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Abstract

In this paper we consider the impact that full spatial-temporal discretizations of reaction-diffusion systems

have on the existence and uniqueness of travelling waves. In particular, we consider a standard second-

difference spatial discretization of the Laplacian together with the six numerically stable backward differen-

tiation formula (BDF) methods for the temporal discretization. For small temporal time-steps and a fixed

spatial grid-size, we establish some useful Fredholm properties for the operator that arises after linearizing

the system around a travelling wave. In particular, we perform a singular perturbation argument to lift these

properties from the natural limiting operator. This limiting operator is associated to a lattice differential

equation, where space has been discretized but time remains continuous.

For the backward-Euler temporal discretization, we also obtain travelling waves for arbitrary time-steps.

In addition, we show that in the anti-continuum limit, in which the temporal time-step and the spatial grid-

size are both very large, wave speeds are no longer unique. This is in contrast to the situation for the original

continuous system and its spatial semi-discretization. This non-uniqueness is also explored numerically and

discussed extensively away from the anti-continuum limit.
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1 Introduction

In this paper we study spatial-temporal discretizations of a class of bistable reaction-diffusion equa-
tions that includes the Nagumo PDE

ut = uxx + gcub(u; a), 0 < a < 1, (1.1)
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which is also commonly referred to as the Allen-Cahn equation. The cubic nonlinearity is given by

gcub(u; a) = u(1− u)(u− a), 0 < a < 1. (1.2)

Our goal is to understand the impact that such discretizations have on travelling front solutions of
these systems. Such solutions have the form

u(x, t) = Φ(x+ ct), Φ(−∞) = 0, Φ(+∞) = 1 (1.3)

and play a fundamental role in the analysis of (1.1). Indeed, they are stable with a large domain of
attraction, provide a mechanism by which the energetically favourable background state can invade
the domain and serve as building-blocks for the construction of more complex patterns. Although
explicit expressions for these fronts are available for (1.1), this is not the case in general and one
frequently uses numerical approximations. It is hence rather desirable to understand the effects of
the employed discretization scheme.

Discretization Schemes

The simplest spatial-temporal discretization scheme for (1.1) uses the forward-Euler method with
time-step ∆t > 0 for the temporal component, together with a second-difference stencil on a spatial
grid with spacing h > 0. This provides approximants

u(hj, n∆t) ∼ Uj(n∆t), (j, n) ∈ Z2 (1.4)

that evolve as

1
∆t

[
Uj
(
(n+ 1)∆t

)
− Uj(n∆t)

]
= Fh

(
Uj−1(n∆t), Uj(n∆t), Uj+1(n∆t); a

)
, (1.5)

in which we have defined

Fh
(
Uj−1, Uj , Uj+1; a

)
= 1

h2

[
Uj−1 + Uj+1 − 2Uj ] + gcub

(
Uj ; a

)
. (1.6)

Throughout most of the present paper we treat the spatial discretization as fixed. In this sense,
one could alternatively state that we are interested in temporal discretizations of a class of bistable
lattice differential equations (LDEs) that includes the Nagumo LDE

u̇j(t) = h−2
[
uj−1(t) + uj−1(t)− 2uj(t)

]
+ gcub

(
uj(t); a

)
, 0 < a < 1. (1.7)

Such LDEs arise naturally when modelling physical, chemical or biological systems that have an
inherent discrete spatial structure, such as crystals [36], coupled chemical reactors [27] or myelinated
nerve fibres [2]. The LDE (1.7) is by no means as well-studied as the PDE (1.1), but the literature
concerning the former has expanded rapidly in recent decades.

Although intuitively appealing, the forward-Euler temporal discretization employed in (1.5) has
a number of serious drawbacks. This can be seen by applying it to the test-problem v̇ = λv with
λ < 0, which gives

vn+1 = vn + λ∆tvn = (1 + λ∆t)vn. (1.8)

In order to enforce vn → 0 we must hence demand 0 < ∆t < 2 |λ|−1, a restriction on the step-
size that becomes increasingly severe as λ → −∞. This can be easily overcome by employing the
backward-Euler discretization, which demands

vn+1 = vn + λ∆tvn+1 (1.9)
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and hence yields

vn+1 = (1− λ∆t)−1vn. (1.10)

In this case we see vn → 0 for any time-step ∆t > 0. We remark that a numerical scheme is called
A(α)-stable if this latter property holds for the entire wedge

λ ∈ {z ∈ C \ {0} : arg(−z) < α}. (1.11)

In particular, the backward-Euler discretization is A(π2 )-stable, since

|1− λ∆t| ≥ |Re 1− λ∆t| ≥ 1− (∆t) Reλ > 1 (1.12)

holds whenever Reλ < 0 and ∆t > 0.
Replacing the forward-Euler temporal discretization in (1.5) by its backward-Euler counterpart,

we obtain the evolution

1
∆t

[
Uj
(
n∆t

)
− Uj

(
(n− 1)∆t

)]
= Fh

(
Uj−1(n∆t), Uj(n∆t), Uj+1(n∆t); a

)
, (1.13)

which plays a primary role in this paper. In fact, the backward-Euler discretization is the first
member of a family of six discretization schemes commonly referred to as backward differentiation
formula (BDF) methods. These methods are all A(α)-stable with various coefficients 0 < α ≤ π

2 .
The nature of their construction ensures that these schemes can be conveniently analyzed and they
are commonly used in codes to solve parabolic problems. For these reasons, we have singled out this
family of temporal discretization schemes for our analysis in this paper. We note however that there
are other stiffly stable numerical methods, see for example [15].

In our case, the second BDF method takes the form

1
2∆t

[
3Uj

(
n∆t

)
− 4Uj

(
(n− 1)∆t

)
+ Uj

(
(n− 1)∆t

)]
= Fh

(
Uj−1(n∆t), Uj(n∆t), Uj+1(n∆t); a

)
.

(1.14)

We take the opportunity here to point out an important difference between the backward-Euler
evolution (1.13) and the two other fully-discretized systems (1.5) and (1.14) discussed above. In the
former system, all terms that do not involve Uj(n∆t) occur with coefficients of the same sign (after
moving them to the same side of the equation). This is not the case for (1.5), (1.14) and the other
four BDF methods considered in this paper. This powerful property allows us to embed (1.13) into
a larger system that admits a comparison principle. In particular, we will be able to obtain results
for (1.13) with arbitrary ∆t > 0, while having to demand ∆t ≈ 0 for the other BDF discretizations.

Existence of travelling fronts

Continuous setting The front solutions (1.3) to the PDE (1.1) can be found explicitly by solving
the planar ODE

cΦ′(ξ) = Φ′′(ξ) + gcub

(
Φ(ξ); a

)
. (1.15)

In particular, for each a ∈ (0, 1) there is a unique wave speed c(a) for which a travelling front exists.
The front profile itself is also unique up to translations. By symmetry, we have c( 1

2 ) = 0. In addition,
we have ∂ac(a) < 0, which for some c0 > 0 allows us to define a single-valued function a(c) with
c ∈ (−c0, c0).
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Semi-discrete setting By contrast, substitution of the travelling wave Ansatz

uj(t) = Φ(j + ct), Φ(−∞) = 0, Φ(+∞) = 1 (1.16)

into the LDE (1.7) with h = 1 leads to the mixed type functional differential equation (MFDE)

cΦ′(ξ) = Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + gcub

(
Φ(ξ); a

)
. (1.17)

A number of powerful tools have been developed in the past decades to analyze MFDEs, which
present significant mathematical challenges [16, 28, 31, 34, 35].

As in the continuous case, there is a unique wave speed c(a) that allows fronts to exists for
each a ∈ (0, 1) [29]. However, the inverse function a(c) is typically multi-valued for c = 0, in which
case wave profiles may become step-like and lose their uniqueness [11, 20]. This can be seen as a
consequence of the broken translational invariance, which is manifested by the fact that the wave
speed c appears in (1.17) in a singular fashion.

Fully discrete setting Our primary concern in this paper is to establish the existence of travelling
fronts

Uj(n∆t) = Φ(j + nc∆t), Φ(−∞) = 0, Φ(+∞) = 1, (1.18)

after temporally discretizing (1.7) using the BDF methods discussed above. For the backward-Euler
discretization, such fronts must satisfy the system

1
∆t [Φ(ξ)− Φ(ξ − c∆t)] = Fh

(
Φ(ξ − 1),Φ(ξ),Φ(ξ + 1); a

)
= h−2

[
Φ(ξ − 1) + Φ(ξ + 1)− 2Φ(ξ)

]
+ gcub

(
Φ(ξ); a

)
.

(1.19)

This is a difference equation for all c ∈ R. In particular, it is natural to ask whether the a(c) relation
can be be multi-valued even for c 6= 0. We note that related phenomena have been observed in
monostable KPP systems [32] in the presence of inhomogeneities. Investigating the a(c) relationship
is therefore our secondary concern in this paper. Our results cover three distinct regimes for the
time-step ∆t > 0, which we now briefly discuss.

The small time-step limit For ∆t ↓ 0, we set up a perturbation argument to construct solutions
to (1.19) and its higher order counterparts that are close to solutions (c,Φ) to (1.17). Fixing h = 1,
the key technical ingredient here is the understanding of the fully discrete operator

[Lfdv](ξ) = − 1
∆t

[v(ξ)− v(ξ − c∆t)] + v(ξ − 1) + v(ξ + 1)− 2v(ξ) + g′cub(Φ(ξ); a)v(ξ), (1.20)

for ξ in an appropriate subset of R. This operator is associated to the linearization of (1.19) around
a solution of (1.17). The main question is in what sense this operator inherits properties from its
semi-discrete counterpart

[Lsdv](ξ) = −cv′(ξ) + v(ξ − 1) + v(ξ + 1)− 2v(ξ) + g′cub(Φ(ξ); a)v(ξ), (1.21)

which by now is well-understood [21, 29]. The transition between Lsd and Lfd is highly singular,
since an (unbounded) derivative is replaced by a (bounded) finite difference and the natural domain
for ξ varies from the whole line to a subset of the line.

A related situation was encountered by Bates and coworkers when studying spatial discretizations
of (1.1), although here the singular transition was between two differential equations of order two
and one. Nevertheless, we are able to mimic the spirit of their approach in our situation to obtain a
Fredholm-type result for Lfd in §3. This allows us to use a standard Liapunov-Schmidt perturbation
argument to study the nonlinear problem (1.19).
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At present our approach is limited to rational values of the combination c∆t. In such cases, we
find that the natural domain for (1.19) is a discrete subset of the line. Since one can choose on which
such subset the unperturbed wave Φ is sampled, we in fact get a continuous branch of solutions to
the perturbed problem (1.19). We believe that this is the mechanism by which the non-uniqueness
of the a(c) relation arises and we discuss this issue in considerable detail in §5.

When studying problems involving MFDEs, the need to distinguish between rationally and ir-
rationally related shifts frequently arises. Indeed, when studying planar travelling wave solutions to
LDEs posed on Z2, the rationality of the (tangent of the) direction of propagation has played an
important role in the analysis of phenomena such as crystallographic pinning [4, 7, 20, 23, 30] and
nonlinear wave stability [18, 19]. In §5 we discuss some potential connections between the results in
[20] and the issues encountered here.

Fixed time-step Upon fixing the time-step ∆t > 0, it is possible to analyze the backward-Euler
travelling wave equation (1.19) (but not the other BDF methods) by embedding it into the MFDE

νΦ′(ξ) =
1

∆t
[Φ(ξ − c∆t)− Φ(ξ)] + h−2

[
Φ(ξ − 1) + Φ(ξ + 1)− 2Φ(ξ)

]
+ gcub

(
Φ(ξ); a

)
(1.22)

and looking for solutions with ν = 0. This allows us to directly apply some important results obtained
by Mallet-Paret in his landmark paper [29]. In particular, the (possibly) multi-valued a(c) relation
is non-empty for small |c| and the non-uniqueness of this relation can be directly related to the
phenomenon of propagation failure for solutions to bistable LDEs. Our results in this setting also
work for c∆t /∈ Q since we are able to exploit some powerful monotonicity properties of the auxiliary
variable ν.

Anti-continuum limit Finally, for ∆t→∞ and h→∞, which can be seen as the anti-continuum
limit for (1.1), we can study (1.19) by adapting an elegant construction devised by Keener in his
pioneering paper [25] for the Nagumo LDE (1.7). This allows us to show that the a(c) relation is
indeed multi-valued for all c ∈ R, for choices of ∆t and h that can be made explicit. The argument
is essentially that a blocking region for Φ in (1.22) exists that prevents either of the two stable
background states Φ ≡ 0 and Φ ≡ 1 from invading the domain. This forces ν = 0 to hold for our
auxiliary speed-like variable.

Motivation

Our primary motivation for this work is to contribute to the on-going systematic approach to un-
derstand the impact of discretization schemes on the dynamics that they are designed to capture.
Of course, there is a tremendous amount of literature concerning the accuracy of numerical schemes,
but these studies typically focus on finite time error bounds. Our concern is more related to the
persistence of structures that exist for all time. An interesting discussion on this topic can be found
in [13], which studies the impact of discretization on attractors for ODEs.

In some sense this work can be seen as a follow-up to the series [8–10], where ad-hoc techniques
are developed to provide insight on the impact of spatial-, temporal- and spatial-temporal disceti-
zations on the dynamics of travelling waves. These works include rigorous, formal, and first order
results for smooth and piecewise linear bistable nonlinearities. Roughly speaking, it was found that
spatial discretization schemes have a relatively high impact on slow waves, while temporal discretiza-
tions have more effect on fast waves. In addition, the non-uniqueness of the a(c) relationship was
established for fully discretized systems with a piecewise-linear nonlinearity; see [8, Fig. 3].

We note that complete discretizations have been analyzed by Chow, Mallet-Paret, and Shen [5]
in their work on the stability of bistable lattice traveling waves. These authors obtain the existence
of fully discretized travelling waves by looking directly at Poincare return-maps for the dynamics
of (1.7), in contrast to our approach which focusses on the travelling wave equations (1.19) and the
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linear operator Lfd. The benefits of our linear analysis are that we are able to (partially) address
questions concerning uniqueness and parameter dependence of these waves. In addition, based on
our prior experience in [18, 19, 21], we believe that the full power of understanding Lfd will come
into play when addressing the stability of these waves under the fully discretized dynamics. Indeed,
addressing this issue appears to be the natural next step in the broader program outlined above.

By now, there are many well-established codes such as DASSL [33], LSODE [17], and VODE
[3] that are used by practitioners to solve parabolic problems such as those considered here. At
their heart, these codes typically employ BDF discretizations to solve the underlying stiff problems.
However, in order to increase accuracy and efficiency, non-uniform adaptive spatial discretizations
are often considered together with temporal methods that involve variable orders and time-steps.
Our hope is that the present work can be used as a starting point for rigorously understanding these
more complicated algorithms.

Organization

This paper is organized as follows. In §2 we formulate the standard bistability assumptions we need
to impose on our system and recall the k-step BDF methods for k ∈ {1, . . . , 6}. We also state our
main results for the three time-step regimes that were discussed above. Section 3 is focused on the
analysis of the linearized operators Lfd and their relation with a multi-component version of Lsd,
inspired by the analysis of Bates and coworkers in [1]. We prove our main results in §4, exploiting the
linear theory developed in §3 together with the work of Mallet-Paret [29] and Keener [25]. Finally,
in §5 we discuss the significance of the results obtained, the complications arising in the case of
irrational c∆t and potential connections with work by other authors on asymptotic analysis [26] and
crystallographic pinning [20].

Acknowledgments Hupkes acknowledges support from the Netherlands Organization for Scien-
tific Research (NWO). Van Vleck acknowledges support from the NSF (DMS-1115408 and DMS-
1419047).

2 Main Results

Our main results concern the well-known Nagumo LDE

u̇j(t) = κ
[
uj+1 + uj−1 − 2uj(t)

]
+ g
(
uj(t); a

)
, (2.1)

with κ > 0, j ∈ Z, t ∈ R and uj(t) ∈ R. We impose the following standard bistability conditions on
the nonlinearity g, which in the terminology of [29] imply that (2.1) is a normal family.

(Hg) The nonlinearity g : R×R→ R is Cr-smooth for some integer r ≥ 2, with ∂ag(u; a) < 0 for all
a ∈ (0, 1) and u ∈ (0, 1). In addition, we have the identities g(0; a) = g(1; a) = g(a; a) = 0 for
all a ∈ (0, 1) together with the inequalities g(u; a) < 0 for u ∈ (0, a) ∪ (1,∞) and g(u; a) > 0
for u ∈ (−∞, 0) ∪ (a, 1). Finally, the derivatives of g with respect to u satisfy the inequalities

∂ug(0; a) < 0, ∂ug(a; a) > 0, ∂ug(1; a) < 0 (2.2)

together with

∂aug(0; a) < 0, ∂aug(1; a) > 0. (2.3)

The reader may wish to keep in mind the prototype cubic nonlinearity g(u; a) = u(u − 1)(a − u),
which may easily be verified to satisfy (Hg).
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αn;k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0 −1 1
3 − 2

11
3
25 − 12

137
10
147

n = 1 1 − 4
3

9
11 − 16

25
75
137 − 72

147

n = 2 1 − 18
11

36
25 − 200

137
225
147

n = 3 1 − 48
25

300
137 − 400

147

n = 4 1 − 300
137

450
147

n = 5 1 − 360
147

n = 6 1

βk 1 2
3

6
11

12
25

60
137

60
147

Table 1: The coefficients αn;k and βk associated to the six BDF schemes as introduced in (2.5).

