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Abstract

In this paper we consider an adaptive spatial discretization scheme for the Nagumo PDE. The scheme is
a commonly used spatial mesh adaptation method based on equidistributing the arclength of the solution
under consideration. We assume that this equidistribution is strictly enforced, which leads to the non-local
problem with infinite range interactions that we derived in [4].

For small spatial grid-sizes, we establish some useful Fredholm properties for the operator that arises
after linearizing our system around the travelling wave solutions to the original Nagumo PDE. In particular,
we perform a singular perturbation argument to lift these properties from the natural limiting operator.
This limiting operator is a spatially stretched and twisted version of the standard second order differential
operator that is associated to the PDE waves.
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1 Introduction

In this paper we continue the program initiated in [4] to construct travelling wave solutions to
adaptive discretization schemes for scalar bistable systems such as the Nagumo PDE
Ut = Ugg + Geun (u; @), (1.1)
with the cubic nonlinearity
Jeub(u) = u(l — u)(u — a), 0<a<l. (1.2)

In particular, we study schemes that aim to equidistribute the arclength of a solution profile equally
between gridpoints in order to improve the resolution inside the regions of interest. The main goal
here is to understand the linear operators that underpin the dynamics by transferring Fredholm
properties from the continuous to the discrete regime.
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Sturm-Liouville theory Substituting the travelling wave Ansatz u(z,t) = ®(x + ct) into (1.1),
we obtain the travelling wave ODE

c® =" + geun(P;a). (1.3)

Using a now standard phase-plane analysis [2], one readily shows that (1.3) coupled with the bound-
ary conditions
®(—00) =0, O(+o00) =1 (1.4)

admits a unique solution pair (®,c) = (®.,c.) = (®.(a), ci(a)), with

sign(c.(a)) = sign(% —a), P, > 0. (1.5)

The latter strict monotonicity result is especially useful when using classical Sturm-Liouville theory
to study the linear operator

[Lewv](€) = =0 (&) + 1" (€) + Geun (P (£); ) (E) (1.6)

associated to the linearization of (1.3) around (®., ¢,). Indeed, this theory immediately implies that
the spectrum of L, : H? — L? lies strictly to the left of the imaginary axis, with the exception of
a simple eigenvalue at zero [9].

This result can subsequently be leveraged to conclude that the waves (®,,c.) are nonlinearly
stable [10] and depend smoothly on the parameter a. In addition, it can be used to show that the
corresponding planar waves u(x,y,t) = @, (x+ c,t) are nonlinearly stable [8] for the two-dimensional
Nagumo PDE

Up = Ugy + Uyy + Joub(U; @) (1.7)

and can be ‘bended’ to form travelling corners [3]. All these results do not use the comparison
principle, allowing the techniques to be readily generalized to multi-component reaction-diffusion
equations.

Uniform spatial discretizations We recall the lattice differential equation (LDE)

1

Uj(t):ﬁ[

Uj—1(t) + Uj41(t) = 2U5(1)] + geun (U5 (t); a) (1.8)
that arises by applying a standard nearest-neighbour discretization to the second derivative in (1.1).
Travelling wave solutions U;(t) = ®(jh + ct) must now satisfy the system

1
c?'(§) = 75 [P —h) + (¢ + h) = 22(] + geun (P(€); ). (1.9)

In the continuum regime 0 < h < 1, a natural first step is to construct spatially-discrete waves
as small perturbations from the PDE waves (®.,c,). However, a short inspection shows that the
transition between (1.3) and (1.9) is highly singular. Nevertheless, Johann [7] developed a version of
the implicit function theorem that can achieve this in some settings. Our inspiration for the present
paper however comes from the spectral convergence approach developed by Bates and his coauthors
in [1].

A key role in this approach is reserved for the linear operator

[Crsuier)(€) = —cv'(€) & 1 [0(E +h) +0(E — 1)~ 20(0)] + gl (@1 (Ea)0(E),  (110)

which can be seen as the linearization of (1.9) around the PDE wave ®,. In fact, it is a singularly
perturbed version of the linear operator Ly, introduced in (1.6). The main contribution in [1] is
that Fredholm properties of Ly, are transferred to Lp,unif. The latter operator can then be used in



a standard fashion to close a fixed-point argument and construct a solution to (1.9) that is close to
(P, cy).

Stated more precisely, the authors fix a constant § > 0 and use the invertibility of Ly + 0 to
show that also Lp.unif + ¢ is invertible for small A > 0. In particular, they consider bounded weakly-
converging sequences {v;} C H' and {w;} C L? with (Lp,unit + 6)v; = w; and set out to find a
lower bound for w; that is uniform in ¢ and h. This can be achieved by picking a large compact
interval K and extracting a subsequence of {v;} that converges strongly in L?(K). Special care must
therefore be taken to rule out the limitless transfer of energy into oscillatory or tail modes, which
are not visible in this strong limit. Spectral properties of the (discrete) Laplacian together with the
bistable structure of the nonlinearity g provide the control on {v;} that is necessary for this.

The results in [1] are actually strong enough to handle discretizations of the Laplacian that have
infinite range interactions. In addition, this approach was recently generalized [11] for use in multi-
component reaction-diffusion problems such as the FitzHugh-Nagumo system. We emphasize that
this generalization also allows one to establish the stability of the constructed waves, which is an
important reason for us to pursue this line of thought in the present paper.

Uniform spatial-temporal discretizations Applying the backward Euler discretization to the
remaining derivative in (1.9), we see that fully discretized front solutions

U;(nAt) = ®(j + ncAt), ®(—o00) =0, O(+00) =1 (1.11)

to the coupled map lattice

Ait [UJ (nAt) — Uj ((n — 1)At>] = h% [Uj_l(nAt) + Uj+1(nAt) — 2Uj (TLAt)]
(1.12)
+Jeub (Uj (nAt); a).
must satisfy the difference equation
AflP(E) — @€ —cA)] = 5 [R(E—h)+ P+ D) = 20(8)] + geun (P(E);: a). (1.13)
Inspired by the approach above, one can set out to understand the fully discrete operator
[Lra](€) = —az[v(€) —v(€—cAt)] + gz [v(€ = 1) +v(€ + 1) — 20(¢)] (1.14)

F9eun (@(€); a)v(€),

in which (®, ¢) is the spatially-discrete travelling wave (1.9).

The main contribution in [6] is that we modified the approach of [1] that was discussed above in
such a way that Fredholm properties can be transferred from the spatially-discrete operators Ly unit
to the fully-discrete operators L£; a:+. Besides the singular transition from a first-order derivative
to a first-order difference, there is also a structural transition in play here. Indeed, for cAt € hQ
the natural spatial domain for the function v in (1.14) is only a discrete subset of R. The ability
to handle such structural bifurcations is a second strong indicator of the versatility of the spectral
convergence approach.

Continuum regime In [4] we introduced the continuous arclength coordinate § = 6(x,t) that
satisfies 6, = /1 + u2. Upon passing to the (6,t) coordinate system by writing

w(f,t) = u(m(é),t),t), 7(0,1) = /1 —we(6,1)?, (1.15)

we transformed (1.1) into the fully nonlinear non-local system

wy = v 2weg + Y2 geun (w; a) + wo/ (v“‘wee + Goun (w; a))wee~ (1.16)



Here we recall the notation [ f](6) = [ f(6')d¢'.
Let us now write U, for the arclength reparametrization of the PDE waveprofile ®, and introduce

the expression
Y (T) = /1 = W (7)2. (1.17)

In §3 we show that this stretched profile ¥, satisfies the ODE
L = Y 4 goun (Ui a). (1.18)

In particular, the useful identity

/ (v + goun (Va5 0)) Y = C*/ Y WL = (1 - ) (1.19)

allows us to conclude that

which means that w(6,t) = U, (0 + c.t) satisfies (1.16).
Linearizing the stretched travelling wave ODE (1.18) around ¥, we obtain the operator

Lompt = —cuy: 0 + 5 0" + 4y, 50 070 + g (Wy;a)v (1.21)

that acts with respect to the computational coordinate 7. In §3.2 we analyze this operator in some
detail and recast it back into the original physical coordinates. In fact, we show that it is not
equivalent to the standard linearization Ly, introduced in (1.6). It contains an extra term related
to the stretching procedure that vanishes when applied to 9¢®.. On the other hand, in the limits
T — oo the differences between L.mp and Ly, disappear. The essential spectrum hence remains
unchanged. In addition, we explicitly show that the kernel of L¢np, is also one-dimensional.

On the other hand, the linear operator £, associated to the linearization of (1.20) is given by

Lo = —cv + 7*—21;// + 27;4\I/;\I’fk’v/ + 739é11b(\11*§ a)v — 2V, geup (U, @)’
PO [ [T WP A gl (W)W (1.22)
PO (W e (W @)+ [ (7 g (V)

Using (1.18)-(1.19), together with 9, [y, 1W’] = v 3¥”, this definition can be conveniently rewritten
as

L0 =2Lempv + ¥, / U Lempv. (1.23)
In §3.3 we study the integral transform present in (1.23), which allows us to transfer key properties
of the operator Lcmp to L. Let us emphasize once again that this twisted structure is a direct
consequence of the procedure that we used in [4] to eliminate the mesh-speed x; from our system.

The singular perturbation In this paper we study the linear operators L, that arise by recasting
the integral in (1.23) as a sum and replacing all the derivatives except —c,v’ by their appropriate
discrete counterparts. The precise expression is provided in §2, but conceptually this procedure is
similar to the transitions

Liw = Lhunir, Lhunit = Lh,At (1.24)

that we discussed above.
Our main goal here is to establish Fredholm properties for the operators £;. In particular, we
generalize the spectral convergence approach described above to understand the singular transition



from L, to L,. This is a delicate task, since the structure of the operators L is significantly more
complicated than that of Lpnir. In particular, the integral transform and the non-autonomous
coefficients generate several new terms that were not present in [1]. In addition, we extend the
techniques to gain control on the second and third discrete derivatives of solutions to the system
L:h’U = f

Our approach hinges on the fact that the new terms can all be shown to be localized in an
appropriate sense. Nevertheless, recalling the sequences {v;} C H' and {w;} C L? with (£, +6)v; =
wj, we need to extract subsequences for which the discrete derivatives of v; also converge strongly on
compact intervals. We accomplish this by carefully controlling the size of the second-order discrete
derivatives. This requires frequent use of a discrete summation-by-parts procedure to isolate this
derivative from the convoluted expressions.

Although we do not pursue this here, we do believe that the techniques developed in [11] could
be merged with the tools developed in this paper. In this way we would also be able to handle
systems of reaction-diffusion equations in the bistable regime. We are less confident about possible
generalizations to monostable equations, but passing to suitably weighted function spaces would be
the first step to take.

Overview This paper is organized as follows. Our main results are formulated in §2. In §3 we
discuss the impact on the PDE wave (®,, ¢,) caused by the transition from the physical coordinates
to the computational coordinates. We develop some basic tools that link discrete and continuous
calculus in §4. We continue in §5 by obtaining preliminary estimates concerning some of the terms
appearing in L. We conclude in §6 by analyzing the full structure of the operators L. This allows us
to generalize the spectral convergence method to establish Fredholm properties for these operators.

Acknowledgements. Hupkes acknowledges support from the Netherlands Organization for Sci-
entific Research (NWO) (grant 639.032.612). Van Vleck acknowledges support from the NSF (DMS-
1419047 and DMS-1714195). Both authors wish to thank W. Huang for helpful discussions during
the conception and writing of this paper.

2 Main results
The main results of this paper concern adaptive-grid discretizations of the scalar PDE

Throughout the paper, we assume that the nonlinearity g satisfies the following standard bistability
condition.

(Hg) The nonlinearity g : R — R is C3-smooth and has a bistable structure, in the sense that there
exists a constant 0 < a < 1 such that we have

9(0) =g(a) =g(1) =0, 4'(0)<0, ¢'(1)<0, (2:2)
together with

g(u) <0 for u € (0,a) U(1,00), g(u) >0 for u € (—oo0, —1) U (a, 1). (2.3)

It is well-known that the PDE (2.1) admits a travelling wave solution that connects the two stable
equilibria of g [2]. The key requirement in our next assumption is that this wave is not stationary,

which can be arranged by demanding fol g(u) du # 0.



