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Abstract

In this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE and

establish the existence of travelling waves. In particular, we consider the time dependent spatial mesh

adaptation method that aims to equidistribute the arclength of the solution under consideration. We assume

that this equidistribution is strictly enforced, which leads to the non-local problem with infinite range

interactions that we derived in [26]. Using the Fredholm theory developed in [27] we setup a fixed point

procedure that enables the travelling PDE waves to be lifted to our spatially discrete setting.
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1 Introduction

Our goal in this paper is to complete the program initiated in [26, 27] to analyze the impact of
adaptive discretization schemes on scalar bistable reaction-diffusion PDEs of the form

ut = uxx + g(u). (1.1)

In particular, for any discretization distance h > 0 and any j ∈ Z, we write xjh(t) for the
time-dependent location of the relevant gridpoint and Ujh(t) for the associated approximation for
u
(
xjh(t), t

)
. We then study the system

U̇jh(t) =
[
U(j+1)h(t)−U(j−1)h(t)

x(j+1)h(t)−x(j−1)h(t)

]
ẋjh(t)

+ 2
x(j+1)h(t)−x(j−1)h(t)

[
U(j−1)h(t)−Ujh(t)

xjh(t)−x(j−1)h(t) +
U(j+1)h(t)−Ujh(t)

x(j+1)h(t)−xjh(t)

]
+ g
(
Ujh(t)

)
,

(1.2)
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in which x(t) is defined implicitly by demanding that(
x(j+1)h(t)− xjh(t)

)2
+
(
U(j+1)h(t)− Ujh(t)

)2
= h2 (1.3)

and imposing the boundary constraint

lim
j→−∞

[xjh(t)− jh] = 0. (1.4)

This means that mesh locations are determined dynamically in time so that there is equidistribution
of a finite difference approximation of the arclength of the solution of (1.2). We show that this system
has solutions of the form

Ujh(t) = Φ(xjh(t) + ct), (1.5)

which can be interpreted as travelling waves. For concreteness, we will use the cubic nonlinearity

g(u) = gcub(u; a) = u(1− u)(u− a), 0 < a < 1 (1.6)

throughout this introduction to explain the main ideas.

Travelling waves The pair (Φ, c) that we construct will be close to the travelling wave (Φ∗, c∗)
for the PDE (1.1). Using (1.6), this pair must satisfy the travelling wave ODE

cΦ′∗ = Φ′′∗ + gcub(Φ∗; a), Φ∗(−∞) = 0, Φ∗(+∞) = 1. (1.7)

Such solutions provide a mechanism through which the fitter biological species (corresponding to
the deepest well of the potential −

∫
gcub) can become dominant throughout a spatial domain. For

this reason they are sometimes referred to as invasion waves.
It is well-known that these waves play an important role in the global dynamics of (1.1). For

example, using the comparison principle one can show that these waves are nonlinearly stable under a
large class of perturbations [14] and that they determine the spreading speed of localized structures
[39]. In addition, they have been used extensively as building blocks to construct general time
dependent solutions of reaction-diffusion systems. For example, planar versions of (1.1) support
(sharp) travelling corners [4, 16], expansion waves [33], scattering waves [3] and modulated waves
[9] that connect periodic travelling waves of nearby frequencies.

Uniform spatial discretizations In order to set the stage, let us return to the lattice differential
equation (LDE)

U̇j(t) =
1

h2
[Uj−1(t) + Uj+1(t)− 2Uj(t)] + gcub

(
Uj(t); a

)
, (1.8)

which can be used to describe the uniformly discretized approximants Uj(t) ∼ u(jh, t). Mathemat-
ically speaking, the transition from (1.1) to (1.8) breaks the continuous translational symmetry of
the underlying space. Indeed, (1.8) merely admits the discrete group of symmetries j 7→ j + k with
k ∈ Z. As a consequence, travelling wave solutions

Uj(t) = Φ(jh+ ct) (1.9)

can no longer be seen as equilibria in an appropriate comoving frame. Instead, they must be treated
as periodic solutions modulo the discrete shift symmetry discussed above. The resulting challenges
occur frequently in similar discrete settings and general techniques have been developed to overcome
them [2, 7, 15].

Direct substitution of (1.9) into (1.8) yields the travelling wave equation

cΦ′(ξ) =
1

h2
[Φ(ξ − h) + Φ(ξ + h)− 2Φ(ξ)] + gcub(Φ(ξ); a), (1.10)
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to which we again append the boundary conditions

Φ(−∞) = 0, Φ(+∞) = 1. (1.11)

Due to the presence of the shifted arguments such equations are known as functional differential
equations of mixed type (MFDEs). Note that the unbounded second derivative operator in (1.7) has
been replaced by a bounded second-difference operator. In addition, the transition c → 0 is now
singular since it changes the structure of the equation. As a consequence, there is a fundamental
difference between standing and moving wave solutions to (1.8).

In the anti-continuum regime h � 1, the second-difference operator can be treated as a small
perturbation to the remaining ODE. An elegant construction pioneered by Keener [28] allows one
to construct standing waves for a 6= 1

2 that satisfy the boundary conditions (1.11) and block the
two stable background states Φ ≡ 0 and Φ ≡ 1 from invading the domain. In particular, the
simple geometric condition [27, Eq. (1.5)] is violated in this setting. This phenomenon is often
referred to as pinning or propagation failure and has attracted a considerable amount of attention
[1, 8, 10, 11, 18, 22].

In the intermediate h ∼ 1 regime the shifted terms cannot be handled so easily and one needs to
understand the full MFDE. Such equations are ill-posed as initial value problems and hence must be
handled delicately. Several important tools have been developed to accomplish this, such as Fredholm
theory [29] and exponential dichotomies [17, 31, 34, 35]; see [21] for a detailed overview.

Using a global homotopy argument together with the comparison principle, Mallet-Paret [30]
constructed a branch of solutions

(
Φ(a), c(a)

)
to (1.10) with (1.11), in which c(a) is unique and Φ(a)

is unique up to translation when c(a) 6= 0. For the uniform spatial discretization of the FitzHugh-
Nagumo PDE [26, Eq. (1.3)], a generalization of Lin’s method can be used to establish a version of
the exchange Lemma for MFDEs and construct stable travelling pulses [23, 24]. Further results in
this area can be found in [5, 6, 28, 30, 40] and the survey [21].

Uniform spatial-temporal discretizations The so-called backward differentiation formula (BDF)
are a family of six schemes that can be used for discretizing the temporal derivative in (1.8). These
are well-known multistep methods that are appropriate for parabolic PDEs due to their numerical
stability properties. As an illustration, we note that the two lowest order schemes prescribe the
substitutions

U̇j(t) 7→ 1
∆t

[
Uj
(
n∆t

)
− Uj

(
(n− 1)∆t

)]
,

U̇j(t) 7→ 1
2∆t

[
3Uj

(
n∆t

)
− 4Uj

(
(n− 1)∆t

)
+ Uj

(
(n− 2)∆t

)]
,

(1.12)

in which ∆t > 0 denotes the timestep and t = n∆t. The first scheme is also known as the backward
Euler method and has the advantage that is preserves the comparison principle, unlike the five other
members of the family.

In [25] we constructed fully discretized travelling wave solutions

Uj(n∆t) = Φ(j + nc∆t), Φ(−∞) = 0, Φ(+∞) = 1 (1.13)

for the coupled map lattices arising from these discretization schemes. The relevant travelling wave
equations for the two lowest order schemes can be obtained by making the replacements

cΦ′(ξ) 7→ 1
∆t

[
Φ(ξ)− Φ(ξ − c∆t)

]
,

cΦ′(ξ) 7→ 1
2∆t

[
3Φ(ξ)− 4Φ(ξ − c∆t) + Φ(ξ − 2c∆t)

] (1.14)

in the MFDE (1.10). In the first case we leveraged the comparison principle to obtain global results.
We established that the c(a) relation can become multi-valued, which clearly distinguishes the fully-
discrete regime from its spatially-discrete counterpart. The same behaviour occurs for the five other
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BDF methods, but here we only have results for small ∆t > 0. We remark that related phenomena
have been observed in monostable KPP systems [32] in the presence of inhomogeneities.

These non-uniqueness results should be seen as part of the program that was initiated in [11–
13] to study the impact of temporal and full discretization schemes on various reaction-diffusion
systems. Indeed, these papers studied versions of (1.1) with various smooth and piecewise linear
bistable nonlinearities. The authors used adhoc techniques to obtain rigorous, formal and first order
information concerning the change in the dynamics of traveling wave solutions. In addition, in [7]
the authors considered the forward-Euler scheme and used Poincaré return-maps and topological
arguments to obtain the existence of fully-discretized waves.

Computational frame In [26] we showed that the dynamics of the coupled system (1.2)-(1.4)
can be reduced to an equivalent system of the form

U̇kh = G
(
{Ujh}j≤k+1

)
, (1.15)

in which G is a (convoluted) nonlinear expression that we describe explicitly in §2. In order to
appreciate this equation, it is insightful to transform (1.1) into a new coordinate system (θ, t) by
demanding θx =

√
1 + u2

x. Indeed, in these new arclength coordinates the transformed functions

w(θ, t) = u
(
x(θ, t), t

)
, γ(θ, t) =

√
1− wθ(θ, t)2 (1.16)

satisfy the the nonlocal PDE

wt = γ−2wθθ + γ2g(w) + wθ

∫
−

(
γ−4wθθ + g(w)

)
wθθ, (1.17)

in which we use the notation [
∫
− f ](θ) =

∫ τ
−∞ f(θ′) dθ′. This coincides with the system that arises

by taking the formal h ↓ 0 limit in (1.15).
In [27] we constructed a solution to (1.17) by stretching the PDE waveprofile Φ∗ into its arclength

parametrized form Ψ∗ and writing
w(θ, t) = Ψ∗(θ + ct). (1.18)

Motivated by this observation, the main goal of this paper is to find solutions to (1.15) of the form

Uj(t) = Ψ(jh+ ct), Ψ(−∞) = 0, Ψ(+∞) = 1 (1.19)

that bifurcate from the pair (Ψ∗, c∗). In particular, we study the travelling wave system

cΨ′(τ) = G
(
{Ψ(τ + kh)}k≤1

)
(1.20)

posed in terms of the computational coordinate τ = jh + ct rather than the physical coordinate
ξ = xj(t) + ct appearing in (1.5). We note that the discrete term jh now plays the role of θ.

To appreciate the advantage of this indirect approach, we note that any attempt to use ξ will lead
to an equation for the waveprofile Φ with shifts that depend on the waveprofile Φ itself. In particular,
the resulting wave equation is a state-dependent MFDE with infinite range interactions. At the
moment, even state-dependent delay equations with a finite number of shifts are technically very
challenging to analyze, requiring special care in the linearization procedure [38]. Indeed, linearizations
typically involve higher order (continuous) derivatives, making it very hard to close fixed-point
arguments.
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Physical frame It turns out that there is a close relation between the two wave Ansatzes (1.5)
and (1.19). In order to see this, let us assume for the moment that we have found a triplet (Φ, c, x)
for which x and the function U defined in (1.5) satisfy (1.2) together with (1.3)-(1.4). Let us also
assume that for each ϑ ∈ R there is a unique increasing sequence yjh;ϑ with y0;ϑ = ϑ for which(

Φ(y(j+1)h;ϑ)− Φ(yjh;ϑ)
)2

+ (y(j+1)h;ϑ − yjh;ϑ)2 = h2 (1.21)

holds for all j ∈ Z. This can be arranged by imposing a-priori Lipschitz bounds on Φ and Φ′ and
picking h > 0 to be sufficiently small. Finally, let us assume for definiteness that c > 0 and that the
wave outruns the grid in the sense that ẋ0(t) + c > ε > 0.

A direct consequence of this inequality is that

x0(T ) + cT = xh(0) (1.22)

for some T > 0, which implies
U0(T ) = Uh(0) = Φ

(
xh(0)

)
. (1.23)

The uniqueness property discussed above hence implies that

Ujh(T ) = Φ(yjh;xh(0)) = Φ
(
x(j+1)h(0)

)
(1.24)

for all j ∈ Z. Since(
x(j+1)h(T )− xjh(T )

)2
= h2 −

(
U(j+1)h(T )− Ujh(T )

)2
= h2 −

(
Φ
(
x(j+2)h(0)

)
− Φ

(
x(j+1)h(0)

))2

=
(
x(j+2)h(0)− x(j+1)h(0)

)2
,

(1.25)

we see that in fact
xjh(T ) + cT = x(j+1)h(0) (1.26)

for all j ∈ Z. Taking the limit j → −∞, the boundary conditions (1.4) imply that cT = h. Exploiting
the well-posedness of our dynamics in forward and backward time, we conclude that

xjh(t) = x0(jT + t) + jh (1.27)

holds for all j ∈ Z and t ∈ R. Writing Ψx(ϑ) = x0(ϑ/c), we hence find

xjh(t)− jh = Ψx(jh+ ct), (1.28)

which implies that
Ujh(t) = Φ(xjh(t) + ct) = Φ

(
jh+ Ψx(jh+ ct) + ct

)
(1.29)

for all j ∈ Z and t ∈ R. Upon introducing the function

ΨU (τ) = Φ
(
τ + Ψx(τ)

)
, (1.30)

this allows us to obtain the representation(
Ujh(t), xjh(t)− jh

)
=
(
ΨU (jh+ ct),Ψx(jh+ ct)

)
. (1.31)

In fact, we show that for arbitrary solutions U to (1.15) for which U(t0) is close to Ψ∗(hZ+ϑ), we
indeed have the pointwise inequalities |ẋ(t0)| < |c| whenever c is sufficiently close to c∗. This can be
used to show that the coordinate transformation (1.30) can be inverted, allowing us to reconstruct
the profile Φ(ξ) from ΨU (τ).
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Fixed-point setup In order to construct our travelling waves, we write Ψ = Ψ∗+v and decompose
(1.20) into the form

(c− c∗)v′ = Lhv + Gnl

(
{v(τ + kh)}k≤1

)
+ G

(
{Ψ∗(τ + kh)}k≤1

)
− cΨ′∗, (1.32)

using the linear operators Lh that were introduced in [27]. In the limit h ↓ 0, these operators
reduce formally to the operator L∗ associated to the linearization (1.17) around the wave (1.18).
The singular nature of the transition between (1.15) and (1.17) is fully encoded in the transition
between L∗ and Lh, which was studied at length in [27]. As a result, our analysis in this paper can
be seen as the construction of a regular fixed point problem. However, there are two main challenges
that need to be overcome.

The first complication is that Lh is not the ‘exact’ linearization of G, which is far too compli-
cated to handle. Instead, we recover our operator Lh after several simplification steps, which each
introduce h-dependent errors that need to kept under control. In order to achieve this, we reapply
the approximation framework developed in [26] in order to systematically bound the global errors
that arise by modifying the individual factors of the products that appear in the definition of G.

The second obstacle is that the nonlinearity G acts on sequences U : hZ→ R, while the fixed-point
problem (1.32) is formulated in terms of functions v ∈ L2. Since the relevant transitions between
supremum and L2-based norms cost a factor of h−1/2, special care must be taken to construct
appropriate function spaces that allow uniform bounds for h ↓ 0. This is particularly dangerous
for the terms that are quadratic in the second differences of U , which correspond roughly to the∫
− γ
−4w2

θθ term in (1.17).
In fact, we need to exploit the special structure of G and take a discrete derivative of (1.32)

in order to close our problem. We hence need to obtain estimates on the discrete derivative of the
nonlinear residual Gnl, which requires an elaborate bookkeeping system.

Outlook We view our work here as a first step towards understanding the impact of adaptive
discretization schemes on travelling waves and other patterns that exist for all time. In particular,
we believe that the waves constructed here can be seen as a slow manifold for the dynamics of the
full system (1.2) with the non-instantaneous gridpoint behaviour

σẋj =
√

(xj+1 − xj)2 + (Uj+1 − Uj)2 −
√

(xj−1 − xj)2 + (Uj−1 − Uj)2 (1.33)

prescribed by the MMPDE5 scheme [20]. Here σ > 0 is a tunable speed parameter, which we
effectively set to zero by passing to (1.3).

Using the Fredholm theory developed in [27] for the operators Lh one should be able to leverage
the ideas in [37] to effectively track the fast grid-dynamics in the 0 < σ � 1 regime. A further step
in the program would be to also handle temporal discretizations, inspired by the approach developed
in [25] that we described above. Finally, we feel that it is important to understand the stability of
the discretized waves under the full dynamics of the numerical scheme. To achieve this, one could
follow the approach in [36] to transfer information from the operators Lh to the linearization around
the actual adaptive travelling waves constructed in this paper.

We are specially interested here in the pinning phenomenon. Indeed, numerical observations
indicate that the set of detuning parameters a for which c(a) = 0 shrinks dramatically when using
adaptive discretizations. Understanding this in a rigorous fashion would give considerable insight into
the theoretical benefits of adaptive grids compared to the practical benefits of increased performance.
Preliminary results in this direction can be found in [19].

Let us emphasize that the application range of our techniques does not appear to be restricted
to the scalar problem (1.1) or the specific grid-update scheme (1.33) that we use. Indeed, using the
framework developed in [36], it should be possible to perform a similar analysis for the FitzHugh-
Nagumo equation PDE and other multi-component reaction-diffusion problems. In addition, any
numerical scheme based on the arclength monitor function will share (1.3) as the instantaneous
equidistribution limit.
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Overview This paper is organized as follows. After formulating our main results in §2, we introduce
our notational framework and recap the key contributions from [26, 27] in §3. In §4 we simplify the
nonlinear functions that appear as factors in the product structure of G and obtain estimates on
all the resulting errors. These estimates are used in §5 to compute tractable expressions for the
linearization of G and its discrete derivative G+ around Ψ∗ and obtain bounds on the residuals. We
conclude in §6 by combining all these ingredients with the theory developed in [27]. In particular,
we develop an appropriate fixed-point argument to construct our desired travelling waves.

In order to develop the main story in a reasonably streamlined fashion that focuses on the key
ideas, we have chosen to transfer many of the tedious underlying estimates and algebraic manipula-
tions to the appendices. In order to keep this paper as self-contained as possible, these appendices
also summarize some of the fundamental auxiliary bounds that were obtained in [26, 27].

Acknowledgements. Hupkes acknowledges support from the Netherlands Organization for Sci-
entific Research (NWO) (grant 639.032.612). Van Vleck acknowledges support from the NSF (DMS-
1419047 and DMS-1714195). Both authors wish to thank W. Huang for helpful discussions during
the conception and writing of this paper and an anonymous referee for providing valuable feedback.

2 Main results

The main results of this paper concern adaptive-grid discretizations of the scalar PDE

ut = uxx + g(u). (2.1)

Throughout the paper, we assume that the nonlinearity g satisfies the following standard bistability
condition.

(Hg) The nonlinearity g : R→ R is C3-smooth and has a bistable structure, in the sense that there
exists a constant 0 < a < 1 such that we have

g(0) = g(a) = g(1) = 0, g′(0) < 0, g′(1) < 0, (2.2)

together with

g(u) < 0 for u ∈ (0, a) ∪ (1,∞), g(u) > 0 for u ∈ (−∞,−1) ∪ (a, 1). (2.3)

It is well-known that the PDE (2.1) admits a travelling wave solution that connects the two stable
equilibria of g [14]. The key requirement in our next assumption is that this wave is not stationary,

which can be arranged by demanding
∫ 1

0
g(u) du 6= 0.

(HΦ∗) There exists a wave speed c∗ 6= 0 and a profile Φ∗ ∈ C5(R,R) that satisfies the limits

lim
ξ→−∞

Φ∗(ξ) = 0, lim
ξ→+∞

Φ∗(ξ) = 1 (2.4)

and yields a solution to the PDE (2.1) upon writing

u(x, t) = Φ∗(x+ c∗t). (2.5)

In [26] we derived an effective equation for the dynamics of the sequence U(t) : hZ→ R featuring
in the adaptive scheme (1.2)-(1.4) for (2.1) that no longer explictly depends on the location of the
gridpoints. In order to formulate this reduced equation, we recall the discrete derivatives

[∂+U ]jh = h−1
[
U(j+1)h − Ujh

]
,

[∂−U ]jh = h−1
[
Ujh − U(j−1)h

]
,

[∂0U ]jh = (2h)−1
[
U(j+1)h − U(j−1)h

]
,

(2.6)
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together with the first-order differences

D�±(U) =
∂±U√

1− (∂±U)2
, D�0(U) =

2∂0U√
1− (∂+U)2 +

√
1− (∂−U)2

(2.7)

and the second order analogues

D��0(U) =
2

h

D�+(U)−D�−(U)√
1− (∂+U)2 +

√
1− (∂−U)2

, D�0;+(U) = ∂+D�0(U). (2.8)

This allows us to introduce the auxiliary functions

p(U) =
D�+(U)

1 +D�+(U)D�0(U)
, q(U) = h−1 ln

[
1 + hp(U)D�0;+(U)

]
, (2.9)

which using the notation[∑
−;h

a
]
jh

= h
∑
k>0

a(j−k)h,
[∑

+;h

a
]
jh

= h
∑
k>0

a(j+k)h (2.10)

allows us to recall the definitions

Q(U) =
∑
−;h

q(U), Z±(U) = exp
[
±Q(U)

]
(2.11)

and subsequently write

G(U) = D��0
(
U
)

+ g
(
U
)
−D�0

(
U
)
Z−(U)

∑
−;h

p(U)Z+(U)∂+
[
D��0(U) + g(U)

]
. (2.12)

These ingredients allow us to formulate the effective reduced system [26, Eq. (2.25)] for the dynamics
of (1.2)-(1.4) as

U̇(t) = G
(
U(t)

)
, (2.13)

which will be the main system that we analyze in this paper.
We recall the arclength parametrization ξ∗(τ) defined by the identity

A
(
ξ∗(τ)

)
=

∫ ξ∗(τ)

0

√
1 + [∂ξ′Φ∗(ξ′)]2 dξ

′ = τ, (2.14)

together with the stretched waveprofile Ψ∗ : R→ R given by

Ψ∗(τ) = Φ∗
(
ξ∗(τ)

)
. (2.15)

The main result of this paper states that for sufficiently small h > 0, the reduced problem (2.13)
admits a travelling wave solution

Ujh(t) = Ψh(jh+ cht) (2.16)

with (Ψh, ch) ≈ (Ψ∗, c∗) in an appropriate sense. These waves are locally unique up to translation.
We note that items (iv) and (v) use the notation ∂+

h v = h−1[v(· + h) − v(·)] for functions v. In
addition, we use the shorthands L2 = L2(R;R) and H1 = H1(R;R), together with the Heaviside
sequence Hjh = 1j≥0.