In many situations one is unable or unwilling to solve (2.1) exactly for all time t ≥ 0. Instead,
the desire is to approximate the solution at discrete time intervals t = n∆t by

uj(n∆t) ∼ Uj(n∆t), n ∈ Z≥0, j ∈ Z. (2.4)

In order to formulate an equation for the evolution of the approximant U , one needs to replace the
temporal derivative appearing in (2.1) by an appropriate discretized version.

The BDF discretizations are a collection of six different methods to accomplish this task, utilizing
interpolation polynomials of varying degree. In particular, the BDF method of order k ∈ {1, 2, . . . 6}
approximates u̇ in (2.1) at t = n∆t by constructing an interpolating polynomial of degree k through
the k + 1 values {U

(
(n− n′)∆t

)
}kn′=0 and computing the derivative of this polynomial at U(n∆t).

In particular, for the BDF method of order k, the evolution of U is governed by

β−1
k

1
∆t

∑k
n′=0 αn′;kUj

(
n∆t− (k − n′)∆t

)
= κ

[
Uj+1(n∆t) + Uj−1(n∆t)− 2Uj(n∆t)

]
+g
(
Uj(n∆t); a

)
,

(2.5)

in which the coefficients βk and {αn′;k} are determined implicitly by the identities

k∑
n′=0

αn′;kU((n′ − k)∆t) =
k∑

n′′=1

[∂n
′′
U ](0), βk =

k∑
n′=0

αn′;k(n′ − k), (2.6)

where we have introduced the notation

[∂U ](n′∆t) = U(n′∆t)− U
(
(n′ − 1)∆t

)
. (2.7)

This definition implies that
∑k
n′=0 αn′;k = 0, which allows us to write

βk =
k∑

n′=0

αn′;k(n′ − k) =
k∑

n′=1

αn′;kn
′. (2.8)

We remark here that the BDF method of order k = 1 is more commonly known as the backward
Euler method. For convenience, the values of these coefficients can be found in Table 2. Naturally,
the construction above can be repeated for arbitrary orders k ≥ 7, but the resulting schemes are
numerically unstable.
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Our goal in this paper is to study travelling wave solutions to the fully discrete system (2.5).
Such solutions have the special form

Uj(n∆t) = Φ(j + nc∆t), (2.9)

for some wave speed c and profile Φ that connects the two stable equilibria of the nonlinearity g. In
particular, we demand

Φ(−∞) = 0, Φ(+∞) = 1, (2.10)

in a sense that we make precise below.

2.1 The small time-step limit ∆t→ 0.

For notational convenience, we introduce the quantity M = (c∆t)−1. Inserting the Ansatz (2.9) into
(2.5), we find that the pair (c,Φ) must satisfy the system

c[Dk,MΦ](ξ) = κ
[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
(2.11)

for all ξ that can be written as ξ = n+jM−1 for (j, n) ∈ Z2. Here we have introduced the expressions

[Dk,MΦ](ξ) = β−1
k M

k∑
n′=0

αn′;kΦ
(
ξ − (k − n′)M−1

)
, (2.12)

for k ∈ {1, 2, . . . 6}. For instance, for k = 1 and k = 2 we have

[D1,MΦ](ξ) = M
[
Φ
(
ξ
)
− Φ

(
ξ −M−1

)]
,

[D2,MΦ](ξ) = 3
2M

[
Φ
(
ξ
)
− 4

3Φ
(
ξ −M−1

)
+ 1

3Φ
(
ξ − 2M−1

)]
.

(2.13)

The expressions Dk,MΦ can be thought of as order k approximations of the derivative Φ′. Indeed,
let us consider any function Φ ∈ Ck+1(R,R) and suppose for concreteness that M > 0. For fixed ξ,
one can then approximate the shifted terms in (2.12) by the k-th order Taylor polynomial centered
at ξ, up to an error of order M−(k+1)Φ(k+1)(ξ + ϑ) for some ϑ ∈ [−kM−1, 0]. The uniqueness of
interpolating polynomials together with the defining property of the k-th order BDF method now
imply the estimate

|[Dk,MΦ](ξ)− Φ′(ξ)| ≤ CkM−k sup
−kM−1≤ϑ≤0

∥∥∥Φ(k+1)(ξ + ϑ)
∥∥∥ , (2.14)

in which the constant Ck ≥ 1 is independent of Φ and M .
Some of our results require a restriction on the values of M that are allowed. In particular, upon

fixing an integer q ≥ 1, we need to introduce the set

Mq = {p
q

: p ∈ N has gcd(p, q) = 1 and p ≥ q}, (2.15)

which contains all irreducible fractions larger than one that have q as their denominator. We often
use the notation M = p

q ∈ Mq, as an implicit definition for an integer p = p(M) = qM . We note
that for M = p

q ∈ Mq, the natural domain of definition for ξ in the discretized travelling wave
equation (2.11) is the set p−1

Z.
The fully discretized travelling wave system (2.11) should be contrasted to the travelling wave

MFDE

cΦ′(ξ) = κ
[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
, (2.16)

8



which arises after substituting uj(t) = Φ(j + ct) into the LDE (2.1). Our first result constructs a
branch of solutions to (2.11) for large M that bifurcates from a solution to (2.16) with non-zero
wave speed. In particular, we need to impose the following condition, which is guaranteed [29] to
hold for an open set of a ∈ (0, 1).

(HΦ)a The travelling wave MFDE (2.16) with a = a admits a solution (c,Φ) = (c,Φ) for which the
wave speed has c 6= 0 while the wave profile satisfies the limits

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1. (2.17)

The linearization of the MFDE (2.16) around a solution (c,Φ) covered by (HΦ)a can be described
by the operator L : H1(R,R)→ L2(R,R) that acts as

[Lv](ξ) = −cv′(ξ) + κ
[
v(ξ + 1) + v(ξ − 1)− 2v(ξ)

]
+ g′

(
Φ(ξ); a

)
v(ξ). (2.18)

In [29, Thm. 4.1] it was established that L is Fredholm with index zero, with a one dimensional
kernel spanned by Φ

′
> 0. In addition, there is a strictly positive function Ψ, normalized to have∫

Ψ(ξ)Φ
′
(ξ) = 1, (2.19)

so that the range of L is given by

Range (L) = {w ∈ L2(R,R) :
∫

Ψ(ξ)w(ξ) dξ = 0}. (2.20)

Theorem 2.1. Fix κ > 0 and pick a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. Consider the LDE (2.1)
and suppose that (Hg) is satisfied. Pick a in such a way that also (HΦ)a is satisfied. Then there exist
constants M∗ � 1 and δa > 0 so that for any M = p

q ∈ Mq with M ≥ M∗, there are Cr−1-smooth
functions

cM : R× [a− δa, a+ δ]→ R, ΦM : R× [a− δa, a+ δa]→ `∞(p−1
Z;R) (2.21)

that satisfy the following properties.

(i) For any (ϑ, a) ∈ R × [a − δa, a + δa], the pair c = cM (ϑ, a) and Φ = ΦM (ϑ, a) satisfies the
system

c[Dk,MΦ](ξ) = κ
[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
, ξ ∈ p−1

Z, (2.22)

together with the boundary conditions

lim
ξ→−∞; ξ∈p−1Z

Φ(ξ) = 0, lim
ξ→+∞; ξ∈p−1Z

Φ(ξ) = 1. (2.23)

(ii) For any (ϑ, a) ∈ R× [a− δa, a+ δa], the function Φ = ΦM (ϑ, a) admits the normalization∑
ξ∈p−1Z

Ψ(ξ + ϑ)
[
Φ(ξ)− Φ(ξ + ϑ)

]
= 0. (2.24)

(iii) For any (ϑ, a) ∈ R× [a− δa, a+ δa], we have the shift-periodicity

cM (ϑ+ p−1, a) = cM (ϑ, a), ΦM (ϑ+ p−1, a)(ξ) = ΦM (ϑ, a)(ξ + p−1). (2.25)
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(iv) For any (ϑ, a) ∈ R× [a− δa, a+ δa], we have the inequality

∂acM (ϑ, a) < 0. (2.26)

In addition, there exists δ > 0 such that the following holds true. Any triplet (c,Φ, ϑ) ∈ R ×
`∞(p−1

Z,R)× R that satisfies (2.22) for some pair (a,M) ∈ R×Mq with

|a− a| < δ, M =
p

q
> δ−1 ≥M∗ (2.27)

and enjoys the estimate

p−1
∑

ξ∈p−1Z

[∣∣Φ(ξ)− Φ(ξ + ϑ)
∣∣2 +

∣∣[Dk,MΦ](ξ)− [Dk,MΦ](ξ + ϑ)
∣∣2] < δ2, (2.28)

must actually satisfy Φ = ΦM (ϑ̃, a) and c = cM (ϑ̃, a) for some ϑ̃ ∈ R.

The normalization factor p−1 appearing in (2.28) is required to compensate for the growing
number of terms in the sum as p → ∞, as we discuss more fully in §3. The final claim can hence
be interpreted as a local uniqueness with respect to a `2-type norm. We also expect this uniqueness
to hold for the supremum norm, but this would require some modifications to our arguments along
the lines of [24, §4]. Notice however that there is no restriction of the type c ≈ c on the wave speed
appearing in this uniqueness claim.

Since M = (c∆t)−1 remains fixed for the branches (cM ,ΦM ) obtained above, fluctuations in c
automatically lead to fluctuations in ∆t. Our main goal however is to understand the behaviour
of (2.11) for fixed ∆t > 0. To this end, we note that the inequality (2.26) implies that for each
fixed (ϑ0, a0) ∈ R × (0, 1) with |a0 − a| < δa, one can find a small constant δ0 > 0 together with a
Cr−1-smooth function

a∗ : (ϑ0 − δ0, ϑ0 + δ0)→ (0, 1), (2.29)

with a∗(ϑ0) = a0, so that

c0 := cM (ϑ0, a0) = cM
(
ϑ, a∗(ϑ)

)
(2.30)

holds for all ϑ with |ϑ− ϑ0| < δ0. This gives us a local one-parameter family of solutions to (2.11)
that all share the same wave speed c0 and time-step ∆t = (∆t)0, but with detuning parameters
a∗(ϑ) that could potentially fluctuate.

Indeed, the implicit function theorem gives

∂ϑa∗(ϑ0) = −∂ϑcM (ϑ0, a0)/∂acM (ϑ0, a0). (2.31)

Unfortunately, the result above provides no information on ∂ϑcM , as we discuss in detail in §5.
Nevertheless, if this quantity is non-zero, then there is a δ∗ > 0 so that the travelling wave problem
(2.22) with boundary conditions 2.23 admits solutions with ∆t = (∆t)0 and c = c0 for all detuning
parameters a ∈ (a0− δ∗, a0 + δ∗). Stated more informally, the a(c) relation is multi-valued at c = c0.

2.2 The backward-Euler discretization

Let us now restrict ourselves to the BDF-method of order k = 1, also known as the backward-Euler
discretization. In this case, substitution of the Ansatz (2.9) into the fully discretized system (2.5)
yields the travelling wave equation

− 1
∆t

[Φ(ξ − c∆t)− Φ(ξ)] = κ
[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
. (2.32)
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Our goal is to study (2.32) by embedding it into the MFDE

νΦ′(ξ) =
1

∆t
[Φ(ξ − c∆t)− Φ(ξ)] + κ

[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
. (2.33)

This equation fits into the framework developed by Mallet-Paret in [29], since all terms with shifted
arguments come with positive coefficients. As before, we impose the limiting behaviour

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1. (2.34)

The idea here is to fix ∆t > 0 and κ ≥ 0, consider c ∈ R and a ∈ (0, 1) as parameters and look for
solutions (ν,Φ) to (2.33)-(2.34). We note that the limiting case κ = 0 is included here for technical
reasons that will become apparent below.

The next result shows that ν is uniquely defined as a function of (c, a). We are specially interested
in solutions for which ν(c, a) = 0, since these are also solutions to the fully discrete travelling wave
problem (2.32).

Theorem 2.2. Consider the equation (2.33) with κ ≥ 0, suppose that (Hg) is satisfied and fix a
time step ∆t > 0. Then there exists a continuous function ν : R × (0, 1) → R that satisfies the
following properties.

(i) For every c ∈ R and a ∈ (0, 1), there exists a non-decreasing function Φ : R→ R that satisfies
(2.33) with ν = ν(c, a) together with the limits (2.34).

(ii) Suppose that (2.33) with ν = 0 admits a non-decreasing solution Φ that satisfies the limits
(2.34). Then we must have ν(c, a) = 0.

(iii) Suppose that (2.33) with ν 6= 0 admits a solution Φ that satisfies the limits (2.34) (but is
not necessarily non-decreasing). Then ν = ν(c, a) and Φ must be a translate of the solution
described in (i).

(iv) The function ν depends Cr-smoothly on (c, a) wherever ν(c, a) 6= 0, with the inequalities

∂cν(c, a) < 0, ∂aν(c, a) < 0. (2.35)

For explicitness, we write ν(c, a) = ν(c, a;κ,∆t) for the function defined in the result above for
(2.33). This allows us to introduce the quantities

a−(c;κ,∆t) = sup{a ∈ (0, 1) : ν(c, a;κ,∆t) > 0} ∈ (0, 1] ∪ {−∞},

a+(c;κ,∆t) = inf{a ∈ (0, 1) : ν(c, a;κ,∆t) < 0} ∈ [0, 1) ∪ {∞}.
(2.36)

Exploiting the inequalities (2.35), we see that for any detuning parameter a ∈ (0, 1) that satisfies
the inequalities

a−(c;κ,∆t) ≤ a ≤ a+(c;κ,∆t), (2.37)

a solution exists for (2.32) with (2.34). We first state some basic properties of these functions a±.

Corollary 2.3. Consider (2.33) and suppose that (Hg) is satisfied. Fix κ ≥ 0 and ∆t > 0. Then
the maps c 7→ a±(c;κ,∆t) satisfy the following properties.

(i) Both c 7→ a±(c;κ,∆t) are non-increasing, while c 7→ a+(c;κ,∆t) is left-continuous and c 7→
a−(c;κ,∆t) is right-continuous.

(ii) There exists δc > 0 so that for all c ≥ −δc we have a+(c;κ,∆t) < 1, while for all c ≤ δc we
have a−(c;κ,∆t) > 0. In particular, for |c| ≤ δc we have 0 < a−(c;κ,∆t) ≤ a+(c;κ,∆t) < 1.
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Whenever the strict inequality

a−(c;κ,∆t) < a+(c;κ,∆t) (2.38)

is satisfied, the discretized travelling wave problem (2.32) with (2.34) admits waves with the same
wave speed c at multiple values of the detuning parameter a. The next result shows that in the
anti-continuum limit, which can be thought of as a full discretization of the Nagumo PDE (1.1) with
a large time-step ∆t � 1 and a large spatial grid-spacing h � 1, this non-uniqueness of a indeed
holds. In §5 we further discuss this question for different parameter regimes.

Corollary 2.4. Consider (2.33) and suppose that (Hg) is satisfied. Fix a ∈ (0, 1). Then there exists
δ > 0 so that for all (κ,∆t) that have

∆t > δ−1, 0 ≤ κ < δ, (2.39)

the strict inequalities

a−(c;κ,∆t) < a < a+(c;κ,∆t) (2.40)

hold for all c ∈ R.

In order to state our final result, we introduce the quantities

a±−∞(∆t) = a±(−1; 0,∆t), a±+∞(∆t) = a±(+1; 0,∆t). (2.41)

We note that the quantities a±−∞(∆t) are associated to the system

νΦ′(ξ) =
1

∆t
[Φ(ξ + ∆t)− Φ(ξ)] + g

(
Φ(ξ); a

)
, (2.42)

while the quantities a±+∞(∆t) are associated to

νΦ′(ξ) =
1

∆t
[Φ(ξ −∆t)− Φ(ξ)] + g

(
Φ(ξ); a

)
. (2.43)

These systems can be interpreted in a suitable sense as the (rescaled) c → ±∞ limits of (2.33),
which no longer depend on the coefficient κ ≥ 0. Our final result relates the quantities (2.41) to the
c→ ±∞ limits of (2.36).

Corollary 2.5. Consider (2.33) and suppose that (Hg) is satisfied. Fix ∆t > 0 and κ ≥ 0. We then
have the identities

a−+∞(∆t) = −∞, a+
−∞(∆t) = +∞, (2.44)

together with the limiting inequalities

lim
c→∞

a+(c;κ,∆t) ≤ a+
+∞(∆t) < 1, lim

c→−∞
a−(c;κ,∆t) ≥ a−−∞(∆t) > 0. (2.45)

2.3 Numerical examples

In Fig. 1 plots can be found illustrating the functions a±(c) for the problems

− 1
∆t

[Φ(ξ − c∆t)− Φ(ξ)] = Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + g
(
Φ(ξ); a

)
, (2.46)
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Fig. 1: Numerical computation of the edges a−(c) and a+(c) of the interval of detuning parameters at which
solutions to the fully discretized wave equations (2.46) (i) and (2.47) (ii) exist. Both plots also contain the
function a0(c), which gives a as a function of c for the semi-discrete travelling wave MFDE (2.16), again
with nonlinearity (2.48). The strict inequalities a−(c) < a+(c) clearly hold in these examples. In panel (i) the
temporal discretization causes a strict speed-up of the waves, while in panel (ii) this breaks down for c ≈ 1

2
.

and

− 1
2∆t

[−Φ(ξ − 2c∆t) + 4Φ(ξ − c∆t)− 3Φ(ξ)] = Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + g
(
Φ(ξ); a

)
, (2.47)

both with ∆t = 2 and nonlinearity

g(u; a) =
121
12

u(u− 1)(a− u). (2.48)

These two discretizations correspond to the BDF methods with order k = 1 and k = 2.
The plots were computed by repeatedly attempting to solve (2.46) and (2.47) on the finite interval

[−10, 10] for different values of (c, a) ∈ 1
40Z × (0, 1), recording at which parameter values solutions

were successfully found. The accompanying boundary conditions are

Φ(ξ) = 0 for ξ ≤ −10, Φ(ξ) = 1 for ξ ≥ 10. (2.49)

Although we have not defined the quantities a± for k = 2 in our discussion above, we simply define
them here as the edges of the interval for a for which this recipe yields results.