(H®.) There exists a wave speed ¢, # 0 and a profile ®, € C5(R,R) that satisfies the limits

lim ®,(¢) =0, lim ®,(¢) =1 (2.4)

£——o0 £—+o0
and yields a solution to the PDE (2.1) upon writing
u(z,t) = Pu(x + cut). (2.5)

2.1 Computational coordinates

The physical wave coordinate £ = x + c.t appearing in (H®,) is not well-suited for our purposes
here, since we wish to work in the computational frame induced by the adaptive grid described in
[4]. In order to compensate for this, we introduce the arclength

13
A©) = / St 00, (€2 de'. (2.6)

Lemma 2.1. For every 7 € R, there is a unique &.(7) for which
A(&(n) = . (2.7)
Proof. The existence of the right-inverse &, for A follows from
DeA(€) = /1 + [0 () = 1. (2.8)
O

We are now in a position to introduce the stretched waveprofile ¥, : R — R that is given by

W, (r) = &, (€.(7)). (2.9)

This profile ¥, can be seen as the arclength parametrization of the graph of the physical wave ®,.
Upon introducing the notation

V(1) = V1= [0-0.](7)2 = /1= WL(7)?, (2.10)
we will see in §3 that U, satisfies the ODE

Gyt = At 4 g(W). (2.11)

It is hence natural to consider the linearized operator Lemp : H? — L? associated to this system,
which is given by

Lompv = —cuyi v + 970" + 4y 00 070 + ¢/ (W4)v. (2.12)
The formal adjoint E?gfp : H% — L? of this operator acts as
L2w = e dw] + Ors s tw] — O, 4y OWL W] + g (0, ). (2.13)

Indeed, one may easily verify that for any pair (v, w) € H? x H? we have

(Lempv,w)pe = (v, L28 w) s, (2.14)

cmp

As we have see in §1, the linearization of (1.16) leads naturally to a twisted version of Lemp. To
account for this, we introduce the notation

[/_f} ™ :/_; f(r)dr', [Af} () :/TOo f(r')dr’ (2.15)



for the bounded continuous functions that arise after integrating a function f € L. For any f € L?,

this allows us to define the integral transform
Tf = 2f =Y [,
which can be inverted (see §3.3) by writing
Tow = 2w W[ W

Finally, we introduce the function

) " -1 -
wii(n) = [ [rrt @ e B e ew yar | e e ),

which in view of the computation

TV, = 72V - [
= 32Ul - Wt - 1]
— ,y—lq,/

yields the non-standard normalization condition

(W Ty =1,

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

This choice is motivated by the following result, which allows us to interpret A = 0 as a simple

eigenvalue for the twisted eigenvalue problem

Lempt = AT,v.

(2.21)

Proposition 2.2 (see §3.2). Suppose that (Hg) and (H®.) both hold. Then the operators Lemp :
H? — L? and £24_: H? — L? are both Fredholm with index zero. In addition, we have the identities

cmp *
Ker (ﬁcmp) = span{V’}, Ker (Eif}fp) = span{ W24},

2.2 Adaptive linearization

As a preparation, for any v € H! we introduce the first-order differences

[32'7}}(7’) = [’U(T +h)—v 7')]
[0 v)(r) = h7'u(r) (T = h)],
[Opol(r) = (2h)~ 1[U(T+h) — (T = h)],

together with the second-order counterpart
O20](r) = (070 0](r) = b2 [u(r + h) + v(r — ) — 20(r)].

In addition, we introduce the sums

D ol(m) =h>_v(r —kh), D - ol(m) =h> o+ kh)

—;h k>0 +;h k>0

and the notation
Yh = 1-— (82\1/*)2

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)



Finally, for any v € H' and h > 0, we introduce the function
Mpv] = 70*7;1821} + 47;432\11* [3£2)\I/*] MNv + 7;23,(12)11 + 729 (Wa)v. (2.27)

With this notation in hand, we are now ready to introduce the linear operators £, : H' — L2.
These operators act as

Ly = —c +edfv+ My[o] + 000, S, 72 (08 W, Mylv] (2.28)

and are the main focus of this paper. We will show in [5] that these operators can be seen in an
appropriate sense as linearizations of the full adaptive mesh problem [4, Eq. (2.25)] around the
stretched wave profile U,. Taking the limit h | 0, we see that M}, formally reduces to v2Lcmp. In
particular, this means that £}, formally reduces to 7,7! Lcmp when taking h | 0.

Our main result provides a quasi-inverse for £, that bifurcates off a twisted version of the
operator Lcmp discussed in §2.1. This accounts for the presence in (iii) of the integral transform
T.. The crucial point in (i) is that we also obtain control on the L?-norm of the second discrete
derivative of v. This is slightly weaker than full H2-control of v, but turns out to be sufficient to
bound our nonlinear terms. In addition, item (ii) allows us to control an extra discrete derivative of
v provided one is available for f.

Theorem 2.3 (see §6). Suppose that (Hg) and (H®.) are satisfied. Then there exist constants
K >0 and ho > 0 together with linear maps

B L* =R, Vi L — HY, (2.29)
defined for all h € (0, hg), so that the following properties hold true.

(i) For all f € L? and 0 < h < hg, we have the bound
B+ Vil + 10 Vi f e < KNS e (2.30)
(ii) For all f € L? and 0 < h < hg, we have the bound
1w Vs | + 1100 0 Vi || 2 < KLIF Nl = + (105 F 2 ]- (2.31)
(i) For all f € L? and 0 < h < hg, the pair
(B,v) = (Brf Vif) ERx H (2.32)
is the unique solution to the problem
Lyv=f+ BT, (2.33)
that satisfies the normalization condition
(U2 T v) 2 = 0. (2.34)

(iv) We have BV, = —1 for all h € (0, hy).

3 Stretched PDE waves

We recall the functions A(§) and &, introduced in Lemma 2.1, which are related to the arclength
parametrization of ®,. We also recall the pair (U,,,) introduced in (2.9) and (2.10). Our first main
result shows that 7, is well-defined and that it can be used to translate the travelling wave equation
for the continuum model (2.1) into the stretched computational coordinates.



Proposition 3.1. Suppose that (Hg) and (H®,) are satisfied. Then we have ¥, € C°(R,R) and
there exists k > 0 so that the bounds

0< V(1) <1-g, VE <y(1) <1 (3.1)

hold for all 7 € R. In addition, there exists a constant K > 0 together with exponents n_ >
max{0,c.} and ny > max{0, —c.} for which the bound

0. (7)] + [ )]+ )+ ()] + |9 () + [ () < kel 3.2)
holds whenever T < 0, while the bound

1= W ()] + WL + () + ()] + W) ()] + @i ()

N
<.DI
3
*
3
—
w
o
S~—

holds for all T > 0. Finally, for every T € R we have the identity

ey (M) U(r) = A ()W) + g(Ta (7)), (3-4)

together with the differentiated version

CATEVLE) = AR () + A SR TLD(7) + o (L) VL) (35)

The second main result in this section is an extended version of Proposition 2.2. In particular,
we recall the linear operators (2.12)-(2.13) and obtain an essential estimate on the behaviour of
[Lemp —0T7.]7 ! as 6 | 0. This will allow us to transfer the Fredholm properties of Lemp to its discrete

twisted counterpart in §6. As a preparation, we introduce the adjoint integral transform T2 that
acts as

dj _ _ _
T ) 9
for any f € L2
Proposition 3.2. The assumptions (Hg) and (H®. ) imply the following properties.

i) The operators Lemp : H? — L? and £29 : H? — L? are both Fredholm with index zero and
P cmp
satisfy the identities

Ker (L',Cmp) = span{V’}, Ker(ﬁjﬁfp) = {padi}, (3.7)

(i1) The linear maps Lomp — 0T and E?ﬂfp — 8T are both invertible from H? into L2 for all
sufficiently small 6 > 0.

(#ii) There ezists K > 0 so that the bounds

ey = T2 + 0 0@, el < K Sl
adj adj)—1 —1gpad i (3:8)
icati, ooty 4 o WL e | < KIS

hold for all f € L? and all sufficiently small § > 0.



3.1 Coordinate transformation

Consider two functions femp : R = R and fonys : R — R. We introduce the stretching operator S,
and the compression operator S ! that act as

[S fonys)(T) = fonys (6x(7)), [ fempl(€) = fomp (A(E))- (3.9)
In particular, for any 7 € R and £ € R we have the identities
[‘S*ilfcmp] (5* (T)) = fcmp (7—)7 [‘S*fphys] (A(é)) = fphys (5) (310)

In order to understand the effect of these coordinate transformations on integrals and derivatives,
we first need to understand &..

Lemma 3.3. Suppose that (Hg) and (H®, ) are satisfied. Then we have &, € CH(R;R). In addition,
for any 7 € R we have
(1) = [1+[0: 272
&(r) = [ + (024 (6(7))] } (3.11)
= (7).

Proof. The first identity in (3.11) follows by differentiating 7 = A(£,(7)) with respect to 7. Using
the chain rule we compute

V() = 0,0 (6(M)]
= [0:@.](&())€L(T) (3.12)
= (0D (6 (M) [1+ 0@ (¢:(7))7] 2.

Squaring this identity yields

T = 1[40 (6(n)] (3.13)

which gives
[140c@. (€(7))7] " = 1= Wi(r)? = u(r)?, (3.14)
as desired. 0

Corollary 3.4. Suppose that (Hg) and (H®.) are satisfied. Then for any femp € C(R,R) N L? and
Jonys € C(R,R) N L? we have the identity

<fphyS7S*_1fcmp>L2 = <S*fphys77*fcmp>L27 (315)

together with
<S*fphyS7 mep>L2 = <fphyS7S*_1 [7;1fcmp]>L2' (316)

In particular, S, and S;* can be interpreted as elements of L(L?; L?).
Proof. The substitution rule allows us to compute

<fphysa8*_1fcmp>L2 = ffphys(g)fcmp(A(E)) d§
= ffphys(f*(T))fcmp(A(f*(T)))&(T) dr

(3.17)
 Fonys (§4(7)) femp (7) 74 () dT
= <S*fphyS7 fY*mep>L2 .
The second identity follows in a similar fashion. o

10



Corollary 3.5. Suppose that (Hg) and (H®.) are satisfied. Then for any femp € H', we have
S*_Ifcmp S H1 with

Oe[Si ! fermp) = S [V 0r femp) - (3.18)
In addition, for any fonys € H', we have S fonys € H' with
0r S fonys) = 1+Si[O¢ fonys]- (3.19)
Proof. For femp € C*(R;R) we may use the chain rule to compute
-1
Oe [femp (A(£))] = [0r femp] (A(£)) D A(E) = [0~ Femp] (A(£)) [ (A(€))] - (3.20)
In addition, for fonys € C*(R;R) we compute
Or [ fonys (€(7))] = [O¢ fonys] (6(7)) €L(7). (3.21)
The desired identities now follow from (3.9), (3.10) and (3.11). The final remark in Corollary 3.4
can be used to extend these results to femp € H' and fonys € H'. O

The physical wave ®, satisfies the travelling wave ODE

€40t @ (§) = Oge 4 (6) + 9(24(6)) (3.22)

for all £ € R. It is well known that the limiting behaviour of ®, as £ — 0o depends on the roots
of the characteristic functions

A:I: (77) = —csn+ 7]2 + gl((I)*(:tOO)) (323)
In particular, upon writing
1 1 1 1
- =50 + 5 2 —4g'(0) > 6 + 3 x| (3.24)
together with
= [1 L /a 1gM] > oot el (3.25)
Nt =30 T 5V T4 50t 5l .
and picking a sufficiently large K > 0, we have the bounds
0e®.(€)] < Fe e (3.26)

for £ € R4. In order to transfer this exponential bound to ¥/,, we need to understand the differences
Eu(T) — 7.