Theorem 2.1 (see §6). Suppose that (Hg) and (HΦ∗) are satisfied. Then there exists a constant
δh > 0 together with pairs

(Ψh, ch) ∈ C1(R;R)× R, (2.17)

defined for 0 < h ≤ δh, such that the following properties are satisfied.
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(i) For every 0 < h ≤ δh we have the limits

lim
ξ→−∞

Ψh(ξ) = 0, lim
ξ→+∞

Ψh(ξ) = 1. (2.18)

(ii) For every 0 < h ≤ δh we have the strict inequality

sup
τ∈R
|Ψh(τ + h)−Ψh(τ)| < h. (2.19)

(iii) For every 0 < h ≤ δh, the function U : R→ `∞(hZ;R) defined by

Ujh(t) = Ψh(jh+ cht) (2.20)

satisfies the inclusion
t 7→ U(t)−H ∈ C1

(
R; `2(hZ;R)

)
. (2.21)

In addition, the identity (2.13) and the strict inequality ‖∂+U(t)‖∞ < 1 both hold for all t ∈ R.

(iv) We have Ψh −Ψ∗ ∈ H1 for every 0 < h ≤ δh and the limit

|ch − c∗|+ ‖Ψh −Ψ∗‖H1 +
∥∥∂+

h

[
Ψh −Ψ∗

]∥∥
H1 +

∥∥∂+
h ∂

+
h ∂

+
h

[
Ψh −Ψ∗]

∥∥
L2 → 0 (2.22)

holds as h ↓ 0.

(v) Pick any 0 < h ≤ δh and consider a pair (Ψ̃, c̃) ∈ L∞ × R that has Ψ̃−Ψ∗ ∈ H1 with

|c̃− c∗|+
∥∥∥Ψ̃−Ψ∗

∥∥∥
H1

+
∥∥∥∂+

h

[
Ψ̃−Ψ∗

]∥∥∥
H1

+
∥∥∥∂+

h ∂
+
h ∂

+
h

[
Ψ̃−Ψ∗

]∥∥∥
L2
< h3/4. (2.23)

Then the function Ũ : R→ `∞(hZ;R) defined by

Ũjh(t) = Ψ̃h

(
jh+ c̃t

)
(2.24)

satisfies the inclusion
t 7→ Ũ(t)−H ∈ C0

(
R; `2(hZ;R)

)
, (2.25)

together with the strict inequality
∥∥∥∂+Ũ

∥∥∥
∞
< 1 for all t ∈ R. In addition, if Ũ is a solution to

the system (2.13) for all t ∈ R, then we must have(
Ψ̃(·), c̃

)
=
(
Ψh(·+ ϑ), ch

)
(2.26)

for some ϑ ∈ R.

We emphasize that the location of the gridpoints for the waves (2.16) can be determined by using

xjh(t) = jh−
∑
j′<j

(
U(j′+1)h(t)−Uj′h(t)

)2
√
h2−(U(j′+1)h(t)−Uj′h(t))2+h

; (2.27)

see [26, Thm. 2.3]. In fact, our final result shows how these waves in the computational coordinates
can be interpreted as wave-like objects in the original physical coordinates.

Corollary 2.2 (see §6). Consider the setting of Theorem 2.1. Then there exists a constant 0 < δ̃h <

δh so that for all 0 < h ≤ δ̃h there exist pairs

(Ψ
(x)
h ,Φh) ∈ C1(R;R)× C1(R;R) (2.28)

that satisfy the following properties.
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(i) Upon writing

xjh(t) = jh+ Ψ
(x)
h (jh+ cht),

Ujh(t) = Ψh(jh+ cht),
(2.29)

the adaptive grid equations (1.2) - (1.4) are satisfied for all t ∈ R.

(ii) For every t ∈ R and j ∈ Z, the functions defined in (2.29) satisfy the relation

Ujh(t) = Φh
(
xjh(t) + cht

)
. (2.30)

We remark that if (2.16) and (2.30) both hold, simple substitutions yield the identity

Ψh(jh+ cht) = Ujh(t)

= Φh
(
jh+ Ψ

(x)
h (jh+ cht) + cht

)
= Φh(jh+ cht+ Ψ

(x)
h (jh+ cht)

)
.

(2.31)

In particular, the main assertion in Corollary 2.2 is that the perturbed coordinate transformation

ξh(τ) = τ + Ψ
(x)
h (τ) (2.32)

is invertible for sufficiently small h > 0, allowing us to transfer the waves back to the original physical
framework.

3 Setup and notation

In this section we recall several crucial results and notational conventions introduced in the prequel
papers [26, 27]. This will ensure that the current paper can be read reasonably independently. As a
preparation, we recall the sequence spaces

`2h = {V : hZ→ R for which ‖V ‖2`2h := h supj∈Z |Vhj |
2
<∞},

`∞h = {V : hZ→ R for which ‖V ‖`∞h := supj∈Z |Vhj | <∞}
(3.1)

that were introduced in [26, §3.3], together with the higher order norms

‖V ‖`2;1h
= ‖V ‖`2h + ‖∂+V ‖`2h ,

‖V ‖`2;2h
= ‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h ,

‖V ‖`2;3h
= ‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h + ‖∂+∂+∂+V ‖`2h

(3.2)

and their counterparts

‖V ‖`∞;1
h

= ‖V ‖`∞h + ‖∂+V ‖`∞h ,

‖V ‖`∞;2
h

= ‖V ‖`∞h + ‖∂+V ‖`∞h + ‖∂+∂+V ‖`∞h .
(3.3)

For a single fixed h > 0 all these norms are naturally equivalent to the `2h-norm or the `∞h -norm.
The point here is that the h−1 factor in the definition of ∂+ introduces a natural scaling that will
allow us to formulate h-independent bounds.

In addition, we pick a reference function Uref;∗ ∈ C2(R, [0, 1]) that satisfies the properties

Uref;∗
(
(−∞,−2]

)
= 0, Uref;∗

(
[2,∞)

)
= 1, 0 ≤ U ′ref;∗ < 1,

∣∣U ′′ref;∗
∣∣ < 1. (3.4)
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For any κ > 0, this allows us write

Uref;κ(τ) = Uref;∗(κτ) (3.5)

and introduce an open subset

Vh;κ = {V ∈ `2h : ‖V ‖`2;2h
+ ‖V ‖`∞h + ‖∂+∂+V ‖`∞h < 1

2κ
−1 and ‖∂+V ‖`∞h < 1− 2κ}. (3.6)

We can now recall the affine subset [26, §3.4]

Ωh;κ = Uref;κ(hZ) + Vh;κ ⊂ `∞h (3.7)

that captures the admissable states of the waves that we are interested in and provides adequate
control on the necessary difference operators.

Indeed, for each U ∈ Ωh;κ we have the crucial bound ‖∂+U‖`∞h ≤ 1 − κ, which ensures that

our grid points are well-defined. In addition, the norms ‖∂+U‖`2,1h
, ‖U‖`∞;2

h
and ‖g(U)‖`2h are all

bounded uniformly in h > 0. Finally, it is possible to pick ε0 > 0 and κ > 0 in such a way that for
any 0 < h < 1 and any v ∈ H1 that has

‖v‖H1 + h−1/2
∥∥∂+v

∥∥
H1 < 2ε0, (3.8)

we have the inclusion [
Ψ∗ + v

]
(ϑ+ hZ) ∈ Ωh;κ (3.9)

for all ϑ ∈ [0, h]. These statements all follow from [26, Prop. 3.1-3.3].

3.1 Linear operators

In [27] we analyzed several important linear operators that will turn out to be closely related to our
travelling wave system (1.20). To set the stage, we recall the sequences

γU =
√

1− (∂0U)2, ∂(2)U = ∂+∂−U, (3.10)

which are well defined for any U ∈ Ωh;κ. Following [27, §5], we introduce the linear operators
MU : `2h → `2h that act as

MU [V ] = −c∗γ−1
U ∂0V + 4γ−4

U ∂0U [∂(2)U ]∂0V + γ−2
U ∂(2)V + γ2

Ug
′(U)V, (3.11)

together with their twisted counterparts LU : `2h → `2h defined by

LU [V ] = c∗∂
0V +MU [V ] + ∂0U

∑
−;h γ

−2
U [∂(2)U ]MU [V ], (3.12)

always taking U ∈ Ωh;κ.
A special role is reserved for the discrete derivative ∂+MU , which we approximate by the linear

operator

M+
U ;apx[V ] = γ2

U

(
M̃U ;I [V ] + M̃U ;II [V ] + M̃U ;III [V ]

)
− 2γ−2

U ∂0U [∂(2)U ]MU [V ]. (3.13)

Based on the computations in [27, Prop. 5.5], this decomposition uses the expressions

M̃U ;I [V ] = 4[6γ−8
U − 5γ−6

U ][∂(2)U ]2∂0V

+8γ−6
U ∂0U [∂(2)U ]∂(2)V

+g′′(U)[∂0U ]V + g′(U)∂0V,

M̃U ;II [V ] = −3c∗γ
−5
U ∂0U [∂(2)U ]∂0V − c∗γ−3

U ∂(2)V

(3.14)

11



that feature at most second differences of V , together with

M̃U ;III [V ] = 4γ−6
U ∂0U [∂+∂(2)U ]∂0V + γ−4

U ∂+∂(2)V (3.15)

which contains third differences that needs to be treated carefully. Several crucial bounds for these
operators are collected in Proposition C.1.

We are now ready to recall the linear operator Lh : H1 → L2 that acts as

Lhv = −c∗v′ + LΨ∗v, (3.16)

where we are slightly abusing notation. Indeed, recalling the discrete evaluation operator

[evϑf ]jh = f(ϑ+ jh) (3.17)

that ‘samples’ a function f on the grid ϑ + hZ, the identity Lhv = f should be interpreted as the
statement that

evϑ
[
c∗v
′ + f

]
= LevϑΨ∗ [evϑv] (3.18)

holds for each ϑ ∈ [0, h]. We remark that the right-hand side above is continuous in `2h as a function
of ϑ as a consequence of (A.6) and the continuity of the translation operator on H1.

The key purpose of [27] was to construct a quasi-inverse for the operator Lh. Indeed, [27, Thm.
2.3] establishes the existence of two linear maps

β∗h : L2 → R, V∗h : L2 → H1, (3.19)

defined for small h > 0, so that for each f ∈ L2 the pair

(β, v) =
(
β∗hf,V∗hf

)
∈ R×H1 (3.20)

is the unique solution to the problem
Lhv = f + βΨ′∗ (3.21)

up to a normalization condition that can be used to fix the phase of our constructed wave. The
crucial point is that we obtain h-uniform bounds

|β∗hf |+ ‖V∗hf‖H1 +
∥∥∂+

h ∂
+
h V∗hf

∥∥
L2 ≤ K ‖f‖L2 ,∥∥∂+

h V∗hf
∥∥
H1 +

∥∥∂+
h ∂

+
h ∂

+
h V∗hf

∥∥
L2 ≤ K

[
‖f‖L2 +

∥∥∂+
h f
∥∥
L2

]
,

(3.22)

which will provide the required control on the second and third differences of our travelling wave.
We remark that these difference operators cannot be replaced by the corresponding derivatives,

which forces us to develop a rather delicate fixed point argument in §6. In addition, we note that the
spectral convergence framework used to obtain (3.22) relies strongly on the inner product structure
of L2, which explains why we do not have L∞-based estimates (yet). This is the reason that we go to
great lengths throughout the paper to work with `2h-bounds as much as possible. Indeed, the results
in §A show that these mix well with L2-functions, unlike supremum bounds.

3.2 Error functions

The errors that need to be controlled during our reduction steps arise from various sources that we
briefly discuss here. As preparation, we recall the translation operators

[T+a]jh = a(j+1)h, [T−a]jh = a(j−1)h (3.23)

and the sums and products

S±a =
1

2
(a+ T±a), P±a = aT±a. (3.24)
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These allow us to recall the function

Esm(U) = h∂−
[
γ−4
U (2− γ2

U )S+[∂(2)U ]
]

(3.25)

from [26, Eq. (7.28)], which measures the smoothness of U in some sense. Indeed, it becomes small
whenever third differences of U can be controlled, which is the case when taking U = Ψ∗.

In a similar vein, we introduce the error functions

Esh;U (V ) = h ‖V ‖`2;2h
,

Esh;U (V ) = h ‖V ‖`3;2h
+ h
[
‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
‖V ‖`2;2h

,
(3.26)

which can be used to ‘shift’ function evaluations back and forth between neighbouring lattice sites.
We note in general that overlined symbols will be used for expressions related to G+, which naturally
involve higher order differences than those related to G. Indeed, the nonlinearities in our problem
will be controlled by the product

Eprod(W (1),W (2)) =
∥∥W (1)

∥∥
`2;2h

∥∥W (2)
∥∥
`2;2h

+
∥∥W (1)

∥∥
`2;2h

∥∥W (2)
∥∥
`∞;1
h

+
∥∥W (1)

∥∥
`∞;1
h

∥∥W (2)
∥∥
`2;2h

,
(3.27)

together with

Eprod;U (W (1),W (2)) = ‖∂+∂+∂+U‖`∞h
[ ∥∥W (1)

∥∥
`2;1h

∥∥W (2)
∥∥
`∞;1
h

+
∥∥W (1)

∥∥
`∞;1
h

∥∥W (2)
∥∥
`2;1h

]
+
∥∥W (1)

∥∥
`2;2h

∥∥W (2)
∥∥
`2;2h

+
∥∥W (1)

∥∥
`2;2h

∥∥W (2)
∥∥
`∞;2
h

+
∥∥W (1)

∥∥
`∞;2
h

∥∥W (2)
∥∥
`2;2h

+
∥∥W (1)

∥∥
`2;3h

∥∥W (2)
∥∥
`∞;1
h

+
∥∥W (1)

∥∥
`∞;1
h

∥∥W (2)
∥∥
`2;3h

.

(3.28)
Observe here that the supremum norms are always at least one order smaller than the highest
`2-based norms. In addition, there are no squares of third-differences or products involving only
supremum bounds. These facts will turn out to be crucial when passing between sequences and
functions in order to apply the estimates (3.22) in §6.

Our final error functions are given by

Etw(U) = γ−4
U ∂(2)U + g(U)− c∗γ−1

U ∂0U, (3.29)

together with its approximate first difference

E+
tw;apx(U) = 4γ−6

U ∂0US+[∂(2)U ]T+[∂(2)U ] + γ−4
U ∂+∂(2)U

+g′(U)∂0U − c∗γ−3
U S+[∂(2)U ].

(3.30)

The relation between these two functions is explored in Proposition C.2. We view both expressions
as a measure for the difference between U and the stretched travelling wave Ψ∗. Indeed, upon
introducing the notation

γ∗(τ) =
√

1−Ψ′∗(τ)2, (3.31)

we recall from [27, Eq. (3.4)] that Ψ∗ satisfies the ODE

c∗γ
−1
∗ Ψ′∗ = γ−4

∗ Ψ′′∗ + g
(
Ψ∗
)
, (3.32)

which resembles the continuum limit of (3.29). This can be differentiated to yield

c∗γ
−3
∗ Ψ′′∗ = γ−4

∗ Ψ′′′∗ + 4γ−6
∗ Ψ′∗(Ψ

′′
∗)

2 + g′
(
Ψ∗
)
Ψ′∗, (3.33)
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the natural limit of (3.30).
Together with the smoothness term Esm, the functions (3.29) and (3.30) can be used to define

our final remainder terms

Erem;U (V ) = ‖V ‖`2;2h

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖Esm(U)‖`2h

]
,

Erem;U (V ) = ‖V ‖`2;2h

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖Esm(U)‖`2h

]
+ ‖V ‖`2;1h

‖∂+[Etw(U)]‖`∞h .

(3.34)

These are small when taking U = Ψ∗ and describe the additional error contributions generated in
this paper that cannot be absorbed by the terms in [26].

3.3 Initial approximants for G and G+

The expression (2.12) for G(U) is too convoluted for practical use, featuring third differences and
double sums. It hence needs to be simplified, at the cost of introducing error terms. An initial step
in this direction was performed in [26, Eq. (6.10)], where we decomposed G(U) into a number of
products featuring nonlinearities from the set

Snl;short = {Y1,Y2,D�0;+,D�−;+,XA,XB ,XC ,XD}, (3.35)

which were all defined in [26, §6] and contain at most second differences. A similar decomposition
was obtained for G+(U) = ∂+G(U) in [26, Eq. (6.16)], but now with nonlinearities from the set

Snl;short = Snl;short ∪ {Y+
1 ,Y

+
2b}, (3.36)

together with an explicit third-difference term. In addition, for each of the nonlinearities f ∈ Snl;short

we (implicitly) defined an approximation fapx(U) and an approximate linearization flin;U [V ] in [26,
§8].

In fact, the full definitions of the nonlinearities f ∈ Snl;short turn out to be irrelevant for our
purposes here, so there is no need to repeat them from [26, §6]. However, we do need to manipulate
their approximations, which we therefore evaluate in full here by substituting the relevant expressions
from [26, §7] into the definitions [26, Eq. (8.1)-(8.4)]. This yields the approximants

XA;apx(U) = ∂0U, Y1;apx(U) = ∂0U,

XB;apx(U) = S+[γ−1
U ]γ4

U , Y2;apx(U) = γ−4
U ∂(2)U + g(U),

XC;apx(U) = S+[γ−1
U ](γ4

U − γ2
U ), Y+

1;apx(U) = γ−1
U S+[∂(2)U ]T+γU ,

XD;apx(U) = S+[γU∂
0U ]∂0U, Y+

2b;apx(U) =
[
E+

tw;apx(U)− γ−4
U ∂+∂(2)U

]
+c∗γ

−3
U S+[∂(2)U ],

(3.37)

together with the approximate linearizations

XA;lin;U [V ] = ∂0V + ∂0U
[∑

−;h Esm(U)∂0V
]
,

XB;lin;U [V ] = S+
[
γ−3
U ∂0U∂0V + γ−1

U

[∑
−;h Esm(U)∂0V

]]
γ4
U

+S+[γ−1
U ](−4γ2

U )∂0U∂0V,

XC;lin;U [V ] = S+
[
γ−3
U ∂0U∂0V + γ−1

U

∑
−;h Esm(U)∂0V

]
(γ4
U − γ2

U )

+S+[γ−1
U ][2− 4γ2

U ]∂0U∂0V,

XD;lin;U [V ] = S+[γ−1
U (2γ2

U − 1)∂0V ]∂0U + S+[γU∂
0U ]∂0V

+S+[γU∂
0U ]∂0U

∑
−;h Esm(U)∂0V,

(3.38)
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respectively

Y1;lin;U [V ] = ∂0V − ∂0U
[∑

−;h Esm(U)∂0V
]
,

Y2;lin;U [V ] = γ−2
U MU [V ] + c∗γ

−3
U ∂0V,

Y+
1;lin;U [V ] =

[
γ−3
U ∂0U [S+∂(2)U ]∂0V + γ−1

U S+∂(2)V
]
T+γU

−γ−1
U S+[∂(2)U ]T+

[
γ−1
U ∂0U∂0V + γU

∑
−;h Esm(U)∂0V

]
,

Y+
2b;lin;U [V ] = 4[6γ−8

U − 5γ−6
U ]S+[∂(2)U ]T+[∂(2)U ]∂0V

+4γ−6
U ∂0U

[
T+[∂(2)U ]S+[∂(2)V ] + S+[∂(2)U ]T+[∂(2)V ]

]
+g′′(U)[∂0U ]V + g′(U)∂0V.

(3.39)

The corresponding expressions for the two remaining second-difference operators can be copied from
[26, Eq. (7.22)] and read

D�0;+
apx (U) = γ−3

U S+[∂(2)U ], D�0;+
lin;U [V ] = 3γ−5

U ∂0US+[∂(2)U ]∂0V + γ−3
U S+[∂(2)V ],

D�−;+
apx (U) = γ−3

U ∂(2)U, D�−;+
lin;U [V ] = 3γ−5

U ∂0U [∂(2)U ]∂0V + γ−3
U ∂(2)V.