These computations are rather delicate, since the success of the numerical solver depends heavily
on the quality of the supplied initial conditions. Usually, a standard continuation approach can be
applied to supply such high-quality initial conditions. In the current setup there however are two
problems with such an approach that need to be addressed. The first problem is that the set of
ξ ∈ R for which Φ(ξ) needs to be defined does not remain constant when varying the parameter
c. For example, when c = 1

2 one only requires Φ(ξ) for ξ ∈ {−10, 9, . . . , 9, 10}, while for c = 1
40

many additional values are needed. The second problem is that, even for fixed (c, a), solutions to
(2.46) and (2.47) are not unique. In particular, when keeping c fixed and modifying a, one could be
tracking a branch of solutions that terminates at some value of a that need not be a+ or a−.

In order to tackle these problems, we repeated the computations above for a large set of different
initial conditions. In addition, to generate more data a second numerical procedure was followed
to search directly for the branch termination points discussed above. In particular, after fixing
c ∈ 1

40Z but treating a as an unknown, we numerically solved the combined system that arises by
supplementing (2.46) and (2.49) with the auxiliary problem

− 1
∆t

[v(ξ − c∆t)− v(ξ)] = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
Φ(ξ); a

)
v(ξ), (2.50)
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accompanied by the boundary conditions

v(−10) = 0 for ξ ≤ −10, v(0) = 1, v(10) = 0 for ξ ≥ 10. (2.51)

As a final verification step, we found numerical solutions to the augmented system

−10−5Φ′′(ξ) + νΦ′(ξ) =
1

∆t
[Φ(ξ − c∆t)− Φ(ξ)] + Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + g

(
Φ(ξ); a

)
,

(2.52)

using the techniques developed in [7, 23].
This last step gives us a numerical approximation for the ν(c, a) relationship described in Theorem

2.2. As explained in detail in [7, 23], the small term involving Φ′′ is required to handle the transition
c → 0, which in the absence of this smoothening term would be highly singular and thus hard to
handle numerically. Although this extra small term prevents us from solving ν(c, a) = 0 exactly, it
does provide us with a visual means to reasonably verify that the data generated by our first two
methods indeed finds the edges of the entire interval [a−(c), a+(c)] at which solutions exist to (2.46).
Naturally, an analogous approach was used to analyze (2.47).

3 Linear Theory for ∆t→ 0

Throughout this section, we fix κ = 1 for notational convenience. Our goal is to study the linear
operators that arise when linearizing the fully discrete travelling wave equation (2.11) around the
semi-discrete travelling wave (c,Φ) defined in (HΦ)a. In particular, we define the linear expressions

[Lk,Mv](ξ) = −c[Dk,Mv](ξ) + v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
Φ(ξ); a

)
v(ξ) (3.1)

and set out to study in what sense Lk,M inherits properties from the operator L defined in (2.18).
In order to state our results, we need to introduce a number of function spaces. First of all, for

any α ∈ R we write

BCα(R,R) = {p ∈ C(R,R) | supξ∈R e−α|ξ| |p(ξ)| <∞},

BC1
α(R,R) = {p ∈ C1(R,R) | supξ∈R e−α|ξ|[|p(ξ)|+ |p′(ξ)|] <∞}.

(3.2)

In addition, for any µ > 0 and Hilbert space H, we introduce the sequence space

`2µ(H) = {v : µ−1
Z→ H with ‖v‖`2µ(H) := 〈v, v〉1/2`2µ(H) <∞}, (3.3)

in which the inner product is given by

〈v, w〉`2µ(H) = µ−1
∑

ξ∈µ−1Z

〈v(ξ), w(ξ)〉H . (3.4)

The role of the normalization factor µ−1 will become apparent in Lemma 3.1 below.
Let us now fix two integers q ≥ 1 and 1 ≤ k ≤ 6, together with a fraction M = p

q ∈Mq. In order
to streamline our notation, we write YM to refer to the sequence space `2p(R), i.e.,

YM = `2p(R), 〈v, w〉YM = 〈v, w〉`2p(R). (3.5)

We also introduce the sequence space Y1
k,M , which differs from `2p(R) only by the structure of its

inner product. In particular, we write

Y1
k,M = `2p(R), 〈v, w〉Y1

k,M
= 〈v, w〉`2p(R) + 〈Dk,Mv,Dk,Mw〉`2p(R). (3.6)
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In addition, for any f ∈ BC−η(R,R) with η > 0, we write πYM f ∈ YM for the sequence

[πYM f ](ξ) = f(ξ), ξ ∈ p−1
Z. (3.7)

If also f ∈ BC1
−η(R,R), we sometimes use the notation πY1

k,M
f to refer to the same function (3.7)

if we wish to be explicit.

Lemma 3.1. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a constant η > 0. Then
there exists C ≥ 1 so that for all M ∈ Mq, all functions f ∈ BC−η(R,R) and all functions
g ∈ BC1

−η(R,R), we have the bounds

‖πYM f‖YM ≤ C ‖f‖BC−η ,
∥∥∥πY1

k,M
g
∥∥∥
Y1
k,M

≤ C ‖g‖BC1
−η
. (3.8)

Proof. Observe first that for M = p
q ∈Mq we have p−1 ≤M−1 ≤ 1. We may hence compute∥∥e−η|·|∥∥2

`2p(R)
= p−1

[
1 +

∑
j>0 e

−2ηp−1j +
∑
j<0 e

2ηp−1j
]

= p−1 1+e−2ηp−1

1−e−2ηp−1

≤ C ′1(1 + p−1)

≤ 2C ′1,

(3.9)

for some constant C ′1 ≥ 1 that depends only on η > 0. The desired bounds (3.8) follow directly from
this computation together with the estimate

|[Dk,Mf ](ξ)| ≤ sup
−k≤−kM−1≤ϑ≤0

‖f ′(ξ + ϑ)‖ . (3.10)

These preparations in hand, we can now consider the operators Lk,M appearing in (3.1) as
bounded linear maps

Lk,M : Y1
k,M → YM . (3.11)

The remainder of this section is devoted to the proof of the following result, which shows in what
sense the Fredholm structure of the operator L described in §2 can be maintained under the transition
from a continuous to a discrete setting. Indeed, for any f ∈ L2(R,R) one can find v ∈ H1(R,R) for
which we have

Lv = f − Φ
′
∫ ∞
−∞

Ψ(ξ)f(ξ) dξ. (3.12)

In view of the normalization (2.19), one can subsequently arrange for the normalization condition∫ ∞
−∞

Ψ(ξ)v(ξ) dξ = 0 (3.13)

to hold by subtracting an appropriate multiple of Φ
′

from v. Since LΦ
′

= 0, this does not affect the
identity (3.12).

Proposition 3.2. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a constant η > 0.
Consider the LDE (2.1) and suppose that (Hg) is satisfied. Pick a in such a way that also (HΦ)a
is satisfied. Then there exists M∗ ≥ 1 together with a constant C > 1 so that for all M = p

q ∈ Mq

with M ≥M∗, there exist linear maps

γ∗k,M : YM → R, V∗k,M : YM → Y1
k,M (3.14)

that satisfy the following properties for all such M .
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(i) For all f ∈ YM , we have the bounds∣∣γ∗k,Mf ∣∣+
∥∥V∗k,Mf∥∥Y1

k,M

≤ C ‖f‖YM . (3.15)

(ii) For all f ∈ YM , the pair

(γ, v) =
(
γ∗k,Mf,V∗k,Mf

)
∈ R× Y1

k,M (3.16)

is the unique solution to the problem

Lk,Mv = f + γDk,MΦ (3.17)

that satisfies the normalization condition

〈πYMΨ, v〉YM = 0. (3.18)

(iii) For all f ∈ BC1
−η(R,R), we have the bound∣∣γ + 〈πYMΨ, πYM f〉YM

∣∣ ≤ CM−1 ‖f‖BC1
−η(R,R) . (3.19)

3.1 Reformulation

In this subsection we formulate our strategy towards proving Proposition 3.2, which is rather indirect.
Indeed, with the exception of §3.3, our efforts will be focused on establishing the following technical
result.

Proposition 3.3. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. Consider the LDE (2.1) and suppose
that (Hg) is satisfied. Pick a in such a way that also (HΦ)a is satisfied. Then there exists C0 > 0
together with a map M0 : (0, 1) → [1,∞) so that the following holds true. For any 0 < δ < 1 and
any M ∈ Mq for which M ≥ M0(δ), the operator Lk,M − δ is invertible as a map from Y1

k,M onto
YM , with the bound∥∥(Lk,M − δ)−1w

∥∥
Y1
k,M

≤ C0

[
‖w‖YM + δ−1

∣∣〈πYMΨ, w〉YM
∣∣ ]. (3.20)

This result can be seen as the analogue of [1, Thm. 4]. As a consequence, our strategy here
will follow the same broad ideas as those developed in [1], but we will need to make significant
modifications. We first state a preliminary result to aid the reader in interpreting the inner products
appearing in (3.19) and (3.20).

Lemma 3.4. Fix an integer q ≥ 1. There exists C > 1 so that for all M ∈ Mq and all functions
f, g ∈ BC1

−η(R,R), we have the bound∣∣〈f, g〉L2(R,R) − 〈πYM f, πYM g〉YM
∣∣ ≤ CM−1 ‖f‖BC1

−η
‖g‖BC1

−η
. (3.21)

Proof. Upon introducing the quantity

I∗ =
∑

ξ∈p−1Z

∫ ξ+p−1

ξ

[f(ξ′)g(ξ′)− f(ξ)g(ξ)] dξ′, (3.22)

we may compute

〈f, g〉L2(R,R) =
∫
R
f(ξ′)g(ξ′) dξ′

=
∑
ξ∈p−1Z

∫ ξ+p−1

ξ
f(ξ′)g(ξ′) dξ′

=
∑
ξ∈p−1Z

∫ ξ+p−1

ξ
f(ξ)g(ξ) dξ′ + I∗

= p−1
∑
ξ∈p−1Z[πYM f ](ξ)[πYM g](ξ) + I∗

= 〈πYM f, πYM g〉YM + I∗.

(3.23)
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Whenever the pair (ξ, ξ′) satisfies the inequality

ξ ≤ ξ′ ≤ ξ + p−1, (3.24)

we may estimate

|f(ξ′)|+ |f ′(ξ′)| ≤ ‖f‖BC1
−η
e−η|ξ

′| ≤ ep
−1
‖f‖BC1

−η
e−η|ξ| (3.25)

with the analogous estimate for g. In particular, assuming (3.24) and exploiting the product rule
(fg)′ = f ′g + fg′, we have

|f(ξ′)g(ξ′)− f(ξ)g(ξ)| ≤ 2p−1eηp
−1[
‖f‖BC1

−η
‖g‖BC1

−η

]
e−2η|ξ|. (3.26)

This allows us to estimate

|I∗| ≤ 2p−1e2ηp−1 ‖f‖BC1
−η
‖g‖BC1

−η
p−1

∑
ξ∈p−1Z e

−2η|ξ|

= 2p−1e2ηp−1 ‖f‖BC1
−η
‖g‖BC1

−η

∥∥e−η|·|∥∥2

`2p(R)
.

(3.27)

The estimate (3.9) can now be used to complete the proof.

Our next task is to set up a series of additional sequence spaces that will allow us to pass to the
M →∞ limit in a controlled fashion. The main idea is to construct H1 interpolants for functions in
Y1
k,M and L2 interpolants for functions in YM , so that sequences in these spaces can be compared

regardless of the precise value of M . The main issue is that for M = p
q with q > 1, understanding

Dk,Mv for v ∈ Y1
k,M gives insufficient control over differences of the form v(ξ + p−1)− v(ξ).

To compensate for this, we need to perform q separate interpolations, each bridging gaps of size
M−1 = q

p . In particular, fixing an integer q ≥ 1 and writing

Zq = {0, 1, 2, . . . q}, Z
◦
q = {1, 2, . . . q − 1}, (3.28)

we introduce the space

`2q,⊥ = {v : q−1
Zq → R}, (3.29)

equipped with the inner product

〈v, w〉`2q,⊥ = q−1
[

1
2v(0)w(0) + 1

2v(1)w(1) +
∑
ζ∈q−1Z◦q

v(ζ)w(ζ)
]
. (3.30)

This allows us to define the space

HM = {v ∈ `2M (`2q,⊥) : v(1, ξ) = v(0, ξ +M−1) for all ξ ∈M−1
Z}, (3.31)

equipped with the inner product

〈v, w〉HM = M−1
∑

ξ∈M−1Z

〈v(·, ξ), w(·, ξ)〉`2q,⊥ . (3.32)

Here we have introduced the notation v(ζ, ξ) = [v(ξ)](ζ) for v ∈ HM , with ζ ∈ q−1
Zq and ξ ∈M−1

Z.
We extend the operators Dk,M defined in (2.12) to HM by writing

[Dk,Mv](ζ, ξ) = [Dk,Mv(ζ, ·)](ξ), (3.33)

which implies that these operators act only on the second component of v. This allows us to define
our final space

H1
k,M = HM , (3.34)
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but now equipped with the inner product

〈v, w〉H1
k,M

= 〈v, w〉HM + 〈Dk,Mv,Dk,Mw〉HM . (3.35)

In order to relate these new spaces back to the spaces defined earlier, we introduce for M = p
q ∈

Mq the operators

JM : YM → HM , J 1
k,M : Y1

k,M → H1
k,M (3.36)

that both act as

[JMv](ζ, ξ) = v(ξ +M−1ζ), [J 1
k,Mv](ζ, ξ) = v(ξ +M−1ζ), (3.37)

for ζ ∈ q−1
Zq and ξ ∈M−1

Z.

Lemma 3.5. Fix an integer q ≥ 1. For any M = p
q ∈ Mq, the operators JM and J 1

k,M defined in
(3.36) are isometries.

Proof. Since JMDk,M = Dk,MJM , we only have to consider the statement for JM . The invertibility
of JM follows directly from the construction of the space HM . In addition, for any v ∈ YM we may
write w = JMv and compute

‖w‖2HM = q
p

∑
ξ∈M−1Z |w(·, ξ)|2`2q,⊥

= q
p

∑
ξ∈M−1Z

1
q

[
1
2w(0, ξ)2 + 1

2w(1, ξ)2 +
∑
ζ∈q−1Z◦q

w(ζ, ξ)2
]

= 1
p

∑
ξ∈M−1Z

[
1
2v(ξ)2 + 1

2v(ξ +M−1)2 +
∑
ζ∈q−1Z◦q

v(ξ + q
pζ)2

]
= 1

p

∑
ξ∈p−1Z v(ξ)2

= ‖v‖2YM .

(3.38)

Let us again fix η > 0. For any f ∈ BC−η(R,R), we now write πHM f ∈ HM for the function

[πHM f ](ζ, ξ) = f(ξ + ζM−1), ζ ∈ q−1
Zq, ξ ∈M−1

Z, (3.39)

so that πHM = JMπYM .
Our task now is to understand the action of Lk,M interpreted as a map from H1

k,M into HM . To
this end, we pick m ∈ Z such that

1 = (m+ %)M−1, 0 < % ≤ 1, (3.40)

which with M = p
q ∈Mq gives % = p−mq

q and so

mM−1 = 1− %M−1, % ∈ q−1
Zq \ {0}. (3.41)

In fact, because gcd(p, q) = 1 we also have gcd(q%, q) = 1.
We now write Kk,M : H1

k,M → HM for the linear operator that acts as

[Kk,Mv](ζ, ξ) = −c[Dk,Mv](ζ, ξ) + v(ζ + %, ξ + 1− %M−1) + v(ζ − %, ξ − 1 + %M−1)− 2v(ζ, ξ)

+g′
(
Φ(ξ + ζM−1); a

)
v(ζ, ξ),

(3.42)

for ζ ∈ q−1
Zq and ξ ∈M−1

Z, where we introduce the convention

v(ζ ± 1, ξ) = v(ζ, ξ ±M−1). (3.43)

18



The shift % hence acts as a rotation number, connecting the different components of v in the ζ-
direction.