Lemma 3.6. Suppose that (Hg) and (H®.) are satisfied. Then there exists K > 0 so that the
inequality
|€u(T) — 7| < K (3.27)

holds for any T € R.
Proof. For any x € R we have the standard inequality

1
Vitaz-—1< 57 (3.28)

In particular, we see that

. 1 € D, (62 de!
A —¢l < 5[50 2(5) 3 (3.29)
< 5110l
which gives .
() =7 = [&(m) — A(&()| < 5 10 P72 - (3.30)
O

11



Proof of Proposition 3.1. Using ®, = S; 'V, together with the commutation relation
g(871W.) = 87 1g(v.), (3.31)
we can apply Corollary 3.5 to the travelling wave ODE (3.22) to obtain
xS L] = S o v L] + ST g(W)- (3.32)

Using the identity
Y= =y LY (3.33)

together with the definition 2 = 1 — [¥]?, this gives

_ _ _ 2
GtV = R LT 4 () (3.34)
= 7+ g(D).
A further differentiation yields
[ JAE Tl A A A Tl S S A A e ) A (3.35)

which can be simplified to (3.5).

The exponential bounds (3.2)-(3.3) now follow from Lemma 3.6 and (3.26), using (3.4) and its
derivatives to understand the derivatives of order two and higher for g (1) for 2 < ¢ < 5. The
inequality (3.1) for ¥/, follows directly from (3.13) and the fact that J¢®, is uniformly bounded.
Finally, the inequalities (3.1) for v, follow from

1>V1-U,(7)2>/1-(1—-k)?2=V2k—r2> k. (3.36)
O

3.2 Linear operators

In principle, most of the statements in Proposition 3.2(i) can be obtained by an appeal to standard
Sturm-Liouville theory. We pursue a more explicit approach here in the hope that it can play a role
towards generalizing the theory developed in this paper to non-scalar systems.

Our first two results highlight the fact that our coordinate transformation does not simply map
Lemp and £24  onto the standard linear operators

cmp
Liwy = —c0cy+ ey + g (Pu)y,
i (3.37)
L3Sz = +c0ez+ Oez + g/ (Di)2

obtained by linearizing the travelling wave ODE (3.22) around ®.. Indeed, the correct operators to
consider are given by

2 Oee®. %
Lonysy = Lowy + (924)” 555720 [8{3*} ’ (3.38)
adj adj 1 2 Oee®u ’
'Cph‘]ysz = Etwjz T 9%, 23 [(65(1)*) 1+(§62<1>*)2 Z} :

Lemma 3.7. Suppose that (Hg) and (H®.) are satisfied. Then for any v € H? we have the identity

Lompt = Vi 'SuLpnysSy i vl (3.39)
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Proof. We write y = S, [y, 1v], so that v, 'v = S,y. Using Corollary 3.5 we get

8.0ty = v 0y
= LW+ R

In particular, (3.5) allows us to write

S0ty = ceYs?

In addition, we compute
S*aggy = 713 [S 35y]
— 4,7—7(\111) (\I/;/) v+ 7—5(\11/1\111/ + \I,/ \IJ”/)’U + ,y* 5\11/ \I/// /
F2y W Uy T3

We hence see
Vo' SeLwy = eV (WD) 4 3y ORI T 4 g (T
= Lempv + 75 8(V)) 20 — 4 0L 0.
We now write

(e ®4)?
1+ (0 D4 )2 Y-

Oge P
»Cphysy = »thy + 55(1’* 1+(£3€§¢,*)2 afy -

Exploiting the identities
S, [85(1)*] = 7;1\11'

Si[1+(0:2.)%] = 7.2
S [Oge @] = 7yt
together with (3.40), we may compute
Vil SuLpnysy = Vi 'SuLliwy + LY [V ALY 4y 2
AR
Vo ' SiLlewy — 75 O (UY) P + 4 WL W

= ﬁcmpvv

as desired.

o DU Ay T (W)2(W) 20 4y g () (1= A2

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

O

Lemma 3.8. Suppose that (Hg) and (H®, ) are satisfied. Then for any w € H? we have the identity

£2di g = 8,.L8 Sy 2w).

cmp phys

Proof. Pick v € H?. Applying Corollary 3.4 twice, we compute

(Lompv,w)rz = (v; 1S, EphysS vl w) e
= <S ‘Cphbe Vs Ly 7* >
= (£ physS Vs ', So [ w]>L2
= (S, c;i;ss Uy 2wl 2
= (0, 8L S ] e

The result now follows from (2.14).
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The explicit form (3.38) allows one to immediately verify that

LohysOc Py = L0 P, = 0. (3.49)
Upon defining '

(I)idj,tw(g) _ efc*’fag(l)*(f), (3.50)
it is a standard exercise to verify that £33 @2 ™ = (. We now construct a kernel element for ,C;‘}jg,s
by writing

adj;phys 2 ~ adj;tw
OIITRNE) = 1+ (92 (9)) @IV (g). (3:51)
Lemma 3.9. Suppose that (Hg) and (H®.) are satisfied. Then we have
adj adj;phys __
L2 @adiphys — (3.52)
Proof. We first compute
adj gadjsphys  _ O P Oce Py g adjtw { e @ Dee P } adjitw
Lo @ Ve R v el (353)
49 O Py O0ce s 9 q)adj;tw .
1+ (0 ®)2 £ ’
Upon writing
1 2 Oee®. dj;phys
T = k0] (060.) i oo, (3.54)
we also compute
2 Oee P adj;tw
T = g0 (060.)" 2t grti]
3 14(9e P ) (3.55)
_ {a@*a&gqn ](I>adj;tw+ (Bee®.)? paditw 0e2. 0@ g gadistw .
S V/1r @@z * Jit(0c®)2  * Jit(0c@)2 o F
In particular, we find
adj adj;phys __ e P Oce Py xadjtw e P O0ee P adjstw (Bee®.)? adj;tw
ﬁphys@* — * \/W * + 1+(a€q>*)2 f(p* \/W * . (356)

The result now follows from the computation
0e®.0: D™ = 0¢®.0¢ [e™ 0P, ] (3.57)
. : 3.5
— _c*6£¢*¢)adj;tw + (I)adj;twagg(b*_

O
Lemma 3.10. Suppose that (Hg) and (H®. ) are satisfied and recall the definition (2.18). Then the
identity
. - -1 .
v = | / 7 (MW (r)e e EY (1) dr| 7S [ (3.58)

holds. In particular, the representation (3.47) implies that L3V gadi =,

cmp

Proof. This follows directly from

ST+ (0:9,)7 = ~oY, (3.59)

together with the computation
Siém e (1) = et = emeJin(s)ds, (3.60)
Here we used &,(0) = 0 and £.(s) = 74 (s). O
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Lemma 3.11. Suppose that (Hg) and (H®,) are satisfied. Then we have
Ker Lpnys = span{®’, }. (3.61)

Proof. A potential second, linearly independent kernel element can be written as ad:®. for some
function a. We hence compute

Ephys[a8£<1>*] = —C*agaag‘b* + aggaag‘b* + 28§a8§§¢* + (35@*)2%@@. (362)

Setting the right hand side to zero, we find

Ogev = [C* — 2% ?f;gfﬁ;}aga "
= 0O {0*5 —2In[0¢®.] — 1 In [l + (6§<I>*)2H65a. (36
Choosing an integration constant a, € R, this can be solved to yield
Dear = ., (BD,) ~2eoE \/H(laW' (3.64)
For a, # 0 it is clear that one can choose k > 0 in such a way that
l(&)] > re?mstes (3.65)
holds for all sufficiently large £ > 1. This prevents ad¢®. from being bounded. O

Proof of Proposition 3.2(i). Viewing Lemp, Lphys and Ly, as operators in £(H?; L?), we observe
that their essential spectral are equal. Indeed, the differential equations arising in the £ — +o0o and
7 — Foo limits agree with each other. In particular, all these operators are Fredholm with index
zero. The description of Ker Lepp follows directly from (3.61) and the correspondence (3.39). The
description of Ker £24  follows directly from Lemma 3.10 and the fact that

cmp

0 = ind(Lemp) = dim (Ker Lcmp) _ dim (Ker £adi ) (3.66)

cmp

O

3.3 Integral transforms

Our goals here are to discuss the integral transforms introduced in (2.16) and (3.6) and to prove
items (ii) and (iii) of Proposition 3.2. In particular, the integral transforms can be used to solve two
integral equations that appear naturally when linearizing the adaptive grid equations around the
stretched wave W,.

Lemma 3.12. Suppose that (Hg) and (H®,) are satisfied. There exists K > 0 so that the bound
ITefllpe < KN FI 2 (3.67)
holds for any f € L2, while the bound
729 e < KN f 112 (3.68)

holds for all f € H?.
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Proof. The estimate (3.67) follows from the uniform bound (3.1), together with the inclusion ¥, €

H? and the inequality

H/ S

Writing w = T2Y f, we note that

\ < ¥ 1 e 1
o0

w = ) = P [ A L L

w! = [,y*—2f]// _ ['Y*_S\I/:]H f+ ’y*_l‘llif 4 ['7*_3\1';/}/’7*_1‘1’;f

+ L f

Exploiting the inclusion ¥, € H* and the bound

H / VI f
+

we see that indeed w € H? and that the estimate (3.68) holds.

‘ S LA
o0

Lemma 3.13. Consider any pair (w, f) € L? x L?. Then the identity
o ¥, [ W=y

holds if and only if
w="T.f=7"f *vil‘l’i/ 7 WS

X:/\I/;’w

X' = Wl o= AW -y LY

Proof. Assuming (3.72) holds, we write

and compute

Recalling 7., = —y W, ¥”, we see that
e X] =l
Using the fact that X (7) — 0 as 7 — —o0, this implies
X = [y
and hence
o= f-UX = f - [ e

On the other hand, assuming (3.73), we compute

Jo Vi

= [P o ot
o2V f v [P — [y
Yo | BV

16

-3

*

[oA2vlf— [ [v:l‘lf;"l’i I vig\l’i’f]

vl f

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)



Multiplying by W', we hence see
v, [ W= [ 5= ok,

which yields (3.72).

Lemma 3.14. Consider any pair (w, f) € H?> x H%. Then the identity
us ! [ Wy
+

holds if and only if
w=TMf=77[f- 7;1\1115/ 7 LS

+
Y:/\I/;w
+

Y= —Wlw = Wyt f 4ty

*

Proof. Assuming (3.81) holds, we write

and compute

In particular, we see that
. Y] = = TS
We hence find
v=t [y,
+

which yields

w=7,[f-0Y] =7§2[f—%?1\1'i’/ v L f
+

On the other hand, assuming (3.82) we compute

Jowlw = [oarwlf - [, el [ e

= ol = f [ e

= [+ [ L = [ LS

= oS
Multiplying by ¥/ we find
R A
+ +

which yields (3.81).

Proof of Proposition 3.2(ii)-(iii). We introduce the notation

aclf] = (U2, f) e

and note that the normalization (2.20) implies that «.[T.P’,] = 1. In particular, the operator

e f = [T*‘I’Uacf
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is a projection on L?. Writing 7 = I — ., the Fredholm alternative (see e.g. [9, Thm. 2.2.1]) now
yields the splitting L2 = R ® R, with

R =m(L?) = Lemp(H?), R. = m(L?). (3.92)
Upon choosing a splitting
H? = span{V.} & K, (3.93)
we note that the linear map
Lemp : Ke = R (3.94)

is invertible, which implies that the perturbed operators
[Lomp — 07T, : Ko — R (3.95)
are also invertible for small § > 0. For any f € R, we introduce the function

Lolf) = [Lomp = 67T] ' f = Weae| T [Lamy — 07T2] '] (3.96)

and use the identity Lemp®,, = 0 to compute

Lemp — 0T\ Lsf = [Lemp — T2 [Lemp — 67T "' f + 6T- W, [T [Lomp — 0nT2] " f}
= f - 67(07; [ﬁcmp - 6777;] _1f + 67;\I/;ac |:7:¢< [‘Ccmp - 6777;} _1fi|
= [ = STV T [Lomp — 07T) " f| + 0T W | T [Comp — 7T] 7'/
= f.
(3.97)
For any f € L?, this allows us to conclude
_ _ s—1\q — " v
(Comp = 0T = 87 Whaelf) + Lolf]] = Towlaclf] + (/] .
= f,
which provides an inverse for L¢mp — 07%. An analogous procedure can be used to obtain the result
for £24 O

cmp*

4 Sampling techniques

In order to exploit the continuum theory developed in §3, we need to expand the results developed
in [4, §A] in order to allow for detailed comparisons between functions and their associated sampled
sequences. In this section we collect several tools that will be useful for these procedures.

