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Lattice differential equations

System of ODE’s, indexed by a lattice Λ,

ẋη = Fη({xλ}λ∈Λ), η ∈ Λ. (1)

• Lattice Λ often infinite, leading to infinite dimensional systems.

• Nonlinearities Fη reflect geometry of the lattice.

• Often only short range interactions.
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Example

Typical example of LDE on the integer lattice Λ = Z
2,

u̇i,j = αLDui,j − f(ui,j), (i, j) ∈ Z2, (2)

LD is a discrete Laplacian, which could be given by

LDui,j = (∆+u)i,j ≡ ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j, or
LDui,j = (∆×u)i,j ≡ ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 − 4ui,j.

(3)

Discrete Laplacian ∆+.

Discrete Laplacian ∆×.
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Bistable nonlinearity, typically
fcub(u) = u(u− a)(u− 1). (4)
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Example Continued

The system (2), i.e.

u̇i,j = α(∆+u)i,j − f(ui,j), (i, j) ∈ Z2, (5)

with α = h−2, arises from discretization of the reaction diffusion equation on R2,

u̇ = ∆u− f(u), (6)

to a rectangular lattice with spacing h.

• Large values of α correspond with the continuous limit h→ 0.
• One can also study (5) with small α and α < 0.
• Away from the continuous limit, (5) has a much richer structure that (6).
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Models

Models leading to LDES can be found in

• Chemical reaction theory
• Image processing and pattern recognition
• Biology
• Material science (Crystals)

The numerical and experimental work of Leon Chua and Martin Hasler is a strong
motivation for the study of LDEs.

They are developing algorithms based on LDEs which identify various prescribed
patterns, for example edges, or corners, in a digitized image.
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Cellular Neural Networks

......
...

...

Figure 1: Already in 1988 Leon O. Chua and Lin Yang developed the concept of
Cellular Neural Networks: large neural nets with local interactions.
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CNN Automata
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Figure 2: Overview of inputs and outputs
for the cell at (0, 0).

State equation

Cẋi,j(t) = − 1
Rx
xi,j(t)+∑

(k,l)∈N Ak,lf(xi+k,j+l) + Iext
(7)

Here N denotes the 3× 3 neighbourhood
{(i, j) | −1 ≤ i ≤ 1, − 1 ≤ j ≤ 1}.
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f(x) = 1
2(|x+ 1| − |x− 1|).
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CNN Pattern Recognition

• One CNN Cell represents one pixel.
• Original state and Iext correspond with input picture.
• Input picture is greyscale with values in range [−1, 1].
• Neural Network should converge to equilibrium state x(∞).
• Output should be black and white, i.e. f(x(∞)) ∈ {−1, 1}. This is equivalent

to |x(∞)| ≥ 1.

Theorem 1. Suppose that A0,0 > R−1
x . Then for inputs corresponding to

greyscale images, the limits

lim
t→∞

xi,j(t) = xi,j(∞) (8)

exist and satisfy |xi,j(∞)| ≥ 1.

This theorem guarantees that the final output f(xi,j(∞)) is a black and white
image.
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CNN Pattern Recognition - Line Detection

The coupling constants Ai,j should be chosen according to the task at hand.

0.0 0.0 0.0

0.00.00.0

1.0 2.0 1.0
Horizontal
line detector
template.

0.0 1.0 0.0

0.01.00.0

0.0 2.0 0.0
Vertical
line detector
template.

Original greyscale
image.

Horizontal line after.Vertical line after.
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CNN Noise Reduction

Goal is to eliminate random noise applied to image.

0.0 1.0 0.0

0.01.00.0

1.0 2.0 1.0
Noise
reduction
template A.

0.0 1.0 0.0

0.01.00.0

1.0 4.0 1.0
Noise
reduction
template B.

0.5 1.0 0.5

0.51.00.5

1.0 4.0 1.0
Noise
reduction
template C.

Original Image.
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CNN Edge Recognition

Goal is to extract edges from an image.

0.0 -1.0 0.0

0.0-1.00.0

-1.0 4.0 -1.0

Edge
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CNN Corner Recognition

Template the same as for edge recognition; Inputs Iext get extra biasterm.
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CNN Circuits

• Cellular Neural Networks can be implemented as electronic circuits.
• Couplings Ak,l can be set by changing impedances of circuit elements.
• Very fast parallel processing possible.

Figure 3: Circuit
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CNN Final Example

Large scale edge recognition using CNN’s is possible.
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Understanding behaviour of LDE’s

• Equilibrium Solutions.