For notational convenience, we introduce the twist operator TM : HM → HM that acts as

[TMv](ζ, ξ) = v(ζ + %, ξ +mM−1), (3.44)

again with the convention (3.43). In addition, we introduce the notation

g′
(
πHMΦ; a

)
: HM → HM (3.45)

to refer to the multiplication operator

[g′
(
πHMΦ; a

)
v](ζ, ξ) = g′

(
Φ(ξ + ζM−1); a

)
v(ζ, ξ). (3.46)

These conventions allow us to write

Kk,Mv = −cDk,Mv + TMv + T−1
M v − 2v + g′

(
πHMΦ; a

)
v (3.47)

and one may easily verify that in fact

Kk,MJ 1
k,Mv = JMLk,Mv, (3.48)

showing that Kk,M and Lk,M are equivalent.
In order to study the formal adjoint of Kk,M , we need to introduce the operator D∗k,M that acts

as

[D∗k,Mv](ζ, ξ) = β−1
k M

k∑
n′=0

αn′;kv
(
ξ + (k − n′)M−1

)
. (3.49)

This allows us to define K∗k,M : H1
k,M → HM by writing

K∗k,Mv = −cD∗k,Mv + TMv + T−1
M v − 2v + g′

(
πHMΦ; a

)
v. (3.50)

As a final preparation, we introduce the subspace

`2q,⊥;∞ = {v ∈ `2q,⊥ : v(1) = v(0)}, (3.51)

together with the notation

[π⊥f ](ζ, ξ) = f(ξ), ζ ∈ q−1
Zq, ξ ∈ R, (3.52)

which constructs a function π⊥f ∈ L2(R, `2q,⊥;∞) from a function f ∈ L2(R,R).
Taking the limit M →∞ while keeping % and q fixed as in (3.40), we find that Kk,M and K∗k,M

formally approach the limiting operators

Kq,% : H1(R, `2q,⊥;∞)→ L2(R, `2q,⊥;∞), K∗q,ρ : H1(R, `2q,⊥;∞)→ L2(R, `2q,⊥;∞) (3.53)

that act as

[Kq,%V ](ζ, ξ) = −c∂ξV (ζ, ξ) + V (ζ + ρ, ξ + 1) + V (ζ − ρ, ξ − 1)− 2V (ζ, ξ)

+g′(Φ(ξ); a)V (ζ, ξ),

[K∗q,%V ](ζ, ξ) = +c∂ξV (ζ, ξ) + V (ζ − ρ, ξ − 1) + V (ζ + ρ, ξ + 1)− 2V (ζ, ξ)

+g′(Φ(ξ); a)V (ζ, ξ),

(3.54)

both with ζ ∈ q−1
Zq and ξ ∈ R. Here we have made the identification V (ζ + 1, ξ) = V (ζ, ξ).

The result below states some basic properties of these limiting operators Kq,% and K∗q,%. The key
ingredient for the proof is [22, Prop 8.2], which generalizes the important scalar result [29, Thm. 4.1]
to the multi-component setting considered here. Indeed, the latter result states that L is Fredholm
with index zero and a one-dimensional kernel, while the former establishes this for Kq,ρ.
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Lemma 3.6. Fix an integer q ≥ 1 together with a constant % ∈ q−1
Zq that has gcd(q%, q) = 1.

Consider the LDE (2.1) and suppose that (Hg) is satisfied. Pick a in such a way that also (HΦ)a is
satisfied. Then the operators Kq,% and K∗q,% are both Fredholm with index zero, with

KerKq,% = span{π⊥Φ
′}, KerK∗q,% = span{π⊥Ψ}. (3.55)

In addition, for any δ > 0 the operator Kq,% − δ is invertible and there exists C > 1 so that∥∥∥∥[Kq,% − δ]−1f − 1
δ
π⊥Φ

′〈π⊥Ψ, f〉L2(R,`2q,⊥;∞)

∥∥∥∥
H1(R,`2q,⊥;∞)

≤ C ‖f‖L2(R,`2q,⊥;∞) (3.56)

holds for any δ > 0 and f ∈ L2(R, `2q,⊥;∞).

Proof. Consider the problem

−c∂ξP (ζ, ξ) = P (ζ + ρ, ξ + 1) + P (ζ − ρ, ξ − 1)− 2P (ζ, ξ) + g
(
P (ζ, ξ); a

)
, (3.57)

for ζ ∈ q−1
Zq and ξ ∈ R, with the identification P (ζ + 1, ξ) = P (ζ, ξ). This problem clearly has a

solution P (ζ, ξ) = Φ(ξ). In addition, the condition on % ensures that (3.57) satisfies the conditions
(HA), (HS1)-(HS2) and (Hf1)-(Hf3) formulated in [22, §2]. This allows us to apply [22, Prop 8.2],
which directly gives the Fredholm properties stated above.

To see that Kq,%− δ is invertible for δ > 0 and that the conditions (S1)-(S3) in [21, §2] hold, one
can use a comparison principle argument analogous to [19, Lem. 6.2] and [5, Lem. 8.3]. The bound
(3.56) now follows from [21, Eq. (2.44)].

We now introduce the quantities

Ek,M (δ) = inf‖v‖H1
k,M

=1

{
‖Kk,Mv − δv‖HM + δ−1

∣∣〈πHMΨ,Kk,Mv − δv〉HM
∣∣ },

E∗k,M (δ) = inf‖v‖H1
k,M

=1

{∥∥∥K∗k,Mv − δv∥∥∥HM + δ−1
∣∣∣〈πHMΦ

′
,K∗k,Mv − δv〉HM

∣∣∣ }. (3.58)

Our next result provides a lower bound on these quantities, analogous to [1, Lem. 6]. The proof is
postponed to §3.2, but we already use it here to establish Proposition 3.3 by making some minor
adjustments to the proof of [1, Thm. 4].

Proposition 3.7. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. Consider the LDE (2.1) and suppose
that (Hg) is satisfied. Pick a in such a way that also (HΦ)a is satisfied. Then there exists κ > 0 such
that for every 0 < δ < 1 we have

κ(δ) := liminfM→∞, M∈Mq
Ek,M (δ) ≥ κ,

κ∗(δ) := liminfM→∞, M∈Mq
E∗k,M (δ) ≥ κ.

(3.59)

Proof of Proposition 3.3. Fix 0 < δ < 1 and M ∈Mq sufficiently large. By Proposition 3.7 and the
equivalence (3.48), Lk,M − δ is an homeomorphism from Y1

k,M onto its range

R = (Lk,M − δ)
(
Y1
k,M

)
⊂ YM , (3.60)

with a bounded inverse I : R → Y1
k,M . The latter fact shows that R is a closed subset of YM . If

R 6= YM , there exists a non-zero w ∈ YM so that 〈w,R〉YM = 0, i.e.,〈
w, (Lk,M − δ)v

〉
YM

= 0 for all v ∈ Y1
k,M . (3.61)

Since also w ∈ Y1
k,M , this implies〈

(L∗k,M − δ)w, v
〉
YM

= 0 for all v ∈ Y1
k,M . (3.62)

Since Y1
k,M and YM are equal as sets, this shows that in fact L∗k,Mw = 0. Applying Proposition 3.7

once more and possibly increasing the lower bound for M , this gives the contradiction w = 0 and
establishes that R = YM . The bound (3.20) with the δ-independent constant C0 > 1 now follows
directly from the definition (3.58) of the quantities Ek,M (δ) and the uniform lower bound (3.59).
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3.2 Proof of Proposition 3.7

Our first task is to understand some basic properties concerning the discrete derivatives Dk,M .
Recalling the coefficients (2.6) appearing in the definition (2.12) for Dk,M , we implicitly define the
polynomial %k by writing

%k(z)(z − 1) =
k∑
j=0

αj;kz
j . (3.63)

Introducing the operator SM : HM → HM that acts as

[SMv](ζ, ξ) = v
(
ζ, ξ +M−1

)
, (3.64)

we may compute

Dk,M = β−1
k M

∑k
j=0 αj;kS

j−k
M

= β−1
k MS−kM

∑k
j=0 αj;kS

j
M

= β−1
k MS−kM %k(SM )(SM − I)

= β−1
k MS−kM %k(SM )SM (I − S−1

M )

= β−1
k S−kM %k(SM )SMD1,M

= β−1
k S

−(k−1)
M %k(SM )D1,M .

(3.65)

In view of this factorization, the following result allow us to recover information concerning D1,Mv
from Dk,Mv for k 6= 1.

Lemma 3.8. For all integers 1 ≤ k ≤ 6, the k − 1 roots of the equation %k(z) = 0 all lie inside the
unit circle.

Proof. See [14, Ex 4; Sec III.3].

Corollary 3.9. Fix two integers q ≥ 1 and 1 ≤ k ≤ 6. Then there exists constants κmin > 0 and
κmax > 0 such that for any M ∈Mq and any v ∈ H1

k,M , we have the inequalities

κmin ‖Dk,Mv‖HM ≤ ‖D1,Mv‖HM ≤ κmax ‖Dk,Mv‖HM . (3.66)

Proof. On account of Lemma 3.8, the operator %k(SM ) is invertible, which in view of the factorization
(3.65) shows that Dk,M and D1,M are equivalent.

We are now ready to turn to our interpolation procedure. For any ξ ∈ R, we define two quantities
ξ±M (ξ) ∈M−1

Z in such a way that

ξ−M (ξ) ≤ ξ < ξ+
M (ξ), ξ+

M (ξ)− ξ−M (ξ) = M−1. (3.67)

This allows to introduce two interpolation operators

I0
M : HM → L2

(
R, `2q,⊥

)
,

I1
k,M : H1

k,M → H1
(
R, `2q,⊥

) (3.68)

that act as

[I0
Mv](ζ, ξ) = v

(
ζ, ξ−M (ξ)

)
,

[I1
k,Mv](ζ, ξ) = M

[
(ξ − ξ−M (ξ))v(ζ, ξ+

M (ξ)) + (ξ+
M (ξ)− ξ)v

(
ζ, ξ−M (ξ)

)]
,

(3.69)

for all ζ ∈ q−1
Zq and ξ ∈ R. These can be seen as interpolations of order zero respectively one, acting

on the second coordinate of v. The next three results show that these operators are well-defined and
establish some useful bounds.
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Lemma 3.10. Fix a pair of integers q ≥ 1 and 1 ≤ k ≤ 6. For any M ∈Mq and v ∈ HM we have∥∥I0
Mv
∥∥
L2(R,`2q,⊥)

= ‖v‖HM . (3.70)

In addition, there exist constants κmin > 0 and κmax > 0 so that for any M ∈ Mq and v ∈ H1
k,M

we have

κmin ‖v‖HM ≤
∥∥∥I1

k,Mv
∥∥∥
L2(R,`2q,⊥)

≤ κmax ‖v‖HM ,

κmin ‖v‖H1
k,M

≤
∥∥∥I1

k,Mv
∥∥∥
H1(R,`2q,⊥)

≤ κmax ‖v‖H1
k,M

.
(3.71)

Proof. Picking v ∈ HM , we write V0 = I0
Mv and compute

‖V0‖2L2(R,`2q,⊥) =
∫∞
−∞ |V0(·, ξ′)|2`2q,⊥ dξ

′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
|v(·, ξ)|2`2q,⊥ dξ

′

= M−1
∑
ξ∈M−1Z |v(·, ξ)|2`2q,⊥

= ‖v‖2HM .

(3.72)

In addition, picking v ∈ H1
k,M and writing V1 = I1

k,Mv, we compute

‖V1‖2L2(R,`2q,⊥) =
∫∞
−∞ |V1(·, ξ′)|2`2q,⊥ dξ

′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
M2
∣∣(ξ′ − ξ)v(·, ξ +M−1) + (ξ +M−1 − ξ′)v

(
·, ξ
)∣∣2
`2q,⊥

dξ′

= 1
3M

−1
∑
ξ∈M−1Z

[ ∣∣v(·, ξ +M−1)
∣∣2
`2q,⊥

+
∣∣v(·, ξ)∣∣2

`2q,⊥

+〈v(·, ξ +M−1), v
(
·, ξ
)
〉`2q,⊥

]
= 1

3

[
2 ‖v‖2HM + 〈v, SMv〉HM

]
.

(3.73)

The first line in (3.71) now follows from the bound

|〈v, SMv〉HM | ≤ ‖v‖
2
HM . (3.74)

On the other hand, we can compute

‖V ′1‖
2
L2(R,`2q,⊥) =

∑
ξ∈M−1Z

∫ ξ+M−1

ξ
|V ′1(·, ξ′)|2`2q,⊥ dξ

′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
M2

∣∣v(·, ξ +M−1)− v(·, ξ)
∣∣2
`2q,⊥

dξ′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
M2 |(SM − I)v](·, ξ)|2`2q,⊥ dξ

′

= M−1
∑
ξ∈M−1ZM

2
∣∣[SM (I − S−1

M )v](·, ξ)
∣∣2
`2q,⊥

= M−1
∑
ξ∈M−1Z |[SMD1,Mv](·, ξ)|2`2q,⊥

= ‖SMD1,Mv‖HM
= ‖D1,Mv‖HM .

(3.75)

The second line of (3.71) now follows from the inequalities (3.66).
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Lemma 3.11. Fix a pair of integers q ≥ 1 and 1 ≤ k ≤ 6. For any M ∈ Mq and v ∈ H1
k,M , we

have the identity ∥∥I0
Mv − I1

k,Mv
∥∥
L2(R,`2q,⊥)

=
1
3

√
3M−1 ‖D1,Mv‖HM . (3.76)

Proof. Writing V0 = I0
Mv and V1 = I1

k,Mv, we compute

‖V0 − V1‖2L2(R,`2q,⊥) =
∫∞
−∞ |V0(·, ξ′)− V1(·, ξ′)|2`2q,⊥ dξ

′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
|V1(·, ξ′)− V0(·, ξ′)|2`2q,⊥ dξ

′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
M2(ξ′ − ξ)2

∣∣v(·, ξ +M−1)− v(·, ξ)
∣∣2
`2q,⊥

dξ′

= 1
3M

−1
∑
ξ∈M−1Z

∣∣v(·, ξ +M−1)− v(·, ξ)
∣∣2
`2q,⊥

= 1
3M

−1
∑
ξ∈M−1Z |[(SM − I)v](·, ξ)|2`2q,⊥

= 1
3M

−3
∑
ξ∈M−1Z

∣∣[MSM (I − S−1
M )v](·, ξ)

∣∣2
`2q,⊥

= 1
3M

−2 ‖SMD1,Mv‖2HM
= 1

3M
−2 ‖D1,Mv‖2HM .

(3.77)

Lemma 3.12. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a constant η > 0. Then
there exists a constant C > 1 such that for any function f ∈ BC1

−η(R,R), any M ∈ Mq and any
v ∈ HM , we have∣∣〈π⊥f, I0

Mv〉L2(R,`2q,⊥) − 〈πHM f, v〉HM
∣∣ ≤ CM−1 ‖f‖BC1

−η
‖v‖HM . (3.78)

Proof. Upon introducing the quantity

I∗ =
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

〈
[π⊥f ](·, ξ′)− [πHM f ](·, ξ), v(·, ξ)

〉
`2q,⊥

dξ′, (3.79)

we may compute

〈π⊥f, I0
Mv〉L2(R,`2q,⊥) =

∫∞
−∞〈[π⊥f⊥](·, ξ′), [I0

Mv](·, ξ′)〉`2q,⊥ dξ
′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
〈[π⊥f ](·, ξ′), v(·, ξ)〉`2q,⊥ dξ

′

=
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
〈[πHM f ](·, ξ), v(·, ξ)〉`2q,⊥ dξ

′ + I∗
= M−1

∑
ξ∈M−1Z〈[πHM f ](·, ξ), v(·, ξ)〉`2q,⊥ + I∗

= 〈πHM f, v〉HM + I∗.

(3.80)

Whenever the pair (ξ, ξ′) satisfies the inequality

ξ ≤ ξ′ ≤ ξ +M−1, (3.81)

we may estimate

‖Df(ξ′)‖ ≤ ‖f‖BC1
−η
e−η|ξ

′| ≤ eηM
−1
‖f‖BC1

−η
e−η|ξ|. (3.82)
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In particular, assuming (3.81) we have

|f(ξ′)− f(ξ)| ≤M−1eηM
−1
‖f‖BC1

−η
e−η|ξ|, (3.83)

which under the additional assumption ξ ∈M−1
Z gives

q
∣∣∣[π⊥f ](·, ξ′)− [πHM f ](·, ξ)

∣∣∣2
`2q,⊥

= 1
2

∣∣[π⊥f ](0, ξ′)− [πHM f ](0, ξ)
∣∣2 + 1

2

∣∣[π⊥f ](1, ξ′)− [πHM f ](1, ξ)
∣∣2

+
∑
ζ∈q−1Z◦q

∣∣[π⊥f ](ζ, ξ′)− [πHM f ](ζ, ξ)
∣∣2

= 1
2 |f(ξ′)− f(ξ)|2 + 1

2

∣∣f(ξ′)− f(ξ +M−1)
∣∣2

+
∑
ζ∈q−1Z◦q

∣∣f(ξ′)− f(ξ + ζM−1)
∣∣2

≤ qM−2e2ηM−1 ‖f‖2BC1
−η
e−2η|ξ|.

(3.84)

This allows us to estimate

|I∗| ≤
∑
ξ∈M−1Z

∫ ξ+M−1

ξ

∣∣[π⊥f ](·, ξ′)− [πHM f ](·, ξ)
∣∣
`2q,⊥

∣∣v(·, ξ)
∣∣
`2q,⊥

dξ′

≤
∑
ξ∈M−1Z

∫ ξ+M−1

ξ
M−1eηM

−1 ‖f‖BC1
−η
e−η|ξ|

∣∣v(·, ξ)
∣∣
`2q,⊥

dξ′

= M−1eηM
−1 ‖f‖BC1

−η
M−1

∑
ξ∈M−1Z e

−η|ξ|
∣∣v(·, ξ)

∣∣
`2q,⊥

≤ M−1eηM
−1 ‖f‖BC1

−η

∥∥e−η|·|∥∥
`2M (R)

‖v‖`2M (`2q,⊥) .