In §4.1 we obtain several useful results that relate the discrete operators 8,f and Y +., back to
their continuous counterparts. In §4.2 we introduce exponentially weighted norms on L? and discuss
their impact on the summed functions (2.25). Finally, in §4.3 we discuss sequences of differences
(2.23) and sums (2.25) for which & | 0. Upon taking weak limits, it is possible to recover the usual
continuous derivatives and integrals.

4.1 Discrete vs continuous calculus
As a reminder, we recall the sequence spaces
2 = {V:hZ — R for which ||VH§2 = 1Y e Vil < 00},

4.1
¢ = {V:hZ — R for which ||VH570 = sup,ez |Vij| < oo} (4.1)
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that were introduced in [4, §3.3]. Our goal here is to obtain error bounds in these spaces when
applying differences and sums instead of derivatives and integrals to continuous functions. As a
preparation, we repeat the useful estimates [4, Eq. (A.6), (A.13)] which state that

[ullez < 2+ h) ull g, 1057l Lo < N1l (4.2)
for any u € H' and ¢ € {2,00}.
Lemma 4.1. Pick q € {2,00} and consider any u € W9, Then the estimates
10—y < Bl (43)
hold for all h > 0.

Proof. Fix h > 0 and write Z* € £5¢ for the sequences

55, = [0, ul(jh) — ' (jh). (4.4)
We may compute
I;L = hfo u'(jh+s) —u'(jh)] ds
= Jo[w'(ih+ sh) — ' (jh))ds (4.5)

= fo S (jh + ') ds' ds.

For ¢ = oo we hence see

1 sh 1
" / "
| < Wl [ [ asas = gnlace (4.6)

For ¢ = 2 we obtain the estimate

IZHE = R s [y Jo"wGh+ ) ds' ds)?
< thero sh u”(jh + ') ds')* ds
< hYiez fo Shf u”(jh + 8')]? ds’ ds (4.7)
< h? djen foh u”(jh + ')]? ds’
= 2 |u’|l3
Similar computations can be used for Z~. O

Corollary 4.2. Pick q € {2,00} and consider any u € W39, Then the estimates

|0 —w| < 2w,
@ b (4.8)
|0 ut+m) =] < 2m il
hold for all h > 0.
Proof. We first compute
@@u —u = 9o u—u" (4.9)

= 9%0,u— 0, u + 0, u —u.
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Applying Lemma 4.1 and (4.2) to 9, u shows that

165 0y, u — a,ju’le < k|0, "], < hlu" L. (4.10)
Similarly, applying Lemma 4.1 to u’ shows that
|05 " = ||y < Bl | (4.11)
from which the first estimate follows. Upon writing
0P u(-+h)—u" = 80 u—u" “12)
= O ofu—ofu +ofu — ",
the second estimate can be obtained in a similar fashion. O

Corollary 4.3. Pick q € {2,00} and consider any u € W44, Then the estimate

|0 00— u” , <3k [ . (4.13)
h
holds for all h > 0.
Proof. Splitting up
0Py —u" = 070 o u—u
= 0100 u— 0o W
h Oh On h Oh (4.14)
+0,; 0, v — 9, u”’
+a;u// "
we can apply Lemma 4.1 to obtain
2 _ _
Joro@u -], < nlazoE .+ b ol + hl (1.15)
h
We can now repeatedly apply (4.2) to obtain the desired estimate. O

We recall the definitions (2.15). Our final result here is a standard approximation bound for
discrete integration.

Lemma 4.4. For any f € W and h > 0, we have the bounds

Zf—/ o <Rl (4.16)
+:h + P
Proof. Fixing 7 € R, we compute
(S F =S A1) = Siso fo lf(T+kh) = f(r+ (k= D)h+0)] do
= Yoo o lf(r+ (k+1)h) = f(r + kh + o) do

hoph g N (4.17)
= Zkzofo [ f(t+kh+0')do’ do
= k>0 foh foa, fl(r+kh+0o')dodo'.
In particular, we obtain the estimate
h
‘[Z+;hf — [ 1] (r)‘ < Yusoh Sy I (7 +kh+o")| do’
< h [ 1f (4ol do’ (4.18)
< R Np
O
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4.2 Weighted norms

For any 1 > 0 we define the exponential weight function
en(T) = e, (4.19)
This allows us to define an inner product
(a,b)r2 = (ena, enb) 2 = (e2qa,b) 2, (4.20)
together with the associated Hilbert space
Ly ={f € Lige : 1f 72 := (£, )12 < o0} (4.21)

Since 0 < e, < 1, we see that
(a, a)L% < {a,a)pz (4.22)

for every a € L. In particular, we have the continuous embedding
2 2
L*cCL,. (4.23)

In addition, for any pair (a,b) € L% x L?, we have ena € L? and hence also eana € L2. This
allows us to estimate

[(ezna, )2l = |(a,b) 22| < llall s IP] s - (4.24)
This weighted norm is very convenient when dealing with sampling sums.

Lemma 4.5. Fix n > 0. There exists K > 0 so that for any f € L% and any 0 < h < 1, we have
the estimate

[Sonemsl],, = Kl (4.25)

Proof. Using Cauchy-Schwartz, we compute

S

= [ea(r) [Z_;h ean f](T)? dr
= [ea(r) [h oo €2(r — k) f(r — kh)} > o
J e2n(7) [h D kw0 €2n(T — kh)} [h > kso €2n(T —kh) f(T — kh)?| dr.

We note that there exists C; > 0 so that for all 0 < h <1 and all 7 € R we have

2
2
Ln

IN

h Zk;>0 €2n (7_ - kh) = h Zk>0 e*??ﬂT*kh\
< R g e TR (4.27)
< Ch.

Using the substitution 7/ = 7 — kh, this allows us to compute

[Snemt],, < Fea([nSimgenntr — kstr - k)2 ar
= O [h Sk el + k) eay () 2 (128)
< O} fen (Vi) dr’
= CEIfIZ: -
O
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4.3 Weak Limits

Our results here show how weak limits interact with discrete summation and differentiation. The
first result concerns sequences that are bounded in H! and have bounded second differences, as
described in the following assumption.

(hSeq) The sequence
{(hj,v)}550 C (0,1) x H' (4.29)

satisfies h; — 0 as j — oco. In addition, there exists K > 0 so that the bound
sl + 05050, < & (4.30)

holds for all j > 0.

The control on the second differences allows one to show that the weak limit is in fact in H2. In
addition, the first differences converge strongly on compact intervals.

Lemma 4.6. Consider a sequence
{(hy,v;)} € (0,1) x H' (4.31)

that satisfies (hSeq). Then there exists V. € H? so that, after passing to a subsequence, the following
properties hold.

(i) We have the weak limit

v; =~ V. € H". (4.32)

(ii) We have the weak limits
vy —~ V] e L*. (4.33)

(iii) We have the weak limit
O vy = V' e L2, (4.34)

(iv) For any compact interval T C R, we have the strong convergences
v = Ve e LXT), Oy v = Ve LX(T) (4.35)
as j — oQ.

Proof. Using (4.2) we obtain the uniform bound

Haﬂ; vl <K (4.36)

L2
for all 7 > 0. In particular, after passing to a subsequence we can find a triplet

Vo, VE V) e H' x L? x L2 (4.37)
so that we have the weak convergences

v~ VeeH',  Opu—VEer?  9Pv, VP el? (4.38)

J

as j — oo.
Pick any test function ¢ € Cg°. We note that

Jon,c ¢

L2 ™ Ha;(i)C -

L0 (4.39)
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as j — oo by Lemma 4.1 and Corollary 4.2.
We now compute

(Ovir Qe = —(v,0,C)re
= —(v, N2 + (v, ¢ = 9y Qe (4.40)
= (v;, Q2 + (v, ¢ = 9, (e,
together with
00,02 = (03,0701
(03¢ + (0, 0PC — ¢ o (4.41)
= —(0},)ee + (0,0C = ")

The weak convergences vj — V/ € L? and (4.38) imply that

O 05, Or = (VL0 Of 05Oz = (Vih, O,
<a}(i)’l)j7<>L2 - —(V],{Vpe, <3;(5)UjaC>L2 N <V*(2)’<>L2 (4.42)

as j — oo. The density of C° in L? now implies that V,* = V/ and that V/ € H! with V! = v,
This yields (i), (ii) and (iii).

Turning to (iv), we pick a compact interval Z C R. The compact embedding H'(Z) C L*(Z)
allows us to pass to a subsequence for which

lv; = Villpo(zy = 0 (4.43)
as j — oo. We compute
H(‘),J[jvj—V; L2(T) = (8};11]»—1/;,8};@]»—1/*’)”(1)
= <(r“);{j’l)j — V*’,a,jjvj — 8,; V*>L2(I) + <8,J{jvj — V*I, 8}2 Vi — V*/>L2(I) (4.44)
= *<8,;8;_]’UJ — agjv*’,vj — V*>L2(I)
+<8;:-Uj -V 5’;:.‘/* = Vi 2(@)-
Using (4.2) we see that
lomvi] L < e (4.45)
Together with (4.30), (4.36) and the identity
Oy O v; = 0, v, (4.46)
this implies the uniform bound
— o+, + -1/ /
Hahjahjva‘ L2(D) + "ah_jvJ“L2(I) + Hahjv* (D) + Vil L2 z) < Ch (4.47)
for some C; > 0. In particular, using Lemma 4.1 and (4.43), we see that
o o +1v _
HahjUJ Vs L2(Z) s G [ los = Vellpaz) + Hahjv* v L%z)]
< 2y = Vallpaggy + s IVl 2] (4.48)
—- 0
as j — 00, as desired. A standard diagonalization argument now completes the proof. O
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Lemma 4.7. Consider a bounded sequence
{(hy, f;, 0055, 025, a3,5) >0 C (0,1) x L> x H' x H' x H* (4.49)
that satisfies the following properties.
(a) There exists C >0 and n > 0 so that
|l (T)] + Jozy ()] < Ceay (1) (4.50)
for all T > 0.
(b) There exists a triplet (a1, 2.4, a3.) € H' x H' x H' so that we have the strong convergence
(1.4, a2,y 3.5) — (Q1ie, Qon, .4) € HY x H' x H* (4.51)
as j — o0.
(c) We have hj — 0 as j — oo.