• Transient behaviour.
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Equilibrium Solutions

Mallet-Paret has studied the equilibrium solutions of the system

u̇i,j = −β+(∆+u)i,j − β×(∆×u)i,j − f(ui,j), (i, j) ∈ Z2. (9)

The nonlinearity f is assumed to be an odd function, one of either

fcub,0(z) = γz + z3 γ > 0
flog(z) = (γ − 2)z + log((1 + z)/(1− z)) γ > 0
fcart(z) = γz, −1 < z < 1, (−∞,−1], z = −1, [1,∞), z = 1 γ > 0

(10)
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Equilibrium Solutions Continued

• Pattern of vertical stripes given by ui,j = (−1)ik for some k ∈ R.
• Pattern of horizontal stripes given by ui,j = (−1)jk for some k ∈ R.

These two patterns are solutions when

0 = (4β+ + 8β×)k − f(k). (11)

• Checkerboard pattern ui,j = (−1)i+jk for some k ∈ R.

0 = 8β+k − f(k). (12)
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Bifurcation Analysis

The equilibrium conditions take the form

0 = λk − f(k). (13)

For λ = f ′(0) = γ the solution k = 0 bifurcates. Writing

f(k) = γk +
1
6
f ′′′(0)k3 +O(k5), (14)

we have the solutions for λ nearby γ, with λ > γ

k ∼ ±
√

6(λ− γ)/f ′′′(0). (15)

One can extend this analysis to all solutions with spatial period two, which can be
written as

ui,j = (−1)iv + (−1)jw + (−1)i+jx+ y, (16)

for real v, w, x, y.
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Bifurcation Diagram

γ/8

γ/16

1

9A

B

11

27

19

113

β+

βx

Bifurcation diagram for equilibrium solutions to (9).
Line A: 4β+ + 8β× = γ. Bifurcation line for stripes.
Line B: 8β+ = γ. Bifurcation line for checkerboard.
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Mosaic Solutions

• One can obtain global results when one considers (9) with the cartoon
nonlinearity f4.
• The parameter space {(β+, β×)} can be divided into finitely many regions.
• Each region admits a set of asymptotically stable equilibrium solutions u for

which ui,j ∈ {−1, 0, 1}.
• Some have patterns; others are spatially chaotic.
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Travelling Wave Solutions

Consider the LDE (2),

u̇i,j = αLDui,j − fcub(ui,j, a), (i, j) ∈ Z2, (17)

with the cubic nonlinearity fcub(u, a) = u(u− 1)(u− a).
One often is interested in travelling wave solutions and makes the ansatz

ui,j(t) = φ(ik1 + jk2 − ct). (18)

Substitution into (2) with LD = ∆+ yields

−cφ′(ξ) = α(φ(ξ + k1) + φ(ξ − k1) + φ(ξ + k2) + φ(ξ − k2)− 4φ(ξ))− fcub(φ(ξ), a).

This is a mixed-type functional differential equation, also called a
differential-difference equation (DDE).

One often imposes the limits

limξ→−∞ φ(ξ) = 0, limξ→∞ φ(ξ) = 1. (19)
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Travelling Wave Solutions - Existence

Theorem 1 (Mallet-Paret). The differential difference equation

−cφ′(ξ) = α(φ(ξ + k1) + φ(ξ − k1) + φ(ξ + k2) + φ(ξ − k2)− 4φ(ξ))− fcub(φ(ξ), a),

together with the side conditions

limξ→−∞ φ(ξ) = 0,
limξ→∞ φ(ξ) = 1,
φ(0) = a,

(20)
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has a unique solution (φ, c) whenever c 6= 0. Moreover, this solution depends
C1-smoothly on a when c(a) 6= 0.

Notice that the DDE is translation invariant. The normalization φ(0) = a picks
out a unique translate.
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Travelling Wave Solutions - Stability

Theorem 2. Suppose pi,j(t) = φ(ik1 + jk2 − ct) is a travelling wave solution to
the LDE

u̇i,j = αLDui,j − fcub(ui,j, a), (i, j) ∈ Z2. (21)

Then p is asymptotically stable, i.e., for all ε > 0 there exists δ > 0 such that
for any solution x to the LDE (21) satisfying

‖x(t0)− p(t0)‖ < δ (22)

for some t0, we have

‖x(t)− p(t)‖ < ε (23)

for all t > t0. Furthermore, there exists t∗ such that

lim
t→∞

‖x(t)− p(t+ t∗)‖ = 0. (24)
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Travelling Wave Solutions - Spatial anisotropy