(3.85)

The proof can now be completed exactly as in the final part of the proof of Lemma 3.4.

A key ingredient in the proof of Proposition 3.7 is that certain inner products involving terms
appearing in Kk,M have a well-defined sign or vanish in the limit M →∞. This issue is explored in
the following set of results.

Lemma 3.13. Fix an integer q ≥ 1. For any M ∈Mq and v ∈ HM we have the inequality

〈v, [TM + T−1
M − 2]v〉HM ≤ 0. (3.86)

Proof. In view of the fact that TM is an isometry, the inequality follows directly from Cauchy-
Schwartz.

Fix an integer q ≥ 1 and pick M ∈Mq. For v ∈ HM ⊂ `2M (`2q,⊥), we define the Fourier transform

v̂(ζ, ω) = M−1
∑

ξ∈M−1Z

e−iξωv(ζ, ξ), ω ∈ [−Mπ,Mπ], ζ ∈ q−1
Zq (3.87)

and recall the accompanying inversion formula

v(ζ, ξ) =
1

2π

∫ Mπ

−Mπ

eiξω v̂(ζ, ω)dω. (3.88)

For v ∈ HM and wHM , Parseval’s identity can be written as

〈v, w〉HM = M−1
∑

ξ∈M−1Z

〈v(·, ξ), w(·, ξ)〉`2q,⊥ =
1

2π

∫ Mπ

−Mπ

〈v̂(·, ω), ŵ(·, ω)〉`2q,⊥ dω. (3.89)
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For any v ∈ H1
k,M , computing the Fourier transform of w = Dk,Mv ∈ HM yields

ŵ(ζ, ω) = β−1
k M

k∑
j=0

αj;ke
iω(j′−k)M−1

v̂(ζ, ω). (3.90)

This motivates the definition

D̂k,M (ω) = β−1
k M

k∑
j=0

αj;ke
iω(j′−k)M−1

∈ C (3.91)

for ω ∈ [−Mπ,Mπ] and k ∈ {1, . . . , 6}.

Lemma 3.14. There exists a constant K > 1 so that we have the bound∣∣∣Re D̂k,M (ω)
∣∣∣ ≤ KM−1

∣∣∣D̂k,M (ω)
∣∣∣2 (3.92)

for all k ∈ {1, . . . 6}, all M > 0 and all ω ∈ [−Mπ,Mπ].

Proof. In view of the scaling

D̂k,M (ω) = MD̂k,1(ωM−1), (3.93)

it suffices to show that for some K > 1 we have∣∣∣Re D̂k,1(ω)
∣∣∣ ≤ K ∣∣∣D̂k,1(ω)

∣∣∣2 , ω ∈ [−π, π], k ∈ {1, . . . , 6}. (3.94)

The identity

D̂k,1(ω) = β−1
k e−iωk%k(eiω)(eiω − 1) (3.95)

together with Lemma 3.8 implies that Dk,1(ω) 6= 0 for all ω /∈ 2πZ. In particular, it suffices to
establish (3.94) for ω in some small neighbourhood of ω = 0. To this end, we note that

Re D̂k,1(ω) = β−1
k

∑k−1
j=0 αj;k[cos

(
ω(j − k)

)
− 1],

Im D̂k,1(ω) = β−1
k

∑k−1
j=0 αj;k sin

(
ω(j − k)

)
,

(3.96)

which using (2.8) gives

[ ddω Re D̂k,1(ω)]ω=0 = 0,

[ ddω Im D̂k,1(ω)]ω=0 = β−1
k

∑k−1
j=0 αj;k(j − k)

= 1.

(3.97)

We hence see that ∣∣∣Re D̂k,1(ω)
∣∣∣ = O(ω2),∣∣∣D̂k,1(ω)

∣∣∣2 = ω2 +O(ω4),
(3.98)

as ω → 0, which completes the proof.

Corollary 3.15. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists a constant K > 1 so that
for all M ∈Mq and all v ∈ H1

k,M we have the bound∣∣〈v,Dk,Mv〉HM ∣∣ ≤ KM−1 ‖Dk,Mv‖2HM . (3.99)
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Proof. Using Parseval’s identity (3.89) and applying Lemma 3.14, we may estimate∣∣〈v,Dk,Mv〉HM ∣∣ =
∣∣∣ 1

2π Re
∫Mπ

−Mπ
D̂k,M (ω) |v̂(·, ω)|2`2q,⊥ dω

∣∣∣
≤ 1

2π

∫Mπ

−Mπ

∣∣∣Re D̂k,M (ω)
∣∣∣ |v̂(·, ω)|2`2q,⊥ dω

≤ KM−1 1
2π

∫Mπ

−Mπ

∣∣∣D̂k,M (ω)
∣∣∣2 |v̂(·, ω)|2`2q,⊥ dω

= KM−1〈Dk,Mv,Dk,Mv〉HM .

(3.100)

We are now ready to establish a lower bound for the quantities Ek,M (δ) defined in (3.58), noting
that E∗k,M (δ) can be treated in a similar fashion. As a first step, we show that the limiting value
κ(δ) can be approached via a sequence of realizations that allow us to take weak and strong limits
in suitable function spaces. It is here that our need to work in the Hilbert spaces L2(R, `2q,⊥) and
H1(R, `2q,⊥) becomes apparent, as we exploit the fact that bounded subsets of these spaces are weakly
compact.

Lemma 3.16. Consider the setting of Proposition 3.7 and fix 0 < δ < 1. Then there exist two
functions

V∗ ∈ H1(R, `2q,⊥;∞) ⊂ H1(R, `2q,⊥), W∗ ∈ L2(R, `2q,⊥;∞) ⊂ L2(R, `2q,⊥), (3.101)

together with three sequences

{Mj}j∈N ⊂Mq, {vj}j∈N ⊂ H1
k,Mj

, {wj}j∈N ⊂ HMj (3.102)

that satisfy the following properties.

(i) We have limj→∞Mj =∞.

(ii) For any j ∈ N, we have ‖vj‖H1
k,Mj

= 1 together with

wj = Kk,Mj
vj − δvj . (3.103)

(iii) Recalling the constant κ(δ) defined in (3.59), we have the limit

κ(δ) = lim
j→∞
{‖wj‖HMj + δ−1

∣∣〈πHMjΨ, wj〉HMj
∣∣}. (3.104)

(iv) As j →∞, we have the weak convergences

I1
k,Mj

vj ⇀ V∗ ∈ H1(R, `2q,⊥), I0
Mj
wj ⇀W∗ ∈ L2(R, `2q,⊥). (3.105)

(v) For any compact interval I ⊂ R, we have the strong convergences

I0
Mj
vj → V∗ ∈ L2(I, `2q,⊥), I1

k,Mj
vj → V∗ ∈ L2(I, `2q,⊥) (3.106)

as j →∞.

Proof. The existence of the sequences (3.102) that satisfy (i) through (iii) follows directly from the
definition of κ(δ). Notice that (3.104) implies that ‖wj‖HMj can be bounded uniformly for j ∈ N.
Upon introducing the functions

Vj = I1
k,Mj

vj ∈ H1(R, `2q,⊥), Wj = I0
Mj
wj ∈ L2(R, `2q,⊥), (3.107)
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Lemma 3.10 hence yields the bounds

‖Vj‖H1(R,`2q,⊥) + ‖Wj‖L2(R,`2q,⊥) ≤ C
′
1 (3.108)

for some C ′1 > 0.
Since L2(R, `2q,⊥) and H1(R, `2q,⊥) are weakly compact, we can take a subsequence to obtain the

weak convergence

Vj ⇀ V∗ ∈ H1(R, `2q,⊥), Wj ⇀W∗ ∈ L2(R, `2q,⊥). (3.109)

In addition, for any compact interval I ⊂ R, the compact embedding H1(I, `2q,⊥) ⊂ L2(I, `2q,⊥)
yields the strong convergence Vj → V∗ ∈ L2(I, `2q,⊥). On account of Lemma 3.11 we also have the
strong convergence

I0
Mj
vj → V∗ ∈ L2(I, `2q,⊥). (3.110)

Finally, on account of the strong continuity of the shift-semigroup [12, Example I.5.4], we may in
fact conclude

V∗ ∈ H1(R, `2q,⊥;∞), W∗ ∈ L2(R, `2q,⊥;∞). (3.111)

In the next step we study the relation between the limiting functions V∗ and W∗. By integrating
against smooth test functions ζ, which naturally satisfy Dk,Mjζ → ζ ′, we are able to show that
W∗ = (Kq,ρ−δ)V∗ for some appropriate ρ. This allows us to obtain an upper bound on the H1 norm
of V∗.

Lemma 3.17. There exists a constant K1 > 0 so that for any 0 < δ < 1, the function V∗ defined
in Lemma 3.16 satisfies the bound

‖V∗‖H1(R,`2q,⊥;∞) ≤ K1κ(δ). (3.112)

Proof. Again writing Wj = I0
Mj
wj , the weak lower semi-continuity of the L2 norm implies that

‖W∗‖L2(R,`2q,⊥;∞) ≤ lim inf
j→∞

‖Wj‖L2(R,`2q,⊥) = lim inf
j→∞

‖wj‖HMj , (3.113)

where the last identity follows from (3.70). In addition, we have the identities

〈π⊥Ψ,W∗〉L2(R,`2q,⊥;∞) = 〈π⊥Ψ,W∗〉L2(R,`2q,⊥) = lim
j→∞
〈π⊥Ψ,Wj〉L2(R,`2q,⊥) = lim

j→∞
〈πHMΨ, wj〉HMj ,

(3.114)

in which the second equality follows from the weak converge Wj ⇀W∗ and the third equality follows
from Lemma 3.12, using the fact that Ψ ∈ BC1

−η(R,R) for all sufficiently small η > 0. In particular,
we see that

‖W∗‖L2(R,`2q,⊥;∞) + δ−1
∣∣〈π⊥Ψ,W∗〉L2(R,`2q,⊥;∞)

∣∣ ≤ κ(δ). (3.115)

Let us fix M ∈Mq for the moment. Observe that we have the commutation relations

I0
MTM = TMI0

M , I0
MSM = SMI0

M (3.116)

for the twist operator TM defined in (3.44) and the shift operator SM defined in (3.64), both naturally
extended to L2(R, `2q,⊥). This immediately also gives

I0
MDk,M = Dk,MI0

M , (3.117)
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again extending Dk,M to act on L2(R, `2q,⊥). In addition, for any v ∈ HM we have

I0
M

[
g′
(
πHMΦ; a

)
v
]

= [I0
Mg
′(πHMΦ; a

)
]I0
Mv, (3.118)

where the right hand part is a multiplication of functions in L2(R, `2q,⊥).
In view of these considerations, we introduce the operators

Kk,M ;I0 : L2(R, `2q,⊥)→ L2(R, `2q,⊥), K∗k,M ;I0 : L2(R, `2q,⊥)→ L2(R, `2q,⊥) (3.119)

that act as

Kk,M ;I0V = −cDk,MV + TMV + T−1
M V − 2V + [I0

Mg
′(πHMΦ; a

)
]V,

K∗k,M ;I0V = +cD∗k,MV + TMV + T−1
M V − 2V + [I0

Mg
′(πHMΦ; a

)
]V.

(3.120)

For any v ∈ H1
k,M , we now have

I0
MKk,Mv = Kk,M ;I0I0

Mv. (3.121)

For any test-function ζ ∈ C∞0 (R; `2q,⊥;∞) ⊂ C∞0 (R, `2q,⊥), we may compute

〈ζ, I0
Mj
wj〉L2(R,`2q,⊥) = 〈ζ, I0

Mj
[Kk,Mj

− δ]vj〉L2(R,`2q,⊥)

= 〈ζ, [Kk,Mj ;I0 − δ]I0
Mj
vj〉L2(R,`2q,⊥)

= 〈[K∗k,Mj ;I0 − δ]ζ, I0
Mj
vj〉L2(R,`2q,⊥).

(3.122)

Since ζ has compact support, we can pick m > 0 so that supp(ζ) ⊂ [−m+ 1,m− 1] and hence

supp[K∗k,Mj ;I0 − δ]ζ ∈ [−m,m]. (3.123)

Without loss of generality, we assume that we can pick ρ from the finite set q−1
Zq \ {0} in such

a way that gcd(qρ, q) = 1 and ρ(Mj) = ρ holds for all j ∈ N. Here we use the notation ρ(Mj) to
refer to the value of % in (3.40) with M = Mj .

The smoothness of ζ now implies that

[K∗k,Mj ;I0 − δ]ζ → [K∗q,ρ − δ]ζ ∈ L2([−m,m], `2q,⊥;∞). (3.124)

Together with the strong limit

I0
Mj
vj → V∗ ∈ L2([−m,m], `2q,⊥) (3.125)

and (3.111), this allows us to conclude

〈ζ,W∗〉L2(R,`2q,⊥;∞) = 〈[K∗q,ρ − δ]ζ, V∗〉L2(R,`2q,⊥;∞). (3.126)

Since ζ was arbitrary, we see that W∗ = (Kq,ρ − δ)V∗ in the sense of distributions, which in view of
Lemma 3.6 and (3.111) implies that

‖V∗‖H1(R,`2q,⊥) = ‖V∗‖H1(R,`2q,⊥;∞)

≤ K1

[
‖W∗‖L2(R,`2q,⊥;∞) + δ−1

∣∣∣〈π⊥Ψ,W∗〉L2(R,`2q,⊥;∞)

∣∣∣ ]
≤ K1κ(δ)

(3.127)

for some K1 > 1.
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In the final step we obtain a lower bound on the H1 norm of V∗. It is here that we exploit the
specific structure of the terms in Kk,Mj

and the bistable nature of the nonlinearity g. In particular,
the expression g′(Φ(ξ); a) is only positive on a bounded set for ξ, allowing us to exploit the strong
convergence of I0

Mj
vj to V∗ on such sets.

Lemma 3.18. There exist constants K2 > 1 and K3 > 1 so that for any 0 < δ < 1, the function
V∗ defined in Lemma 3.16 satisfies the bound

‖V∗‖2H1(R,`2q,⊥;∞) ≥ K2 −K3κ(δ)2. (3.128)

Proof. For definiteness, we will assume c > 0. In view of the identity

wj = Kk,Mj
vj − δvj

= −cDk,Mj
vj + [TMj

+ T−1
Mj
− 2]vj + g′(πHMjΦ; a)vj − δvj ,

(3.129)

we may write

〈wj ,Dk,Mj
vj〉HM + c

∥∥Dk,Mj
vj
∥∥2

HMj
= 〈g′(πHMjΦ; a)vj ,Dk,Mj

vj〉HMj
+〈[TMj + T−1

Mj
− 2]vj ,Dk,Mjvj〉HMj

−δ〈vj ,Dk,Mj
vj〉HMj .

(3.130)

Writing C ′1 = ‖g′‖∞+6 > 0, remembering that 0 < δ < 1 and invoking Cauchy-Schwartz, we obtain

C ′1 ‖vj‖HMj
∥∥Dk,Mj

vj
∥∥
HMj

≥ 〈g′(πHMjΦ; a)vj ,Dk,Mj
vj〉HMj

+〈[TMj
+ T−1

Mj
− 2]vj ,Dk,Mj

vj〉HMj
−δ〈vj ,Dk,Mj

vj〉HMj
= 〈wj ,Dk,Mj

vj〉HMj + c
∥∥Dk,Mjvj

∥∥2

HMj

≥ c
∥∥Dk,Mjvj

∥∥2

HMj
−
∥∥Dk,Mjvj

∥∥
HMj
‖wj‖HMj .

(3.131)

This yields

‖wj‖HMj + C ′1 ‖vj‖HMj ≥ c ‖Dk,Mvj‖HMj , (3.132)

which can be squared to give

2 ‖wj‖2HMj + 2C
′2
1 ‖vj‖

2
HMj

≥ ‖wj‖2HMj + C
′2
1 ‖vj‖

2
HMj

+ 2C ′1 ‖wj‖HMj ‖vj‖HMj
≥ c2

∥∥Dk,Mj
vj
∥∥2

HMj
,

(3.133)

which is reminiscent of [1, Eq. (3.9)].
Let us now pick a constant m > 1 in such a way that

0 < α :=
1
2

min{−g′(0; a),−g′(1; a)} = min
|ξ|≥m−1

{−g′(Φ(ξ); a)}. (3.134)
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This allows us to estimate

〈wj , vj〉HMj =
〈
[Kk,Mj

− δ]vj , vj
〉
HMj

= −c〈Dk,Mvj , vj〉HMj
+
〈
[TMj

+ T−1
Mj
− 2]vj , vj

〉
HMj

+
〈
g′(πHMjΦ; a)vj , vj

〉
HMj

− δ〈vj , vj〉HMj
≤

〈
g′(πHMjΦ; a)vj , vj

〉
HMj

− c〈Dk,Mvj , vj〉HMj
≤ −α ‖vj‖2HMj +

(
‖g′‖∞ + α

)
M−1
j

∑
ξ∈M−1

j Z:|ξ|≤m |vj(·, ξ)|
2
`2q,⊥

+C ′2M
−1
j

∥∥Dk,Mj
vj
∥∥2

HMj
,

(3.135)

for some C ′2 > 1, where we used (3.134) and Corollary 3.15 for the last bound. Using the basic
inequality

xy = (
√
αx)(y/

√
α) ≤ α

2
x2 +

1
2α
y2, (3.136)

we find(
‖g′‖∞ + α

)
M−1
j

∑
ξ∈M−1

j Z:|ξ|≤m |vj(·, ξ)|
2
`2q,⊥

≥ α ‖vj‖2HMj + 〈wj , vj〉HMj
−C ′2M−1

j

∥∥Dk,Mj
vj
∥∥2

HMj

≥ α ‖vj‖2HMj − ‖wj‖HMj ‖vj‖HMj
−C ′2M−1

j

∥∥Dk,Mjvj
∥∥2

HMj

≥ α
2 ‖vj‖

2
HMj

− 1
2α ‖wj‖

2
HMj

−C ′2M−1
j

∥∥Dk,Mj
vj
∥∥2

HMj
.