Then, after passing to a subsequence, there exists f, € L? so that we have the weak convergences

fi=fel?  as;fi—as. € L (4.52)
together with
2
iy Y azgf = al;*/ Qg fr € L (4.53)
—;hy -
as j — Q.
Proof. Writing
g = a1j Y azfj, (4.54)
—;hy
we see that
loslle < C[lezn Sy, ean 1],
S 02H6n Z—;hj 627]|f‘j 12
4.55
= Cszf;hj 6217|f|j‘ L2 ( )
< G5l
< Gyllfillge
In particular, after passing to a subsequence we have the weak convergences f; — f. € L? and
g; — g« € L2
Pick any ¢ € C2° and write
IC;j = (3;; Z Oél;j(: - 052;*/ (Jél;*c, (456)
+;h; +
which can be expanded as
Iy = [a2;j - a2;*] Z+;hj a;¢
+o; Z+;h]~ [Oll;j - al;*]C (4.57)

+Oé2;* |:Z+;hj al;*c - f+ al;*Ci| .
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Using the general observation that || Y~ ., ab]|
that

1 < ”aHEi anei’ the estimates (4.2) and (4.16) imply

HICJ”LZ <9 ||O‘2;j - a2;*||L2 ”al;j H! ”C”Hl
+9 [lagpl 12 llosj — sl g K] g (4.58)

+ llegell L2 5] e CTl o -

Observing that

lorwCllle < fladuCll s + llaredll s
< adull o €l e + el g2 1161 22 (4.59)
< 2 HCYl;*||H1 ”C”Hl )

we see that ||Z¢ ;|| ;. — 0 as j — oo. In addition, we see that

(e — s )Cll Lo < llesyy — aziull oo 1€l 2 < Mlasy — asull g lICH L2 = 0 (4.60)

as j — oo.
We now compute

(9;:Qr2 = (ay; 3o, az;f5,Q) 1
= (fira2y 2, 1)L (4.61)
<fja Q2% er O[1;*C>L2 + <fj7:zC,j>L27

together with
(s, fi, Qe = (fi,a3,CQ) 12

4.62
= <fja043;*C>L2 + <fj, (a3;j — az)() e ( )
In particular, the weak convergence f; — f. implies that
(9;: Oz = (fus oz [ a1 re
— <a1;* f_ a2;*f*7 C>L2 (463)
together with
(s fj, Qre = (feaz:Qre
= <O‘3;*f*a C>L2 (4.64)
as j — oo. The density of C2° in L? now implies the desired weak limits. O

5 Linear building blocks

In this section we are interested in several useful linear operators that act on the sequence spaces
2 introduced in §4. We use the notation 0%, 9%, 0@ for the restriction of the discrete derivatives
(2.23)-(2.24) to these sequence spaces. In addition, we recall the expressions

1
[Ta]jn = agjann, $*a=5(a+T%a), w=VI- (U2  (5.1)

that were introduced in [4], together with the higher order norms

HV”ei?l = HVHe,ﬁ + ||8+V|‘e,21 )
Vg2 = [Vlg + 10"V + 1070 V], , (5.2)
HV”ef’f = HVHei + ||8+VH£% + ||8+3+V||Zi + ||8+3+8+V||Zi )
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and their counterparts

IVl
||V||z;j°?2

IVl + 107V

(5.3)
IVl e+ 10V e + 108+ V]| o

Finally, we recall that User,. € C*(R, [0,1]) stands for a reference function that satisfies the properties

Uset;+ ((—00, —2]) =0, Uset;+([2,00)) =1, 0 < Ulppr < 1, Ut | < 1. (5.4)

ref;*
For any x > 0, we subsequently write
Urefin(T) = Uret;x (KT) (5.5)
and introduce an open subset

3

Ve = {Verz: ||V||é§ﬁ2 + ||VH£ZC + ||8+6+V||Zﬁ.o < ik land [|0TV|<1-2k}.  (5.6)
This allows us to recall the affine subset [4]
Qh;m = ref;m(hZ) + Vh;n C gzo (57)

that plays an important role here and in the sequel paper [5], as it captures the admissable states of
the waves that we are interested in. We remind the reader that each U € Q. satisfies |07 U] <
1 — x and that the norms ‘|8+U||e?,17 ||U||e}oo:2 and ||g(U)||£i are all bounded uniformly in h > 0.

The linear operators that we investigate are given by

MyalV] = 4y;*0°U0P U0V, My.clV] = ~2g(U)V,

- _ 5.8
MU§B[V] = ’YU28(2)V’ MU,D[V} - 7C*PYU180V ( )

Here we have V € €,21, while U is taken from Q.. For convenience, we introduce the combination

My[V] = My.alV]+ My.[V]+ My.c[V]+ My:p[V] (5.9)

together with the notation
Ly[V] = ¢V +My[V]+°UY._, 0P UIMy[V]. (5.10)
Picking any v € H' and recalling the discrete evaluation operator
levo flin = f(9 + jh), (5.11)
we note that our construction implies that the identities
evg My [v] = Mey, v, [evyv], evy et + Ly[v]] = Levyw, [evev] (5.12)

hold for all ¥ € [0, h]. We remark that the right-hand sides above are continuous in ¢7 as a function
of ¥ as a consequence of (4.2) and the continuity of the translation operator on H'. We recall from
item (iii) of [4, Lem. A.4] that if

levflly < llevovllz (5.13)

holds for all ¥ € (0, k) and some v € H', then in fact f € L? with

£z < ol + (|05 O ]l - - (5.14)
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We are specifically interested in the differences 0 My[V] and 8+ Ly [V], as they will help us to
apply a discrete derivative to the equation Lpv = f and its nonlinear counterpart that will appear
in [5]. To this end, we introduce the approximate differences

M papx V] = 4475 ° =3y HPPUPV + 444 0°U 0T 0P ULV
+y; U 0P U0V,
M gVl = 2v,*0°U[0PUI0DV +45%0t0@)V, (5.15)
M V] = —20°U0R UG (U)V + 139" (U)[°UIV + 3¢/ (U)O°V,
Mg poapxlV] = =75 0°U0PUOV — oy 0PV
and write
MalV] = Mg piapn V] M g V] M V] M pap V] (5.16)

Proposition 5.1. Assume that (Hg) is satisfied and fiz k > 0. There exists K > 0 so that for any
h>0,U € Q. and V € 2 we have the a-priori bounds

1My [Vl K [V]ze
|0+ My [Vl K [V]igs + K [0%00 Ul [0V, (5.17)
|0+ Mu[V] ~ MoVl < K|Vl + K 970707 i 10V

IN

IN

together with the estimate

Ha+MU[V] _ M

FondV)[,, < ERIVIzs + KR Ul V|2 (5.18)
h

In addition, for any h > 0, any pair (U(l),U(Q)) € Qfm and any V € (2, we have the Lipschitz
bound

||MU(2) [V] — MU(I)[V]”@L < K ||U(2) — U(l)HKi;g ||V||eio;1 + K ||U(2) _ U(I)HZZQ;1 ”VHEi;? .
(5.19)

Corollary 5.2. Assume that (Hg) is satisfied and pick 0 < k < 1—12 Then there exists a constant
K >0 so that for any h >0, U € Q. and V € {3 we have the estimate

|0t [Lov]] = LulotV]

< K[1+[10%0704Ullge + 107070 Ul [ IVI22.  (5.20)

2
eh

Proof. Systematically applying the product rule 9 [ab] = 0TaT*h+ adtb and the identity 9+9° =
S+t9®2) described in [4, §3.1], we compute

ot [Ly[V]] = c.STORV]+ 0t [My[V]]
+SHORUITH Y, 72 (0P UMy V]
+OU Y, 0t 2] T [a<2>UMU [V]} (5.21)
+OU Y _ v 20t [0PU] T [My[V]]
+0°U Yoy, g 102 U0 [My[V]].
On the other hand, a direct substitution yields

Ly[0tV] = aSTOPV]+My[0TV]+°UY._, v, (0P UMy [07V]. (5.22)
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Comparing these two expressions, we obtain the bound

0% [LoV]] = Lolo* V||, < CiJoF [Mu[V]] = Mylo*V]||» + C1 | MulV]]e

(5.23)
+C1 01070 U 2 1My V]2 -

The desired estimate now follows from (5.17). O

Corollary 5.3. Assume that (Hg) is satisfied and pick 0 < k < 1—12 There exists a constant K > 0
so that the estimate

1Ly V= Ly Vg < K[U® =UD] a2 Vg + KU =T s [Vl 22

5.24
K [T = Uz [V 20 (5.24)

holds for all h >0, all V € €} and all pairs (UM, UP) € OF .
Proof. We compute
Lo V]=Luo Vil < [Myw[V] = Myo [Vl +C1 [[0°U® = 0°UW ||, || My, [V]]|
+C1 [y @ 0@ U — 50, 0PUD | o | My, [V]] 2
+C1 [ My @ [V] = Myw [V]]l -

(5.25)
Exploiting the a-priori bound (5.17) together with the Lipschitz bounds (A.7) and (5.19), this yields
the desired estimate. O

Corollary 5.4. Assume that (Hg) is satisfied. Then there exists a constant K > 0 so that the
estimate

167 Calo] — Lol ol o < K[loll e + |87 05 0] ] (5.26)
holds for all h >0 and all v € H'.
Proof. The result follows from Corollary 5.2 and the bound (5.14). O

In the sequel we will also encounter the expressions

My 4 [V] = 75" M V] + 295 U 0P U My V] (5.27)
for # € {A, B,C, D}, together with
My.V] = 475°8°U [0 0P U0V + 50t o V. (5.28)

The relevant combinations are evaluated explicitly in the final main result of this section.
Proposition 5.5. For any £ >0, h >0, U € Qp,.,, and V € (2, we have the identities
My alV] + My plV] + My,c[V] = 465" — 575 0[0@ U128V
+8v, 00U 0P U0 PV
+g"(U)[0°UV + ¢'(U)3°V + My.g[V],
My, p[V] = =3, U 0PV — ey 0PV

)

(5.29)
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5.1 Proof of Propositions 5.1 and 5.5

We first set out to establish Proposition 5.1. We will treat each of the four components separately,
using the estimates (A.8) to approximate the 9% [y;"] terms.

Lemma 5.6. Fiz k > 0. There exist K > 0 so that for any h > 0, U € Qp.,, and V € {3 we have
the bound

10" MyalV] = My al@*Vilip < K[04V]e + K [050% 04U [0V, (5.30)
together with the estimate

|0 Mo alV] = M g aplV]

< Kn|[0%Vllg + 0707V g + 040404V | g |

& (5.31)
+Kh||8+8+8+UH£ZC H(’)JFVHZ;ZL .
Proof. We compute
O MyalV] = 49+ YT+ [aOU[a<2>U]aOV
+Hy ST UITH 0P U TV (5.32)
G OOU B 0D UIT OOV '
+4y; U 0P U)ST0PV],
together with
My A[0TV] = 4y 0°U[0PU)SH 0P V). (5.33)
The estimate (5.30) now follows directly from inspection.
Upon making the replacements
Ity = 4 toupPu), Tt 1, ST, (5.34)

we readily see that o [MU; A [V]] agrees with M, J; Avapx [V]. In particular, applying these replacements
to each of the four terms in (5.32) separately, we may write

O [My,alV]] = Mt gV = Ta + To + Te + T, (5.35)
in which
Jo = 4 [a* i) — 459000 S+ [8(2)U]] T+ [aOU[a@)U}aOV]

8“0 DRI [T 0TV |

+16h; 00U 0P U)SH 0P U TH 8P UIT [V (5.36)

+16hy; 20U 0P U U 0D UIT+ [0V

+16hy; 50U 0P U U [0 U SH 0P V],
together with

Ty = 2hy; 0t [0PUITT 0P UITH [0V
+4hy 0P U 0P UITH[0°V] (5.37)
+4hy 0PU 0P U)ST0PDV)
and finally
Je = 4hy U+ [0PU]SH 0PV, (5.38)
Ji = 2hy;'0U0PUI0T[0PV].
The desired estimate (5.31) follows from (A.8) and inspection of the above identities. O
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Lemma 5.7. Fiz > 0. There exist K > 0 so that for any h > 0, U € Qp.,, and V € {3 we have

the bound

0" My, g[V] = Mygl0TV]ll, < K[0T0TV]e,
h h

together with the estimate

0% MU V] = M V]

< Kh||0707V] g + 00704V |

62
h +Kh||3+3+8+UHZ;x H6+8+VH@}2 .
Proof. We compute
I MyplV] = [ ITHODV] +45°0 0@V,
together with
My.plotV] = ~;20102V.

The estimate (5.39) now follows directly from inspection.
Upon making the replacements

It 2 = 2y U], T — 1,

we readily see that 9% [MU; B[VH agrees with Mﬁj V). In particular, we may write

Biapxl
" [My.[V]] = M{. .o V] = Ta,
in which
I, = [5+ 2] — 295 0°U SH[9@ U] | T+ V]
+hyg t0UaT [0PUITH 9PV
+2hy; U 0P U0 [0V,
The desired estimate (5.40) follows from (A.8) and inspection of the above identity.