A feature which distinguishes LDEs from PDE’s is spatial anisotropy. Substitution
of the travelling wave ansatz

u(x, t) = φ(k · x− ct) (25)

into the continuous reaction diffusion equation

u̇ = ∆u− fcub(u, a), (26)

leads to

−cφ′(ξ) = φ′′(ξ)− fcub(φ(ξ), a), (27)

which is independent of k. Compare to

−cφ′(ξ) = α(φ(ξ + k1) + φ(ξ − k1) + φ(ξ + k2) + φ(ξ − k2)− 4φ(ξ))− fcub(φ(ξ), a),

which depends on k.
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Spatial anisotropy

The lattice anisotropy can be illustrated by taking k = (cos θ, sin θ) and studying
the c(θ) relation. Example LDE: u̇i,j = (∆+u)i,j − 10fcub(ui,j, a).
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Spatial anisotropy Continued

Another c(θ) plot for u̇i,j = 1
4

(
(∆+u)i,j + (∆×u)i,j

)
− fcub(ui,j, a).
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Travelling Wave Solutions - Propagation Failure

Another feature which distinguishes LDEs from PDEs is propagation failure.

Theorem 3 (Mallet-Paret). The differential difference equation

−cφ′(ξ) = α(φ(ξ + k1) + φ(ξ − k1) + φ(ξ + k2) + φ(ξ − k2)− 4φ(ξ))− fcub(φ(ξ), a)

generally admits a nontrivial interval [a−, a+] for which the wavespeed c
vanishes, i.e.

c(a) = 0, a ∈ [a−, a+]. (28)

c

a

0

a-

a+
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Propagation failure and Spatial Anisotropy

Theorem 4. Consider the travelling wave equation

−cφ′(ξ) = α
(
φ(ξ + k1) + φ(ξ − k1) + φ(ξ + k2) + φ(ξ − k2)− 4φ(ξ)

)
− f̃(φ(ξ), a),

with k = (cos θ, sin θ). Write a+(θ) for the critical value of a at which
propagation failure sets in. Then a+(θ) is continuous whenever tan θ is
irrational and discontinuous whenever tan θ is rational or infinite.

An analogous result has recently been obtained for the cubic fcub.

–0.6

0.6

–0.6 0.5 1

The idealized nonlinearity

f̃(x, a) = x−Heaviside(x− a). (29)
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Our contribution

Analysis of numerical method to solve class of DDEs including

−γφ′′(ξ)− cφ′(ξ) = ε

N∑
j=1

(φ(ξ + rj)− φ(ξ))− fcub(φ(ξ), a) (30)

for γ > 0 and ε > 0, under the conditions

limξ→−∞ φ(ξ) = 0,
limξ→∞ φ(ξ) = 1,
φ(0) = a.

(31)

• The extra second order term required for computational purposes.
• Physically, this term arises if we incorporate local as well as nonlocal effects

into the model.
• It allows us to perform continuation between discrete and continuous Laplacian.

A connecting solution to the DDE (30) is a pair (φ, c) ∈W 2,∞×R which satisfies
the DDE (30) and the conditions (31).
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Newton iteration

Write φ(ξ) =
(
φ(ξ + r1), . . . , φ(ξ + rN)

)
and split the DDE as

−γφ′′(ξ)− cφ′(ξ) = F (φ(ξ)) +G(φ(ξ))

Solutions correspond to zeroes of G : W 2,∞ × R→ L∞, defined by

G(φ, c)(ξ) = −γφ′′(ξ)− cφ′(ξ)− F (φ(ξ))−G(φ(ξ)). (32)

We seek zeroes of the map G via Newton iteration. Normally, this would involve
the iteration step

(φn+1, cn+1) = (φn, cn)− [D1,2G(φn, cn)]−1G(φn, cn), (33)

where D1,2G is the Frechet derivative of G, given by

[D1,2G(φ, c)](ψ, b)(ξ) = −γψ′′(ξ)− cψ′(ξ)−D1F (φ)ψ(ξ)−D1G(φ)ψ(ξ)− bφ′(ξ).

The iteration step involves solving a linear DDE and thus is hard.
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Variant of Newton Iteration

Goal is to relax dependence on shifted arguments. Introduce the operator

Fµ(φ, c)(ξ) = −γφ′′(ξ)− cφ′(ξ)− F (φ(ξ))− µG(φ(ξ)), (34)

where µ ∈ [0, 1] is a relaxation parameter.

The numerical method uses the iteration step

(φn+1, cn+1) = (φn, cn)− [D1,2Fµ(φn, cn)]−1G(φn, cn). (35)

• This is an ODE for µ = 0 of the form γφ′′n+1 + cnφ
′
n+1 = H(φn+1, cn+1, ξ).