(3.40)
The expressions above were used in [26, §8.1] to define an initial approximant

Gapx;I(U) = GA;apx;I(U) + GB;apx;I(U) + GC;apx;I(U) + GD;apx;I(U) (3.41)

for G(U), featuring the four components

GA;apx;I(U) =
[
1− Y1;apx(U)T−

[
XA;apx(U)

]]
Y2;apx(U),

GB;apx;I(U) = Y1;apx(U)
∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
D�−;+

apx (U),

G#;apx;I(U) = Y1;apx(U)
∑
−;h Y2;apx(U)T−

[
X#;apx(U)D�0;+

apx (U)
]
,

(3.42)

for # ∈ {C,D}. In addition, we introduced the approximate linearization

Glin;U ;I [V ] = GA;lin;U ;I [V ] + GB;lin;U ;I [V ] + GC;lin;U ;I [V ] + GD;lin;U ;I [V ] (3.43)

by writing
GA;lin;U ;I [V ] = −Y1;lin;U [V ]T−

[
XA;apx(U)

]
Y2;apx(U)

−Y1;apx(U)T−
[
XA;lin;U [V ]

]
Y2;apx(U)

+
[
1− Y1;apx(U)T−

[
XA;apx(U)

]]
Y2;lin;U [V ]

(3.44)

and applying the analogous product-rule procedure to obtain G#;lin;U ;I [V ] for # ∈ {B,C,D}; see
[26, Eq. (8.6)-(8.7)] and §E.1-§E.3. Treating G+ in a similar spirit, we defined initial approximants

G+
apx;I(U) = G+

A′a;apx;I(U) + G+
A′b;apx;I(U) + G+

A′c;apx;I(U)

+G+
B′;apx;I(U) + G+

C′;apx;I(U) + G+
D′;apx;I(U),

G+
lin;U ;I [V ] = G+

A′a;lin;U ;I [V ] + G+
A′b;lin;U ;I [V ] + G+

A′c;lin;U ;I [V ]

+G+
B′;lin;U ;I [V ] + G+

C′;lin;U ;I [V ] + G+
D′;lin;U ;I [V ],

(3.45)
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in which we have introduced the expressions

G+
A′a;apx;I(U) = γ−2

U ∂+∂(2)U,

G+
A′b;apx;I(U) =

[
1− Y1;apx(U)XA;apx(U)

]
Y+

2b;apx(U),

G+
A′c;apx;I(U) = −Y+

1;apx(U)XA;apx(U)T+
[
Y2;apx(U)

]
,

(3.46)

together with

G+
B′;apx;I(U) = Y+

1;apx(U)T+
∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
D�−;+

apx (U),

G+
#′;apx;I(U) = Y+

1;apx(U)T+
∑
−;h Y2;apx(U)T−

[
X#;apx(U)D�0;+

apx (U)
]
,

(3.47)

for # ∈ {C,D}. With the sole exception of

G+
A′a;lin;U ;I [V ] = γ2

UM̃U ;III [V ]− 2γ−4
U ∂0U [∂+∂(2)U ]∂0V, (3.48)

all the approximate linearizations in (3.45) can be found by applying the product-rule procedure
underpinning (3.44) to the expressions (3.46)-(3.47); see [26, §8.2] and §F.1-F.3.

One of our main aims in [26] was to develop a framework to control the errors that arise by
these types of approximations. In particular, we needed to track the propagation of errors on the
individual factors of (2.12) through the full sums and exponents. The bounds in [26, Lems. 8.1-8.3]
provide a constant K = K(κ) > 0 so that these errors satisfy

‖G(U)− Gapx;I(U)‖ ≤ Kh,∥∥∥G+(U)− G+
apx;I(U)

∥∥∥
`2h

≤ Kh
[
1 + ‖∂+∂+∂+U‖`2h

] (3.49)

for all U ∈ Ωh;κ. In addition, the nonlinear residuals

Gnl;U ;I(V ) = G(U + V )− G(U)− Glin;U ;I [V ],

G+
nl;U ;I(V ) = G+(U + V )− G+(U)− G+

lin;U ;I [V ]
(3.50)

can be estimated as

‖Gnl;U ;I(V )‖`2h ≤ KEprod(V, V ) +KEsh;U (V ),∥∥∥G+
nl;U ;I(V )

∥∥∥
`2h

≤ KEprod;U (V, V ) +KEsh;U (V )
(3.51)

for any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.
These initial approximants for G and G+ are already much easier to work with than (2.12) and

enabled us to establish the well-posedness of our reduced system (2.13) in [26]. However, they are
still unwieldy on account of the shifts and the sums. In addition, several simplifications can be made
that only become apparent when looking at the full combinations (3.41), (3.43) and (3.45). This will
be the main focus of §4-§5.

Convention Throughout the remainder of this paper, we use the convention that primed constants
(such as C ′1, C ′2 etc) that appear in proofs are positive and depend only on κ and the nonlinearity
g, unless explicitly stated otherwise.
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4 Component estimates

The first important task in this paper is to build a bridge between the linear theory described in
§3.1 and the approximation framework outlined in §3.3. This requires us to refine the approximants
introduced in the latter section. We carry out the first step of this procedure here, focusing our
attention on the nonlinearities introduced in (3.35)-(3.36).

In particular, for any f ∈ Snl;short we introduce the further decompositions

fapx(U) = fapx;expl(U) + fapx;sh(U) + fapx;rem(U),

flin;U [V ] = flin;U ;expl[V ] + flin;U ;sh[V ] + flin;U ;rem[V ].
(4.1)

The expressions with the label ‘expl’ are the actual explicit simplifications that will play a key role
in our further computations. The label ‘sh’ is used for terms which are always small, which we will
be able to absorb into the error terms Esh and Esh defined in (3.26). Finally, the label ‘rem’ is used
for remainder terms that are small when using U = Ψ∗.

The explicit decompositions (4.1) are provided in §D. Our main contribution here is to summarize
the errors that arise in a structured fashion that resembles the main spirit of the framework developed
in [26, §7]. This will allow us to replace all the occurrences of fapx and flin;U in §3.3 by their
refinements fapx;expl and flin;U ;expl, leading to a second round of approximations Gapx;II , G+

apx;II ,

Glin;U ;II and G+
lin;U ;II .

In order to achieve this, we define a preferred exponent set

Qf ;pref ⊂ {2,∞} (4.2)

for each f ∈ Snl;short, together with its counterpart

Qf ;pref ⊂ {2,∞} (4.3)

for each f ∈ Snl;short. This is done in such a way that we can write

Gapx;I(U) =
∑N
i=1 πi

[
fapx;i;1(U), . . . , fapx;i;ki(U)

]
G+

apx;I(U)− G+
A′a;apx;I(U) =

∑N
i=1 πi

[
fapx;i;1(U), . . . , fapx;i;ki(U)

]
,

(4.4)

for a set of bounded multi-linear maps

πi : `
qi;1
h × . . .× `qi;ki

h → `2h, πi : `
qi;1
h × . . .× `

qi;ki

h → `2h, (4.5)

each defined for 1 ≤ i ≤ N , where we have the inclusions

fi;j ∈ Snl;short, qi;j ∈ Qfi;j ;pref , f i;j ∈ Snl;short, qi;j ∈ Qfi;j ;pref , (4.6)

for all 1 ≤ j ≤ ki. Stated more informally, the `2h norm of Gapx;I(U) can be bounded in terms of
products of `q2-norms of nonlinearities f ∈ Snl;short, where each q is taken from the preferred set of
exponents. This is the direct analogue of [26, Cor. 6.4].

A short inspection of the products (3.42), (3.46) and (3.47) readily shows that there is some
freedom as to which factors should be measured in `2h. In fact, it is possible to put an `2h norm on
any chosen factor, at the price of possibly having to flip the exponent of a companion factor that
has 2 ∈ Qf ;pref from two to infinity.

This freedom is essential to obtain sharp estimates and hence requires us to deviate from the
preferred exponents from time to time. The main focus of [26, §5,§7-8] was to develop a bookkeeping
framework to keep track of this procedure. We build on this investment here and follow the spirit of
[26, §5.2] to define further exponent sets

Qf ⊂ {2,∞}, Qf ;lin ⊂ {2,∞}, Qf ;lin;rem ⊂ {2,∞} (4.7)
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for each f ∈ Snl;short ∪ Snl;short. The first of these contains all values of q for which fapx maps into
`qh. On the other hand, the set Qf ;lin contains all q for which we need to evaluate the `qh-norm of
flin;U ;expl and flin;U ;sh, while Qf ;lin;rem contains these exponents for flin;U ;rem.

In order to illustrate these points, let us consider the example

Iex;I;U [V ] =
∑
−;h Y2;apx(U)XB;lin;U [V ]D�−;+

apx (U), (4.8)

which appears (after dropping a shift for notational clarity) as a factor in the component GB;lin;U ;I

that needs to be evaluated in the supremum norm; see (E.17). Our goal is to simplify this expression
by writing

Iex;II;U [V ] =
∑
−;h Y2;apx;expl(U)XB;lin;U ;expl[V ]D�−;+

apx (U), (4.9)

noting that D�−;+
apx is not simplified further; see §D. Exploiting the fact that Y2;apx;sh = 0, a short

computation readily yields the decomposition

Iex;I;U [V ] = Iex;II;U [V ] + Iex;rem;a + Iex;sh;a + Iex;rem;b, (4.10)

where we have introduced the terms

Iex;rem;a =
∑
−;h Y2;apx(U)XB;lin;rem;U [V ]D�−;+

apx (U),

Iex;sh;a =
∑
−;h Y2;apx(U)XB;lin;U ;sh[V ]D�−;+

apx (U),

Iex;rem;b =
∑
−;h Y2;apx;rem(U)XB;lin;U ;expl[V ]D�−;+

apx (U).

(4.11)

We note here that the preferred exponent sets are defined in (D.12), (D.19) and (D.30) and given
by

QY2;pref = {2}, QXB ;pref = {∞}, QD�−;+;pref = {2}. (4.12)

Recalling the remainder function introduced in (3.34), we may readily use these preferred expo-
nents to compute

‖Iex;rem;a‖`∞h ≤ ‖Y2;apx(U)‖`2h ‖XB;lin;rem;U [V ]‖`∞h
∥∥D�−;+

apx (U)
∥∥
`2h
≤ KErem;U (V ). (4.13)

Here we use property (4.33) below with q =∞ (see (D.36)) together with the a-priori bounds (4.21).
For the second term we can use the same properties, but now with q = 2 (see (D.36)). In particular,
we obtain

‖Iex;rem;a‖`∞h ≤ ‖Y2;apx(U)‖`∞h ‖XB;lin;sh;U [V ]‖`2h
∥∥D�−;+

apx (U)
∥∥
`2h
≤ KEsh;U (V ). (4.14)

Note that this required us to swap the first two exponents, which is made possible by the demand
∞ ∈ Qf for each f ∈ Snl;short; see Proposition 4.1.

This swap is also required for the final term, which can be controlled by

‖Iex;rem;b‖`∞h ≤ ‖Y2;apx;rem(U)‖`∞h ‖XB;lin;U ;expl[V ]‖`2h
∥∥D�−;+

apx (U)
∥∥
`2h
≤ KErem;U (V ). (4.15)

Indeed, simply using `∞h on the middle factor would lead to a contribution proportional to ‖V ‖`∞h ;

see the third line of (D.32). Such a term would lead to problems in §6 and hence is not contained
in Erem;U . This scenario is covered in our structural results below by using options (b) from both
Proposition 4.2 and 4.3. We feel that this relatively small example already clearly illustrates the
benefits of utilizing an abstract bookkeeping scheme instead of direct estimates.
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4.1 Summary of estimates

In order to state our results, we introduce the expressions

Ssh;full(U) = h, Ssh;2;fix(U) = 0,

Ssh;full(U) = h
[
1 + ‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
, Ssh;2;fix(U) = 0,

(4.16)

together with

Srem;full(U) = ‖Etw(U)‖`2h + ‖Etw(U)‖`∞h , Srem;2;fix(U) = 0,

Srem;full(U) = Srem;full(U) + ‖∂+[Etw(U)]‖`2h , Srem;2;fix(U) = 0
(4.17)

and finally
Sdiff;full(U

(1), U (2)) =
∥∥U (2) − U (1)

∥∥
`2;2h

+
∥∥U (2) − U (1)

∥∥
`∞;1
h

,

Sdiff;2;fix(U (1), U (2)) =
∥∥U (2) − U (1)

∥∥
`2;2h

.
(4.18)

These expressions are all related to the size of the fapx functions and play a very similar role as the
quantities Sfull and S2;fix that were defined in [26, §7]. In particular, the ‘full’ terms correspond to
all the exponents that we need to use, while the ‘fix’ expressions reflect the contributions that are
only allowed to be evaluated in `2h; see (4.26).

In addition, we recall the quantities

Tsafe(V ) = ‖V ‖`2;2h
, T safe(V ) = Tsafe(V ),

T∞;opt(V ) = ‖∂+V ‖`∞h , T∞;opt(V ) = T∞;opt(V ) + ‖∂+∂+V ‖`∞h
(4.19)

that are associated to the approximate linearizations flin. Here T∞;opt represents the contributions
where the use of the supremum norm is optional, in the sense that they could also be measured in
`2h. The remaining contributions are all reflected in Tsafe. We emphasize that the main point of our
bookkeeping scheme is to ensure that products of the form S#;fullT∞;opt are never needed, where
# ∈ {sh, rem,diff}.

Our main results summarize the structure that the decompositions described in §D will adhere
to. Propositions 4.1 and 4.2 state that the approximants fapx;# are all uniformly bounded and that
the full linear approximants flin;U share the structure and estimates of the nonlinearities in the sets
Snl ∪ Snl analyzed in [26]. These can be interpreted as the counterparts of [26, Cor. 7.6 and 7.8].
On the other hand, Propositions 4.3-4.4 should be seen as the equivalents of [26, Cor. 7.7], while
Propositions 4.5-4.6 are the equivalents of [26, Cor. 7.9].

Proposition 4.1 (see §D). For every f ∈ Snl;short we have ∞ ∈ Qf together with

Qf ;pref ⊂ Qf ∩Qf ;lin ∩Qf ;lin;rem. (4.20)

In addition, there exists K > 0 so that for each q ∈ Qf , the bound

‖fapx;expl(U)‖`qh + ‖fapx;sh(U)‖`qh + ‖fapx;rem(U)‖`qh ≤ K (4.21)

holds for all h > 0 and U ∈ Ωh;κ. The same properties hold upon replacing (Snl;short, Qf ;pref) by
(Snl;short, Qf ;pref).

Proposition 4.2 (see §D). Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . For any f ∈ Snl;short,

any # ∈ {expl, sh, rem} and any q ∈ Qf ;pref , at least one of the following two properties hold true.

(a) There exists K > 0 so that
‖flin;U ;#[V ]‖`qh ≤ KTsafe(V ) (4.22)

holds for every h > 0, U ∈ Ωh;κ and V ∈ `2h.
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(b) We have q =∞ and there exists K > 0 so that the bounds

‖flin;U ;#[V ]‖`2h ≤ KTsafe(V ),

‖flin;U ;#[V ]‖`∞h ≤ KT∞;opt(V )
(4.23)

hold for every h > 0, U ∈ Ωh;κ and V ∈ `2h.

The same properties hold upon making the replacement

(Snl;short, Qf ;pref , Tsafe, T∞;opt) 7→ (Snl;short, Qf ;pref , T safe, T∞;opt). (4.24)

Proposition 4.3 (see §D). Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists

K > 0 so that for every f ∈ Snl;short, q ∈ Qf ;pref and # ∈ {sh, rem}, we have

‖fapx;#(U)‖`qh ≤ KS#;full(U) (4.25)

for any h > 0 and U ∈ Ωh;κ.
In addition, if 2 ∈ Qf ;pref then for every # ∈ {sh, rem} at least one of the following two properties

hold true.

(a) There exists K > 0 so that

‖fapx;#(U)‖`2h ≤ KS#;2;fix(U) (4.26)

holds for every h > 0 and U ∈ Ωh;κ.

(b) There exists K > 0 so that

‖fapx;#(U)‖`∞h ≤ KS#;full(U) (4.27)

holds for every h > 0 and U ∈ Ωh;κ.

The same properties hold upon making the replacement

(Snl;short, Qf ;pref , S#;full, S#;2;fix) 7→ (Snl;short, Qf ;pref , S#;full, S#;2;fix). (4.28)

Proposition 4.4 (see §D). Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists

K > 0 so that for every f ∈ Snl;short, q ∈ Qf ;pref and # ∈ {expl, sh, rem}, we have∥∥fapx;#(U (2))− fapx;#(U (1))
∥∥
`qh
≤ KSdiff;full(U

(1), U (2)) (4.29)

for any h > 0 and any pair (U (1), U (2)) ∈ Ω2
h;κ.

In addition, if 2 ∈ Qf ;pref , then for every # ∈ {expl, sh, rem} at least one of the following two
properties hold true.

(a) There exists K > 0 so that∥∥fapx;#(U (2))− fapx;#(U (1))
∥∥
`2h
≤ KSdiff;2;fix(U (1), U (2)) (4.30)

holds for every h > 0 and any pair (U (1), U (2)) ∈ Ω2
h;κ.

(b) There exists K > 0 so that∥∥fapx;#(U (2))− fapx;#(U (1))
∥∥
`∞h

≤ KSdiff;full(U
(1), U (2)) (4.31)

holds for every h > 0 and any pair (U (1), U (2)) ∈ Ω2
h;κ.
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Proposition 4.5 (see §D). Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Consider any f ∈

Snl;short and any # ∈ {sh, rem}. Then if 2 ∈ Qf ;pref , there exists a constant K > 0 so that

‖flin;U ;#(V )‖`2h ≤ KE#;U (V ) (4.32)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ.
Otherwise, there exists q ∈ {2,∞} together with a constant K > 0 so that

‖flin;U ;#(V )‖`qh ≤ KE#;U (V ) (4.33)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ. The same properties hold upon
making the replacement

(Snl;short, Qf ;pref , E#) 7→ (Snl;short, Qf ;pref , E#). (4.34)

Proposition 4.6 (see §D). Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Consider any f ∈

Snl;short and any # ∈ {expl, sh, rem}. Then if 2 ∈ Qf ;pref , there exists a constant K > 0 so that∥∥flin;U(2);#(V )− flin;U(1);#(V )
∥∥
`2h
≤ KEprod(U (2) − U (1), V ) (4.35)

holds for all h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h.

Otherwise, there exists q ∈ {2,∞} together with a constant K > 0 so that∥∥flin;U(2);#(V )− flin;U(1);#(V )
∥∥
`qh
≤ KEprod(U (2) − U (1), V ) (4.36)

holds for all h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h.

4.2 Refined approximants for G and G+

We now introduce the expressions

{G#;apx;II(U), G#;lin;U ;II(U), G+
#′;apx;II(U), G+

#′;lin;U ;II(U)} (4.37)

for # ∈ {A,B,C,D} respectively #′ ∈ {A′b, A′c,B′, C ′, D′} by inspecting the definitions of their
predecessors labelled by I in §3.3 (see (3.42), (3.43) and (3.46)) and making the replacements

fapx(U) 7→ fapx;expl(U), flin;U [V ] 7→ flin;U ;expl[V ] (4.38)

for each f ∈ Snl;short ∪Snl;short. The full explicit forms can be found in §E-F, but are not important
for our purposes here. We leave the expressions for A′a intact and simply write

G+
A′a;apx;II(U) = G+

A′a;apx;I(U), G+
A′a;lin;U ;II [V ] = G+

A′a;apx;U ;II [V ]. (4.39)

Our interest here is in the refined approximants

Gapx;II(U) = GA;apx;II(U) + GB;apx;II(U) + GC;apx;II(U) + GD;apx;II(U)

G+
apx;II(U) = G+

A′a;apx;II(U) + G+
A′b;apx;II(U) + G+

A′c;apx;II(U)

+G+
B′;apx;II(U) + G+

C′;apx;II(U) + G+
D′;apx;II(U)

(4.40)

and the corresponding linearizations

Glin;U ;II [V ] = GA;lin;U ;II [V ] + GB;lin;U ;II [V ] + GC;lin;U ;II [V ] + GD;lin;U ;II [V ]

G+
lin;U ;II [V ] = G+

A′a;lin;U ;II [V ] + G+
A′b;lin;U ;II [V ] + G+

A′c;lin;U ;II [V ]

+G+
B′;lin;U ;II [V ] + G+

C′;lin;U ;II [V ] + G+
D′;lin;U ;II [V ].

(4.41)
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In particular, the results below describe the residuals that arise when replacing the initial approxi-
mants defined in (3.41), (3.43) and (3.45) by these refined versions. Since our bookkeeping framework
has the same overall structure as in [26], we can reuse the analysis developed there in a streamlined
fashion.

Lemma 4.7. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a constant K > 0

together with sequences

Gapx;sh;a(U) ∈ `2h, Gapx;rem;a(U) ∈ `2h, G+
apx;sh;a(U) ∈ `2h, G+

apx;rem;a(U) ∈ `2h, (4.42)

defined for every h > 0 and U ∈ Ωh;κ, so that the following properties hold true.

(i) For every h > 0 and U ∈ Ωh;κ we have the identities

Gapx;I(U) = Gapx;II(U) + Gapx;sh;a(U) + Gapx;rem;a(U),

G+
apx;I(U) = G+

apx;II(U) + G+
apx;sh;a(U) + G+

apx;rem;a(U).
(4.43)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds

‖Gapx;sh;a(U)‖`2h ≤ KSsh;full(U)

‖Gapx;rem;a(U)‖`2h ≤ KSrem;full(U),
(4.44)

together with ∥∥∥G+
apx;sh;a(U)

∥∥∥
`2h

≤ KSsh;full(U),∥∥G+
apx;rem;a(U)

∥∥
`2h
≤ KSrem;full(U).

(4.45)

Proof. Restricting ourselves to G, we consider a single term of the sum (4.4). Dropping the index i,
we introduce the corresponding expression

Iπ(U) = π
[
f1;apx(U), . . . , fk;apx(U)

]
− π

[
f1;apx;expl(U), . . . , fk;apx;expl(U)

]
. (4.46)

Recalling the general identity

(a1 + b1)(a2 + b2)(a3 + b3)− a1a2a3 = b1(a2 + b2)(a3 + b3) + a1b2(a3 + b3) + a1a2b3 (4.47)

and its extensions, we write

Iπ;#(U) = π
[
f1;apx;#(U), f2;apx(U), . . . , fk;apx(U)

]
+π
[
f1;apx;expl(U), f2;apx;#(U), . . . , fk;apx(U)

]
+ . . .+ π

[
f1;apx;expl(U), f2;apx;expl(U), . . . , fk;apx;#(U)

] (4.48)

for # ∈ {sh, rem} and observe that

Iπ(U) = Iπ;sh(U) + Iπ;rem(U). (4.49)

We now use (4.21) together with Proposition 4.3 to derive the bound

‖Iπ;#(U)‖`2h ≤ C ′1S#;full(U). (4.50)

The desired estimates now follow from the fact that Gapx;I(U)−Gapx;II(U) can be written as a sum
of expressions of the form (4.46).
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Lemma 4.8. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a constant K > 0

together with linear maps

Glin;U ;sh;a ∈ L(`2h, `
2
h), G+

lin;U ;sh;a ∈ L(`2h, `
2
h) (4.51)

and their counterparts

Glin;U ;rem;a ∈ L(`2h, `
2
h), G+

lin;U ;rem;a ∈ L(`2h, `
2
h), (4.52)

defined for all h > 0 and U ∈ Ωh;κ, so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the identities

Glin;U ;I [V ] = Glin;U ;II [V ] + Glin;U ;sh;a[V ] + Glin;U ;rem;a[V ],

G+
lin;U ;I [V ] = G+

lin;U ;II [V ] + G+
lin;U ;sh;a[V ] + G+

lin;U ;rem;a[V ].
(4.53)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds

‖Glin;U ;sh;a[V ]‖`2h ≤ KEsh;U (V ),

‖Glin;U ;rem;a[V ]‖`2h ≤ KErem;U (V ),
(4.54)

together with ∥∥∥G+
lin;U ;sh;a[V ]

∥∥∥
`2h

≤ KEsh;U (V ),∥∥∥G+
lin;U ;rem;a[V ]

∥∥∥
`2h

≤ KErem;U (V ).
(4.55)

(iii) For every h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bound∥∥Glin;U(2);rem;a[V ]− Glin;U(1);rem;a[V ]
∥∥
`2h
≤ KEprod(U (2) − U (1), V ). (4.56)

Proof. Restricting ourselves to G, we again consider a single term of the sum (4.4). Dropping the
index i, we introduce the two corresponding expressions

Iπ;a;U [V ] = π
[
f1;lin;U [V ], f2;apx(U), . . . , fk;apx(U)

]
−π
[
f1;lin;U [V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

]
,

Iπ;b;U [V ] = π
[
f1;lin;U [V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

]
−π
[
f1;lin;U ;expl[V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

]
.