(3.137)

Rescaling (3.133) yields

0 ≥ α

2(c2 + 2C ′21 )

[
c2 ‖Dk,Mvj‖2HMj − 2C

′2
1 ‖vj‖

2
HMj

− 2 ‖wj‖2HMj

]
, (3.138)

which can be added to (3.137) to obtain(
‖g′‖∞ + α

)
M−1
j

∑
ξ∈M−1

j Z:|ξ|≤m |vj(·, ξ)|
2
`2q,⊥

≥ c2α
2(c2+2C

′2
1 )

[ ∥∥Dk,Mjvj
∥∥2

HMj
+ ‖vj‖2HMj

]
−
[

1
2α + α

c2+2C
′2
1

]
‖wj‖2HMj

−C ′2M−1
j

∥∥Dk,Mj
vj
∥∥2

HMj
.

(3.139)

Remembering that ‖vj‖H1
k,Mj

= 1, we find that there exist constants K2 > 0 and K3 > 0, which

both are independent of 0 < δ < 1, such that

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤m

|vj(·, ξ)|2`2q,⊥ ≥ K2 −K3 ‖wj‖2HMj − C
′
2M
−1
j . (3.140)
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The strong convergence I0
Mj
vj → V∗ ∈ L2([−m− 1,m+ 1], `2q,⊥) now implies that

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤m |vj(·, ξ)|
2
`2q,⊥

=
∫m+M−1

j

−m

∣∣∣[I0
Mj
vj ](·, ξ)

∣∣∣2
`2q,⊥

dξ

≤
∫m+1

−m

∣∣∣[I0
Mj
vj ](·, ξ)

∣∣∣2
`2q,⊥

dξ

→
∫m+1

−m |V∗(·, ξ)|2`2q,⊥ dξ,

(3.141)

which in view of the bound lim supj→∞ ‖wj‖
2
HMj

≤ κ(δ)2 gives

‖V∗‖2H1(R,`2q,⊥) ≥
∫ m+1

−m
|V∗(·, ξ)|2`2q,⊥ dξ ≥ K2 −K3κ(δ)2. (3.142)

Proof of Proposition 3.7. For any 0 < δ < 1, Lemma’s 3.17 and 3.18 show that the function V∗
defined in Lemma 3.16 satisfies

K2
1κ(δ)2 ≥ ‖V∗‖2H1(R,`2q,⊥) ≥ K2 −K3κ(δ)2, (3.143)

which gives
(
K2

1 +K3

)
κ(δ)2 ≥ K2 > 0, as desired.

3.3 Proof of Proposition 3.2

We are now ready to turn to the proof of this section’s main result. The basic strategy is to exploit
the fact that we already know that Lk,M−δ is invertible to study the difference between (Lk,M−δ)−1

and (L − δ)−1.

Lemma 3.19. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a sufficiently small constant
η > 0. Recall the function δ 7→M0(δ) defined in the statement of Proposition 3.3. Then there exists a
constant K > 1 so that for any 0 < δ < 1, any f ∈ BC1

−η(R,R) and any M ∈Mq with M ≥M0(δ),
we have the bound∥∥∥(Lk,M − δ)−1πYM f − πY1

k,M
(L − δ)−1f

∥∥∥
Y1
k,M

≤ Kδ−2M−1 ‖f‖BC1
−η
. (3.144)

Proof. Consider the functions vk,M ∈ Y1
k,M and v ∈ BC2

−η(R,R) defined by

vk,M = (Lk,M − δ)−1πYM f,

v = (L − δ)−1f.
(3.145)

Again applying [21, Eq. (2.44)], we find the bound

‖v‖BC2
−η
≤ C ′1δ−1 ‖f‖BC1

−η
, (3.146)

for some C ′1 > 1 that does not depend on δ and f .
Writing x = vk,M − πY1

k,M
v ∈ Y1

k,M , we may compute

(Lk,M − δ)x = cπYM
[
Dk,Mv − v′

]
. (3.147)

The estimate (2.14) now implies that the YM norm of the right-hand side can be bounded by
C ′2M

−1 ‖v‖BC2
−η

for some C ′2 > 1 that does not depend on v. The desired bound now follows from
an application of Proposition 3.3.
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Proof of Proposition 3.2. All constants introduced below are independent of 0 < δ < 1 and M ∈Mq

with M ≥ max{δ−2,M0(δ)}, together with f and v where applicable. For convenience, we introduce
the set

Z1
k,M = {v ∈ Y1

k,M : 〈πYMΨ, v〉YM = 0}. (3.148)

Our goal is to find, for any f ∈ YM , a solution (γ, v) ∈ R×Z1
k,M to the problem

v = Vk,M ;δ(f, v, γ) := (Lk,M − δ)−1
[
f + γπYMDk,MΦ− δv

]
. (3.149)

In order to ensure that the linear operator Vk,M ;δ indeed maps into Z1
k,M , it suffices to choose γ in

such a way that

γ〈πYMΨ, (Lk,M − δ)−1πYMDk,MΦ〉YM = −〈πYMΨ, (Lk,M − δ)−1(f − δv)〉YM . (3.150)

It is easy to verify that

(L − δ)−1Φ′ = −δ−1Φ′, (3.151)

which using Lemma 3.19 together with (2.14) and remembering δ−2 > δ−1 gives∥∥∥(Lk,M − δ)−1πYMDk,MΦ + δ−1πY1
k,M

Φ′
∥∥∥
Y1
k,M

≤ C ′1δ−2M−1 (3.152)

for some C ′1 > 1. Applying Lemma 3.4, we hence see that∣∣∣〈πYMΨ, (Lk,M − δ)−1πYMDk,MΦ〉YM + δ−1
∣∣∣ ≤ C ′2δ−2M−1 (3.153)

for some C ′2 > 1. In particular, using 1
x + 1

α = α+x
αx and |x| ≥ α − |x+ α|, we see that there exists

C ′3 > 1 for which ∣∣∣〈πYMΨ, (Lk,M − δ)−1πYMDk,MΦ〉−1
YM + δ

∣∣∣ ≤ C ′3M−1 (3.154)

holds for all sufficiently large M � δ−2. For such pairs (δ,M), one can hence find a unique solution
γ = γk,M ;δ(f, v) to (3.150) for every v ∈ Z1

k,M and f ∈ YM . Since we may estimate∣∣〈πYMΨ, (Lk,M − δ)−1(f − δv)〉YM
∣∣ ≤ C ′4[δ−1 ‖f‖YM + δ ‖v‖YM ], (3.155)

we see that

|γk,M ;δ(f, v)| ≤ C ′5
[
‖f‖YM + δ2 ‖v‖YM

]
(3.156)

for some C ′4 > 1 and C ′5 > 1. We emphasize that it is a consequence of v ∈ Z1
k,M that we have

gained an extra factor δ in front of v here.
We now find

‖Vk,M ;δ(f, v, γk,M ;δ(f, v))‖Y1
k,M
≤ C ′6

[
δ−1 ‖f‖HM + δ ‖v‖YM

]
(3.157)

for some C ′6 > 1. By choosing δ > 0 to be sufficiently small, we hence see that the linear fixed point
problem

v = Vk,M ;δ

(
f, v, γk,M ;δ(f, v)

)
(3.158)

posed on Z1
k,M has a unique solution for all f ∈ YM . Writing v = V∗k,M ;δf for this solution together

with

γ∗k,M ;δf = γk,M ;δ

(
f,V∗k,M ;δf

)
, (3.159)
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we obtain the estimates∥∥V∗k,M ;δf
∥∥
Y1
k,M

≤ C ′7δ−1 ‖f‖YM ,
∣∣γ∗k,M ;δf

∣∣ ≤ C ′7 ‖f‖YM (3.160)

for some C ′7 ≥ 1. Inspection of (3.149) shows that V∗k,M ;δ and γ∗k,M ;δ are actually independent of δ,
which allows us to fix a suitably small δ > 0 and obtain the desired bounds (3.15).

Now turning to the bound (3.19), we note that for every sufficiently large M and every f ∈
BC1
−η(R,R), we can find vM ∈ BC2

−η(R,R) so that

L vM = f − Φ′〈Ψ, f〉L2 , 〈πYMΨ, πYM vM 〉YM = 0, (3.161)

with the estimate

‖vM‖BC2
−η
≤ C ′8 ‖f‖BC1

−η
(3.162)

for some C ′8 > 1. In particular, upon writing

V∗k,Mf = vM + vk,M , γ∗k,Mf = −〈Ψ, f〉L2 + γk,M , (3.163)

we find that

Lk,Mvk,M = gk,M + γk,MDk,MΦ. (3.164)

Here we have introduced the sequence

gk,M = cπYk,M [Dk,MvM − v′M ]− 〈Ψ, f〉L2πYk,M [Dk,MΦ− Φ
′
], (3.165)

which implies

vk,M = V∗k,Mgk,M , γk,M = γ∗k,Mgk,M . (3.166)

Using (2.14), we obtain the estimate

‖gk,M‖YM ≤ C
′
9M
−1 ‖f‖BC1

−η
, (3.167)

which in view of Lemma 3.4 gives the desired bound (3.19).

4 Proof of Main Results

In this section we set out to prove the results stated in §2. In §4.1 we study the limit ∆t → 0,
exploiting the linear theory developed in §3 to set up a fixed point argument and prove Theorem
2.1. The backward-Euler discretization is analyzed in §4.2, where we primarily exploit the work
of Mallet-Paret [29] to prove Theorem 2.2 and Corollaries 2.3 and 2.5. Finally, in §4.3 we prove
Corollary 2.4, which concerns the anti-continuum limit of the PDE (1.1). This part is heavily based
on the pioneering work of Keener [25].

4.1 The small time-step limit ∆t→ 0

Let us fix an integer q ≥ 1 and a constant M = p
q ∈ Mq. We seek a solution to the nonlinear

problem

c[Dk,MΦ](ξ) = Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + g
(
Φ(ξ); a

)
, ξ ∈ p−1

Z (4.1)
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that has the form

Φ(ξ) = Φ(ξ + ϑ) + v(ξ), ξ ∈ p−1
Z, (4.2)

for some ϑ ∈ R and v ∈ YM . Note that this automatically ensures that Φ satisfies the boundary
conditions

lim
ξ→−∞; ξ∈p−1Z

Φ(ξ) = 0, lim
ξ→+∞; ξ∈p−1Z

Φ(ξ) = 1. (4.3)

In addition, the normalization condition (2.24) is satisfied provided that

〈Ψ(·+ ϑ), v〉YM = 0. (4.4)

For convenience, we introduce the shorthands

Φϑ(ξ) = Φ(ξ + ϑ), Ψϑ(ξ) = Ψ(ξ + ϑ). (4.5)

In addition, we introduce the linear operators

Lk,M ;ϑ : Y1
k,M → YM (4.6)

that act as

[Lk,M ;ϑv](ξ) = −c[Dk,Mv](ξ) + v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
Φϑ(ξ); a

)
v(ξ), ξ ∈ p−1

Z.
(4.7)

Naturally, these operators satisfy the properties described in Proposition 3.2 provided all occurrences
of Φ and Ψ are replaced by Φϑ respectively Ψϑ. We write

γ∗k,M ;ϑ : YM → R, V∗k,M ;ϑ : YM → Y1
k,M (4.8)

for the maps appearing in that result. The properties (Hg) imply that the map

ϑ 7→ Lk,M ;ϑ ∈ L
(
Y1
k,M ,YM

)
(4.9)

is Cr−1-smooth. The same hence holds for the maps

ϑ 7→ γ∗k,M ;ϑ ∈ L(YM ,R), ϑ 7→ V∗k,M ;ϑ ∈ L(YM ,Y1
k,M ), (4.10)

with derivatives that can be uniformly bounded for large M .
Plugging the Ansatz (4.2) into (4.1), we arrive at

c[Dk,MΦϑ](ξ) + c[Dk,Mv](ξ) = Φϑ(ξ + 1) + Φϑ(ξ − 1)− 2Φϑ(ξ)

+v(ξ + 1) + v(ξ − 1)− 2v(ξ)

+g
(

Φϑ(ξ) + v(ξ); a
)
.

(4.11)

For any v ∈ R and (ξ, ϑ, a) ∈ R2 × (0, 1) we introduce the expression

N (v; ξ, ϑ, a) = g
(

Φ(ξ + ϑ) + v; a
)
− g
(

Φ(ξ + ϑ); a
)
− g′

(
Φ(ξ + ϑ); a

)
v, (4.12)

which allows us to rephrase as (4.11) as

c[Dk,MΦϑ](ξ) + c[Dk,Mv](ξ) = Φϑ(ξ + 1) + Φϑ(ξ − 1)− 2Φϑ(ξ)

+v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(

Φϑ(ξ); a
)
v(ξ)

+g
(

Φϑ(ξ); a
)

+N (v(ξ); ξ, ϑ, a)

+g′
(

Φϑ(ξ); a
)
v(ξ)− g′

(
Φϑ(ξ); a

)
v(ξ).

(4.13)
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Exploiting the identity

cΦ
′
ϑ = Φϑ(ξ + 1) + Φϑ(ξ − 1)− 2Φϑ(ξ) + g

(
Φϑ(ξ); a

)
, (4.14)

we find that the pair (c, v) must satisfy

−[Lk,M,ϑv](ξ) = (c− c)[Dk,MΦϑ](ξ) + [RA(c,Dk,Mv)](ξ) + [RB(v;ϑ, a)](ξ)

+[RC(ϑ,M)](ξ),
(4.15)

in which we have introduced the expressions

[RA(c,Dk,Mv)](ξ) = (c− c)[Dk,Mv](ξ)

[RB(v;ϑ, a)](ξ) = g′
(

Φϑ(ξ); a
)
v(ξ)− g′

(
Φϑ(ξ); a

)
v(ξ)

+g
(

Φϑ(ξ); a
)
− g
(

Φϑ(ξ); a
)

+N (v(ξ); ξ, ϑ, a)

= g
(

Φϑ(ξ) + v(ξ); a
)
− g
(

Φϑ(ξ) + v(ξ); a
)

+N
(
v(ξ); ξ, ϑ, a

)
,

(4.16)

together with

[RC(ϑ,M)](ξ) = −c[Dk,MΦϑ](ξ) + Φϑ(ξ + 1) + Φϑ(ξ − 1)− 2Φϑ(ξ) + g
(

Φϑ(ξ); a
)
, (4.17)

which can be simplified to

[RC(ϑ,M)](ξ) = c
[
Φ
′
ϑ −Dk,MΦϑ

]
(ξ). (4.18)

The motivation for this split is that the RC term incorporates the entire effect of moving from
the pure derivative to the sampled derivative, while RB describes the effects caused by varying the
parameters in our equation.

Proposition 3.2 shows that solutions to (4.15) must satisfy the fixed point problem

c− c = γ∗k,M ;ϑ

[
RA(c,Dk,Mv) +RB(v;ϑ, a) +RC(ϑ,M)

]
,

−v = V∗k,M ;ϑ

[
RA(c,Dk,Mv) +RB(v;ϑ, a) +RC(ϑ,M)

]
.

(4.19)

In order to construct solutions to (4.19) that depend smoothly on the parameters (ϑ, a) ∈ R× (0, 1),
we need to obtain appropriate bounds and smoothness conditions on the nonlinear terms. This is
addressed in the following series of results.

Lemma 4.1. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists C > 1 so that for all
M = p

q ∈Mq and v ∈ Y1
k,M we have

‖v‖∞ := sup
ξ∈p−1Z

|v(ξ)| ≤ C ‖v‖Y1
k,M

. (4.20)

Proof. This follows from the bounded embedding H1(R,Rq+1) ⊂ L∞(R,Rq+1), the interpolation
estimate (3.71) and the isometries described in Lemma 3.5.

Lemma 4.2. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists C > 1 so that for all
M ∈Mq, all (c, ϑ, a) ∈ R2 × (0, 1) and all v ∈ Y1

k,M with ‖v‖Y1
k,M
≤ 1, we have the estimates

‖RA(c,Dk,Mv)‖YM ≤ |c− c| ‖Dk,Mv‖YM ,

‖RB(v;ϑ, a)‖YM ≤ C |a− a|+ C ‖v‖Y1
k,M
‖v‖YM ,

‖RC(ϑ,M)‖YM ≤ CM−1.