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

O

Lemma 5.8. Assume that (Hg) is satisfied and fiz k > 0. There exist K > 0 so that for any h > 0,

U € Q. and V € 03 we have the bound
HaJrMU;C[V] - MU;C[aJrV]”@L < K ”V”zi )
together with the estimate

< KB[IVIg +104Viig + 10407V ]z ]

|o* MuclV] = Mt g anlV]

K FERO 0 U |V
Proof. We compute
Ot My c[V] = 0" hglT g (U)V] +150F [ (UITHV +59'(U)ITV,
together with
My,clotV] = 259 (U)O*V.

The estimate (5.46) now follows directly from inspection.
Upon making the replacements

It = 290U U], T — 1, ot (U)] — ¢"(U)8°U
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we readily see that 0 [My,c[V]] agrees with MJ;C;apX [V]. In particular, applying these replacements
to each of the three terms in (5.48) separately, we may write

O [Myc[V]] = M o V] = Ta + To + T (5.51)

in which
Jo = [a+[75]+230US+[a<2>U]}T+ [g’(U)V}

—hdOUOT R UT [g/(U)v}
—2hd°U 0P U0 [¢ (D) TV
—2h0°U 0P U g (U)O1V,

(5.52)

together with
Ty = 5[0t (U) - g"(U)°UITHV

+7239"(U)[0TU - °UI TV (5.53)
+hEg" (U)oU) V

and finally

Te Eg (U)[0TV — V]
= ihZg (U)dV.

In order to estimate ||‘7b||£}27 we recall that 0tU — 0°U = 1h9PU and compute

(5.54)

0 g'(U) = g" (W)U = h~H|g'(U +hOTU) — g'(U) = g"(U)hO*U|
[supp s lg™ ()| [AH RO U (5.55)

B [supjuj<et lg" )l | 107U,

<

Nl= N

The desired estimate (5.47) now follows from (A.8) and inspection of the above identities. O

Lemma 5.9. Fiz > 0. There exist K > 0 so that for any h > 0, U € Qp.,, and V € {3 we have

the bound
||8+MU;D[V] - MU;D[8+V]H4’§ < K ”8+V”zi ’ (5~56)

together with the estimate

|07 Mu.p V] = M p V]

g S KBVl + 1070 Vg + oot o Vg |
h .
KR [0F 00U | e 107V 2

Proof. We compute
" My,p[V] = —c.dt g |THOV — oyt SHOPIV, (5.58)

together with
My.plotV] = —coy'ST0PV]. (5.59)

The estimate (5.56) now follows directly from inspection.
Upon making the replacements

O hy'l e g tUPPU], T eI, STl (5.60)

we readily see that 9+ [M U:D [V]] agrees with M, (Jj; Diapx [V]. In particular, applying these replacements
to each of the two terms in (5.48) separately, we see that

" [My,p[V]] = M papx V] = T + T, (5.61)
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in which
T, = —c [aﬂ%;l] — 530U ST o U | TH[00V)

—Le by 20U 0P UITH [0V (5.62)
—chy2U 0P U ST 0PV,

together with
T = —ic.hot[0PV]. (5.63)

The desired estimate (5.57) now follows from (A.8) and inspection of the above identities. O

Proof of Proposition 5.1. The bound for ||My [V]”ei and the Lipschitz bound (5.19) follow directly
by inspecting the definitions (5.8). The remaining bounds follow from Lemma’s 5.6-5.9. O

Proof of Proposition 5.5. Direct computations yield

MualV] = 4(yg® - 330UV + vy, *0°U 0+ 0@ U0°V
iy U [P UNODV + 8,20°U (0P U|0°U [0 U0V
= 4(6%;8 - 575 6)[3 2)U]280V (5.64)
+4y5 50U 0T 9P U0V + 4y 0°U 0P U0V,
together with
Myp[V] = 2y5°0°U[0PUI0DV + 45207 0@V + 24,°0°U 0P U0V (5.65)
= 4y, 00U0PUI0PV + A tatoPV :
and finally
MyclV] = —29520°U[0PU)g (U)V + ¢"(U)[°UIV + g (U)0°V
+27°8°U 0P U]g (U)V (5.66)

= ¢"(D)[UIV +g'(U)"V.
The first identity follows directly from these expressions. To obtain the second identity we compute
My.plV] = —coy20°U[0@U)V — coy?0@V
—2¢,7;,°0°U 0P U0V (5.67)
= —3c.y; U0V — ey 20V

6 The full linear operator

In this section we set out to construct solutions to the inhomogeneous problem Lv = f and establish
Theorem 2.3. Taking v € H' and f € L?, we first recall (5.12) and emphasize that this problem
should be interpreted as the statement that

Levyw, [evov] = evglev' + f] (6.1)

holds for almost all ¥ € [0, h]. Throughout the sequel we simply use the notation (2.28) and keep
this interpretation in mind.
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Our strategy is to apply the spirit of the ideas in [1] to our present more convoluted setting. In
particular, in §6.1 we analyze the structure of the terms contained in the definition £, and its adjoint
and provide a decomposition that isolates the crucial expressions. In §6.2 we show how our result
can be established provided that a technical lower bound related to the sets {[Ls, — d]v} |y, =1 can
be obtained. We set out to derive this bound in §6.3, using a generalized version of the arguments
in [1].

6.1 Structure

From now on, we simply write 9%, 9° and 9 for the discrete derivatives if the value for h is clear
from the context. For any w € L? and h > 0, we introduce the function

M) = e, w] — 8° [47,;430@* (0w, w} +o® [7;210] +12¢' (0, )w, (6.2)
together with the formal adjoint Ezdj : H' — L? that acts as
L = e’ — e,00 + M2V w] + MY [V;Q[a(%xy*] > waO\p*} . (6.3)

Indeed, one readily checks that for any pair (v,w) € L? x L? we have

(Malo],wye = (v, MEw)) e, (6.4)
In addition, the computation
@0 Y, [ 0@w Ml w) e = (G 0OWIM ], Y, w1
= <Mh[v]>'7};2[a(2)\ll*]Z+;hwao\ll*>L2 (65)

= MRS, w ) s

allows us to verify that
(Lpv,whp2 = (v,ﬁzdjw>,;2 (6.6)
for any pair (v,w) € H' x H*.
Our goal here is to establish the following structural decomposition of £; and L’Zdj. Roughly
speaking, this decomposition isolates all the terms that cannot be exponentially localized. In ad-

dition, it explicitly describes how the formal A | 0 limit can be related to twisted versions of the

operators Lemp and ﬁggfp that were discussed in §3.

Proposition 6.1. Suppose that (Hg) and (H®,.) are satisfied and pick n > 0 sufficiently small.
There exists a constant K > 0 together with linear maps

L : HY — L2, LX) H' = L2, (6.7)
defined for all 0 < h < 1, so that the following properties hold true.

(i) For every 0 < h <1 the identities

Ly = = +7,20P0 + 739 (V. )v + Lep[v], (6.8)
. , 6.8
LV = o’ +79;,20Pw + 139 (T )w + L2 [w]

hold for allv € H' and w € H'.
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(i1) For any 0 < h <1 we have the bounds

[Len[v]lle < K vllg,
adi (6.9)
||, < Kilwl
for allv e H' and w € H'.
(iii) For every 0 < h < 1 we have the bounds
ez Lol HLQ < K[ ol + 9%l 3]
1 radj (6.10)
lezpreditel| |, < K[l + 107wl |

for allv € H' and w € H'.

(tv) Consider two sequences {(hj,v;)} and {(h;,w;)} that both satisfy the condition (hSeq) intro-
duced in §4.3. Then there exist two pairs (Vi,W,) € H2 x H? and (F,,F*Y) € L2 x L? for
which the weak convergences

(05, Lny los]) = (Vi Fu) € H' x L2, (wy, £35[wy]) = (W., F2%) € H' x L? (6.11)

both hold, possibly after passing to a further subsequence. In addition, we have the identity

LempVe = ToF (6.12)
and we have .
W, = T24H, (6.13)
for some H, € H? that satisfies _
290 [H,] = P2, (6.14)

Decomposition for L

We set out to identify all the terms in £}, that can be exponentially localized in the sense of (6.9).
We start by analyzing the function M} [v], which can be treated by direct inspection.

Lemma 6.2. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small. There
exists a constant K > 0 together with functions agp, € H', defined for 0 < h < 1, so that the
following properties hold.

(i) For every 0 < h <1 and 7 € R we have
| (T)] < Kegy (7). (6.15)
(ii) For any 0 < h <1 and v € H' we have the identity
0% + Mp[v] = 7,200 + 429" (V,)v + ap,,0%. (6.16)
(iii) For any sequence {(h;,v;)} that satisfies (hSeq), there exists V. € L? for which the weak

convergences

v = Vi, My, [v;] = 'VEECIHP[V*] €L’ (6.17)

both hold as j — oo, possibly after passing to a subsequence.
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Proof. Writing
aon = (1=, 1Y) + 4y, 000,100, (6.18)

item (ii) follows by inspection. Item (i) follows from the exponential bounds (3.2) together with an
application of the Lipschitz bound (A.7) with U(®) =0 and ;@) = 1.

Turning to (iii), we may exploit the fact that ¥, € H* to apply the bounds in §4.1 and obtain
the strong limits

Wt e Y g () - A2g (W) € HY, (6.19)
together with
aon, = ex(l =7t + 20U € H (6.20)
In particular, we may apply Lemma’s 4.6 and 4.7 to obtain the weak convergence
My, [v)] = =y WV + 4 VIV 442V 4 42g (W) € L2 (6.21)
Inspecting the definition (2.12) yields (iii). O

It is convenient to introduce the notation
Tl = X7 (0P M, 0], (6.22)
which in view of (6.16) allows us to obtain the expression (6.8) for £; by writing
Len[v] = 0% + [0°0,]) T [v]. (6.23)

Lemma 6.3. Suppose that (Hg) and (H®,) are satisfied and pick n > 0 sufficiently small. There
exists a constant K > 0 so that the following properties hold.

(i) For anyv € H' and 0 < h < 1, we have the estimate

el < K[ ol +l10%0l ] (6.24)

(i) For any sequence {(h;,v;)} that satisfies (hSeq), there exists V. € L? for which the weak
convergences

v — V., CRATNCIES A RN (6.25)

both hold as j — oo, possibly after passing to a subsequence.

Proof. We make the splitting Yp,[v] = Y 4.5[v] + T p;p[v] by introducing the notation

Tanlel = X7 2000 [Mifo] 95 20@0].
Y 6.26
Tpalv] = Zﬁh 7,:4[8(2)\11*]8(2)1)_ (6.26)
Applying Lemma 4.5 and inspecting (6.16), we see that
ITanfolll. < C||Malo] = 20@0| .
S 2
/ (6.27)
< Gy llelly + 0% vl 5 |-
Applying the summation-by-parts identity (A.5), we compute
Yealv] = Y _,7 0@w,]oT0 v
(6.28)

= T [0 om0 - 000 [t ).
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Item (i) now follows from a second application of Lemma 4.5.

To obtain (ii), we set out to apply Lemma 4.7 with f; = My, [v;], ag; = 7,;28,(5)\11* and aq,; =
agj U, . Exploiting the fact that ¥, € H*, we may reason as in the proof of Lemma 6.2 to obtain the
strong limits

a5 — \I/; c Hl, Q2. — ’}/*_2\:[/;/ c Hl. (629)

Ttem (iii) of Lemma 6.2 implies that
fe =2 Lemp V], (6.30)
from which the desired weak limit follows. O

Decomposition for EZdJ

We set out to here to mimic the procedure above for Ezdj, which has a more convoluted structure.

Special care needs to be taken to handle the fact that M 2dj acts on a discrete sum. The identities
(A.4) play a crucial role here.

Lemma 6.4. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small. There
ezists a constant K > 0 together with a set of functions

(ao;h7a05;h7a+;haa—;h) € H'x H' x H' x Hlv (631)
defined for 0 < h < 1, so that the following properties hold.

(i) For every 0 < h <1 and 7 € R we have
|0:n (T)] + [@os;n (T)] + |a—n(T)] + [epn ()| < Kegy (7). (6.32)
(ii) For any 0 < h <1 and w € H' we have the identity

—c,0%w + Msdj w] = 7;,20%w+2¢ (V. )w (6.33)
+Oé();h’w + aOs;hT+w + a+;ha+w + a,;h(')_w.