(4.57)

Writing

Iπ;a;U ;#[V ] = π
[
f1;lin;U [V ], f2;apx;#(U), . . . , fk;apx(U)

]
+ . . .+ π

[
f1;lin;U [V ], f2;apx;expl(U), . . . , fk;apx;#(U)

]
,

Iπ;b;U ;#[V ] = π
[
f1;lin;U ;#[V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

] (4.58)

for # ∈ {sh, rem}, we see that

Iπ;a;U [V ] = Iπ;a;U ;sh[V ] + Iπ;a;U ;rem[V ],

Iπ;b;U [V ] = Iπ;b;U ;sh[V ] + Iπ;b;U ;rem[V ].
(4.59)
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Following the same reasoning used to obtain [26, Eq. (8.15)], we may use Propositions 4.2 and 4.3
to derive the bound

‖Iπ;a;U ;#[V ]‖`2h ≤ C ′1

[
Tsafe(V )S#;full(U) + T∞;opt(V )S#;2;fix(U)

]
≤ C ′2E#;U (V ).

(4.60)

Indeed, contributions of type T∞;opt(V )S#;full(U) can be avoided by deviating from the preferred
exponents judiciously.

In addition, following the arguments used to derive [26, Eq. (8.12)], we may use Proposition 4.5
to obtain the bound

‖Iπ;b;U ;#[V ]‖`2h ≤ C ′3E#;U (V ). (4.61)

Writing

∆b;i = π
[
f1;lin;U(2);rem[V ]− f1;lin;U(1);rem[V ], f2;apx;expl(U

(2)), . . . , fk;apx;expl(U
(2))
]
,

∆b;ii = π
[
f1;lin;U(1);rem[V ], f2;apx;expl(U

(2))− f2;apx;expl(U
(1)), . . . , fk;apx;expl(U

(2))
]

+ . . .

+π
[
f1;lin;U(1);rem[V ], f2;apx;expl(U

(1)), . . . , fk;apx;expl(U
(2))− fk;apx;expl(U

(1))
]
,

(4.62)
we easily see that

∆b;i + ∆b;ii = Iπ;b;U(2);rem[V ]− Iπ;b;U(1);rem[V ]. (4.63)

Arguing as above, Proposition 4.6 yields

‖∆b;i‖`2h ≤ C ′1Eprod(U (2) − U (1), V ), (4.64)

while Propositions 4.2 and 4.4 imply

‖∆b;ii‖`2h ≤ C ′2

[
Tsafe(V )Sdiff;full(U

(1), U (2)) + T∞;opt(V )Sdiff;2;fix(U (1), U (2))
]

≤ C ′3Eprod(U (2) − U (1), V ).
(4.65)

Finally, we write
∆a = Iπ;a;U(2);rem[V ]− Iπ;a;U(1);rem[V ]. (4.66)

We note that ∆a consists of sums of expressions that arise from ∆b;i and ∆b;ii after replacing
f1;lin;U(i);rem by f1;lin;U(i) and each occurrence of fj;apx;expl by an element of the set

{fj;apx, fj;apx;expl, fj;apx;rem}. (4.67)

We can hence again use Propositions 4.2, 4.4 and 4.6 to conclude that ‖∆a‖`2h can be bounded

by terms that have already appeared above. The desired bounds now follow from the fact that
Glin;U ;I [V ]−Glin;U ;II [V ] can be written as a sum of expressions of the form Iπ;a+Iπ;b, together with
their obvious permutations.

5 Estimates for G and G+

In this section we exploit the component estimates from §4 to analyze the function G defined in (2.12),
together with its first difference G+. In particular, recalling the operator LU defined in (3.12), we
introduce our final approximants

Gapx(U) = c∗∂
0U, Glin;U [V ] = LU [V ],

G+
apx(U) = ∂+

[
Gapx(U)

]
, G+

lin;U [V ] = ∂+
[
Glin;U [V ]

] (5.1)
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and write
Gnl;U (V ) = G(U + V )− G(U)− Glin;U (V ) (5.2)

together with
G+

nl;U (V ) = ∂+[Gnl;U (V )] = G+(U + V )− G+(U)− G+
lin;U (V ). (5.3)

Using the discrete calculus outlined in §A, one may readily verify the identities

G+
apx(U) = c∗S

+[∂(2)U ],

G+
lin;U [V ] = c∗S

+[∂(2)V ] + ∂+
[
MU [V ]

]
+ γ−2

U ∂0U [∂(2)U ]MU [V ]

+S+[∂(2)U ]T+
∑
−;h γ

−2
U ∂(2)UMU [V ].

(5.4)

Our main result quantifies the approximation errors in terms of the functions Esh;U , Erem;U and
Eprod and their counterparts Esh;U , Erem;U and Eprod;U defined in (3.26), (3.27), (3.28) and (3.34).
For convenience, we also reference the quantities (4.16)-(4.17).

Proposition 5.1. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so

that the following properties hold.

(i) For every h > 0 and U ∈ Ωh;κ we have

‖G(U)− Gapx(U)‖`2h ≤ K
[
h+ ‖Etw(U)‖`2h + ‖Etw(U)‖`∞h

]
,

= KSsh;full +KSrem;full∥∥G+(U)− G+
apx(U)

∥∥
`2h
≤ Kh

[
1 + ‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
+K

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖∂+Etw(U)‖`2h

]
= KSsh;full +KSrem;full.

(5.5)

(ii) For any h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ, we have the estimates

‖Gnl;U (V )‖`2h ≤ KEprod(V, V ) +KEsh;U (V ) +KErem;U (V ),∥∥∥G+
nl;U (V )

∥∥∥
`2h

≤ KEprod;U (V, V ) +KhEsh;U (V ) +KErem;U (V ).
(5.6)

(iii) Consider any h > 0, U ∈ Ωh;κ and any pair (V (1), V (2)) ∈ `2h × `2h for which the inclusions
U + V (1) ∈ Ωh;κ and U + V (2) ∈ Ωh;κ both hold. Then we have the Lipschitz estimate∥∥Gnl;U (V (2))− Gnl;U (V (1))

∥∥
`2h
≤ KEprod(V (1), V (2) − V (1)) +KEprod(V (2), V (2) − V (1))

+KEsh;U (V (2) − V (1)) +KErem;U (V (2) − V (1)).
(5.7)

5.1 Refinement strategy

We recall the refined approximants Gapx;II(U) and Glin;U ;II [V ] that we defined in §4.2. The main task
in this section is to track the errors that accumulate as we reduce these expressions even further to
our relatively simple approximants (5.1). In contrast to the abstract approach in §4, we achieve this
in a direct fashion through several explicit computations. Indeed, in §E-F we obtain the following
representations.
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Proposition 5.2 (see §E-F). Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a

constant K > 0 together with sequences

Gapx;sh;b(U) ∈ `2h, Gapx;rem;b(U) ∈ `2h, G+
apx;sh;b(U) ∈ `2h, G+

apx;rem;b(U) ∈ `2h, (5.8)

defined for every h > 0 and U ∈ Ωh;κ, so that the following properties hold true.

(i) For every h > 0 and U ∈ Ωh;κ we have the identities

Gapx;II(U) = Gapx(U) + Gapx;sh;b(U) + Gapx;rem;b(U),

G+
apx;II(U) = G+

apx(U) + G+
apx;sh;b(U) + G+

apx;rem;b(U).
(5.9)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds

‖Gapx;sh;b(U)‖`2h ≤ KSsh;full(U)

‖Gapx;rem;b(U)‖`2h ≤ KSrem;full(U),
(5.10)

together with ∥∥∥G+
apx;sh;b(U)

∥∥∥
`2h

≤ KSsh;full(U),∥∥∥G+
apx;rem;b(U)

∥∥∥
`2h

≤ KSrem;full(U).
(5.11)

Proposition 5.3 (see §E-F). Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a

constant K > 0 together with linear maps

Glin;U ;sh;b ∈ L(`2h, `
2
h), G+

lin;U ;sh;b ∈ L(`2h, `
2
h) (5.12)

and their counterparts

Glin;U ;rem;b ∈ L(`2h, `
2
h), G+

lin;U ;rem;b ∈ L(`2h, `
2
h), (5.13)

defined for all h > 0 and U ∈ Ωh;κ, so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the identities

Glin;U ;II [V ] = Glin;U [V ] + Glin;U ;sh;b[V ] + Glin;U ;rem;b[V ],

G+
lin;U ;II [V ] = G+

lin;U [V ] + G+
lin;U ;sh;b[V ] + G+

lin;U ;rem;b[V ].
(5.14)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds

‖Glin;U ;sh;b[V ]‖`2h ≤ KEsh;U (V ),

‖Glin;U ;rem;b[V ]‖`2h ≤ KErem;U (V ),
(5.15)

together with ∥∥∥G+
lin;U ;sh;b[V ]

∥∥∥
`2h

≤ KEsh;U (V ),∥∥∥G+
lin;U ;rem;b[V ]

∥∥∥
`2h

≤ KErem;U (V ).
(5.16)

(iii) For every h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bound∥∥Glin;U(2);rem;b[V ]− Glin;U(1);rem;b[V ]
∥∥
`2h
≤ KEprod(U (2) − U (1), V ). (5.17)
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Recalling the initial nonlinear residuals (3.50) together with the expressions (4.42), (4.51) and
(4.52), we have hence obtained the decompositions

Gnl;U (V ) = Gnl;U ;I(V ) + Glin;U ;rem;a[V ] + Glin;U ;rem;b[V ] + Glin;U ;sh;a[V ] + Glin;U ;sh;b[V ],

G+
nl;U (V ) = G+

nl;U ;I(V ) + G+
lin;U ;rem;a[V ] + G+

lin;U ;rem;b[V ] + G+
lin;U ;sh;a[V ] + G+

lin;U ;sh;b[V ].
(5.18)

We now turn towards the Lipschitz bounds for Gnl.

Corollary 5.4. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . There exists a constant K > 0

so that the estimate ∥∥Glin;U(2) [V ]− Glin;U(1) [V ]
∥∥
`2h
≤ KEprod

(
U (2) − U (1), V

)
(5.19)

holds for all h > 0, all V ∈ `2h and all pairs (U (1), U (2)) ∈ Ω2
h;κ.

Proof. This is a direct restatement of [27, Cor. 5.3].

Lemma 5.5. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . There exists a constant K > 0 so

that the estimate∥∥Gnl;U (V (2))− Gnl;U (V (1))
∥∥
`2h
≤ KEprod

(
V (2) − V (1), V (2) − V (1)

)
+Kh

∥∥V (2) − V (1)
∥∥
`2;2h

+KErem;U

(
V (2) − V (1)

)
+KEprod

(
V (1), V (2) − V (1)

)
(5.20)

holds for all h > 0, all U ∈ Ωh;κ and all pairs (V (1), V (2)) ∈ `2h × `2h for which the inclusions
U + V (1) ∈ Ωh;κ and U + V (2) ∈ Ωh;κ both hold.

Proof. By definition, we have

Gnl;U (V ) = G(U + V )− G(U)− Glin;U [V ]. (5.21)

In particular, we get

Gnl;U (V (2))− Gnl;U (V (1)) = G(U + V (2))− Glin;U [V (2)] + Glin;U [V (1)]− G(U + V (1))

= G
(
U + V (1) + (V (2) − V (1))

)
− G(U + V (1))

−Glin;U [V (2) − V (1)]

= Glin;U+V (1) [V (2) − V (1)] + Gnl;U+V (1)(V (2) − V (1))

−Glin;U [V (2) − V (1)]

= Gnl;U+V (1)(V (2) − V (1))

+
[
Glin;U+V (1) − Glin;U

]
[V (2) − V (1)].

(5.22)

For convenience, we write

Glin;U ;rem[V ] = Glin;U ;rem;a[V ] + Glin;U ;rem;b[V ],

Glin;U ;sh[V ] = Glin;U ;sh;a[V ] + Glin;U ;sh;b[V ].
(5.23)
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In view of (5.18), we find

Gnl;U (V (2))− Gnl;U (V (1)) = Gnl;U+V (1);I(V
(2) − V (1))

+Glin;U+V (1);rem(V (2) − V (1)) + Glin;U+V (1);sh(V (2) − V (1))

+
[
Glin;U+V (1) − Glin;U

]
[V (2) − V (1)]

= Gnl;U+V (1);I(V
(2) − V (1))

+Glin;U ;rem(V (2) − V (1)) + Glin;U+V (1);sh(V (2) − V (1))

+
[
Glin;U+V (1);rem − Glin;U ;rem

]
(V (2) − V (1))

+
[
Glin;U+V (1) − Glin;U

]
[V (2) − V (1)].

(5.24)
The desired bound now follows from (3.51), Lemma’s 4.7-4.8, Propositions 5.2-5.3 and Corollary
5.4.

Proof of Proposition 5.1. In view of the expression (5.18), the statements follow from (3.49), (3.51),
Lemma’s 4.7-4.8, Propositions 5.2-5.3 and Lemma 5.5.

6 Travelling waves

Formally substituting the travelling wave Ansatz (2.20) into the reduced system (2.13) leads to the
nonlocal differential equation

cΨ′ = G(Ψ). (6.1)

In this section we set out to construct solutions to this equation for small h > 0 that can be written
as

Ψ = Ψ∗ + v, c = c∗ + c̃ (6.2)

for pairs (c̃, v) that tend to zero as h ↓ 0. Care must be taken to ensure that the expression G(Ψ) is
well-defined, but based on our preparations we are able to provide a relatively streamlined fixed-point
argument here, which allows us to prove the results stated in §2.

In order to control the size of the perturbation (c̃, v) ∈ R×H1, we introduce the norms

‖(c̃, v)‖Zh
= |c̃|+ ‖v‖H1 +

∥∥∂+
h ∂

+
h v
∥∥
L2 (6.3)

for h > 0 and write Zh for the set R ×H1 equipped with this new norm. Observe that for fixed h
this norm is equivalent to the usual one on R×H1.

Recalling the discussion at the start of §3, we pick 0 < κ < 1
12 and ε0 > 0 in such a way that the

inclusion
evϑ[Ψ∗ + v] ∈ Ωh;κ (6.4)

holds for all 0 < h < 1, all ϑ ∈ [0, h] and all v ∈ H1 that satisfy (3.8). In order to accommodate
this, we pick two parameters δ > 0 and δ+

v > 0 and introduce the set

Zh;δ,δ+v
=

{
(c̃, v) ∈ Zh : ‖(c̃, v)‖Zh

≤ min{δ, ε0}

and
∥∥(0, ∂+

h v)
∥∥
Zh
≤ min{δ+

v , h
1/2ε0}

}
.

(6.5)

Since ∂+
h is bounded on H1 and L2 for each fixed h, we note that this is a closed subset of Zh.

Substituting (6.2) into (6.1), we obtain

c∗Ψ
′
∗ + c̃Ψ′∗ + c̃v′ + c∗v

′ = G(Ψ∗ + v)

= G(Ψ∗) + Glin;Ψ∗ [v] + Gnl;Ψ∗(v),
(6.6)
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which should be interpreted in a sense similar to that of (3.18).
Upon introducing the nonlinearity

Hh(c̃, v) = c̃v′ − Gnl;Ψ∗(v) (6.7)

and inspecting the definitions (3.16) and (5.1), we can rewrite (6.6) as

Lh[v] = c̃Ψ′∗ +Hh(c̃, v) + c∗Ψ
′
∗ − G(Ψ∗). (6.8)

Recalling the two solution operators (3.19), we now introduce the map Wh : Zh;δ,δ+v
→ Zh that acts

as
Wh(c̃, v) = [β∗h,V∗h]

[
Hh(c̃, v) + c∗Ψ

′
∗ − G(Ψ∗)

]
, (6.9)

which allows us to recast (6.8) as the fixed point problem

(c̃, v) =Wh

(
c̃, v
)
. (6.10)

In order to show thatWh is a contraction mapping on Zh;δ,δ+v
, we study the two expressions Hh and

c∗Ψ
′
∗ − G(Ψ∗) separately in our first results. The sampling bounds from §A play a key role here, as

they enable us to extract L2-based bounds on Gnl;Ψ∗ from the sequence estimates obtained in §5.
Notice that the control (6.15) on ‖v‖`2;2h

would not have been possible using only bounds on (6.3),

since L2-norms cannot directly be turned into `2h-norms. This would prevent us from bounding the
terms that are quadratic in these second differences. In fact, this is the reason that we needed to
obtain such detailed bounds on G+ in this series of papers. Indeed, the additional third-differences
only appear in a linear fashion, which does allow us to easily pass between sequences and functions;
see (A.18).

Lemma 6.1. Suppose that (Hg) and (HΦ∗) are satisfied. There exists K > 0 so that for any pair
(δ, δ+

v ) ∈ (0, 1)2 and any 0 < h < 1 the estimates

‖Hh(c̃, v)‖L2 ≤ K
[
hδ + δ2 + δδ+

v

]
,

‖∂+Hh(c̃, v)‖L2 ≤ K
[
[δ + δ+

v ]2 + h−1/2δ[δ + δ+
v ] + h[δv + δ+

v ]
] (6.11)

hold for each (c̃, v) ∈ Zh;δ,δ+v
, while the estimate∥∥Hh(c̃(2), v(2))−Hh(c̃(1), v(1))

∥∥
L2 ≤ K

[
h−1/2[δ + δ+

v ] + h
] ∥∥(c̃(2) − c̃(1), v(2) − v(1))

∥∥
Zh

(6.12)
holds for each set of pairs (c̃(1), v(1)) ∈ Zh;δ,δ+v

and (c̃(2), v(2)) ∈ Zh;δ,δ+v
.

Proof. The first term in Hh can be handled by the elementary estimates

‖c̃v′‖L2 ≤ δ2,

‖c̃∂+v′‖L2 ≤ δ ‖∂+v‖H1 ≤ δδ+
v ,

(6.13)

together with∥∥c̃(2)[v(2)]′ − c̃(1)[v(1)]′
∥∥
L2 ≤

∣∣c̃(2) − c̃(1)
∣∣ ∥∥v(2)

∥∥
H1 +

∣∣c̃(1)
∣∣ ∥∥v(1) − v(2)

∥∥
H1

≤ δ
∥∥(c̃(2) − c̃(1), v(2) − v(1)

)∥∥
Zh
.

(6.14)

Using Corollary A.1 we see that

‖v‖`2;2h
+ ‖v‖`∞;1

h
≤ C ′1[δ + δ+

v ] (6.15)
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for all (c̃, v) ∈ Zh;δ,δ+ . For any ϑ ∈ R, we may hence exploit Propositions C.3 and 5.1 to obtain the
estimate

‖Gnl;Ψ∗(evϑv)‖`2h ≤ C ′2
[
δ + δ+

v + h
]
‖evϑv‖`2;2h

, (6.16)

together with∥∥Gnl;Ψ∗(evϑv
(2))− Gnl;Ψ∗(evϑv

(1))
∥∥
`2h
≤ C ′2

[
δ + δ+

v + h
] ∥∥evϑv

(1) − evϑv
(2)
∥∥
`2;2h

+C ′2
[
δ + δ+

v ]
∥∥evϑv

(1) − evϑv
(2)
∥∥
`∞;1
h

.
(6.17)

A second application of Corollary A.1 yields the bound

‖v‖`2;2h
+ ‖v‖`∞;2

h
≤ C ′3h−1/2[δ + δ+

v ]. (6.18)

For any ϑ ∈ R, we may hence use Propositions C.3 and 5.1 to find∥∥∥G+
nl;Ψ∗

(evϑv)
∥∥∥
`2h

≤ C ′4
[
δ + δ+

v + h
]
‖evϑv‖`2;3h

+ C ′4h
−1/2[δ + δ+

v ] ‖evϑv‖`2;2h
. (6.19)

We now apply Lemma A.2 to obtain

‖Gnl;Ψ∗(v)‖L2 ≤ C ′2
[
δ + δ+

v + h
][
‖v‖H1 + ‖∂+∂+v‖L2

]
≤ C ′2

[
δ + δ+

v + h
]
δ,∥∥∥G+

nl;Ψ∗
(v)
∥∥∥
L2
≤ C ′4

[
δ + δ+

v + h
][
‖v‖H1 + ‖∂+∂+v‖L2 + ‖∂+v‖H1 + ‖∂+∂+∂+v‖L2

]
+C ′4h

−1/2[δ + δ+
v ]
[
‖v‖H1 + ‖∂+∂+v‖L2

]
≤ C ′4

[
δ + δ+

v + h
][
δ + δ+

v

]
+ C ′4h

−1/2[δ + δ+
v ]δ.