(4.21)
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Proof. The bound for RA is immediate. The restriction on v together with Lemma 4.1 implies that
‖v‖∞ ≤ C ′1 for some C ′1 > 1, which allows us to obtain∣∣N (v(ξ); ξ, ϑ, a)

∣∣ ≤ C ′2 |v(ξ)|2 (4.22)

for some C ′2 > 1. This allows us to estimate

‖N (v(·); ·, ϑ, a)‖2YM = p−1
∑
ξ∈p−1Z

∣∣N (v(ξ); ξ, ϑ, a)
∣∣2

≤ [C ′2]2p−1
∑
ξ∈p−1Z v(ξ)4

≤ [C ′2]2 ‖v‖2∞ p−1
∑
ξ∈M−1Z v(ξ)2

≤ C ′3 ‖v‖
2
Y1
k,M
‖v‖2YM

(4.23)

for some C ′3 > 1. Observe that ∂aug(u; a) is uniformly bounded for a ∈ (0, 1) and u ∈ [0, 1], while
also ∂ag(1; a) = ∂ag(0; a) = 0. This yields the estimate∣∣g(Φ(ξ); a)− g(Φ(ξ); a)

∣∣ ≤ C ′4 |a− a|min{
∣∣Φ∣∣ , ∣∣1− Φ

∣∣} (4.24)

for some C ′4 > 1, which due to the exponential decay of Φ to its limiting values Φ(−∞) = 0 and
Φ(∞) = 1 shows that ∥∥g(Φ(·); a)− g(Φ(·); a)

∥∥
YM
≤ C ′5 |a− a| (4.25)

for some C ′5 > 1. The stated bound for RB now follows from the elementary estimate∥∥[g′(Φ(·); a)− g′(Φ(·); a)
]
v(·)
∥∥
YM
≤ C ′6 |a− a| ‖v‖YM (4.26)

for some C ′6 > 1.
Turning finally to RC , we note that the desired estimate follows from (2.14) and the exponential

decay of Φ
′′
, which guarantees that

ξ 7→ sup
−kM−1≤τ≤0

∣∣∣Φ′′(ξ + τ)
∣∣∣ (4.27)

is an element of BC−η(R,R) and hence of YM .

Lemma 4.3. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with two constants δc > 0 and
0 < δv < 1. Then there exists C > 1 so that for any set

(v1, v2, c1, c2, a, ϑ) ∈ Y1
M × Y1

M × R× R× (0, 1)× R (4.28)

with

‖v1‖Y1
k,M

+ ‖v2‖Y1
k,M
≤ δv, |c1 − c|+ |c2 − c| ≤ δc, (4.29)

we have the estimates

‖RA(c1,Dk,Mv1)−RA(c2,Dk,Mv2)‖YM ≤ δv |c1 − c2|+ δc ‖Dk,M [v1 − v2]‖YM ,

‖RB(v1;ϑ, a)−RB(v2;ϑ, a)‖YM ≤ C |a− a| ‖v1 − v2‖YM + Cδv ‖v1 − v2‖YM .
(4.30)

Proof. The estimate for RA is immediate. Lemma 4.1 again implies ‖v1‖∞+‖v2‖∞ ≤ C ′1δv for some
C ′1 > 0, which shows that∣∣N (v1(ξ); ξ, ϑ, a)−N (v2(ξ); ξ, ϑ, a)

∣∣ ≤ C ′2δv |v1(ξ)− v2(ξ)| (4.31)
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for some C ′2 > 1. This allows us to compute

‖N (v1(·); ·, ϑ, a)−N (v2(·); ·, ϑ, a)‖2YM = p−1
∑
ξ∈p−1Z

∣∣N (v1(ξ); ξ, ϑ, a)−N (v2(ξ); ξ, ϑ, a)
∣∣2

≤ [C ′2]2δ2
vp
−1
∑
ξ∈p−1Z |v1(ξ)− v2(ξ)|2

= [C ′2]2δ2
v ‖v1 − v2‖2YM .

(4.32)

Together with ∥∥[g′(Φ(·); a)− g′(Φ(·); a)
][
v1(·)− v2(·)]

∥∥
YM
≤ C ′3 |a− a| ‖v1 − v2‖YM (4.33)

for some C ′3 > 1, one obtains the stated estimate for RB .

Lemma 4.4. Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. For all M = p
q ∈Mq, the function

Ñ : Y1
k,M × R× (0, 1)→ Yk,M (4.34)

defined by

[Ñ (v;ϑ, a)](ξ) = N (v(ξ); ξ, ϑ, a), ξ ∈ p−1
Z (4.35)

is Cr−1-smooth. The derivatives can be bounded uniformly for M ∈ Mq, ϑ ∈ R, a ∈ (0, 1) and v in
bounded subsets of Y1

k,M .

Proof. In view of the estimate ‖v‖∞ ≤ C ‖v‖Y1
k,M

and the Cr-smoothness of the nonlinearity g, the
smoothness can be obtained as in the proof of item (iv) of [6, Lem. App.IV.1.1].

Proof of Theorem 2.1. Without loss of generality, we fix κ = 1. On account of the estimates in
Lemma’s 4.2 and 4.3, the fixed point problem (4.19) posed on the space

Zδv,δc = {(c, v) ∈ R× Y1
k,M : |c− c| ≤ δc and ‖v‖Y1

k,M
≤ δv} (4.36)

has a unique solution c∗M (ϑ, a), v∗M (ϑ, a)), provided that δv > 0, δc > 0 and |a− a| are chosen
to be sufficiently small and M ∈ Mq is chosen to be sufficiently large. The solution to this fixed
point problem depends Cr−1-smoothly on the parameters (ϑ, a) on account of Lemma 4.4 and the
observations above concerning the Cr−1 smoothness of ϑ 7→ V∗k,M ;ϑ and ϑ 7→ γ∗k,M ;ϑ.

The shift-periodicity stated in (iii) follows from the uniqueness of solutions to (4.19). The in-
equality (iv) can be seen by inspecting the nonlinear terms appearing in (4.19) and observing that
the leading order dependence on a arises in the RB term. In particular, applying Proposition 3.2,
we find that

∂acM (ϑ, a) = 〈πYMΨϑ, πYM∂ag(Φϑ; a)〉YM +O(M−1). (4.37)

Since ∂ag(u; a) < 0 for all (u, a) ∈ (0, 1)× (0, 1), the desired inequality follows from Lemma 3.4 for
all sufficiently large M ∈Mq.

We now turn to the uniqueness claim in the statement. First, we note that any Φ ∈ `∞(p−1
Z;R)

that satisfies (2.28) for sufficiently small δ > 0, can be decomposed as

Φ = Φeϑ + v (4.38)

for some v ∈ Y1
k,M with 〈πYMΨeϑ, v〉 = 0. This is a consequence of the inequality 〈πYMΨ, πYMΦ

′〉 > 0,
which holds for all sufficiently large M ∈Mq.

37



Inspection of the first line of the fixed point problem (4.19) shows that for fixed v ∈ Y1
k,M with

‖v‖Y1
k,M

< δ, the remaining problem for c is linear and uniquely solvable as c = c(v) provided that
δ > 0 is sufficiently small. In addition, we see that |c(v)− c| ≤ C ′1 ‖v‖Y1

k,M
holds for the solution of

this problem, for some C ′1 > 0. In particular, possibly after further decreasing δ > 0, we see that
|c− c| ≤ δc holds for the wave speed c associated to any profile Φ satisfying (2.28). The desired
uniqueness hence again follows from the uniqueness of solutions to the full fixed point problem
(4.19).

4.2 The backward-Euler discretization

Fix two constants ∆t > 0 and κ ≥ 0. In this subsection we study the problem

νΦ′(ξ) =
1

∆t
[Φ(ξ − c∆t)− Φ(ξ)] + κ

[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
. (4.39)

The conditions (Hg) imply that this system satisfies the conditions (i)-(v) in [29, §2]. We may
therefore directly apply [29, Thm. 2.1] to obtain the existence of a function ν : R × (0, 1) → R so
that (4.39) with c ∈ R and a ∈ (0, 1) admits a non-decreasing solution Φ with the limits

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1, (4.40)

if and only if ν = ν(c, a). This theorem also shows that ν depends continuously on a, but does not
cover variations in c. In addition, the conditions (vi)-(x) are also satisfied, allowing us to apply [29,
Cor. 2.5] to conclude that a 7→ ν(c, a) is a non-decreasing function, with ∂aν(c, a) < 0 whenever
ν(c, a) 6= 0.

The main task for our proof of Theorem 2.2 is hence to understand the dependence of ν on c.
As a first step, we establish the equivalent of [29, Prop 7.2], which shows that we only need to be
concerned about the continuity of (c, a) 7→ ν(c, a) in the regime where ν(c, a) 6= 0.

Lemma 4.5. Consider the problem (4.39) and suppose that (Hg) is satisfied. Consider a sequence
{(cj , aj)}j∈N ⊂ R× (0, 1) for which we have the convergence

lim
j→∞

(cj , aj) = (c∗, a∗) ∈ R× (0, 1). (4.41)

Suppose furthermore that ν(cj , aj) 6= 0 for all j ∈ N but ν(c∗, a∗) = 0. Then we have the limit

lim
j→∞

ν(cj , aj) = 0. (4.42)

Proof. Without loss, we assume that νj := ν(cj , aj) > 0 and that νj → ν∗ as j → ∞, with
0 ≤ ν∗ ≤ ∞. We write Φj for the wave profiles associated with (cj , aj).

Consider first the case ν∗ = ∞. Upon introducing the new functions xj(ξ) = Φj(νjξ), one sees
that

x′j(ξ) =
1
T

[
xj(ξ − ν−1

j cT )− xj(ξ)
]

+ xj(ξ − ν−1
j ) + xj(ξ + ν−1

j )− 2xj(ξ) + g
(
xj(ξ); aj

)
. (4.43)

On account of the equicontinuity of the families xj and x′j , one can pass to a subsequence for which
one can take the limits xj(ξ)→ x∗(ξ) and x′j(ξ)→ x′∗(ξ), uniformly on compact intervals of ξ. The
limiting function x∗ satisfies

x′∗(ξ) = g
(
x∗(ξ); a∗

)
. (4.44)

One can now proceed as in [29, Prop 7.2] to obtain a contradiction.
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For the remaining case 0 < ν∗ < ∞, we note that the families Φj and Φ′j are equicontinuous.
After passing to a subsequence, we obtain the convergence Φj(ξ)→ Φ∗(ξ), Φ′j(ξ)→ Φ′∗(ξ), uniformly
on compact intervals of ξ. In fact, the equicontinuity also gives Φj(ξ − cjT ) → Φ∗(ξ − c∗T ), which
allows us to conclude

ν∗Φ′∗ =
1
T

[
Φ∗(ξ − c∗T )− Φ∗(ξ)

]
+ Φ∗(ξ − 1) + Φ∗(ξ + 1)− 2Φ∗(ξ) + g

(
Φ∗(ξ); a∗

)
. (4.45)

One can now again proceed as in [29, Prop 7.2] to obtain a contradiction.

For ν(c, a) 6= 0, we can set up a modified implicit function argument in order to study the impact
of variations in (c, a). In particular, let us suppose that ν = ν(c, a) 6= 0 for some (c, a) ∈ R× (0, 1).
Write Φ for the associated wave profile and Ψ for the associated strictly positive adjoint eigenfunction;
see [29, Eq. (4.6)]. We now write

Lbe : H1(R,R)→ L2(R,R) (4.46)

for the operator associated to the linearization of the backward-Euler wave equation (4.39), which
acts as

[Lbew](ξ) = −νw′(ξ) + 1
∆t

[
w(ξ − cT )− w(ξ)] + κ

[
w(ξ + 1) + w(ξ − 1)− 2w(ξ)

]
+g′(Φ(ξ); a)w(ξ).

(4.47)

For normalization purposes, let us write

Zs = {w ∈ Hs(R,R) : 〈Ψ, w〉L2 = 0} (4.48)

for any integer s ≥ 1. Looking for a solution to (4.39) of the form Φ(ξ) = Φ(ξ) + w(ξ) with w ∈ Z1

is equivalent to looking for zeroes of the function

F : Z1 × R× R× (0, 1)→ L2(R,R) (4.49)

that acts as

F(w, ν, c, a) = Lbew + (ν − ν)Φ
′
+ SA(w′, ν) + SB(w, a) + SC(c) + SD(w, c). (4.50)

Here we have introduced the nonlinear expressions

[SA(w′, ν)](ξ) = (ν − ν)w′(ξ),

[SB(w, a)](ξ) = g(Φ(ξ) + w(ξ); a)− g(Φ(ξ) + w(ξ); a) +N (w(ξ); ξ, a),

[SC(c)](ξ) = 1
∆t [Φ(ξ − c∆t)− Φ(ξ − c∆t)],

[SD(w, c)](ξ) = 1
∆t [w(ξ − c∆t)− w(ξ − c∆t)].

(4.51)

Inspection of these definitions immediately shows that SA and SB share the estimates obtained in
§4.1 for RA and RB , provided one makes the replacements

c 7→ ν, v 7→ w, Y1
k,M 7→ H1, YM 7→ L2. (4.52)

Lemma 4.6. For any set

(w,w1, w2, c) ∈ H1(R,R)3 × R, (4.53)

we have the estimates

‖SC(c)‖L2 ≤ |c− c|
∥∥∥Φ
′
∥∥∥
L2

‖SD(w, c)‖L2 ≤ |c− c| ‖w′‖L2 ,

‖SD(w1, c)− SD(w2, c)‖ ≤ |c− c| ‖w′1 − w′2‖L2 .

(4.54)
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Proof. Using Jensen’s inequality, we compute

|SD(w, c)(ξ)|2 = 1
(∆t)2

∣∣∣∫ (c−c)∆t
u=0

w′(ξ − c∆t+ u) du
∣∣∣2

≤ 1
∆t |c− c|

∫ (c−c)∆t
u=0

|w′(ξ − c∆t+ u)|2 du,
(4.55)

which gives

‖SD(w, c)‖2L2 ≤ 1
∆t |c− c|

∫∞
−∞

∫ (c−c)∆t
u=0

|w′(ξ − cT + u)|2 du dξ

= |c− c|2
∫∞
−∞ |w

′(ξ)|2 dξ.
(4.56)

The other estimates follow analogously.

Writing

Ωδ = {(c, a) ∈ R× (0, 1) : |c− c|+ |a− a| < δ}, (4.57)

we may proceed precisely as in §4.1 to find solutions

w = w∗(c, a) ∈ H1(R,R), ν = ν∗(c, a) ∈ R (4.58)

to the problem F(w, ν, c, a) = 0 whenever (c, a) ∈ Ωδ for some sufficiently small δ > 0. However,
since the nonlinear term c 7→ SD(w, c) is not of class Cr, special care needs to be taken when
studying the smoothness of ν∗ and w∗.

Lemma 4.7. Fix a sufficiently small δ > 0. The map ν∗ : Ωδ → R is Cr-smooth. In addition, for
each integer 0 ≤ l ≤ r + 1, the map w∗ : Ωδ →∈ Hr+1−l is Cl-smooth.

Proof. Consider F as a map from Zr × R2 × (0, 1) into Hr−1, which is C1-smooth. We note that

D(w,ν)F(0, ν, c, a) =
(
Lbe,−Φ

′) ∈ L(Zr × R,Hr−1
)
. (4.59)

Since this linear operator is invertible, the implicit function theorem gives us a C1-smooth branch
of solutions w∗(c, a) ∈ Zr and ν∗(c, a) ∈ R for (c, a) ∈ Ωδ, after possibly decreasing δ > 0. Differen-
tiating (4.39) with respect to ξ subsequently shows that (c, a) 7→ w∗(c, a) ∈ Zr+1 is C0-smooth. In
addition, upon writing

S∗(w, ν, c, a) = SA(w′, ν) + SB(w, a) + SC(c) + SD(w, c) (4.60)

and introducing the operator F (c) : Ω×Hr × R→ Hr−1 that acts as

F (c)(c, a, w̃, ν̃) = Lbew̃ − ν̃Φ
′
+D(w,ν)S∗(w∗(c, a), ν∗(c, a), c, a)[w̃, ν̃]

+DcS∗(w∗(c, a), ν∗(c, a), c, a),
(4.61)

we see that

F (c)
(
c, a, ∂cw

∗(c, a), ∂cν∗(c, a)
)

= 0 (4.62)

for all (c, a) ∈ Ωδ. Unfortunately, F (c) does not depend C1-smoothly on the variable c, on account
of the term g′(Φ(ξ) + w∗(c, a)(ξ); a) appearing in DwN (w∗(c, a)(ξ), ξ, a). Indeed, one cannot take
(r − 1) derivatives with respect to ξ followed by one derivative with respect to c, since g is only of
class Cr. However, F (c) is in fact C1-smooth when interpreted as a map from Ω × Hr−1 × R into
Hr−2. Arguing as above, one may now apply the implicit function theorem to the problem

F (c)(c, a, w̃, ν̃) = 0, (4.63)

establishing that the solution branches (c, a) 7→ ∂cw
∗(c, a) ∈ Hr−1 coupled with (c, a) 7→ ∂cν

∗(c, a) ∈
R are C1-smooth. The desired smoothness can now be obtained by repeating this argument a suffi-
cient number of times.
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Proof of Theorem 2.2. In view of the discussion above, it only remains to establish the inequalities
(2.35). Inspecting (4.61) and exploiting the identities

w∗(c, a) = 0, ν∗(c, a) = ν (4.64)

shows that

−Lbe∂cw
∗(c, a) + ∂cν

∗(c, a)Φ
′

= DcSC(c) = −Φ′(ξ − c∆t), (4.65)

which yields

∂cν
∗(c, a) = −

∫ ∞
−∞

Ψ(ξ)Φ
′
(ξ − c∆t) dξ < 0. (4.66)

Proceeding in a similar fashion and exploiting (Hg), we also find

∂aν
∗(c, a) =

∫ ∞
−∞

Ψ(ξ)∂ag(Φ(ξ); a) dξ < 0, (4.67)

as desired.