(iii) For any sequence {(h;,w;)} that satisfies (hSeq), there exists W, € L? for which the weak
convergences ‘ .
w; = Wi, MpVw,) — £33 /2 W] € L2 (6.34)

j cmp

both hold as j — oo, possibly after passing to a subsequence.

Proof. Applying (A.2) and (A.3), we obtain

MOfw] = ey T ] + e [, 10w
48" [7,74[80\11*]8(2)\11*} THw — AT~ [7,;4[50\1/*]3(2%11*] 8w 6.35)
+0D ;2w + 45, 20D w + 0 [, 20T w + 0~ [, %0 w
+7hg' (T )w,
from which (i) and (ii) can be read off.
Turning to (iii), we note first that the identity
THw; =w; + h;0Tw; (6.36)
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shows that also TTw; — W, € L?. Applying Lemma’s 4.6 and 4.7 to the representation (6.35), we
obtain the weak limit

MpBfwy] = ey W + ey W

/
- [t WL - [ tee | w

6.37
HO W AW 4 20 W+ 929 (B W (6.37)
= O] = O [T LRI+ O [P 429 (W
Inspecting the definition (2.13) now yields the result. O
It is convenient to introduce the notation
1pVw) = wo'v,, (6.38)
+3h
which in view of (6.33) allows us to obtain the expression (6.8) for Ezdj by writing
Lzﬁf w) = aw+aysTTw+ardtw+a 0w

(6.39)

+ M0 520w T w] .

Lemma 6.5. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small. There
exists a constant K > 0 together with a set of functions

(dO;hvdOs;had+?ha&w;h,&ws;h) € Hl X Hl X Hl X Hl X Hla (640)
defined for 0 < h < 1, so that the following properties hold.

i) For any 0 < h <1 and w € H', we have the estimate
(1) y

el , < Klwlls- (6.41)
n
(ii) For every 0 < h <1 and T € R we have
|G0: (T)] + [@0s;n (T)] + | (T)] + [dwsn (T)] + |Gwsin (T)| < Kegy (7). (6.42)

iii) For every 0 < h <1 and w € H', we have the identity
Y

MR [W;Q[a@)%nz‘” [w]] = Gonw + GospTHw + Gy pdw

) » (6.43)
Fn Th 0 [w] + Gpen T [w].

(iv) For any sequence {(hj,w;)} that satisfies (hSeq), there exists W, € L? for which the weak
convergences

cmp

w; — W, M 7,72[6(2>\1/*]T;jj[wj]} — 2] [\11;' /+ \If;W*} € L2 (6.44)

both hold as j — oo, possibly after passing to a subsequence.
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Proof. Ttem (i) can be obtained in a similar fashion as item (i) of Lemma 6.3. Using the identities
(A.2)-(A.4), we compute

o~ [V w]] = —wd W, (6.45)
and hence )
V)] = -9t wdw.),
O[TV w]] = 9t [13V [w]] (6.46)
= =9tV |THw — [0°0, )0  w.
Writing )
Zlw] = ~; 2 (0P W, )12 [w], (6.47)
this gives
0 —  90[~—25(2) + [yadi
9 [I[w}} 0 [y, 20w, ] TH [0 [w]] (6.48)

—T [, 2 (0P 0. ]] ST [wd°w.],
together with
o Tiwl| = 9 [1; 20 w.] [V w]
+ 200w, [ 9[0T w — [aoq/*]aw}
+0F [y, 20D, ]| TH [—wd T,
+07 [y, 2020, ] [~wd L, ).

(6.49)

Items (ii) and (iii) can now be read off from the representation (6.33) and the exponential bounds
(3.2).
Suppose now that {(h;,w;)} satisfies (hSeq) and write

Tj = i 10 W05 ) (6.50)

Using the same arguments as in the proof of item (ii) of Lemma 6.3, we can apply Lemma 4.7 to
obtain the weak convergence

I, —~ 7;2@;'/ U, W, € L% (6.51)
+
In addition, using the identity
. /
T3] =3 [wo' W, + w'd"w,] (6.52)
+;ih

together with Lemma 4.5, we see that ||Z;[|;, can be uniformly bounded. Finally, (6.49) together
with the fact that ¥, € H® implies that also [|0T91Z;|,, can be uniformly bounded. In particular,
the sequence {(h;,Z;)} also satisfies (hSeq). Applying item (iii) of Lemma 6.4 now yields (iv). O

Proof of Proposition 6.1. Items (i) and (ii) follow directly from Lemma’s 6.2, 6.3, 6.4 and 6.5. Under
the assumptions of (iii), the weak limits (6.11) follow from the fact that {Lj,[v;]} and {L’;‘:J [w;]}
are bounded sequences in L?. Using Lemma’s 6.2 and 6.3, we see that

Fo =2 Lemp[Vi] + V., / U Lernp[Va]- (6.53)

Applying (3.72) yields (6.12).
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On the other hand, Lemma’s 6.4 and 6.5 show that
adj __ padj 2 ad]j
P = W) + i [ vl (6.54)

In particular, we can satisfy (6.14) by writing

H, =W, + \I'f.f/ VLW, (6.55)
+
Applying (3.73) we see that _
W, =T2YH,, (6.56)
as desired. O

6.2 Strategy

In this subsection we show that Theorem 2.3 can be established by finding appropriate lower bounds
for the quantities

En(d) = infnvum:l{llﬁhv—Mle+5‘1‘<‘Pi‘dj7ﬂ[£hv—5v]>m

12
}.

In particular, the required bounds are formulated in the following result, which is analogous to [1,
Lem. 6].

(6.57)

EI0) = il oz {300 —dul| |+ @l L3 — dw).

Proposition 6.6. Suppose that (Hg) and (H®,) are satisfied. Then there exists pn > 0 and dg > 0

such that for every 0 < § < §y we have

w(0) = liminfy o En(0) > u,
; o (6.58)
p24i(8) = liminfy o €V () > p

We postpone the proof of this result to §6.3, but set out to explore the consequences here. In
particular, it enables us to show that the operators L — d are invertible for small h > 0 and § > 0,
providing us with the analogue of [1, Thm. 4].

Proposition 6.7. Suppose that (Hg) and (H®.) are satisfied. There exists constants K > 0 and
do > 0 together with a map hg : (0,99) — (0,1) so that the following holds true. For any 0 < § < dp
and any 0 < h < ho(0), the operator Ly, — & is invertible as a map from H' onto L? and satisfies
the bound

1C2n = )7 Ly < K112 + 07 (02, Top) ] (6.59)

Proof. Following the proof of [1, Thm. 4], we fix 0 < § < dp and a sufficiently small h > 0. By
Proposition 6.6, the operator £;, — § is an homeomorphism from H' onto its range

R=(L,—06)(H") C L? (6.60)

with a bounded inverse Z : R — H'. The latter fact shows that R is a closed subset of L2. If R # L2,
there exists a non-zero w € L? so that (w,R)2 =0, i.e.,

(w, (Lp —0)v),, =0forallve H. (6.61)
Restricting this identity to test functions v € CS° implies that in fact w € H'. In particular, we find

{(L2h — S)w,v),, =0 forallve H', (6.62)
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which by the density of H' in L? means that (Eidj — d)w = 0. Applying Proposition 6.6 once more
yields the contradiction w = 0 and establishes R = L?. The bound (6.59) with the d-independent
constant K > 0 now follows directly from the definition (6.57) of the quantities £,(d) and the
uniform lower bound (6.58). O

Following the ideas in [6, §3.3], we can take the § | 0 limit and establish our main result concerning
L. The bounds in (ii) rely heavily on the preliminary work in §5 related to the quantity

ot Ly [v] — Lu[oT]. (6.63)
Proof of Theorem 2.3. For convenience, we introduce the set
Zy={ve H" : (U T.0)2 =0} (6.64)
Our goal is to find, for any f € L2, a solution (3,v) € R x Zj to the problem
v = Vs [f, v, B8] = (Ln — ) [f + BV, — 6v]. (6.65)

In order to ensure that the linear operator Vs indeed maps into Z}, it suffices to choose f in such
a way that

BOLY, Tu(Ly = 8) 1) 2 = —(WLY, T(Ly, — 8) 7 (f — 6v)) 2. (6.66)
Writing
(Lyp —6)7 W, = 6710, +7 (6.67)
we see that
(L), — 6o =0""1L, T, (6.68)

which shows that
[17] 2 < Cyhd—2. (6.69)

Choosing § < 1 and recalling the normalization
(ol Ty 0 =1, (6.70)
we can impose a restriction h < [C}] 7162 to ensure that

. 1
(WU T (Lp = 0) 7 W) 2| > 55—1. (6.71)

In particular, we can find a unique solution 3 = f,.5[f,v] to (6.66) for every v € Z;, and f € L2
The definition of Z; implies the bound

[(2h = 8) 7 (F =60l < 4[5 17112+ ol ] (6.72)
which allows us to obtain the estimate

Buss [, 0]l < Chllfll g2 + 6% vl 2 ). (6.73)

This in turn leads to the estimate

th;ﬁ [f?vaﬁh;(S[fa ’U]] ||H1 < Cé [5_1 Hf”L2 +4 HU”LZ]' (674)

By choosing § > 0 to be sufficiently small, we hence see that the linear fixed point problem

vV = Vh;(; [f, v, ﬁh;(;[f, UH (6.75)
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posed on Zj, has a unique solution for all f € L?. Writing v = V5[ for this solution together with

6;;;6]0 = ﬂh;(; [fa v;;&f], (676)

we obtain the estimates

Hvz;ﬁfHHl < Cé5_1 Hf||L2 ,

The remarks above show that the problem (2.33)-(2.34) is equivalent to (6.75). We can hence fix a
sufficiently small 6 > 0 and write 8, = 3 5 and Vi =V 5, which are well-defined for all sufficiently
small h > 0. This establishes (iii). Item (iv) can be verified directly by noting that (v, 8) = (0, —1)
is a solution to (2.33)-(2.34) for f = W’.

Turning to (i) and (ii), let us pick f € L? and write

(v, 8) = Vilf], BulfD)- (6.78)
Ttem (iii) together with the representation (6.8) implies that

<Cllfll- (6.77)

'+ [+ BV, = 3, 20Pv+7g (U)o + Lenfv]. (6.79)

The bound (i) follows from (6.77) and item (ii) of Proposition 6.1, which together provide L?-bounds
on all the terms in (6.79) that do not involve 8®v. To see (ii), we compute

LhloTv] = OF[f]+ BOHVL] + La[0Fv] — OF [Lalv]] (6.80)

and note that Corollary 5.4 implies that

[Lnloto] = ot [Lalv]]l| . < CH[llvllgn + 10707 vl 2] (6.81)
< Gyllfllze-
Using (i) we conclude that
0%l o + (00T 0% 0| o < CalllFlle + [[07 ] 2], (6.82)
which establishes (ii). O

6.3 Proof of Proposition 6.6

We set out here to obtain lower bounds for the quantities (6.57). As a first step, we show that the
limiting values can be approached via a sequence of realizations for which the weak limits described
in (iv) of Proposition 6.1 hold and for which the full power of Lemma 4.6 is available.

Lemma 6.8. Consider the setting of Proposition 6.6 and fit 0 < § < dg. Then there exist four
functions
(Vi, W.) € H* x H?, (Y, Z,) € L*(R), (6.83)

together with a sequence
{(hj,vj,yj,wj,zj)}jeN C (O, 1) x H' x L2 x H' x L2 (684)
that satisfies the following properties.

(i) For any j € N, we have

[0ill g2 = llwjll g = 1, (6.85)
together with
Ly, [v;] = dv; =y,
adj (686)
Ly [wi] —dw; = 2.
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(it) Recalling the constants (u(8), *¥(8)) defined in (6.58), we have the limits

w(@) = limgoeo{llysllpe + 0 WY Talys)) e [}
P = Tyl + 87 (WL )10 (657
(iii) As j — oo, we have the weak convergences
v; =~ V.eH,  w; =~ W,€eH, (6.88)
together with
y—~Y.eLl?  z—Z, el (6.89)

() The pairs {(h;,v;)} and {(hj,w;)} both satisfy (hSeq).