(6.20)

Using (A.6) we note that ∥∥∥v(2) − v(1)
∥∥∥
`∞;1
h

≤ 2h−1/2
∥∥∥v(2) − v(1)

∥∥∥
H1

. (6.21)

Applying Lemma A.2 once more, we obtain∥∥Gnl;Ψ∗(v
(2))− Gnl;Ψ∗(v

(1))
∥∥
L2 ≤ C ′2

[
δ + δ+

v + h
][ ∥∥v(1) − v(2)

∥∥
H1 +

∥∥∂+∂+v(1) − ∂+∂+v(2)
∥∥
L2

]
+2C ′2

[
δ + δ+

v ]h−1/2
∥∥v(1) − v(2)

∥∥
H1 .

(6.22)
The desired bounds follow readily from these estimates.

Lemma 6.2. Suppose that (Hg) and (HΦ∗) are satisfied. There exists K > 0 so that for each
0 < h < 1 we have the bounds

‖c∗Ψ′∗ − G(Ψ∗)‖L2 ≤ Kh,∥∥∂+
[
c∗Ψ

′
∗ − G(Ψ∗)

]∥∥
L2 ≤ Kh.

(6.23)

Proof. Applying Lemma A.2 together with Propositions C.3 and 5.1, we find

‖Gapx(Ψ∗)− G(Ψ∗)‖L2 +
∥∥G+

apx(Ψ∗)− G+(Ψ∗)
∥∥
L2 ≤ C ′1h. (6.24)

We now compute

c∗Ψ
′
∗ − G(Ψ∗) = c∗Ψ

′
∗ − Gapx(Ψ∗) + Gapx(Ψ∗)− G(Ψ∗)

= c∗Ψ
′
∗ − c∗∂0Ψ∗ + Gapx(Ψ∗)− G(Ψ∗),

(6.25)
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together with

∂+[c∗Ψ
′
∗ − G(Ψ∗)

]
= ∂+

[
c∗Ψ

′
∗ − Gapx(Ψ∗)

]
+ ∂+

[
Gapx(Ψ∗)− G(Ψ∗)

]
= c∗

[
∂+Ψ∗]

′ − c∗∂0[∂+Ψ∗] + G+
apx(Ψ∗)− G+(Ψ∗).

(6.26)

Applying (A.8) we see that

‖c∗Ψ′∗ − G(Ψ∗)‖L2 ≤ C ′2h ‖Ψ′′∗‖L2 + C ′1h ≤ C ′3h, (6.27)

together with

‖∂+[c∗Ψ
′
∗ − G(Ψ∗)]‖L2 ≤ C ′2h ‖∂+Ψ′′∗‖L2 + C ′1h ≤ C ′3h, (6.28)

as desired.

Utilizing the linear theory from [27] that we outlined in §3.1, we are now in a position to study
the full nonlinear term Wh. Our main result subsequently follows in a relatively standard fashion
from the uniqueness properties of the contraction mapping theorem.

Lemma 6.3. Suppose that (Hg) and (HΦ∗) are satisfied. Then for each sufficiently small h > 0, the
fixed point problem (6.10) posed on the set Zh;h3/4,h3/4 has a unique solution.

Proof. Using the estimates (3.22) together with the a-priori bounds (h, δ, δ+
v ) ∈ (0, 1)3, we obtain

the inequalities

‖Wh(c̃, v)‖Zh
≤ C ′1

[
‖Hh(c̃, v)‖L2 + ‖c∗Ψ′∗ − G(Ψ∗)‖L2

]
≤ C ′2

[
δ2 + δδ+

v + h
]
,

‖[0, ∂+]Wh(c̃, v)‖Zh
≤ C ′1

[
‖Hh(c̃, v)‖L2 + ‖∂+Hh(c̃, v)‖L2

]
+C ′1

[
‖c∗Ψ′∗ − G(Ψ∗)‖L2 +

∥∥∂+
[
c∗Ψ

′
∗ − G(Ψ∗)

]∥∥
L2

]
≤ C ′2

[
h−1/2δ[δ + δ+

v ] + (δ + δ+
v )2 + h

]
,

(6.29)

together with∥∥Wh

(
c̃(2), v(2)

)
−Wh

(
c̃(1), v(1)

)∥∥
Zh

≤ C ′1
∥∥Hh(c̃(2), v(2))−Hh(c̃(1), v(1))

∥∥
L2

≤ C ′2
[
h−1/2[δ + δ+

v ] + h
] ∥∥(c̃(2) − c̃(1), v(2) − v(1)

)∥∥
Zh
.

(6.30)
Picking

δ = δ+
v = h3/4, (6.31)

we see that δ = δ+
v ≤ h1/2ε0 for all sufficiently small h > 0. In addition, we find

‖Wh(c̃, v)‖Zh
≤ C ′2

[
2h3/4 + h1/4

]
δ,

‖[0, ∂+]Wh(c̃, v)‖Zh
≤ C ′2

[
2h1/4 + 4h3/4 + h1/4

]
δ,

(6.32)

together with∥∥Wh

(
c̃(2), v(2)

)
−Wh

(
c̃(1), v(1)

)∥∥
Zh

≤ C ′2[2h1/4 + h]
∥∥(c̃(2) − c̃(1), v(2) − v(1)

)∥∥
Zh
. (6.33)

The result hence follows from the contraction mapping theorem.
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Proof of Theorem 2.1. We write (c̃h, vh) for the unique solution to the fixed point problem (6.10)
that is provided by Lemma 6.3. This allows us to define

Ψh = Ψ∗ + vh, ch = c∗ + c̃h. (6.34)

For fixed h > 0, we claim that the map

ϑ 7→ evϑ[Ψ∗ + vh]− ev0Ψ∗ ∈ `2h (6.35)

is continous. Indeed, this follows from the smoothness of Ψ∗ together with (A.6) and the fact that
the translation operator is continuous on H1. Since the map

V 7→ G(Ψ∗ + V ) ∈ `2h (6.36)

is continuous on a subset of `2h that contains evϑvh for all ϑ ∈ [0, h], we conclude that

ϑ 7→ G
(
evϑΨh

)
∈ `2h (6.37)

is continuous. The travelling wave equation (6.1) now implies the inclusion (2.21).
In a similar fashion, the inclusion (2.25) follows from (A.6) and the continuity of the translation

operator on H1. The remaining statements are a direct consequence of Lemma 6.3.

We now turn to the proof of Corollary 2.2, which asserts the existence of a waveprofile Φh in the
original physical coordinates. The key tool for our purpose here is [26, Prop. 4.2], which states that
the gridpoints associated to a solution U of (2.13) satisfy

ẋ(t) =M
(
U(t)

)
. (6.38)

Here the sequence M can be written as

M(U) = −Z−(U)T−[XA(U)]Y2(U) + Z−(U)
∑
−;h Y2(U)T−

[
XB(U)

]
D�−;+(U)

+Z−(U)
∑
−;h Y2(U)T−

[
XC(U)D�0;+(U) + XD(U)D�0;+(U)

]
;

(6.39)

see [26, Eq. (6.31) and (6.33)] where this function was referred to as Y. Notice the strong resemblance
with the structure of (3.42). Indeed, we see that

Y1(U)M(U) = Z−(U)[G(U)− Y2(U)] (6.40)

see also [26, Eq. (6.9)] for comparison. In view of the identities

Z−apx(U) = γU , Y1;apx(U) = ∂0U, Gapx(U) = c∗∂
0U Y2;apx;expl(U) = c∗γ

−1
U ∂0U (6.41)

from [26, Eq. (7.29)], (D.1), (5.1) and (D.11), it makes sense to formally factor out ∂0U and introduce
the approximant

Mapx(U) = γUc∗(1− γ−1
U ) = c∗(γU − 1). (6.42)

This allows us to extract a crucial lower bound for the speed of the gridpoints.

Proof of Corollary 2.2. Upon defining

Ψ
(x)
h = −

∑
−;h

(∂+Ψh)2√
1− (∂+Ψh)2 + 1

, (6.43)

the identity (2.27) implies that (i) is satisfied. Using [26, Prop. 4.2] we see that

ẋjh(t) = ch[Ψ
(x)
h ]′(jh+ cht) =

[
M
(
Ψh(·+ cht)

)]
jh
. (6.44)
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Notice that the terms appearing in (6.39) also all appear in (3.42) after making the replacement
Z− 7→ Y1. The reduction Z− 7→ Z−apx leads to error terms that are covered by the theory in [26].
Since Z−apx does not need to be reduced further, we can follow all the computations in the present
paper to obtain the error bound

‖M(U)−Mapx(U)‖`∞h ≤ C
′
1

[
h+ ‖Etw(U)‖`2h + ‖Etw(U)‖`∞h

]
, (6.45)

which is the natural analogue of (5.5). Substituting U = Ψh and applying the Lipschitz bounds
(C.6), we find

‖Etw(Ψh)− Etw(Ψ∗)‖`2h ≤ C ′2 ‖Ψh −Ψ∗‖`2;2h

≤ C ′2
[
‖Ψh −Ψ∗‖H1 + ‖∂+[Ψh −Ψ∗]‖H1

]
≤ C ′2h

3/4.

(6.46)

Using Proposition C.3, we obtain
‖Etw(Ψh)‖`2h ≤ C

′
3h

3/4 (6.47)

and hence
‖Etw(Ψh)‖`∞h ≤ C

′
3h

1/4. (6.48)

In a similar fashion, we may exploit (B.4) to conclude

‖γΨh
− γΨ∗‖`2h ≤ C

′
2h

3/4 (6.49)

and hence
‖γΨh

− γΨ∗‖`∞h ≤ C
′
2h

1/4. (6.50)

Together, these observations yield the pointwise bound

|M(Ψh)− c∗(γΨ∗ − 1)| ≤ C ′4h1/4. (6.51)

Assuming for clarity that c∗ > 0, this implies the pointwise inequality

M(Ψh) > c∗(γΨ∗ − 1)− C ′4h1/4. (6.52)

Since |ch − c∗| ≤ h3/4, we find

ch

[
[Ψ

(x)
h ]′ + 1

]
> c∗(γΨ∗ − 1) + ch − C ′4h1/4

> c∗γΨ∗ − C ′5h1/4.
(6.53)

Since γΨ∗ is strictly bounded away from zero, uniformly in h, we conclude that

[Ψ
(x)
h ]′(τ) > −1 (6.54)

for all sufficiently small h > 0 and all τ ∈ R. This shows that the coordinate transformation (2.32)
is invertible, as desired.

A Discrete calculus

In this appendix we collect several useful identities and bounds from [26, 27] related to the interplay
between discrete and continuous calculus. In particular, we state a discrete version of the product
rule, provide two summation-by-parts identities and show how taking discrete samples of functions
in L2 and H1 affects the various norms.
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Recalling the notation introduced at the start of §3.1 and §3.2, a short computation yields the
basic identities

∂(2)a = ∂+∂−a, ∂+∂0a = S+[∂(2)a], (A.1)

together with the product rules

∂+[ab] = ∂+aT+b+ a∂+b,

∂0[ab] = ∂0aT+b+ T−a∂0b,

∂−[ab] = [∂−a]b+
[
T−a

]
∂−b,

(A.2)

which hold for a, b ∈ `∞h . As in [26, §3.1], these can subsequently be used to derive the second-order
product rule

∂(2)[ab] = (∂(2)a)b+ ∂+a∂+b+ ∂−a∂−b+ a∂(2)b. (A.3)

Recalling the discrete summation operators (2.10), one can read-off the identities

∂+
[∑
−;h

a
]
jh

= ajh, ∂−
[∑

+;h

a
]
jh

= −ajh (A.4)

for a ∈ `1(hZ;R). In addition, the discrete summation-by-parts identities∑
−;h

b∂+a = aT−b−
∑
−;h

a∂−b,
∑
−;h

bS+a =
1

2
haT−b+

∑
−;h

aS−b (A.5)

hold whenever a, b ∈ `2h; see [26, Eq. (3.13) and (3.15)].
Turning to sampling issues, we repeat the useful estimates [26, Eq. (A.6), (A.4)] which state that

‖u‖`2h ≤ (2 + h) ‖u‖H1 ,
∥∥∂±h u∥∥`∞h ≤ h−1/2 ‖u′‖L2 , (A.6)

for any u ∈ H1. On the other hand, for any q ∈ {2,∞} and u ∈W 1,q, we have∥∥∂±h u∥∥`qh ≤ ‖u′‖Lq ,
∥∥∂±h u∥∥Lq ≤ ‖u′‖Lq (A.7)

for any h > 0; see [26, Eq. (A.3), (A.13)]. For any q ∈ {2,∞} and h > 0 we also obtain the error
estimate ∥∥∂±h u− u′∥∥`qh ≤ h ‖u′′‖Lq (A.8)

whenever u ∈W 2;q (see [27, Lem. 4.1]), together with

max{
∥∥∥∂(2)

h u− u′′
∥∥∥
`qh

,
∥∥∥∂(2)

h u(·+ h)− u′′
∥∥∥
`qh

} ≤ 2h ‖u′′′‖Lq (A.9)

whenever u ∈W 3;q (see [27, Cor. 4.2]) and finally∥∥∥∂+
h ∂

(2)
h u− u′′′

∥∥∥
`qh

≤ 3h
∥∥∥u(iv)

∥∥∥
Lq

(A.10)

whenever u ∈W 4;q (see [27, Cor. 4.3]).
We now recall the sampling operator evϑ defined in (3.17). Our final two results here show how

to pass back and forth between discrete and continuous estimates.
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Corollary A.1 ([26, Cor. A.3]). There exists K > 0 so that for any ϑ ∈ R, any v ∈ H1 and any
0 < h < 1, we have the bounds

‖evϑv‖`∞h ≤ K ‖v‖H1 ,

‖evϑv‖`∞;1
h

≤ K
[
‖v‖H1 +

∥∥∂+
h v
∥∥
H1

]
,

‖evϑv‖`∞;2
h

≤ K
[
‖v‖H1 + h−1/2

∥∥∂+
h v
∥∥
H1

]
,

(A.11)

together with
‖evϑv‖`2;1h

≤ K ‖v‖H1 ,

‖evϑv‖`2;2h
≤ K

[
‖v‖H1 +

∥∥∂+
h v
∥∥
H1

]
.

(A.12)

Lemma A.2 ([26, Lem. A.4]). Consider any f ∈ C(R;R) and any g ∈ H1. Then the following
properties hold for all h > 0.

(i) If the bound
‖evϑf‖`2h ≤ ‖g‖∞ (A.13)

holds for all ϑ ∈ [0, h], then f ∈ L2 with

‖f‖L2 ≤ ‖g‖∞ . (A.14)

(ii) If the bound
‖evϑf‖`2h ≤ ‖evϑg‖`2;2h

(A.15)

holds for all ϑ ∈ (0, h), then f ∈ L2 with

‖f‖L2 ≤ ‖g‖H1 +
∥∥∂+

h ∂
+
h g
∥∥
L2 . (A.16)

(iii) If the bound
‖evϑf‖`2h ≤ ‖evϑg‖`2;3h

(A.17)

holds for all ϑ ∈ [0, h], then f ∈ L2 with

‖f‖L2 ≤ ‖g‖H1 +
∥∥∂+

h g
∥∥
H1 +

∥∥∂+
h ∂

+
h ∂

+
h g
∥∥
L2 . (A.18)

B The gridspace function γU

The gridpoint spacing function
γU =

√
1− (∂0U)2 (B.1)

plays an important role throughout this paper and was analyzed at length in the prequels [26, 27].
We recall some of these results here and also obtain several novel bounds related to the sums that
are evaluated in §E and §F. Recalling the definitions (3.24) for sums and products, we first state
some useful identities pertaining to powers of γU .
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Lemma B.1 ([26, Lem. C.2]). Consider any U ∈ `∞(hZ;R) for which ‖∂+U‖∞ < 1. Then we have
the identities

∂+[γ−4
U ] =

4S+[∂0U ]S+[∂(2)U ]

P+[γ2
U ]

S+[γ2
U ]

P+[γ2
U ]
,

∂+[γ−2
U ] =

2S+[∂0U ]S+[∂(2)U ]

P+[γ2
U ]

,

∂+[γ−1
U ] =

S+[∂0U ]S+[∂(2)U ]

S+[γU ]P+[γU ]
,

∂+[γU ] = −S
+[∂0U ]S+[∂(2)U ]

S+γU
,

∂+[γ2
U ] = −2S+[∂0U ]S+[∂(2)U ].

(B.2)

Turning to estimates, we first note that

γU(b) − γU(a) = −[γU(a) + γU(b) ]−1(∂0U (a) + ∂0U (b))(∂0U (b) − ∂0U (a)) (B.3)

holds for any U (a), U (b) ∈ Ωh;κ; see [26, Eq. (C.4)]. This can be used [26, Cor. D.2] to obtain the
Lipschitz bound

‖γU(a) − γU(b)‖`qh ≤ K
∥∥∥∂+U (b) − ∂+U (a)

∥∥∥
`qh

(B.4)

for q ∈ {2,∞}, where K depends on κ but not on h. In addition, it can be exploited to establish the
following approximation errors for various expressions involving γU .

Lemma B.2 ([26, Lem. D.4]). Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and

any U ∈ Ωh;κ, we have the pointwise estimates∣∣∂+[γ2
U ] + 2∂0US+[∂(2)U ]

∣∣ ≤ Kh
[ ∣∣∂(2)U

∣∣2 + T+
∣∣∂(2)U

∣∣2 ],∣∣∂+[γU ] + γ−1
U ∂0US+[∂(2)U ]

∣∣ ≤ Kh
[ ∣∣∂(2)U

∣∣2 + T+
∣∣∂(2)U

∣∣2 ],∣∣∂+[γ−1
U ]− γ−3

U ∂0US+[∂(2)U ]
∣∣ ≤ Kh

[ ∣∣∂(2)U
∣∣2 + T+

∣∣∂(2)U
∣∣2 ],∣∣∂+[γ−2

U ]− 2γ−4
U ∂0US+[∂(2)U ]

∣∣ ≤ Kh
[ ∣∣∂(2)U

∣∣2 + T+
∣∣∂(2)U

∣∣2 ],∣∣∂+[γ−4
U ]− 4γ−6

U ∂0US+[∂(2)U ]
∣∣ ≤ Kh

[ ∣∣∂(2)U
∣∣2 + T+

∣∣∂(2)U
∣∣2 ].

(B.5)

Lemma B.3. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise estimate∣∣∣∣∂+
[∂0U

γU

]
− γ−3

U S+[∂(2)U ]

∣∣∣∣ ≤ Kh[ ∣∣∣∂(2)U
∣∣∣+ T+

∣∣∣∂(2)U
∣∣∣ ]. (B.6)

Proof. Using ∂+∂0U = S+∂(2)U and the definition (3.10) for γU , we compute

∂+
[
∂0U
γU

]
= ∂+[γ−1

U ]T+∂0U + γ−1
U ∂+∂0U

= ∂+[γ−1
U ]∂0U + E1(U) + γ−1

U ∂+∂0U

= γ−3
U ∂0US+[∂(2)U ]∂0U + E1(U) + E2(U) + γ−1

U S+[∂(2)U ]

= γ−3
U S+[∂(2)U ] + E1(U) + E2(U),

(B.7)

in which
E1(U) = h∂+[γ−1

U ]∂+∂0U,

E2(U) =
[
∂+[γ−1

U ]− γ−3
U ∂0US+[∂(2)U ]

]
∂0U.

(B.8)
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The estimates (B.5) now yield the bounds

|E1(U)|+ |E2(U)| ≤ C ′1h
[ ∣∣∣∂(2)U

∣∣∣+ T+
∣∣∣∂(2)U

∣∣∣ ], (B.9)

which establishes (B.6).

We now continue the discussion from [26, §D] and consider discrete versions of the integral
identities ∫ τ

−∞
u′(τ ′)u′′(τ ′)√

1−u′(τ ′)2
dτ ′ = 1−

√
1− u′(τ)2,∫ τ

−∞
u′(τ ′)v′′(τ ′)√

1−u′(τ ′)2
= u′(τ)v′(τ)√

1−u′(τ)2
−
∫ τ
−∞

u′′(τ ′)v′(τ ′)
(1−u′(τ ′)2)3/2

dτ ′.
(B.10)

Instead of computing the corresponding sums exactly, we obtain useful approximation that are
O(h)-accurate.

Lemma B.4. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

the two linear expressions

SA;U [V ] =
∑
−;h γ

−1
U [∂0U ]∂(2)V,

SB:U [V ] = γ−1
U [∂0U ]∂0V −

∑
−;h γ

−3
U [∂(2)U ]∂0V

(B.11)

satisfy the pointwise estimate

|SB;U [V ]− SA;U [V ]| ≤ Kh
[
T− |∂−V |+ |∂−V |+

∣∣∂(2)V
∣∣+ ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
(B.12)

for all V ∈ `2h.

Proof. Using (A.4) we first observe that∣∣T+SA;U [V ]− SA;U [V ]
∣∣ = h

∣∣∂+SA;U [V ]
∣∣ ≤ C ′1 ∣∣∣∂(2)V

∣∣∣ . (B.13)

The summation-by-parts identity (A.5) allows us to compute

T+SA;U [V ] = T+
[∑

−;h γ
−1
U [∂0U ]∂(2)V

]
= T+

[∑
−;h γ

−1
U [∂0U ]∂+∂−V

]
= T+

[
T−1

[
γ−1
U ∂0U

]
∂−V −

∑
−;h ∂

−[γ−1
U ∂0U ]∂−V

]
= γ−1

U [∂0U ]∂+V −
∑
−;h ∂

+[γ−1
U ∂0U ]∂+V.