Proof of Corollary 2.3. Item (i) is a direct consequence of the continuity of the map (c, a) 7→ ν(c, a),
the definitions of a±(c) and the inequalities (2.35). Item (ii) follows from [29, Thm. 2.6] and the fact
that (4.39) with κ > 0 and c = 0 is weakly coercive in the terminology of [29]. In particular, this
result states that 0 < a−(0) ≤ a+(0) < 1 and the desired inequalities now follow from continuity of
the map (c, a) 7→ ν(c, a)

Proof of Corollary 2.5. Let us first consider the inequalities

lim
c→∞

a+(c) ≤ a+
+∞, lim

c→−∞
a−(c) ≥ a−−∞. (4.68)

We only establish the first inequality here, as the second one follows in a similar fashion. In order
to relate the system (4.39) with κ = 1 to κ = 0, we assume c > 0 and perform the rescaling

ζ = c−1ξ, µ =
ν

c
, ε = c−1, (4.69)

which transforms (4.39) with κ = 1 to

µΦ′(ζ) =
1

∆t
[Φ(ζ −∆t)− Φ(ζ)] + Φ(ζ − ε) + Φ(ζ + ε)− 2Φ(ζ) + g(Φ(ζ); a). (4.70)

We write µ(ε, a) for the unique value of µ for which (4.70) admits a non-decreasing solution Φ with

lim
ζ→−∞

Φ(ζ) = 0, lim
ζ→+∞

Φ(ζ) = 1. (4.71)

By the same arguments as developed in this section, the map (ε, a) → µ(ε, a) is continuous for all
ε ∈ R and a ∈ (0, 1). Since µ has the same sign as ν, we obtain the first inequality of (4.68) by taking
the limit ε ↓ 0.

The statements

a+
+∞ < 1, a−−∞ > 0 (4.72)

again follow from [29, Thm. 2.6], as (4.39) with κ = 0 is coercive at Φ = +1 or Φ = 0 when c > 0
respectively c < 0. Finally, the identities

a−+∞ = −∞, a+
−∞ = +∞ (4.73)

follow directly from [29, Thm. 2.2].
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4.3 The anti-continuum limit

In this subsection we continue our discussion from (4.2). We first consider the special case that
(c∆t)−1 = M = p

q ∈ Q, with gcd(p, q) = 1. In this case, solutions to (4.39) generate solutions to the
LDE

d

dt
u(t, ξ) =

1
∆t

[u(t, ξ −M−1)− u(t, ξ)] + κ
[
u(t, ξ + 1) + u(t, ξ − 1)− 2u(t, ξ)

]
+ g
(
u(t, ξ); a

)
,

(4.74)

posed on the lattice ξ ∈ p−1
Z, via the correspondence

u(t, ξ) = Φ(νt+ ξ). (4.75)

We note that (4.74) can be embedded into the more general system

d

dt
u(t, ξ) =

N∑
j=1

d−j [u(t, ξ − jp−1)− u(t, ξ)] + d+
j

N∑
j=1

[u(t, ξ + jp−1)− u(t, ξ)] + g
(
u(t, ξ); a

)
(4.76)

for some integer N ≥ 1 and coefficients d±j ≥ 0. Following [22, Prop. 4.1], we see that the LDE (4.76)
admits a comparison principle. In particular, any two solutions u1 and u2 to (4.76) that have

u1(t0, ξ) ≤ u2(t0, ξ), ξ ∈ p−1
Z (4.77)

for some t0 ∈ R, will in fact have

u1(t, ξ) ≤ u2(t, ξ), ξ ∈ p−1
Z (4.78)

for all t ≥ t0.
As a consequence, if a solution u to (4.76) has the weak monotonicity property

u(t0, ξ) ≤ u(t0, ξ + p−1), ξ ∈ p−1
Z (4.79)

for some t0 ∈ R, then we also have

u(t, ξ) ≤ u(t, ξ + p−1), ξ ∈ p−1
Z (4.80)

for all t ≥ t0. This is useful in conjunction with the following two results, which are closely related
to [25, Thm. 2.8].

Lemma 4.8. Consider the LDE (4.76) and suppose that (Hg) is satisfied. Fix a ∈ (0, 1) and intro-
duce the quantity

d+
∗ =

N∑
j=1

d+
j . (4.81)

Suppose that there exist 0 ≤ ul < ur ≤ a so that for all u ∈ (ul, ur) we have

g(u; a) < d+
∗ (u− 1), (4.82)

which is the case whenever d+
∗ ≥ 0 is sufficiently small. Consider any solution to (4.76) that has the

property

0 ≤ u(t0, ξ) ≤ u(t0, ξ + p−1) ≤ 1, ξ ∈ p−1
Z (4.83)

for some t0 ∈ R. Then for all pairs (t∗, ξ∗) ∈ R× p−1
Z for which

t∗ ≥ t0, u(t∗, ξ∗) ∈ (ul, ur), (4.84)

we have the inequality

d

dt
u(t∗, ξ∗) < 0. (4.85)
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Proof. The remarks above imply that also

0 ≤ u(t∗, ξ) ≤ u(t∗, ξ + p−1) ≤ 1, ξ ∈ p−1
Z. (4.86)

In particular, we may estimate

d
dtu(t∗, ξ∗) =

∑N
j=1 d

−
j [u(t∗, ξ∗ − jp−1)− u(t∗, ξ∗)]

+
∑N
j=1 d

+
j [u(t∗, ξ + jp−1)− u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)
≤

∑N
j=1 d

+
j [u(t∗, ξ + jp−1)− u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)
≤

∑N
j=1 d

+
j [1− u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)
= d+

∗ [1− u(t∗, ξ∗)] + g
(
u(t∗, ξ∗); a

)
< 0.

(4.87)

Lemma 4.9. Consider the LDE (4.76) and suppose that (Hg) is satisfied. Fix a ∈ (0, 1) and intro-
duce the quantity

d−∗ =
N∑
j=1

d−j . (4.88)

Suppose that there exist a ≤ ul < ur ≤ 1 so that for all u ∈ (ul, ur) we have

g(u; a) > d−∗ u, (4.89)

which is the case whenever d−∗ ≥ 0 is sufficiently small. Consider any solution to (4.76) that has the
property

0 ≤ u(t0, ξ) ≤ u(t0, ξ + p−1) ≤ 1, ξ ∈ p−1
Z (4.90)

for some t0 ∈ R. Then for all pairs (t, ξ) ∈ R× p−1
Z for which

t ≥ t0, u(t, ξ) ∈ (ul, ur), (4.91)

we have the inequality

d

dt
u(t, ξ) > 0. (4.92)

Proof. Proceeding as in the proof of the Lemma above, we estimate

d
dtu(t∗, ξ∗) =

∑N
j=1 d

−
j [u(t∗, ξ∗ − jp−1)− u(t∗, ξ∗)]

+
∑N
j=1 d

+
j [u(t∗, ξ + jp−1)− u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)
≥

∑N
j=1 d

−
j [u(t∗, ξ∗ − jp−1)− u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)
≥ −

∑N
j=1 d

−
j u(t∗, ξ∗) + g

(
u(t∗, ξ∗); a

)
= −d−∗ u(t∗, ξ∗) + g

(
u(t∗, ξ∗); a

)
> 0.

(4.93)
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Proof of Corollary 2.4. For c > 0, we have d+
∗ = κ and d−∗ = κ + 1

∆t , while for c < 0, we have
d+
∗ = κ + 1

∆t and d−∗ = κ. Since g depends continuously on a, it is possible to restrict the size
of d±∗ > 0 in such a way that both conditions (4.82) and (4.89) are satisfied for all a that have
|a− a| < δa for some small δa > 0. For all such a we necessarily have

ν(c, a;κ,∆t) = 0, (4.94)

since (4.85) and (4.92) together preclude any non-decreasing wave profile Φ that satisfies the limits
(4.92) from actually travelling. We thus obtain

a−(c;κ,∆t) < a− 1
2
δa < a+

1
2
δa < a+(c;κ,∆t) (4.95)

for all c for which c∆t ∈ Q. This last rationality restriction can be removed by using the fact that
the maps c 7→ a±(c;κ,∆t) are non-increasing.

5 Discussion

In this paper we studied the existence of travelling wave solutions to fully discretized scalar reaction-
diffusion systems in one spatial dimension. We considered a family of discretization schemes com-
monly referred to as the BDF methods, which include the well-known backward-Euler discretiza-
tion. We constructed travelling waves in a variety of different limits by employing several distinct
techniques. In addition, we were able to prove the non-uniqueness of the a(c) relationship in the
anti-continuum regime. In this final section we discuss various issues that we encountered during the
preparation of this paper.

Irrational values of M = (c∆t)−1

At present there is still a large disconnect between the results of Theorems 2.1 and 2.2. Indeed, the
latter result is independent of the (ir)rationality of M , while this distinction plays a major role in the
former result. In addition, the existence results obtained in [5] for fully discretized travelling waves
also cover both rational and irrational M . Those results were however obtained using completely
different techniques that do not involve the operators Lk,M and do not address questions such as
uniqueness and parameter dependence.

The technical obstruction in our approach is the interpolating procedure used in §3. In particular,
one would like to perform a second interpolation procedure in the transverse direction and build
functions in H1(R, L2([0, 1])) from elements of H1

k,M . This would allow functions defined on different
subsets of R to be compared to each other, which is a natural first step towards taking the limit
q →∞.

The problem however is that `2q,⊥ is compact, while L2([0, 1],R) is not. In particular, one does not
have any control from below on the L2([0, 1],R) norm of the components of the limiting functions
V∗(·, ξ) and W∗(·, ξ) in the proof of Proposition 3.7. This means that the inequalities (3.141) and
(3.143) fail. The difference with respect to the first interpolation in the ξ-direction is that the
travelling wave equations provide a natural bound on the differences D1,Mj

vj , while there is no
similar control over terms of the form p−1

j [vj(ξ + p−1
j )− vj(ξ)].

Exponentially small effects

Arguing in the fashion of the proof of Theorem 2.1, one finds that the leading order dependence on
ϑ occurs in the term RC . This suggests writing

∂ϑcM (ϑ, a) = c∂ϑ〈πYMΨϑ, πYM [Φϑ −Dk,MΦϑ]〉YM +O(M−1). (5.1)
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Unfortunately, this expression does not appear to be very useful, as we now discuss in some detail.
Following [37], let us consider a function f : R→ R that decays as

f(ξ) = O
(
|ξ|−1−ε )

, ξ → ±∞, (5.2)

for some ε > 0. Let us also assume that f can be extended to an analytic function

f : {z ∈ C : |Im z| < 1} → C (5.3)

for which ξ 7→ f(iη + ξ) ∈ L1(R,R) for each η ∈ (−1, 1). Upon writing

f̂(ω) =
∫ ∞
−∞

f(ξ)e−iωξ dξ (5.4)

for the Fourier transform of f , our assumptions imply the decay rate

f̂(ω) = O
(
e−α|ω|

)
, ω → ±∞ (5.5)

for every α < 1.
Let us now introduce, for any integer p ≥ 1 and ϑ ∈ R, the quantity

Tp(ϑ) = p−1
∑

ξ∈p−1Z

f(ξ + ϑ), (5.6)

which is well-defined on account of our assumptions above. The well-known Poisson summation
formula states that

Tp(ϑ)−
∫ ∞
−∞

f(ξ) dξ =
∞∑
j=1

[
f̂(2πpj)e2πiϑpj + f̂(−2πpj)e−2πiϑpj

]
, (5.7)

which gives

∂ϑTp(ϑ) =
∞∑
j=1

(2πipj)
[
f̂(2πpj)e2πiϑpj − f̂(−2πpj)e−2πiϑpj

]
. (5.8)

In particular, we find that for any α < 1 we have

∂ϑTp(ϑ) = O(e−2παp), p→∞. (5.9)

As an example, for the function

f(ξ) =
1

1 + ξ2
(5.10)

we may explicitly compute

Tp(ϑ) = p−1
∑
j∈Z

1
1+(p−1j+ϑ)2

= π cosh(πp) sinh(πM)
cosh2(πp)−cos2(πpϑ)

= π tanh(πp)−1
[
1 + 1−cos(πpϑ)2

sinh2(πp)

]−1
,

(5.11)

which gives

∂ϑTp(ϑ) = − sinh−2(πp)π tanh(πp)−1
[
1 + 1−cos(πpϑ)2

sinh2(πp)

]−2(sin(2πpϑ)πp)

= −4π2p sin(2πpϑ)e−2πp + o(pe−2πp)
(5.12)
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as p→∞. Such terms are hence exponentially small as p→∞, which means that they will not show
up at any order when performing a Taylor expansion in the variable p−1 near zero. In particular,
we do not expect to be able to analyze the term (5.1) and its propagation through the fixed point
argument outlined in §4 by using only standard Melnikov methods.

A way around this could be a formal asymptotics-beyond-all-orders method such as the one
outlined by King and Chapman [26], which could potentially be used to study systems of the form

cε−2[Φ(ξ − ε2)− Φ(ξ)] = ε−2[Φ(ξ + ε) + Φ(ξ − ε)− 2Φ(ξ)] + g(u; a) (5.13)

for small ε > 0, again with the usual limits

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1. (5.14)

If u 7→ g(u, 1
2 ) is anti-symmetric around u = 1

2 , one can follow the cut-off procedure that was
developed in [26] for the spatial discretization

cΦ′(ξ) = ε−2[Φ(ξ + ε) + Φ(ξ − ε)− 2Φ(ξ)] + g(u; a), (5.15)

to formally find an interval Ia = [1
2 −

1
2δa,

1
2 + 1

2δa] of width δa ∼ e−α/ε for some α > 0 so that (5.13)
admits only solutions with c = 0 whenever a ∈ Ia. For a slightly outside Ia, we believe a second
cut-off procedure could be used to uncover the difference between (5.13) and (5.15). In particular, we
believe that the expected exponentially small fluctuations in c could be uncovered by appropriately
sampling the remainder equations on different subsets of the line.

Another way could be to understand how poles of the functions Φ and Ψ behave under the fixed
point iteration procedure described here. This would require understanding the solutions to MFDEs
of the form

−cv′(z) + v(z + 1) + v(z − 1)− 2v(z) + g′
(
Φ(z); a

)
v(z) =

1
(z − β)n

(5.16)

with a complex variable z. Compared to meromorphic ODEs, the difficulty here is that one now
expects poles to occur at more locations that just z = β and the poles of Φ. In particular, one can
no longer perform local expansions as in [26].

Discontinuities of a±.

For the purpose of this discussion, let us fix κ > 0 and ∆t > 0 and introduce the shorthands
a±(c) = a±(c;κ,∆t). In addition, let us fix c0 in such a way that c0∆t ∈ Q. The left-continuity of
a+ and right-continuity of a− stated in Corollary 2.3 imply that

lim
c↑c0

a+(c) = a+(c0), lim
c↓c0

a−(c) = a−(c0). (5.17)

In particular, whenever the strict inequalities

lim
c↑c0

a−(c) > a−(c0), lim
c↓c0

a+(c) < a+(c0) (5.18)

hold, we may conclude that

a−(c0) < a+(c0), (5.19)

implying that solutions to (2.32) with the limits (2.34) exist with the same wave speed c = c0 at
multiple values of a. The numerical results in Figure 1 indicate that the strict inequalities (5.18)
can indeed be expected to hold for c0∆t ∈ Q, with the size of the jumps roughly increasing with the
strength of the resonance. This is reminiscent of the crystallographic pinning phenomenon described
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in [7, 20, 23, 30], which concerns the interval of detuning parameters a for which planar wave solutions
to the LDE

u̇ij = ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij + g
(
uij ; a

)
, (i, j) ∈ Z2, (5.20)

fail to propagate. Such solutions can be written as

uij(t) = Φ(i cos θ + j sin θ + νt), (5.21)

again with the limits

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1. (5.22)

The wave speed ν = ν(θ, a) depends uniquely on the angle of propagation θ and the detuning
parameter a ∈ (0, 1), allowing us define the quantities

a−tw(θ) = sup{a ∈ (0, 1) : ν(θ, a) > 0} ∈ (0, 1),

a+
tw(θ) = inf{a ∈ (0, 1) : ν(θ, a) < 0} ∈ (0, 1).

(5.23)

The conjecture now is that

lim
θ→θ0

a+
tw(θ) < a+

tw(θ0), lim
θ→θ0

a−tw(θ) > a−tw(θ0) (5.24)

whenever tan θ0 ∈ Q. In [20], the authors provide a proof for these inequalities for the horizontal
and vertical directions θ0 ∈ π

2Z, provided a generic Melnikov condition is satisfied.
Although the quantities a±tw do not depend in a monotonic fashion upon the angle θ, we believe

that the root mechanisms leading to the jumps (5.24) and (5.18) are closely related. Indeed, we
expect that the general spirit of the center manifold approach developed in [20] should also be
applicable towards establishing (5.18). However, significant hurdles still remain to be overcome. In
particular, the dimension of the systems that need to be analyzed can become large as the height
of the fraction c∆t increases. In addition, in order to prove the strictness of the inequalities (2.45),
which correspond to the limiting case c0 =∞, one would need to overcome the lack of monotonicity
of the eigenfunctions described in [20, Prop. 1.3]. This is a consequence of the fact that the limiting
system (4.70) is a pure delayed or advanced equation.
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