Proof. The existence of the sequences (6.84) that satisfy (i) and (ii) with h; | 0 follows directly
from the definitions (6.58). Notice that (6.87) implies that we can pick C; > 0 for which we have
the uniform bound

I3l + 2512 < C (6.90

for all j € N. In particular, after taking a subspace we obtain (iii). In addition, item (ii) of Proposition
6.1 implies that also

2 2
.+ ], < o
for some Cy > 0 and all 7 > 0, which implies (iv). O

Lemma 6.9. Consider the setting of Proposition 6.6. There exists a constant K1 > 0 so that for
any 0 < 6 < dg, the function Vi defined in Lemma 6.8 satisfies the bound

Vil < Kp(6). (6.92)

Proof. Ttem (iv) of Proposition 6.1 implies that

Lemp V] = Tu[Ya + V4], (6.93)
which we rewrite as
Lemp[Vi] — 0T [Va] = T.Y.. (6.94)
The lower-semicontinuity of the L?-norm under weak limits implies that
Vil o+ 6| (029, ToY2) | < (o), (6.95)
while Lemma 3.12 implies that
ITeYell 2 + 07 (WY, TLYL) | < O p(6). (6.96)
The desired bound hence follows directly from Corollary 3.2. O

Lemma 6.10. Consider the setting of Proposition 6.06. There exists a constant K1 > 0 so that for
any 0 < & < dg, the function W, defined in Lemma 6.8 satisfies the bound

Wl e < K1 (6). (6.97)
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Proof. Ttem (iv) of Proposition 6.1 implies that

W, = T2 H, (6.98)
for some H, € H? that satisfies the identity
adj _ _ dj
Lol Hi] = [Z + 0W.] = [Zi + 0TV HL]. (6.99)
In particular, we find _ _
£ [H,] — 6T [H,] = Z,. (6.100)
The lower-semicontinuity of the L2-norm under weak limits implies that
12l + 672 (W0, Z.)] < u(d). (6.101)
Proposition 3.2 hence yields
[H o]l g2 < Cru(9).- (6.102)
The desired bound hence follows from (6.98) and Lemma 3.12. O

The next result controls the size of the derivatives (v}, w}), which is crucial to rule out the leaking
of energy into oscillations that are not captured by the relevant weak limits. The key novel element
here compared to the setting in [1] is that one needs to include 81 v; in the bound. Our preparatory
work enables us to measure this contribution in a weighted norm, which allows us to capture the
bulk of the contribution on a compact interval.

Lemma 6.11. Consider the setting of Lemma 6.8 and pick a sufficiently small 7 > 0. There exists
a constant Ko > 1 that does not depend on 0 < § < §y so that the inequalities

2 2 2 2
Il < K| lwgle + sl + 10+ sl ]

9 (6.103)
lfl5, < Ko [llzil3e + oyl + 10 w;11s |

hold for all j > 0.
Proof. Using the representation in item (i) of Proposition 6.1, we expand the identity

(Ln,0j — 00,7, v5) 12 = (Y5, 7, V)) 12 (6.104)
to obtain

cx (i v i) e Y i Ve = —0(u a0 v ee + (0P v, v)) e + (07 0/ (W) v, v)) 12
+<L0;hj [Uj]a'YinjUDL?-
(6.105)

Applying (4.24) together with item (iii) of Proposition 6.1, we note that
|<e;n1LC;hj [Uj]a 6277’7}%”;‘>L2 |
lezy Zesn, [slll 5 177051 (6.106)
Cilllosllzs + 0% sz ] [l

| <Lc§h_7‘ [’Uj]v 7}%”3‘>L2 |

IN

IN

s
Using the identity (9®)v;, v}) 2 = 0 together with the lower bound 7;21], > [C%]~! we may hence
compute

el C3 (7, v V) 12

IN

ea] (0, ) 12

IN

C4 0312 1105 o+ o 19511+ ol 1051+ 100315 1 |-
(6.107)
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Recalling the bound ||a|| ;. < ||lal|; 2 for a € L? and using ¢, # 0, we find
n

515, < Gl lsllgs + llysllze + 107002 | 105 (6.108)
Dividing through by Hv; H I and squaring, we obtain
1513, < C8 | Iusllz + sl + 1+os 12, |- (6.109)

The same procedure works for w O

l,
i

We are now almost ready to obtain lower bounds for ||V, || ;1 and ||[W.|| 51, exploiting the fact that
our nonlinearity is bistable. The next technical result is the analogue of the inequality <8(2)u, uypz <0
used in [1]. Due to the non-autonomous coefficient in front of the second difference, we obtain
localized correction terms that need to be controlled.

Lemma 6.12. Suppose that (Hg) and (H®.) are satisfied. There exists a constant K > 0 so that
for any v € H' and any 0 < h < 1, we have the one-sided inequality

(200, 0)e < K[0%ol7s + [vll7s ] (6.110)
Proof. Using (A.2) we compute

—(7{26(2)1},1})@ = —(7;28_8+U7U>L2
= (0%v, 0" [7;2U]>L2
= (00, 0% [, T [v]) 12 + (0T 0,3, 20T 0) 12

(6.111)
= (0T0,0% [, 21 TF[]) 2 + (0T 0, (7,2 = 1)0Tv) 2
+<8+’U, 8+’U>L2
> (9%, 0% [, T o)) 2 + (0% 0, (7,2 = 1)V 0) e
The result now follows from (4.24) together with the pointwise exponential bounds
72 = 1] + [0 [7;,%]] < Ctezn. (6.112)
O

Lemma 6.13. Consider the setting of Proposition 6.6. There exists constants Ko > 0 and K3 > 0
so that for any 0 < § < dg, the functions V. and W, defined in Lemma 6.8 satisfy the bounds

Valdn > K3 — Kau(6)?,
" , (6.113)
Wallgn > K3 — Kap3(0)*.
Proof. Pick m > 1 and o > 0 in such a way that
Ve, (1)9' (¥i(7)) < —a (6.114)

holds for all |7| > m. This is possible on account of the uniform lower bound 77 > [C]]™! and the
fact that ¢’(0) < 0 and ¢’(1) < 0.
We now expand the identity

(Ln,vj = 6vj, 0502 = (Y5, v5) L2 (6.115)
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to obtain the estimate
(Wi, vi)re = —cu(Vj,v5)p2 — 0(vj,v5) 12
+<7,;28(2)vj, vj)2 + (7,;29’(\11*)1@, V) L2
+(Le;ny vl v5) L2

Using (v}, v;)r2 = 0, Lemma 6.12 and item (iii) of Proposition 6.1, we find

IN

2 2 _
(yj,v5) 2 Cs ||8+Uj||L$] + ||Uj||L$]] + <’th29/(‘1’*)vj7vj>L2
2 2
C5 [10% jlI72 + llvslz2 ]

2 m 2
—allvjll. +C5 [T vi(T)]” dr.

IN

Using the basic inequality
1

2
2ay )

2y = (Vaw)(y/va) < o+

we arrive at

2 2
Cy " (TP dr > allvillze = (y5,v5) L2
2 2
31071, + oy
2
>« ||UjHL2 - ||yj||L2 HUJ'”L?
2 2
—c3[10% w12, + oy, ]
2 2
> 5 llvsllge — 55 lysllze

2 2
G40+ eyl + ol )
Multiplying the first inequality in (6.103) by m, we find

o /112 alk
02507 &) o3 llze = 20+ Ka)

Adding (6.119) and (6.120), we may use the identity

aKs «

o
2 2(1+Ks) 2(1+K>)

to obtain

Cy 7, i ()] dr

Y]

2 2 2
ey L villze + [[05117. 1 = Cs llyslz
2 2
Gy 0% w3 + usl2s ]
2
- 2(1—$K2) - Oé ”yj HLz
2 2
—Cy 0% el + llesll2, ]
For any M > 0 and a € L? we may compute
lal7: = [e " la(r)? dr
n
M JlalZa + [y e 1a(r)? dr

e M |alf2, + [N, a(r)2 dr.

IN

IN
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loslize = Cillouslly; = Cillysllza

(6.116)

(6.117)

(6.118)

(6.119)

(6.120)

(6.121)

(6.122)

(6.123)



/

Exploiting (0% vl . < |[v}]],,

and [|v]| ;1 = 1, we hence see
2 _ M M
lojll e + 0% 0slla < €™M 7 [o;)(r)? dr + [, [0 v;](7)2 dr. (6.124)

In particular, by choosing M > m to be sufficiently large, we find

cy [N P dr >y ™ () dr
> iy — Gl (6.125)
—C4 [ S0t o)) dr + [ s(r) dr]
We hence obtain
C [P or )2 dr + [ (2] > s — Gl (6.126)

In view of the bound
limsup [ly;|7. < n(5)?, (6.127)
j—o0

the strong convergences v; — Vi € L?([—M, M]) and 0Tv; — V/ € L*([-M, M]) imply that

2 /1—1 o / 2
« > _— )|, 12
IVellis > G [y gy — G000 (6.128)
as desired. The bound for W, follows in a very similar fashion. O

Proof of Proposition 6.6. For any 0 < § < 1, Lemma’s 6.9 and 6.13 show that the function V, defined
in Lemma 6.8 satisfies

K2u(0)2 > Va2 > Ks — Kapu(6)?, (6.120)
which gives (K7 4+ K4)u(6)? > K3 > 0, as desired. The same computation works for ¥, but now
one uses Lemma’s 6.10 and 6.13. O

A Auxiliary results

In this short appendix we collect several useful results from [4] that are used throughout this paper.
In particular, we recall a number of basic identities related to discrete differentiation and integration
in §A.1. In addition, we formulate some useful bounds for the gridpoint spacing function ¢ in §A.2.
A.1 Discrete calculus

Recalling the notation introduced at the start of §5, a short computation yields the basic identities

0Pa=0%9"a, 9+8% = ST[0Pa), (A1)

together with the product rules

Otlab] = 0TaT b+ adTb,
Olab] = 0°aT*b+ T~ ad, (A.2)
o7 [ab] = [0 alb+ {T*a] a-b,

which hold for a,b € £7°. As in [4, §3.1], these can subsequently be used to derive the second-order
product rule
O0[ab) = (0P a)b+0TadTb+ 0" ad~ b+ ad?b. (A.3)
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Recalling the discrete summation operators (2.25), one can read-off the identities

8+[Za]jh = ajp, o~ [Za]jh = —ajn (A.4)

—h +;h

for a € £*(hZ;R). In addition, the discrete summation-by-parts identity

Z b0 a =aT b— Z ad”b (A.5)

—h
holds whenever a,b € ¢2; see [4, Eq. (3.13)].
A.2 Bounds for vy
For any U@, U® ¢ Qp., the gridspace function vy defined in (5.1) admits the identity
Yoo — Y@ = e +ye] " (0°U® + °U®)(0°U®) — 9°U@); (A.6)
see [4, Eq. (C.4)]. This can be used [4, Cor. D.2] to obtain the Lipschitz bound

||'7U(a> S ||e;§ <K Ha+U(b) —otu@

(A7)

4

for ¢ € {2,000}, where K depends on x but not on h. In addition, it can be exploited to compute the
following bounds concerning discrete differences of powers of 7.

Lemma A.1 ([4, Lem. D.4]). Fiz 0 < k < 1—12 Then there exists K > 0 so that for any h > 0 and
any U € Qy,.,., we have the pointwise estimates

|07 (2] + 20°U S+ [0 U] < Kh[|o@U[* + 1+ |o@U)?],
0] +95'°USHOPU]| < Kh||o®U| + T 00,
0+ g Y] — US| < Kh[[]o@UP + 1+ [9®U]? ], (A.8)
0+ 152 — 295 00U ST PU)| < Kh[|o@U[* + 1+ [0@ U],
0t b - gteustePU]| < Kal[o®U+ T 0®U] .
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