(B.14)

Upon writing

SA;U ;I [V ] = γ−1
U [∂0U ]∂0V −

∑
−;h

∂+[γ−1
U ∂0U ]∂0V, (B.15)

we use the identity

∂+V − ∂0V =
1

2
h∂(2)U (B.16)

together with (B.6) to obtain∣∣SA;U ;I [V ]− T+SA;U [V ]
∣∣ ≤ C ′2h ∣∣∣∂(2)V

∣∣∣+ C ′2h
∥∥∂+∂+V

∥∥
`2h
. (B.17)

We now write
SA;U ;II [V ] = γ−1

U [∂0U ]∂0V −
∑
−;h

γ−3
U S+[∂(2)U ]∂0V, (B.18)
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which gives

SA;U ;II [V ]− SA;U ;I [V ] = −
∑
−;h

[
∂+[γ−1

U ∂0U ]− γ−3
U S+[∂(2)U ]

]
∂0V. (B.19)

In particular, (B.6) yields

|SA;U ;II [V ]− SA;U ;I [V ]| ≤ C ′3h
∥∥∂+∂+U

∥∥
`2h

∥∥∂0V
∥∥
`2h
≤ C ′4h

∥∥∂+V
∥∥
`2h
. (B.20)

We now transfer the S+ using the summation-by-parts identity (A.5) to obtain

SA;U ;II [V ] = γ−1
U [∂0U ]∂0V − 1

2
hT−[γ−3

U ∂0V ]∂(2)U −
∑
−;h

S−
[
γ−3
U ∂0V

]
∂(2)U. (B.21)

We hence see that

SB;U [V ]− SA;U ;II [V ] = hT−
[
γ−3
U ∂0V ] +

∑
−;h h∂

−[γ−3
U ∂0V

]
∂(2)U. (B.22)

Using the fact that ∥∥∂−[γ−3
U ∂0V

]∥∥
`2h
≤ C ′5

[ ∥∥∂+V
∥∥
`2h

+
∥∥∂+∂+V

∥∥
`2h

]
(B.23)

the desired estimate follows.

Lemma B.5. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise estimate∣∣∣∣∣∣
∑
−;h

γ−1
U [∂0U ]∂(2)U − (1− γU )

∣∣∣∣∣∣ ≤ Kh. (B.24)

Proof. Since [γU ]jh → 1 as j → −∞, we have

γU − 1 =
∑
−;h ∂

+γU . (B.25)

In particular, writing
SI =

∑
−;h γ

−1
U ∂0US+[∂(2)U ] (B.26)

we may use the estimates (B.5) to obtain

|SI − (1− γU )| ≤ 2Kh ‖∂+∂+U‖2`2h ≤ C ′1h. (B.27)

Using the second summation-by-parts identity in (A.5), we can transfer the S+ to obtain

SI = 1
2h∂

(2)UT−
[
γ−1
U ∂0U +

∑
−;h S

−[γ−1
U ∂0U

]
∂(2)U

]
. (B.28)

In particular, writing
I = SI −

∑
−;h γ

−1
U [∂0U ]∂(2)U, (B.29)

we see that
I = h

2∂
(2)UT−

[
γ−1
U ∂0U

]
−
∑
−;h

h
2∂
−[γ−1

U ∂0U
]
∂(2)U. (B.30)

Using Lemma B.3 we see that

|I| ≤ C ′1h
∥∥∂+∂+U

∥∥2

`2h
+ C ′2h, (B.31)

from which the desired estimate follows.
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C Operator bounds

Our goal here is to establish several crucial bounds on the linear operators and error functions
introduced in §3.1-3.2. The errors that arise when approximating ∂+MU and ∂+Etw by M+

U ;apx and

E+
tw;apx are of special importance.

Proposition C.1 ([27, Prop. 5.1]). Assume that (Hg) is satisfied and fix κ > 0. There exists K > 0
so that for any h > 0, U ∈ Ωh;κ and V ∈ `2h we have the a-priori bounds

‖MU [V ]‖`2h ≤ K ‖V ‖`2;2h
,

‖∂+MU [V ]‖`2h ≤ K ‖V ‖`2;3h
+K ‖∂+∂+∂+U‖`∞h ‖∂

+V ‖`2h ,

‖∂+MU [V ]−MU [∂+V ]‖`2h ≤ K ‖V ‖`2;2h
+K ‖∂+∂+∂+U‖`∞h ‖∂

+V ‖`2h ,
(C.1)

together with the estimate∥∥∥∂+MU [V ]−M+
U ;apx[V ]

∥∥∥
`2h

≤ Kh ‖V ‖`2;3h
+Kh ‖∂+∂+∂+U‖`∞h ‖V ‖`2;2h

. (C.2)

In addition, for any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the Lipschitz

bound

‖MU(2) [V ]−MU(1) [V ]‖`2h ≤ K
∥∥U (2) − U (1)

∥∥
`2;2h

‖V ‖`∞;1
h

+K
∥∥U (2) − U (1)

∥∥
`∞;1
h

‖V ‖`2;2h
.

(C.3)

Proposition C.2. Assume that (Hg) and (HΦ∗) are satisfied and fix 0 < κ < 1
12 . There exists

K > 0 so that for any h > 0 and U ∈ Ωh;κ we have the a-priori bounds

‖Esm(U)‖`∞h + ‖Esm(U)‖`2h ≤ K,

‖Etw(U)‖`∞h + ‖Etw(U)‖`2h ≤ K
(C.4)

together with the estimate∥∥∂+[Etw(U)]− E+
tw;apx(U)

∥∥
`∞h

+
∥∥∂+[Etw(U)]− E+

tw;apx(U)
∥∥
`2h
≤ Kh, (C.5)

while for any U (1) ∈ Ωh;κ and U (2) ∈ Ωh;κ we have the Lipschitz bounds∥∥Esm(U (1))− Esm(U (2))
∥∥
`2h
≤ K

[ ∥∥∂+U (2) − ∂+U (1)
∥∥
`2h

+
∥∥∂+∂+U (2) − ∂+∂+U (1)

∥∥
`2h

]
,∥∥Etw(U (1))− Etw(U (2))

∥∥
`2h

≤ K
∥∥U (2) − U (1)

∥∥
`2;2h

.

(C.6)

Proof. The bounds in (C.4) and (C.6) follow directly from ‖h∂−‖L(`2h,`
2
h) ≤ 2, the Lipschitz bounds

(B.4), the estimate

‖g(U)‖`2h ≤ 4
[
sup|u|≤κ−1 |g′(u)|

]
(C.7)

from [26, Eq. (3.43)] and the pointwise inequality∣∣∣g(U (2))− g(U (1))
∣∣∣ ≤ [sup|u|≤κ−1 |g′(u)|

] ∣∣∣U (2) − U (1)
∣∣∣ . (C.8)

In order to establish (C.5), we compute

∂+[Etw(U)] = ∂+[γ−4
U ]T+[∂(2)U ] + γ−4

U ∂+∂(2)U + ∂+[g(U)]− c∗∂+[γ−1
U ∂0U ] (C.9)
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and notice that

∂+[g(U)]− g′(U)∂0U = ∂+[g(U)]− g′(U)∂+U + h
2 g
′(U)∂(2)U. (C.10)

Upon estimating

|∂+[g(U)]− g′(U)∂+U | = h−1 |g(U + h∂+U)− g(U)− g′(U)h∂+U |

≤ 1
2

[
sup|u|≤κ−1 |g′′(u)|

]
h−1 |h∂+U |2

= 1
2h
[
sup|u|≤κ−1 |g′′(u)|

]
|∂+U |2 ,

(C.11)

we can use (B.5) together with (B.6) to obtain the desired bound.

Proposition C.3. Assume that (Hg) and (HΦ∗) are satisfied. Then there exists K > 0 so that for
any h > 0 we have the estimates

‖Esm(Ψ∗)‖`∞h + ‖Esm(Ψ∗)‖`2h ≤ Kh,

‖Etw(Ψ∗)‖`∞h + ‖Etw(Ψ∗)‖`2h ≤ Kh,

‖∂+[Etw(Ψ∗)]‖`∞h + ‖∂+[Etw(Ψ∗)]‖`2h ≤ Kh.

(C.12)

Proof. We have Ψ∗ ∈W 3;q for q ∈ {2,∞}, which allows us to apply (A.7) and (A.6) to obtain

‖Esm(Ψ∗)‖`qh ≤ C ′1h ‖∂−∂+∂−Ψ∗‖`qh ≤ C ′1h ‖Ψ′′′∗ ‖Lq . (C.13)

This yields the first bound.
Since the functions

γ∗ =
√

1− (Ψ′∗)
2, γΨ∗ =

√
1− (∂0Ψ∗)2 (C.14)

are both uniformly bounded away from zero, we have the pointwise estimate∣∣γ−1
∗ − γ−1

Ψ∗

∣∣+
∣∣γ−3
∗ − γ−3

Ψ∗

∣∣+
∣∣γ−4
∗ − γ−4

Ψ∗

∣∣+
∣∣γ−6
∗ − γ−6

Ψ∗

∣∣ ≤ C ′1 ∣∣∂0Ψ∗ −Ψ′∗
∣∣ . (C.15)

Exploiting the fact that Ψ′∗, Ψ′′∗ , , γ−1
∗ γ−1

Ψ∗
, ∂0Ψ∗ and ∂(2)Ψ∗ are all uniformly bounded, we now see

that ∥∥γ−1
∗ Ψ′∗ − γ−1

Ψ∗
∂0Ψ∗

∥∥
`qh

≤ C ′2
∥∥∂0Ψ∗ −Ψ′∗

∥∥
`qh
,∥∥γ−4

∗ Ψ′′∗ − γ−1
Ψ∗
∂(2)Ψ∗

∥∥
`qh

≤ C ′2
[ ∥∥∂0Ψ∗ −Ψ′∗

∥∥
`qh

+
∥∥∂(2)Ψ∗ −Ψ′′∗

∥∥
`qh

]
,∥∥γ−4

Ψ∗
∂+∂(2)Ψ∗ − γ−4

∗ Ψ′′′∗
∥∥
`qh
≤ C ′2

[ ∥∥∂0Ψ∗ −Ψ′∗
∥∥
`qh

+
∥∥∂+∂(2)Ψ∗ −Ψ′′′∗

∥∥
`qh

] (C.16)

for q ∈ {2,∞}.
Since Ψ∗ ∈W 3,2 ∩W 3,∞, we may apply (A.8) and (A.9) to obtain∥∥γ−1
∗ Ψ′∗ − γ−1

Ψ∗
∂0Ψ∗

∥∥
`qh

+
∥∥γ−4
∗ Ψ′′∗ − γ−4

Ψ∗
∂(2)Ψ∗

∥∥
`qh

+
∥∥γ−4
∗ Ψ′′′∗ − γ−4

Ψ∗
∂(2)Ψ∗

∥∥
`qh
≤ C ′3h (C.17)

for q ∈ {2,∞}. The travelling wave equation (3.32) allows us to write

Etw(Ψ∗) = γ−4
Ψ∗
∂(2)Ψ∗ − γ−4

∗ Ψ′′∗ − c∗γ−1
Ψ∗
∂0Ψ∗ + c∗γ

−1
∗ Ψ′∗, (C.18)

which using (C.17) yields the second bound.
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Using the fact that Ψ∗ ∈ W 4,2 ∩W 4,∞, which allows us to apply (A.10), we may argue in a
similar fashion as above to conclude∥∥γ−6

∗ Ψ′′∗Ψ
′
∗Ψ
′′
∗ − γ−6

Ψ∗
∂0Ψ∗S

+[∂(2)Ψ∗]T
+[∂(2)Ψ∗]

∥∥
`qh
≤ C ′4h,∥∥γ−3

∗ Ψ′′∗ − γ−3
Ψ∗
S+[∂(2)Ψ∗]

∥∥
`qh

≤ C ′4h,∥∥γ−4
∗ Ψ′′′∗ − γ−4

Ψ∗
∂+∂(2)Ψ∗

∥∥
`qh

≤ C ′4h

(C.19)

for q ∈ {2,∞}. The differentiated travelling wave equation (3.33) allows us to write

E+
tw;apx(Ψ∗) = 4γ−6

Ψ∗
∂0Ψ∗S

+[∂(2)Ψ∗]T
+[∂(2)Ψ∗]− 4γ−6

∗ Ψ′′∗Ψ
′
∗Ψ
′′
∗

+γ−4
Ψ∗
∂+∂(2)Ψ∗ − γ−4

∗ Ψ′′′∗

+g′(Ψ∗)∂
0Ψ∗ − g′(Ψ∗)Ψ′∗

−c∗γ−3
Ψ∗
S+[∂(2)Ψ∗] + c∗γ

−3
∗ Ψ′′∗ .

(C.20)

Using (C.19) together with (C.5) we may hence conclude

‖∂+[Etw(Ψ∗)]‖`qh ≤
∥∥E+

tw;apx(Ψ∗)
∥∥
`qh

+
∥∥∂+[Etw(Ψ∗)]− E+

tw;apx(Ψ∗)
∥∥
`qh
≤ C ′3h, (C.21)

which yields the third bound.

D Decompositions for f ∈ Snl;short

Our goal here is to provide the explicit decompositions (4.1) for the nonlinearities (3.35) and (3.36).
In addition, we validate the bookkeeping claims made in Propositions 4.1-4.6, providing the under-
pinning for the estimates in §4.2. For efficiency purposes, we combine our treatment of nonlinearities
that admit similar bounds.

D.1 Decompositions for Y1 and XA

Recalling the definitions

Y1;apx(U), = ∂0U Y1;lin;U [V ] = ∂0V − ∂0U
[∑

−;h Esm(U)∂0V
]
,

XA;apx(U) = ∂0U, XA;lin;U [V ] = ∂0V + ∂0U
[∑

−;h Esm(U)∂0V
] (D.1)

from (3.37) and (3.39), we realize the splittings (4.1) by writing

Y1;apx;expl(U) = ∂0U, Y1;lin;U ;expl[V ] = ∂0V,

Y1;apx;sh(U) = 0, Y1;lin;U ;sh[V ] = 0,

Y1;apx;rem(U) = 0, Y1;lin;U ;rem[V ] = −∂0U
[∑

−;h Esm(U)∂0V
]
,

(D.2)

together with

XA;apx;expl(U) = ∂0U, XA;lin;U ;expl[V ] = ∂0V,

XA;apx;sh(U) = 0, XA;lin;U ;sh[V ] = 0,

XA;apx;rem(U) = 0, XA;lin;U ;rem[V ] = ∂0U
[∑

−;h Esm(U)∂0V
]
.

(D.3)

In addition, for both nonlinearities f ∈ {Y1,XA} we introduce the exponent sets

Qf ;pref = Qf ;pref = Qf = Qf ;lin = Qf ;lin;rem = {2,∞}. (D.4)
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Lemma D.1. Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. Then there exists a constant K > 0 so that

the bounds

‖flin;U ;rem[V ]‖`2h ≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),

‖flin;U ;rem[V ]‖`∞h ≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),

‖flin;U ;expl[V ]‖`2h + ‖flin;U ;sh[V ]‖`2h ≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),

‖flin;U ;expl[V ]‖`∞h + ‖flin;U ;sh[V ]‖`∞h ≤ K ‖∂+V ‖`∞h ≤ KT∞;opt(V )

(D.5)

hold for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. The bounds follow from inspection.

Lemma D.2. Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. There exists a constant K > 0 so that the

following properties are true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound

‖fapx;expl(U)‖`2h + ‖fapx;expl(U)‖`∞h ≤ K. (D.6)

(ii) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥fapx;expl(U
(1))− fapx;expl(U

(2))
∥∥
`2h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`2h

≤ KSdiff;full

(
U (1), U (2)

)
,∥∥fapx;expl(U

(1))− fapx;expl(U
(2))
∥∥
`∞h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

≤ KSdiff;full

(
U (1), U (2)

)
.

(D.7)

Proof. These estimates follow by inspection.

Lemma D.3. Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. There exists a constant K > 0 so that the

following properties are true.

(i) For any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h, we have the bound

‖flin;U ;rem[V ]‖`2h ≤ K ‖Esm(U)‖`2h ‖∂
+V ‖`2h

≤ KErem;U (V ).
(D.8)

(ii) For any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bounds∥∥flin;U(1);expl[V ]− flin;U(2);expl[V ]

∥∥
`2h

= 0,∥∥flin;U(1);rem[V ]− flin;U(2);rem[V ]
∥∥
`2h

≤ K ‖∂+V ‖`2h
[ ∥∥∂+U (1) − ∂+U (2)

∥∥
`2h

+
∥∥∂(2)U (1) − ∂(2)U (2)

∥∥
`2h

]
≤ KEprod(U (2) − U (1), V ).

(D.9)

Proof. Recalling the Lipschitz bound (C.6), the estimates follow by inspection.
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D.2 Decomposition for Y2

Recalling the definitions

Y2;apx(U) = γ−4
U ∂(2)U + g(U), Y2;lin;U [V ] = γ−2

U MU [V ] + c∗γ
−3
U ∂0V (D.10)

from (3.37) and (3.39) and Etw from (3.29), we realize the splittings (4.1) by writing

Y2;apx;expl(U) = c∗γ
−1
U ∂0U, Y2;lin;U ;expl[V ] = γ−2

U MU [V ] + c∗γ
−3
U ∂0V,

Y2;apx;sh(U) = 0, Y2;lin;U ;sh[V ] = 0,

Y2;apx;rem(U) = Etw(U), Y2;lin;U ;rem[V ] = 0.

(D.11)

In addition, we introduce the sets

QY2;pref = QY2;pref = {2}, (D.12)

together with
QY2

= {2,∞}, QY2;lin;rem = QY2;lin = {2}. (D.13)

Lemma D.4. Fix 0 < κ < 1
12 and write f = Y2. Then there exists a constant K > 0 so that the

bound
‖flin;U ;expl[V ]‖`2h ≤ K ‖V ‖`2;2h

≤ KTsafe(V ) (D.14)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. This follows from Proposition C.1.

Lemma D.5. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that the following properties are

true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound

‖Y2;apx;expl(U)‖`2h + ‖Y2;apx;expl(U)‖`∞h + ‖Y2;apx;rem(U)‖`2h + ‖Y2;apx;rem(U)‖`∞h ≤ K.

(D.15)

(ii) For any h > 0 and U ∈ Ωh;κ, we have the bounds

‖Y2;apx;rem(U)‖`2h ≤ ‖Etw(U)‖`2h ≤ Srem;full(U),

‖Y2;apx;rem(U)‖`∞h ≤ ‖Etw(U)‖`∞h ≤ Srem;full(U).
(D.16)

(iii) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥Y2;apx;expl(U
(1))− Y2;apx;expl(U

(2))
∥∥
`2h
≤ K

∥∥∂+U (1) − ∂+U (2)
∥∥
`2h

≤ KSdiff;2;fix

(
U (1), U (2)

)
,∥∥Y2;apx;rem(U (1))− Y2;apx;rem(U (2))

∥∥
`2h

≤ K
∥∥U (1) − U (2)

∥∥
`2;2h

≤ KSdiff;2;fix

(
U (1), U (2)

)
.

(D.17)

Proof. Recalling (C.6), these bounds follow by inspection.
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Lemma D.6. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that we have the bound∥∥Y2;lin;U(1);expl[V ]− Y2;lin;U(2);expl[V ]

∥∥
`2h
≤ K

∥∥U (1) − U (2)
∥∥
`2;2h

‖V ‖`∞;1
h

+K
∥∥U (1) − U (2)

∥∥
`∞;1
h

‖V ‖`2;2h

≤ KEprod(U (1) − U (2), V )

(D.18)

for any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h.

Proof. This bound follows directly from (B.4) and [27, Prop 5.1].

D.3 Decomposition for D�0;+ and D�−;+

For both functions f ∈ {D�0;+,D�−;+} we write fapx;sh(U) = fapx;rem(U) = 0 and flin;sh(U) =
flin;rem(U) = 0 and introduce the exponent sets

Qf ;pref = Qf ;pref = Qf ;lin = Qf ;lin;rem = {2}, Qf = {2,∞}. (D.19)

Besides the Lipschitz estimates below, all the estimates we require here can be found in [26, Prop.
7.3].

Lemma D.7. Fix 0 < κ < 1
12 and pick f ∈ {D�0;+,D�−;+}. There exists a constant K > 0 so that

the following properties are true.

(i) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥fapx;expl(U
(1))− fapx;expl(U

(2))
∥∥
`2h
≤ K

[ ∥∥∂+U (1) − ∂+U (2)
∥∥
`2h

+
∥∥∂(2)U (1) − ∂(2)U (2)

∥∥
`2h

]
≤ KSdiff;2;fix

(
U (1), U (2)

)
.

(D.20)

(ii) For any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bound∥∥flin;U(1);expl[V ]− flin;U(2);expl[V ]

∥∥
`2h
≤ K

[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

] ∥∥∂+U (1) − ∂+U (2)
∥∥
`∞h

+K ‖∂+V ‖`∞h
∥∥∂+∂+U (1) − ∂+∂+U (2)

∥∥
`2h

≤ KEprod(U (2) − U (1), V ).

(D.21)

Proof. These bounds follow by inspecting the definitions (3.40).