• Can use standard boundary solver (like COLMOD) to solve at each iteration
step.
• Second order term ensures that solutions remain smooth, even when c→ 0.
• Essential in light of propagation failure!
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Convergence of The Method

Theorem 5. Let (φ, c) be a connecting solution of the DDE

−γφ′′(ξ)− cφ′(ξ) = F (φ(ξ)) +G(φ(ξ)).

Then the Newton iteration given by

(φn+1, cn+1) = (φn, cn)− [D1,2Fµ(φn, cn)]−1G(φn, cn),

is well-defined and converges to the solution (φ, c) for all initial values (φ0, c0)
which are sufficiently close to the solution (φ, c) and for all µ sufficiently close
to 1.

• Does the DDE with the second order term have a solution?
• How does the second order term affect the solution?
• How do we get an appropriate initial value (φ0, c0)?
• Can we take µ = 0 ?
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Main result

Theorem 6. The differential difference equation

−γφ′′(ξ)− cφ′(ξ) = ε

N∑
j=1

(
φ(ξ + rj)− φ(ξ)

)
− fcub(φ(ξ), a),

with γ > 0 and ε > 0 has a unique connecting solution(
φ(a), c(a)

)
∈W 2,∞ × R for all 0 < a < 1. Moreover, this connecting solution(

φ(a), c(a)
)

depends C1-smoothly on the detuning parameter a.
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Continuation

• In general it is hard to find an appropriate initial solution (φ0, c0).
• The continuity in parameter space established in the previous theorem allows us

to use continuation.
• Progessively advance from easy problems to hard problems, using solution of a

problem as initial condition for next problem.
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Step Nr

Easy Initial Problem

Hard Final Problem
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Main Results continued

Theorem 7. Let (φn, cn) be a sequence of connecting solutions to the DDEs

−γnφ′′(ξ)− cφ′(ξ) = ε

N∑
j=1

(
φ(ξ + rj)− φ(ξ)

)
− fcub(φ(ξ), a),

with γn → 0. Then, after passing to a subsequence, the pointwise limits

φ0(ξ) = limn→∞ φn(ξ),
c0 = limn→∞ cn

(36)

both exist and (φ0, c0) is a connecting solution to the limiting DDE

−cφ′(ξ) = ε

N∑
j=1

(
φ(ξ + rj)− φ(ξ)

)
− fcub(φ(ξ), a).

We can thus hope to uncover the rich behaviour at γ = 0 by choosing γ small
enough.
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Propagation failure
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(
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Limit γ → 0 in critical case a = 0.5
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Large delay term

• When ε increases, delay term becomes dominant ⇒ difficult to converge.
• However, high ε corresponds to the PDE limit and is thus uninteresting.
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Higher Dimensional Systems

• Our complete analysis has been for one dimensional systems.
• One can also study higher dimensional DDEs.
• These have a richer structure!

For example, consider the system{
−10−5φ′′e(ξ)− ceφ′e(ξ) = 1.6

(
φo(ξ)− 2φe(ξ) + φo(ξ − 2)

)
− 15fcub(φe(ξ), a)

−10−5φ′′o(ξ)− coφ′o(ξ) = 1.6
(
φe(ξ + 2)− 2φo(ξ)) + φe(ξ)

)
− 15fcub(φo(ξ), a).

(37)

The solutions were normalized to have φe(0) = a and φo(−1) = a. If we choose
ce = co and φo(ξ) = φe(ξ + 1), the system (37) reduces to a one dimensional
problem which has a unique solution.
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Period Two Bifurcation - Solution Is No Longer Unique
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Ising Spin Model

Application of higher dimensional systems.

Atoms arranged on 1d lattice, each atom has spin vector (s1, s2, s3). Very
important model in solid state physics.

In magnetic field governed by dipole neighbour-neighbour interactions.

ṡ1(x, t) = λs2(x, t),
ṡ2(x, t) = −λx1(x, t) + s3(x, t)

(
s1(x− 1, t) + s1(x+ 1, t)

)
,

ṡ3(x, t) = −s2(x, t)
(
s1(x− 1, t) + s1(x+ 1, t)

)
,

with normalization s2
1 + s2

2 + s2
3 = 1.
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Ising Spin Model continued

Using travelling wave ansatz, we get

cs′1(ξ) = −λs2(ξ),
cs′2(ξ) = λs1(ξ)−

√
1− s2

1(ξ)− s2
2(ξ)

(
s1(ξ − 1) + s1(ξ + 1)

)
.

(38)

• Our method cannot solve this equation as yet.

• Presence of periodic solutions complicates matters.

• Want to adapt method to handle this case.
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Possible future research

• Study high dimensional bifurcations in greater detail. Attempts to find period 4
bifurcation in 4d systems has failed.

• Generalize results to higher dimensions.

• Include periodic solutions.
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The End

The End
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