0 = v'\xi_0$, then $\chi(\mathfrak{a},\Phi,v\xi_0) \cong \chi(\mathfrak{a},\Phi,v'\xi_0)$. In other words, if $v'/v \in N_{K/K_0}(\mathcal{O}_K^*)$, then the polarizations defined by v and v' are isomorphic. Thus we can fix ξ_0 and restrict the choice of ξ in the domain of χ to ξ_0 times coset representatives of $\mathcal{O}_{K_0}^*/N_{K/K_0}(\mathcal{O}_K^*)$, and χ remains surjective. But this quotient is finite (the norm group contains $(\mathcal{O}_{K_0}^*)^2$), so we have restricted to a finite set of ξ .

Theorem 4 (Algebraicity). Any polarized abelian variety over \mathbb{C} with CM by \mathcal{O}_K is isomorphic to one defined over a number field.

Hand-wavy argument: Consider the (coarse?) moduli space \mathcal{M} of polarized abelian varieties over \mathbb{C} . Let $(A, \iota, p) \in S_d(K)$ (where $d = \deg p$). Since $S_d(K)$ is finite, we can choose an affine open $U \subset \mathcal{M}$ containing all the points corresponding to elements of $S_d(K)$ and write the coordinates of the point corresponding to (A, ι, p) as $(j_1(A, \iota, p), \ldots, j_n(A, \iota, p))$. Now form the polynomials

$$H_i(x) = \prod_{(A,\iota,p)\in S_d(K)} (x - j_i(A,\iota,p))$$

for i = 1, ..., n. Now any $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{C})$ (the group of ring automorphisms of \mathbb{C}) permutes $S_d(K)$, so $H_i(x)$ is fixed by $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{C})$ and thus has coefficients in \mathbb{Q} . Thus the $j_i(A, \iota, p)$ are algebraic, and it follows from some more moduli theory that (A, ι, p) can be defined over a finite extension of $L = \mathbb{Q}(j_1(A, \iota, p), \ldots, j_n(A, \iota, p))$.

If A is an elliptic curve, then we can make the above precise: we have n = 1, j_1 is the j-invariant, and A can be defined over $\mathbb{Q}(j(A))$.

Theorem 5 (Isogeny). Let $(A, \iota), (B, \jmath)$ be two abelian varieties over \mathbb{C} with CM by \mathcal{O}_K . If A and B have the same CM type Φ , then A and B are isogenous.

Proof. By Theorem 2, we can write $A = \mathbb{C}^g/\Phi(\mathfrak{a})$ and $B = \mathbb{C}^g/\Phi(\mathfrak{b})$. An isogeny from A to B is given by a matrix $M \in \operatorname{Mat}_n(\mathbb{C})$ such that $M\Phi(\mathfrak{a}) \subset \Phi(\mathfrak{b})$. It is clear that if $\alpha \in \mathfrak{ba}^{-1}$ then diag $\Phi(\alpha)$ is such a matrix.

The isogeny constructed in the above proof is a \mathfrak{c} -multiplication, where $\mathfrak{c} = \alpha \mathfrak{a} \mathfrak{b}^{-1}$, and (B, \mathfrak{z}) is a \mathfrak{c} -transform of (A, ι) . We will learn what these terms mean in a future talk.

CWI AMSTERDAM AND UNIVERSITEIT LEIDEN, NETHERLANDS, freeman@cwi.nl