D.4 Decompositions for XB, XC and XD

Recalling the definitions
XB;apx(U) = S+[γ−1

U ]γ4
U ,

XC;apx(U) = S+[γ−1
U ](γ4

U − γ2
U ),

XD;apx(U) = S+[γU∂
0U ]∂0U

(D.22)
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from (3.37) together with

XB;lin;U [V ] = S+
[
γ−3
U ∂0U∂0V + γ−1

U

[∑
−;h Esm(U)∂0V

]]
γ4
U

+S+[γ−1
U ](−4γ2

U )∂0U∂0V,

XC;lin;U [V ] = S+
[
γ−3
U ∂0U∂0V + γ−1

U

∑
−;h Esm(U)∂0V

]
(γ4
U − γ2

U )

+S+[γ−1
U ][2− 4γ2

U ]∂0U∂0V,

XD;lin;U [V ] = S+[γ−1
U (2γ2

U − 1)∂0V ]∂0U + S+[γU∂
0U ]∂0V

+S+[γU∂
0U ]∂0U

∑
−;h Esm(U)∂0V

(D.23)

from (3.38), we realize the splittings (4.1) by writing

XB;apx;expl(U) = T+[γ3
U ], XB;lin;U ;expl[V ] = −3T+

[
γU∂

0U∂0V
]
, (D.24)

together with

XC;apx;expl(U) = −XD;apx;expl(U) = γU (γ2
U − 1),

XC;lin;U ;expl[V ] = −XD;lin;U ;expl[V ] = γ−1
U (1− 3γ2

U )∂0U∂0V
(D.25)

for the explicit terms. The shift terms are given by

XB;apx;sh(U) = −hS+[γ−1
U ]∂+[γ4

U ]− h
2∂

+[γ−1
U ]T+[γ4

U ],

XC;apx;sh(U) = h
2∂

+[γ−1
U ]γ2

U (γ2
U − 1),

XD;apx;sh(U) = h
2∂

+[γU∂
0U ]∂0U,

(D.26)

together with

XB;lin;U ;sh[V ] = −h2∂
+
[
γ−3
U ∂0U∂0V

]
γ4
U

−hS+[γ−1
U ]∂+[−4γ2

U∂
0V ]− h∂+[γ−1

U ]T+
[
− 2γ2

U∂
0V ],

XC;lin;U ;sh[V ] = h
2∂

+
[
γ−3
U ∂0U∂0V

]
γ2
U (γ2

U − 1)

+h
2∂

+
[
γ−1
U

]
[2− 4γ2

U ]∂0U∂0V,

XD;lin;U ;sh[V ] = h
2∂

+
[
γ−1
U (2γ2

U − 1)∂0V
]
∂0U + h

2∂
+[γU∂

0U ]∂0V,

(D.27)

while the remainder terms are given by

XB;apx;rem(U) = XC;apx;rem(U) = XD;apx;rem(U) = 0, (D.28)

together with

XB;lin;U ;rem[V ] = S+
[
γ−1
U

[∑
−;h Esm(U)∂0V

]]
γ4
U ,

XC;lin;U ;rem[V ] = S+
[
γ−1
U

∑
−;h Esm(U)∂0V

]
(γ4
U − γ2

U ),

XD;lin;U ;rem[V ] = S+[γU∂
0U ]∂0U

∑
−;h Esm(U)∂0V.

(D.29)

In addition, for any f ∈ {XB ,XC ,XD} we introduce the exponent sets

Qf ;pref = Qf ;pref = {∞}, (D.30)

together with

Qf = {∞}, Qf ;lin = {2,∞}, Qf ;lin;rem = {∞}. (D.31)
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Lemma D.8. Fix 0 < κ < 1
12 and pick f ∈ {XB ,XC ,XD}. Then there exists a constant K > 0 so

that the bounds

‖flin;U ;rem[V ]‖`∞h ≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),

‖flin;U ;expl[V ]‖`2h + ‖flin;U ;sh[V ]‖`2h ≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),

‖flin;U ;expl[V ]‖`∞h + ‖flin;U ;sh[V ]‖`∞h ≤ K ‖∂+V ‖`∞h ≤ KT∞;opt(V )

(D.32)

hold for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. These bounds follow by inspection.

Lemma D.9. Fix 0 < κ < 1
12 and pick f ∈ {XB ,XC ,XD}. There exists a constant K > 0 so that

the following properties are true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound

‖fapx;expl(U)‖`∞h + ‖fapx;sh(U)‖`∞h ≤ K. (D.33)

(ii) For any h > 0 and U ∈ Ωh;κ, we have the bound

‖fapx;sh(U)‖`∞h ≤ Kh ≤ KSsh;full(U). (D.34)

(iii) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥fapx;expl(U
(1))− fapx;expl(U

(2))
∥∥
`∞h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

≤ KSdiff;full

(
U (1), U (2)

)
,∥∥fapx;sh(U (1))− fapx;sh(U (2))

∥∥
`∞h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

≤ KSdiff;full

(
U (1), U (2)

)
.

(D.35)

Proof. These bounds follow from the discrete derivative expressions in Lemma B.1 and the Lipschitz
bounds for γU in (B.4).

Lemma D.10. Fix 0 < κ < 1
12 and pick f ∈ {XB ,XC ,XD}. There exists a constant K > 0 so that

the following properties are true.

(i) For any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h, we have the bounds

‖flin;U ;sh[V ]‖`2h ≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsh;U (V ),

‖flin;U ;rem[V ]‖`∞h ≤ K ‖Esm(U)‖`2h ‖∂
+V ‖`2h ≤ KErem;U (V ).

(D.36)

(ii) For any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bounds∥∥flin;U(1);expl[V ]− flin;U(2);expl[V ]

∥∥
`2h
≤ K

∥∥∂+U (2) − ∂+U (1)
∥∥
`∞h
‖∂+V ‖`2h

≤ KEprod(U (2) − U (1), V ),∥∥flin;U(1);sh[V ]− flin;U(2);sh[V ]
∥∥
`2h

≤ K
∥∥∂+U (2) − ∂+U (1)

∥∥
`∞h
‖∂+V ‖`2h

≤ KEprod(U (2) − U (1), V ),∥∥flin;U(1);rem[V ]− flin;U(2);rem[V ]
∥∥
`∞h

≤ K ‖∂+V ‖`2h
[ ∥∥U (1) − U (2)

∥∥
`2,2h

+
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

]
≤ KEprod(U (2) − U (1), V ).

(D.37)

Proof. Recalling the Lipschitz bounds (C.6), these estimates follow from inspection.
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D.5 Decomposition for Y+
1

Recalling the definitions

Y+
1;apx(U) = γ−1

U S+[∂(2)U ]T+γU ,

Y+
1;lin;U [V ] =

[
γ−3
U ∂0U [S+∂(2)U ]∂0V + γ−1

U S+∂(2)V
]
T+γU

−γ−1
U S+[∂(2)U ]T+

[
γ−1
U ∂0U∂0V + γU

∑
−;h Esm(U)∂0V

]
.

(D.38)

from (3.37) and (3.39), we realize the splittings (4.1) by writing

Y+
1;apx;expl(U) = ∂(2)U,

Y+
1;apx;sh(U) = h

2∂
+∂(2)U + h∂+[γU ]γ−1

U S+[∂(2)U ],

Y+
1;apx;rem(U) = 0,

(D.39)

together with
Y+

1;lin;U ;expl[V ] = S+[∂(2)V ],

Y+
1;lin;U ;sh[V ] = hγ−3

U ∂+[γU ]∂0US+[∂(2)U ]∂0V

+hγ−1
U ∂+[γU ]S+[∂(2)V ]

−hγ−1
U S+[∂(2)U ]∂+

[
γ−1
U ∂0U∂0V

]
,

Y+
1;lin;U ;rem[V ] = γ−1

U S+[∂(2)U ]T+
[
γU
∑
−;h Esm(U)∂0V

]
.

(D.40)

Notice that we have eliminated the T+[∂(2)U ] term in the explicit expressions, while keeping the
T+[∂(2)V ] dependency. This inconsistency is deliberate as it will help us to make a useful substitution
in the sequel.

In addition, we introduce the sets

QY+
1 ;pref = {2,∞}, (D.41)

together with
QY+

1
= {2,∞}, QAY+

1 ;lin
= QBY+

1 ;lin
= {2,∞}. (D.42)

Lemma D.11. Fix 0 < κ < 1
12 and write f = Y+

1 . Then there exists a constant K > 0 so that the
bounds

‖flin;U ;expl[V ]‖`2h + ‖flin;U ;sh[V ]‖`2h ≤ K
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KT safe(V ),

‖flin;U ;expl[V ]‖`∞h + ‖flin;U ;sh[V ]‖`∞h ≤ K
[
‖∂+V ‖`∞h + ‖∂+∂+V ‖`∞h

]
≤ KT∞;opt(V ),

‖flin;U ;rem[V ]‖`2h + ‖flin;U ;rem[V ]‖`∞h ≤ K ‖∂+V ‖`2h ≤ KT safe(V )

(D.43)
hold for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. These bounds follow by inspection.

Lemma D.12. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that the following properties are

true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound∥∥∥Y+
1;apx;expl(U)

∥∥∥
`2h

+
∥∥∥Y+

1;apx;expl(U)
∥∥∥
`∞h

+
∥∥∥Y+

1;apx;sh(U)
∥∥∥
`2h

+
∥∥∥Y+

1;apx;sh(U)
∥∥∥
`∞h

≤ K.

(D.44)
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(ii) For any h > 0 and U ∈ Ωh;κ, we have the bound∥∥∥Y+
1;apx;sh(U)

∥∥∥
`2h

≤ Kh[1 + ‖∂+∂+∂+U‖`2h ] ≤ KSsh;full(U),∥∥∥Y+
1;apx;sh(U)

∥∥∥
`∞h

≤ Kh[1 + ‖∂+∂+∂+U‖`∞h ] ≤ KSsh;full(U).
(D.45)

Proof. These bounds follow from the discrete derivative identities in Lemma B.1.

Lemma D.13. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that we have the bounds∥∥∥Y+

1;lin;U ;sh[V ]
∥∥∥
`2h

≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsh;U (V ),∥∥∥Y+

1;lin;U ;rem[V ]
∥∥∥
`2h

≤ K ‖Esm(U)‖`2h ‖∂
+V ‖`2h ≤ KErem;U (V )

(D.46)

for any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h.

Proof. These estimates follow by inspection.

D.6 Decomposition for Y+
2b

Recalling the definitions

Y+
2b;apx(U) =

[
E+

tw;apx(U)− γ−4
U ∂+∂(2)U

]
+ c∗γ

−3
U S+[∂(2)U ],

Y+
2b;lin;U [V ] = 4[6γ−8

U − 5γ−6
U ]S+[∂(2)U ]T+[∂(2)U ]∂0V

+4γ−6
U ∂0U

[
T+[∂(2)U ]S+[∂(2)V ] + S+[∂(2)U ]T+[∂(2)V ]

]
+g′′(U)[∂0U ]V + g′(U)∂0V

(D.47)

from (3.37) and (3.39), we realize the first splitting in (4.1) by writing

Y+
2b;apx;expl(U) =

[
E+

tw;apx(U)− γ−4
U ∂+∂(2)U

]
+ c∗γ

−3
U ∂(2)U,

Y+
2b;apx;sh(U) = 1

2c∗hγ
−3
U ∂+[∂(2)U ],

Y+
2b;apx;rem(U) = 0.

(D.48)

The second splitting (4.1) is obtained implicitly by recalling the definition (3.15) and writing

Y+
2b;lin;U ;expl[V ] = γ−2

U ∂+
[
MU [V ]

]
+ 2γ−4

U ∂0U [∂(2)U ]MU [V ]− M̃U ;III [V ]

+c∗

[
3γ−5
U ∂0U [∂(2)U ]∂0V + γ−3

U S+[∂(2)V ]
]
,

Y+
2b;lin;U ;sh[V ] = Y+

2b;lin;U [V ]− Y+
2b;lin;U ;expl[V ],

Y+
2b;lin;U ;rem[V ] = 0.

(D.49)

In addition, we introduce the sets

QY+
2b;pref = QY+

2b;lin = QY+
2b;lin;rem = {2}, QY+

2b
= {2,∞}. (D.50)

Lemma D.14. Fix 0 < κ < 1
12 and write f = Y+

2b. Then there exists a constant K > 0 so that the
bound

‖flin;U ;expl[V ]‖`2h + ‖flin;U ;sh[V ]‖`2h ≤ K ‖V ‖`2;2h
≤ KT safe(V ) (D.51)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h.
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Proof. The bound follows by inspection.

Lemma D.15. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that the following properties are

true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound∥∥∥Y+
2b;apx;expl(U)

∥∥∥
`2h

+
∥∥∥Y+

2b;apx;sh(U)
∥∥∥
`2h

+
∥∥∥Y+

2b;apx;expl(U)
∥∥∥
`∞h

+
∥∥∥Y+

2b;apx;sh(U)
∥∥∥
`∞h

≤ K.

(D.52)

(ii) For any h > 0 and U ∈ Ωh;κ, we have the bound∥∥∥Y+
2b;apx;sh(U)

∥∥∥
`2h

≤ Kh[1 + ‖∂+∂+∂+U‖`2h ] ≤ KSsh;full(U),∥∥∥Y+
2b;apx;sh(U)

∥∥∥
`∞h

≤ Kh[1 + ‖∂+∂+∂+U‖`∞h ] ≤ KSsh;full(U).
(D.53)

Proof. Recalling (3.30), the bounds follow by inspection.

Lemma D.16. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that we have the bound∥∥∥Y+

2b;lin;U ;sh[V ]
∥∥∥
`2h

≤ Kh
[
‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h + ‖∂+∂+∂+V ‖`2h

]
+Kh ‖∂+∂+∂+U‖`∞h

[
‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsm;U (V )

(D.54)

for any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h.

Proof. Recalling (3.14), we make the decomposition

Y+
2b;lin;U [V ] = M̃U ;I [V ] + Y+

2b;lin;U ;sh;a[V ] (D.55)

by writing

Y+
2b;lin;U ;sh;a[V ] = 2h[6γ−8

U − 5γ−6
U ][∂(2)U ]∂+[∂(2)U ]∂0V

+4h[6γ−8
U − 5γ−6

U ]S+[∂(2)U ]∂+[∂(2)U ]∂0V

+2hγ−6
U ∂0U

[
∂+[∂(2)U ]∂(2)V + [∂(2)U ]∂+[∂(2)V ]

]
+4hγ−6

U ∂0U
[
∂+[∂(2)U ]T+[∂(2)V ] + [∂(2)U ]∂+[∂(2)V ]

]
.

(D.56)

Introducing the function

Y+
2b;lin;U ;sh;b[V ] = −γ−2

U

[
∂+
[
MU [V ]

]
−M+

U ;apx[V ]
]
− 1

2
hc∗γ

−3
U ∂+[∂(2)V ] (D.57)

and recalling (3.13), we see that

Y+
2b;lin;U ;expl[V ] + Y+

2b;lin;U ;sh;b[V ] = γ−2
U M+

U ;apx[V ] + 2γ−4
U ∂0U [∂(2)U ]MU [V ]− M̃U ;III [V ]

+c∗

[
3γ−5
U ∂0U [∂(2)U ]∂0V + γ−3

U [∂(2)V ]
]

= M̃U ;I [V ] + M̃U ;II [V ] + M̃U ;III [V ]

−M̃U ;III [V ]− M̃U ;II [V ]

= Y+
2b;lin;U − Y

+
2b;lin;U ;sh;a[V ].

(D.58)
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In particular, we obtain

Y+
2b;lin;U ;sh[V ] = Y+

2b;lin;U ;sh;a[V ] + Y+
2b;lin;U ;sh;b[V ]. (D.59)

In view of Proposition C.1, the desired bound now follows by inspection.

Proof of Propositions 4.1-4.6. The statements can be readily verified by inspecting the results in
§D.1-§D.6.

E Reductions for G
Our goal here is to construct the functions Gapx;sh;b, Gapx;rem;b, Glin;U ;sh;b and Glin;U ;rem;b and demon-
strate that they satisfy the corresponding bounds in Propositions 5.2-5.3. We proceed in a relatively
direct fashion, treating each of the components in (3.42) separately and subsequently combining the
results.

E.1 Simplifications for GA
We recall the definition

GA;apx;II(U) =
[
1− Y1;apx;expl(U)T−

[
XA;apx;expl(U)

]]
Y2;apx;expl(U). (E.1)

Substituting the relevant expressions from §D we find

GA;apx;II(U) =
[
1− ∂0UT−

[
∂0U

]]
c∗γ
−1
U ∂0U. (E.2)

We now make the decomposition

GA;apx;II(U) = GA;apx;III(U) + GA;apx;sh;b(U), (E.3)

by introducing

GA;apx;III(U) = c∗

[
1− (∂0U)2

]
γ−1
U ∂0U

= c∗γU∂
0U,

(E.4)

together with
GA;apx;sh;b(U) = −c∗h∂0U∂−

[
∂0U

]
γ−1
U ∂0U. (E.5)

We also recall the definition

GA;lin;U ;II [V ] = −Y1;lin;U ;expl[V ]T−1
[
XA;apx;expl(U)

]
Y2;apx;expl(U)

−Y1;apx;expl(U)T−1
[
XA;lin;U ;expl[V ]

]
Y2;apx;expl(U)

+
[
1− Y1;apx;expl(U)T−1

[
XA;apx;expl(U)

]]
Y2;lin;U ;expl[V ].

(E.6)

Substituting the relevant expressions from §D, we find

GA;lin;U ;II [V ] = −∂0V T−1[∂0U ]
(
c∗γ
−1
U ∂0U

)
−∂0UT−1[∂0V ]

(
c∗γ
−1
U ∂0U

)
+
[
1− ∂0UT−1

[
∂0U

]](
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

)
.

(E.7)

We now make the decomposition

GA;lin;U ;II [V ] = GA;lin;U ;III [V ] + GA;lin;U ;sh;b[V ] (E.8)
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by introducing

GA;lin;U ;III [V ] = −c∗∂0V [∂0U ]γ−1
U ∂0U − c∗∂0U [∂0V ]γ−1

U ∂0U

+
[
1− ∂0U∂0U

](
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

)
= c∗γ

−1
U (2γ2

U − 1)∂0V +MU [V ],

(E.9)

together with

GA;lin;U ;sh;b[V ] = −c∗h∂0V ∂−
[
∂0U

]
γ−1
U ∂0U

−c∗h∂0U∂−
[
∂0V

]
γ−1
U ∂0U

−h∂0U∂−
[
∂0U

](
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

)
.

(E.10)

We summarize our results by writing

GA;apx(U) = GA;apx;III(U) = c∗γU∂
0U,

GA;lin;U [V ] = GA;lin;U ;III [V ] = c∗γ
−1
U (2γ2

U − 1)∂0V +MU [V ]
(E.11)

and obtaining the following bound.

Lemma E.1. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

GA;apx;II(U) = GA;apx(U) + GA;apx;sh;b(U),

GA;lin;U ;II [V ] = GA;lin;U [V ] + GA;lin;U ;sh;b[V ].
(E.12)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds

‖GA;apx;sh;b(U)‖`2h ≤ Kh = KSsh;full(U),

‖GA;lin;U ;sh;b[V ]‖`2h ≤ Kh ‖V ‖`2;2h
≤ KEsh;U (V ).

(E.13)

Proof. In view of Proposition C.1, the bounds follow by inspection.

E.2 Simplifications for GB
We recall the definition

GB;apx;II(U) = Y1;apx;expl(U)
∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
D�−;+

apx (U). (E.14)

Substituting the relevant expressions from §D we find

GB;apx;II(U) = c∗∂
0U
∑
−;h γ

−1
U [∂0U ]∂(2)U. (E.15)

In view of Lemma B.5, we introduce the expressions

GB;apx;III(U) = c∗∂
0U(1− γU ),

GB;apx;sh;b(U) = GB;apx;II(U)− GB;apx;III(U).
(E.16)
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We also recall the definition

GB;lin;U ;II [V ] = Y1;lin;U ;expl[V ]
∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
D�−;+

apx (U)

+Y1;apx;expl(U)
∑
−;h Y2;lin;U ;expl[V ]T−

[
XB;apx;expl(U)

]
D�−;+

apx (U)

+Y1;apx;expl(U)
∑
−;h Y2;apx;expl(U)T−

[
XB;lin;U ;expl[V ]

]
D�−;+

apx (U)

+Y1;apx;expl(U)
∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
D�−;+

lin;U [V ].

(E.17)

Substituting the relevant expressions from §D, we find

GB;lin;U ;II [V ] = ∂0V
∑
−;h

[
c∗γ
−1
U ∂0U

]
∂(2)U

+∂0U
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂(2)U

−3∂0U
∑
−;h

[
c∗γ
−1
U ∂0U

][
∂0U∂0V

]
γ−2
U ∂(2)U

+∂0U
∑
−;h

[
c∗γ
−1
U ∂0U

](
3γ−2
U ∂0U [∂(2)U ]∂0V + ∂(2)V

)
.

(E.18)

A little algebra yields

GB;lin;U ;II [V ] = c∗∂
0V
∑
−;h γ

−1
U [∂0U ]∂(2)U

+∂0U
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂(2)U

+c∗∂
0U
∑
−;h γ

−1
U [∂0U ]∂(2)V.

(E.19)

In view of Lemma’s B.4 and B.5, we introduce the expressions

GB;lin;U ;III [V ] = c∗∂
0V (1− γU )

+∂0U
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂(2)U

+c∗∂
0Uγ−1

U [∂0U ]∂0V − c∗∂0U
∑
−;h

[
γ−3
U [∂(2)U ]∂0V

]
,

GB;lin;U ;sh;b[V ] = GB;lin;U ;II [V ]− GB;lin;U ;III [V ].

(E.20)

After a short computation, we find

GB;lin;U ;III [V ] = c∗∂
0V (1 + γ−1

U − 2γU ) + ∂0U
∑
−;h γ

−2
U [∂(2)U ]MU [V ]. (E.21)

We summarize our results by writing

GB;apx(U) = GB;apx;III(U) GB;lin;U [V ] = GB;lin;U ;III [V ] (E.22)

and obtaining the following bounds.

Lemma E.2. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

GB;apx;II(U) = GB;apx(U) + GB;apx;sh;b(U),

GB;lin;U ;II [V ] = GB;lin;U [V ] + GB;lin;U ;sh;b[V ].
(E.23)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds

‖GB;apx;sh;b(U)‖`2h ≤ Kh = KSsh;full(U),

‖GB;lin;U ;sh;b[V ]‖`2h ≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsh;U (V ).

(E.24)

Proof. The estimates follow from Lemma’s B.4 and B.5.
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E.3 Simplifications for GC and GD
We recall the definition

G#;apx;II(U) = Y1;apx;expl(U)
∑
−;h Y2;apx;expl(U)T−

[
X#;apx;expl(U)D�0;+

apx (U)
]

(E.25)

for # ∈ {C,D}. Inspecting (D.25), we see that

GC;apx;II(U) = −GD;apx;II(U). (E.26)

We also recall the definition

G#;lin;U ;II [V ] = Y1;lin;U ;expl[V ]
∑
−;h Y2;apx;expl(U)T−

[
X#;apx;expl(U)D�0;+

apx (U)
]

+Y1;apx;expl(U)
∑
−;h Y2;lin;U ;expl[V ]T−

[
X#;apx;expl(U)D�0;+

apx (U)
]

+Y1;apx;expl(U)
∑
−;h Y2;apx;expl(U)T−

[
X#;lin;U ;expl[V ]D�0;+

apx (U)
]

+Y1;apx;expl(U)
∑
−;h Y2;apx;expl(U)T−

[
X#;apx;expl(U)D�0;+

lin;U [V ]
]

(E.27)

for # ∈ {C,D}. Using (D.25) once more, we hence see

GC;lin;U ;II [V ] = −GD;lin;U ;II [V ]. (E.28)

E.4 Final decomposition

Recalling the definitions (5.1), we observe that

GA;apx(U) + GB;apx(U) = c∗γU∂
0U + c∗∂

0U(1− γU ) = c∗∂
0U = Gapx(U), (E.29)

together with

GA;lin;U [V ] + GB;lin;U [V ] = c∗γ
−1
U (2γ2

U − 1)∂0V +MU [V ]

+c∗∂
0V (1 + γ−1

U − 2γU ) + ∂0U
∑
−;h γ

−2
U [∂(2)U ]MU [V ]

= c∗∂
0V +MU [V ] + ∂0U

∑
−;h γ

−2
U [∂(2)U ]MU [V ]

= Glin;U [V ].
(E.30)

Proof of Propositions 5.2-5.3 for G. Upon writing

Gapx;sh;b(U) = GA;apx;sh;b(U) + GB;apx;sh;b(U),

Glin;U ;sh;b[V ] = GA;lin;U ;sh;b[V ] + GB;lin;U ;sh;b[V ],
(E.31)

together with Gapx;rem;b = Glin;U ;rem;b = 0, the statements follow from Lemma’s E.1 and E.2.

F Reductions for G+

Our goal here is to construct the functions G+
apx;sh;b, G

+
apx;rem;b, G

+
lin;U ;sh;b and G+

lin;U ;rem;b and demon-
strate that they satisfy the corresponding bounds in Propositions 5.2-5.3. As in the previous section,
we treat each of the components in (3.46) and (3.47) separately and subsequently combine the
results.
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F.1 Simplifications for G+A′b
We recall the definition

G+
A′b;apx;II(U) =

[
1− Y1;apx;expl(U)XA;apx;expl(U)

]
Y+

2b;apx;expl(U). (F.1)

Substituting the relevant expressions from §D, we find

G+
A′b;apx;II(U) = γ2

U

[
E+

tw;apx(U)− γ−4
U ∂+∂(2)U + c∗γ

−3
U ∂(2)U ]

]
= γ2

UE
+
tw;apx(U)− γ−2

U ∂+∂(2)U + c∗γ
−1
U ∂(2)U.

(F.2)

We now make the decomposition

G+
A′b;apx;II(U) = G+

A′b;apx;III(U) + G+
A′b;apx;sh;b(U) (F.3)

by introducing

G+
A′b;apx;III(U) = γ2

UE
+
tw;apx(U)− γ−2

U ∂+∂(2)U + c∗γ
−1
U S+[∂(2)U ], (F.4)

together with

G+
A′b;apx;sh;b(U) = −1

2
c∗hγ

−1
U ∂+[∂(2)U ]. (F.5)

We also recall the definition

G+
A′b;lin;U ;II [V ] = −Y1;lin;U ;expl[V ]XA;apx;expl(U)Y+

2b;apx;expl(U)

−Y1;apx;expl(U)XA;lin;U ;expl[V ]Y+
2b;apx;expl(U)[

1− Y1;apx;expl(U)XA;apx;expl(U)
]
Y+

2b;lin;U ;expl[V ].

(F.6)

Substituting the relevant expressions from §D, we find

G+
A′b;lin;U ;II [V ] = −2∂0U∂0V

[
E+

tw;apx(U)− γ−4
U ∂+∂(2)U + c∗γ

−3
U ∂(2)U

]
+γ2

U

[
γ−2
U ∂+

[
MU [V ]

]
+ 2γ−4

U ∂0U [∂(2)U ]MU [V ]− M̃U ;III [V ]
]

+γ2
Uc∗

[
3γ−5
U ∂0U [∂(2)U ]∂0V + γ−3

U S+[∂(2)V ]
]

= c∗γ
−3
U ∂0U [∂(2)U ]∂0V + c∗γ

−1
U S+[∂(2)V ]

+∂+
[
MU [V ]

]
+ 2γ−2

U ∂0U [∂(2)U ]MU [V ]− γ2
UM̃U ;III [V ]

−2∂0U
[
E+

tw;apx(U)− γ−4
U ∂+∂(2)U

]
∂0V.

(F.7)

We conclude by writing

G+
A′b;apx(U) = G+

A′b;apx;III(U)

= γ2
UE

+
tw;apx(U)− γ−2

U ∂+∂(2)U + c∗γ
−1
U S+[∂(2)U ],

G+
A′b;lin;U [V ] = G+

A′b;lin;U ;II [V ]

(F.8)

and obtaining the following bound.

Lemma F.1. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.
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(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identity

G+
A′b;apx;II(U) = G+

A′b;apx(U) + G+
A′b;apx;sh;b(U). (F.9)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bound∥∥∥G+
A′b;apx;sh;b(U)

∥∥∥
`2h

≤ Kh ‖∂+∂+∂+U‖`2h ≤ KSsh;full(U). (F.10)

Proof. The results follow by inspection.

F.2 Simplifications for G+A′c
We recall the definition

G+
A′c;apx;II(U) = −Y+

1;apx;expl(U)XA;apx;expl(U)T+
[
Y2;apx;expl(U)

]
. (F.11)

Substituting the relevant expressions from §D, we find

G+
A′c;apx;II(U) = −∂(2)U [∂0U ]T+

[
c∗γ
−1
U ∂0U

]
. (F.12)

We now make the decomposition

GA′c;apx;II(U) = GA′c;apx;III(U) + GA′c;apx;sh;b(U) (F.13)

by introducing
G+
A′c;apx;III(U) = −c∗[∂(2)U ]∂0U

[
γ−1
U ∂0U

]
= −c∗γ−1

U (1− γ2
U )∂(2)U,

(F.14)

together with
G+
A′c;apx;sh;b(U) = −h[∂(2)U ]∂0U∂+

[
c∗γ
−1
U ∂0U

]
. (F.15)

In addition, we make the splitting

GA′c;apx;III(U) = GA′c;apx;IV (U) + GA′c;apx;sh;c(U) (F.16)

by writing
G+
A′c;apx;IV (U) = −c∗γ−1

U (1− γ2
U )S+[∂(2)U ], (F.17)

together with
G+
A′c;apx;sh;c(U) = 1

2hc∗γ
−1
U (1− γ2

U )∂+[∂(2)U ]. (F.18)

We also recall the definition

G+
A′c;lin;U ;II [V ] = −Y+

1;lin;U ;expl[V ]XA;apx;expl(U)T+
[
Y2;apx;expl(U)

]
−Y+

1;apx;expl(U)XA;lin;U ;expl[V ]T+
[
Y2;apx;expl(U)

]
−Y+

1;apx;expl(U)XA;apx;expl(U)T+
[
Y2;lin;U ;expl[V ]

]
.

(F.19)

Substituting the relevant expressions from §D, we find

G+
A′c;lin;U ;II [V ] = −S+[∂(2)V ]∂0UT+

[
c∗γ
−1
U ∂0U

]
− ∂(2)U [∂0V ]T+

[
c∗γ
−1
U ∂0U

]
−∂(2)U [∂0U ]T+

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
.

(F.20)
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We now make the decomposition

G+
A′c;lin;U ;II [V ] = G+

A′c;lin;U ;III [V ] + G+
A′c;lin;U ;sh;b[V ] (F.21)

by introducing

G+
A′c;lin;U ;III [V ] = −c∗γ−1

U (1− γ2
U )S+[∂(2)V ]− c∗γ−3

U (1 + γ2
U )[∂(2)U ]∂0U∂0V

−[∂(2)U ]∂0U
[
γ−2
U MU [V ]

]
,

(F.22)

together with

G+
A′c;lin;U ;sh;b[V ] = −hS+[∂(2)V ]∂0U∂+

[
c∗γ
−1
U ∂0U

]
−h[∂(2)U ]∂0V ∂+

[
c∗γ
−1
U ∂0U

]
−h[∂(2)U ]∂0U∂+

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
.

(F.23)

We summarize our results by writing

G+
A′c;apx(U) = G+

A′c;apx;IV (U) G+
A′c;lin;U [V ] = G+

A′c;lin;U ;III [V ] (F.24)

and obtaining the following bounds.

Lemma F.2. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

G+
A′c;apx;II(U) = G+

A′c;apx(U) + G+
A′c;apx;sh;b(U) + G+

A′c;apx;sh;c(U),

G+
A′c;lin;U ;II [V ] = G+

A′c;lin;U [V ] + G+
A;lin;U ;sh;b[V ].

(F.25)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds∥∥∥G+
A′c;apx;sh;b(U)

∥∥∥
`2h

≤ Kh ≤ KSsh;full(U),∥∥∥G+
A′c;apx;sh;c(U)

∥∥∥
`2h

≤ Kh
∥∥∂+∂(2)U

∥∥
`2h
≤ KSsh;full(U).

(F.26)

(iii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds∥∥∥G+
A′c;lin;U ;sh;b[V ]

∥∥∥
`2h

≤ Kh ‖V ‖`2;3h
+Kh ‖∂+∂+∂+U‖`∞h ‖∂

+V ‖`2h
≤ KhEsh;U [V ].

(F.27)

Proof. Recalling Proposition C.1, the bounds follow by inspection.

F.3 Simplifications for G+B′
We recall the definition

G+
B′;apx;II(U) = Y+

1;apx;expl(U)T+
∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
D�−;+

apx (U) (F.28)

Substituting the relevant expressions from §D, we find

G+
B′;apx;II(U) = [∂(2)U ]T+

∑
−;h c∗γ

−1
U ∂0U

[
γ3
U [γ−3

U ∂(2)U
]]

= c∗[∂
(2)U ]T+

∑
−;h γ

−1
U [∂0U ]∂(2)U.

(F.29)
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In view of Lemma B.5, we introduce the expressions

G+
B′;apx;III(U) = c∗[∂

(2)U ]T+(1− γU ),

G+
B′;apx;sh;b(U) = G+

B′;apx;II(U)− G+
B′;apx;III(U).

(F.30)

In addition, we make the splitting

G+
B′;apx;III(U) = G+

B′;apx;IV (U) + G+
B′;apx;sh;c(U) (F.31)

by writing
G+
B′;apx;IV (U) = c∗S

+[∂(2)U ](1− γU ), (F.32)

together with
G+
B′;apx;sh;c(U) = − 1

2c∗h∂
+[∂(2)U ]T+(1− γU )

+c∗hS
+[∂(2)U ]∂+(1− γU ).

(F.33)

We also recall the definition

G+
B′;lin;U ;II [V ] = Y+

1;lin;U ;expl[V ]T+
∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
D�−;+

apx (U)

+Y+
1;apx;expl(U)T+

∑
−;h Y2;lin;U ;expl[V ]T−

[
XB;apx;expl(U)

]
D�−;+

apx (U)

+Y+
1;apx;expl(U)T+

∑
−;h Y2;apx;expl(U)T−

[
XB;lin;U ;expl[V ]

]
D�−;+

apx (U)

+Y+
1;apx;expl(U)T+

∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
D�−;+

lin;U [V ].

(F.34)
Substituting the relevant expressions from §D, we find

G+
B′;lin;U ;II [V ] = S+[∂(2)V ]T+

∑
−;h c∗γ

−1
U ∂0U

[
γ3
U [γ−3

U ∂(2)U
]]

+[∂(2)U ]T+
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

][
γ3
U [γ−3

U ∂(2)U
]]

+[∂(2)U ]T+
∑
−;h c∗γ

−1
U ∂0U

[
(−3)γU∂

0U∂0V [γ−3
U ∂(2)U

]]
+[∂(2)U ]T+

∑
−;h c∗γ

−1
U ∂0U

[
γ3
U [3γ−5

U ∂0U∂(2)U∂0V + γ−3
U ∂(2)V ]

]
.

(F.35)
A little algebra yields

G+
B′;lin;U ;II [V ] = S+[∂(2)V ]T+

∑
−;h c∗γ

−1
U [∂0U ]∂(2)U

+[∂(2)U ]T+
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂(2)U

+[∂(2)U ]T+
∑
−;h c∗γ

−1
U ∂0U [∂(2)V ].

(F.36)

In view of Lemma’s B.5 and B.4, we introduce the expressions

G+
B′;lin;U ;III [V ] = c∗S

+[∂(2)V ]T+(1− γU )

+[∂(2)U ]T+
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂(2)U

+c∗[∂
(2)U ]T+

[
γ−1
U [∂0U ]∂0V −

∑
−;h γ

−3
U [∂(2)U ]∂0V

]
,

G+
B′;lin;U ;sh;b[V ] = G+

B′;lin;U ;II [V ]− G+
B′;lin;U ;III [V ].

(F.37)

A short computation yields

G+
B′;lin;U ;III [V ] = c∗S

+[∂(2)V ]T+(1− γU ) + c∗[∂
(2)U ]T+

[
γ−1
U ∂0U∂0V

]
+[∂(2)U ]T+

∑
−;h γ

−2
U [∂(2)U ]MU [V ].

(F.38)
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We now make the decomposition

G+
B′;lin;U ;III [V ] = G+

B′;lin;U ;IV [V ] + G+
B′;lin;U ;sh;c[V ] (F.39)

by writing
G+
B′;lin;U ;IV [V ] = c∗S

+[∂(2)V ](1− γU ) + c∗[∂
(2)U ]γ−1

U [∂0U ]∂0V

+S+[∂(2)U ]T+
∑
−;h γ

−2
U [∂(2)U ]MU [V ],

(F.40)

together with

G+
B′;lin;U ;sh;c[V ] = c∗hS

+[∂(2)V ]∂+[1− γU ] + hc∗[∂
(2)U ]∂+

[
γ−1
U ∂0U∂0V

]
− 1

2h∂
+[∂(2)U ]T+

∑
−;h γ

−2
U [∂(2)U ]MU [V ].

(F.41)

We summarize our results by writing

G+
B′;apx(U) = G+

B′;apx;IV (U) G+
B′;lin;U [V ] = G+

B′;lin;U ;IV [V ] (F.42)

and obtaining the following bounds.

Lemma F.3. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(a) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

G+
B′;apx;II(U) = G+

B′;apx(U) + G+
B′;apx;sh;b(U) + G+

B′;apx;sh;c(U),

G+
B′;lin;U ;II [V ] = G+

B′;lin;U [V ] + G+
B′;lin;U ;sh;b[V ] + G+

B′;lin;U ;sh;c[V ].
(F.43)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds∥∥∥G+
B′;apx;sh;b(U)

∥∥∥
`2h

≤ Kh ≤ KSsh;full(U),∥∥∥G+
B′;apx;sh;c(U)

∥∥∥
`2h

≤ Kh
∥∥∂+∂(2)U

∥∥
`2h
≤ KSsh;full(U).

(F.44)

(iii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds∥∥∥G+
B′;lin;U ;sh;b[V ]

∥∥∥
`2h

≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KhEsh;U (V ),∥∥∥G+

B′;lin;U ;sh;c[V ]
∥∥∥
`2h

≤ Kh ‖V ‖`2;2h
+Kh ‖∂+∂+∂+U‖`2h ‖V ‖`2;2h

≤ KhEsh;U (V ).

(F.45)

Proof. Recalling Lemma’s B.4 and B.5, the bounds in (ii) and the first bound in (iii) follow by
inspection. The final bound in (iii) follows from Proposition C.1.

F.4 Final decomposition

Arguing as in §E.3 we see that

G+
C;apx;II(U) = −G+

D;apx;II(U), G+
C;lin;U ;II [V ] = −G+

D;lin;U ;II [V ], (F.46)
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so these can be neglected. Leaving the remaining component G+
A′a intact, we recall (3.46), (3.48) and

(4.39) to write

G+
A′a;apx(U) = G+

A′a;apx;II(U) = γ−2
U ∂+∂(2)U,

G+
A′a;lin;U [V ] = G+

A′a;lin;U ;II [V ] = γ2
UM̃U ;III [V ]− 2γ−4

U ∂0U [∂+∂(2)U ]∂0V.
(F.47)

This allows us to define the total

G+
apx;III(U) = G+

A′a;apx(U) + G+
A′b;apx(U) + G+

A′c;apx(U) + G+
B′;apx(U). (F.48)

Substituting the relevant expressions from §F.1-F.3 we obtain

G+
apx;III(U) = γ−2

U ∂+∂(2)U

γ2
UE

+
tw;apx(U)− γ−2

U ∂+∂(2)U + c∗γ
−1
U S+[∂(2)U ]

−c∗γ−1
U (1− γ2

U )S+[∂(2)U ]

c∗S
+[∂(2)U ](1− γU )

= c∗S
+[∂(2)U ] + γ2

UE
+
tw;apx(U).

(F.49)

In order to suppress the final term, we introduce the expressions

G+
apx;sh;b;i(U) = γ2

U

[
E+

tw;apx(U)− ∂+[Etw(U)]
]
,

G+
apx;rem;b;i(U) = γ2

U∂
+[Etw(U)].

(F.50)

Moving on to the linear approximants, we define the function

G+
lin;U ;III [V ] = G+

A′a;lin;U [V ] + G+
A′b;lin;U [V ] + G+

A′c;lin;U [V ] + G+
B′;lin;U [V ]. (F.51)

As a first step towards evaluating this expression, we substitute the relevant identities from §F.1-F.3
to compute

G+
A′a;lin;U [V ] + G+

A′b;lin;U [V ] = γ2
UM̃U ;III [V ]− 2γ−4

U ∂0U [∂+∂(2)U ]∂0V

+c∗γ
−3
U ∂0U [∂(2)U ]∂0V + c∗γ

−1
U S+[∂(2)V ]

+∂+
[
MU [V ]

]
+ 2γ−2

U ∂0U [∂(2)U ]MU [V ]− γ2
UM̃U ;III [V ]

−2∂0U
[
E+

tw;apx(U)− γ−4
U ∂+∂(2)U

]
∂0V

= c∗γ
−3
U ∂0U [∂(2)U ]∂0V + c∗γ

−1
U S+[∂(2)V ]

+∂+
[
MU [V ]

]
+ 2γ−2

U ∂0U [∂(2)U ]MU [V ]

−2∂0U
[
E+

tw;apx(U)
]
∂0V.

(F.52)
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In a similar fashion, we find

G+
A′c;lin;U [V ] + G+

B′;lin;U [V ] = −c∗γ−1
U (1− γ2

U )S+[∂(2)V ]

−c∗γ−3
U (1 + γ2

U )[∂(2)U ]∂0U∂0V

−[∂(2)U ]∂0U
[
γ−2
U MU [V ]

]
+c∗S

+[∂(2)V ](1− γU ) + c∗[∂
(2)U ]γ−1

U [∂0U ]∂0V

+S+[∂(2)U ]T+
∑
−;h γ

−2
U [∂(2)U ]MU [V ]

= c∗S
+[∂(2)V ]− c∗γ−1

U S+[∂(2)V ]− c∗γ−3
U ∂0U [∂(2)U ]∂0V

−γ−2
U ∂0U [∂(2)U ]MU [V ]

+S+[∂(2)U ]T+
∑
−;h γ

−2
U [∂(2)U ]MU [V ].

(F.53)

In particular, we see that

G+
apx;lin;U ;III [V ] = c∗S

+[∂(2)V ] + ∂+
[
MU [V ]

]
+ γ−2

U ∂0U [∂(2)U ]MU [V ]

+S+[∂(2)U ]T+
∑
−;h γ

−2
U [∂(2)U ]MU [V ]

−2∂0U [E+
tw;apx(U)]∂0V.

(F.54)

Comparing this expression with (5.4), we set out to suppress the final term by introducing the
functions

G+
lin;U ;sh;b;i[V ] = −2∂0U

[
E+

tw;apx(U)− ∂+[Etw(U)]
]
∂0V,

G+
lin;U ;rem;b;i[V ] = −2∂0U∂+[Etw(U)]∂0V.

(F.55)

Lemma F.4. Assume that (Hg) is satisfied, pick 0 < κ < 1
12 and recall the definitions (5.4). There

exists a constant K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

G+
apx;III(U) = G+

apx(U) + G+
apx;sh;b;i(U) + G+

apx;rem;b;i(U),

G+
lin;U ;III [V ] = G+

lin;U [V ] + G+
lin;U ;sh;b;i[V ] + G+

lin;U ;rem;b;i[V ].
(F.56)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds∥∥∥G+
apx;sh;b;i(U)

∥∥∥
`2h

≤ Kh ≤ KSsh;full(U),∥∥∥G+
apx;rem;b;i(U)

∥∥∥
`2h

≤ K ‖∂+[Etw(U)]‖`2h ≤ KSrem;full(U).
(F.57)

(iii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds∥∥∥G+
lin;U ;sh;b;i[V ]

∥∥∥
`2h

≤ Kh ‖∂+V ‖`2h
≤ KEsh;U (V ),∥∥∥G+

lin;U ;rem;b;i[V ]
∥∥∥
`2h

≤ K ‖∂+[Etw(U)]‖`∞h ‖∂
+V ‖`2h

≤ KErem;U (V ).

(F.58)

Proof. Recalling (C.5), the bounds follow by inspection.
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Proof of Proposition 5.2-5.3 for G+. Upon introducing the full remainder functions

G+
apx;rem:b(U) = G+

apx;rem;b;i(U),

G+
lin;U ;rem;b[V ] = G+

lin;U ;rem;b;i[V ],
(F.59)

together with their counterparts

G+
apx;sh;b(U) = G+

A′b;apx;sh;b(U) + G+
A′c;apx;sh;b(U) + G+

A′c;apx;sh;c(U)

+G+
B′;apx;sh;b(U) + G+

B′;apx;sh;c(U) + G+
apx;sh;b;i(U),

G+
lin;U ;sh;b[V ] = G+

A′c;lin;U ;sh;b[V ]

+G+
B′;lin;U ;sh;b[V ] + G+

B′;lin;U ;sh;c[V ] + G+
lin;U ;sh;b;i[V ],

(F.60)

the desired estimates follow directly from Lemma’s F.1-F.4.
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