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1Mathematisch Instituut, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
2Department of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia,
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Abstract

We discuss bichromatic (two-color) front solutions to the bistable Nagumo lattice differential e-
quation. Such fronts connect the stable spatially homogeneous equilibria with spatially heterogeneous
2-periodic equilibria and hence are not monotonic like the standard monochromatic fronts. We pro-
vide explicit criteria that can determine whether or not these fronts are stationary and show that the
bichromatic fronts can travel in parameter regimes where the monochromatic fronts are pinned. The
presence of these bichromatic waves allows the two stable homogeneous equlibria to both spread out
through the spatial domain towards each other, buffered by a shrinking intermediate zone in which
the periodic pattern is visible.
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1 Introduction

In this paper we consider the Nagumo lattice differential equation (LDE)

u̇j(t) = d
[
uj−1(t)− 2uj(t) + uj+1(t)

]
+ g
(
uj(t); a

)
, (1.1)

posed on the spatial lattice j ∈ Z, with t ∈ R. We assume d > 0 and use the standard cubic bistable
nonlinearity g(u; a) = u(1−u)(u−a) with a ∈ (0, 1). This LDE is well-known as a prototypical model that
describes the competition between two stable states u = 0 and u = 1 in a discrete spatial environment.
A crucial role is reserved for so-called travelling front solutions, which have the form

uj(t) = Φ(j − ct), Φ(−∞) = 0, Φ(+∞) = 1. (1.2)

Such solutions are often referred to as invasion waves, as they provide a mechanism by which the ener-
getically preferred state can invade the spatial domain.
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Our work focuses on the case where c = 0 holds for these primary invasion waves, indicating a delicate
balance between the two competing states. In this case (1.1) can admit stable spatially periodic rest-
states. Numerical results indicate that these states can act as a buffer between regions of space where
u = 0 and u = 1 dominate the dynamics. This buffer shrinks as these two stable states appear to move
towards each other. This latter process is governed by secondary two-component invasion waves that we
analyze in detail in this paper.

Nagumo PDE The LDE (1.1) can be seen as the nearest-neighbour discretization of the Nagumo
reaction-diffusion PDE [35]

ut = uxx + g(u; a), x ∈ R (1.3)

on a spatial grid with size h = d−1/2. This PDE has been used as a highly simplified model for the
spread of genetic traits [1] and the propagation of electrical signals through nerve fibres [3]. In higher
space dimensions it also serves as a desingularization of the standard mean-curvature flow that is often
used to describe the evolution of interfaces [18].

Fife and McLeod [21] used phase plane analysis to show that (1.3) admits a front solution for each
a ∈ [0, 1]. Such solutions have the form

u(x, t) = Φ(x− ct), Φ(−∞) = 0, Φ(+∞) = 1, (1.4)

for some smooth waveprofile Φ and wavespeed c that has the same sign as a − 1
2 . These fronts hence

connect the two stable spatially homogeneous equilibria u(x, t) ≡ 0 and u(x, t) ≡ 1.
Exploiting the comparison principle, Fife and McLeod were able to show that these front solutions

have a surprisingly large basin of attraction. Indeed, any solution to (1.3) with an initial condition
u(x, 0) = u0(x) that has u0(x) ≈ 0 for x � −1 and u0(x) ≈ 1 for x � +1 will converge to a shifted
version of this front as t→∞.

These front solutions can be used as building blocks to capture the behaviour of a more general class
of solutions to (1.3). Consider for example the two-parameter family of functions

uplt;α0,α1
(x, t) = Φ(x− ct+ α0) + Φ(−x− ct+ α1)− 1, (1.5)

with α1 ≥ α0. Each of these functions can be interpreted as a shifted version of the front solution (1.4)
that is reflected in a vertical line to form a plateau.

If c < 0, then any initial configuration that has u0(x) ≈ 0 for |x| � L and u0(x) ≈ 1 for |x| ≤ L
will converge to a member of the family (1.5) as t → ∞. This provides a mechanism by which compact
regions where u ∼ 1 can spread out to fill the entire domain.

On the other hand, when c > 0 one can construct entire solutions that converge to an element of (1.5)
as t → −∞ and tend to zero as t → +∞. These solutions are stable under small perturbations [44]. In
particular, they can be viewed as a robust elimination process whereby compact regions that have u ∼ 1
are annihilated by two incoming travelling fronts that collide as t→∞.

Nagumo LDE For many physical phenomena such as crystal growth in materials [6], the formation of
fractures in elastic bodies [39] and the motion of dislocations [10] and domain walls [14] through crystals,
the discreteness and topology of the underlying spatial domain have a major impact on the dynamical
behaviour. It is hence important to develop mathematical modelling tools that can incorporate such
structures effectively. Indeed, by now it is well known that discrete models can capture dynamical
behaviour that their continuous counterparts can not.

The LDE (1.1) has served as a prototype system in which such effects can be explored. It arises
as a highly simplified model for the propagation of action potentials through nerve fibers that have
regularly spaced gaps in their myeline coating [3]. Two-dimensional versions have been used to describe
phase transitions in Ising models [2], to analyze predator-prey interactions [38] and to develop pattern

2



0.0 0.2 0.4 0.6 0.8 1.0
a

0.01

0.02

0.03

0.04

0.05
d

monochromatic travelling waves, cmc≠0

bichromatic travelling waves, cbc≠0

bichromatic standing waves, cbc=0

Figure 1: Existence regions for monochromatic and bichromatic wave solutions to (1.1).

recognition algorithms in image processing [12, 13]. Recently, an interest has also arisen in Nagumo
equations posed on graphs [40], motivated by the network structure present in many biological systems
[36].

Many authors have studied the LDE (1.1), focusing primarily on the richness of the set of equilibria
[31] and the existence of travelling and standing front solutions [33, 45]. Such solutions have the form
(1.2), which leads naturally to the waveprofile equation

−cΦ′(ξ) = d
[
Φ(ξ − 1)− 2Φ(ξ) + Φ(ξ + 1)

]
+ g
(
Φ(ξ); a

)
. (1.6)

Since the behaviour of every lattice point is governed by the same profile Φ, we refer to these front
solutions as monochromatic waves in this paper (in order to distinguish them from the bichromatic waves
we discuss in the sequel). The seminal results by Mallet-Paret [33] show that for each a ∈ [0, 1] and d > 0
there exists a unique c = cmc(a, d) for which such monochromatic (mc) solutions exist.

Pinning Upon fixing a ∈ (0, 1)\{ 1
2}, Zinner [45] established that cmc(a, d) 6= 0 for d� 1, while Keener

[30] showed that cmc(a, d) = 0 for 0 < d � 1. Upon fixing d > 0, Mallet-Paret established [33] that
cmc(a, d) 6= 0 for a ≈ 1 and a ≈ 0. In addition, again for fixed d > 0, the results in [24, 34] strongly
suggest that there exists δ > 0 so that cmc(a, d) = 0 whenever

∣∣a− 1
2

∣∣ ≤ δ; see Figure 1.
This last phenomenon is called pinning and distinguishes the LDE (1.1) from the PDE (1.3). It

is a direct consequence of the fact that we have broken the translational invariance of space. Indeed,
(1.6) becomes singular in the limit c → 0 and the corresponding waveprofiles indeed typically lose their
smoothness. Many results suggest that this phenomenon is generic for discrete systems [2, 7, 16, 17, 29].
However, by carefully tuning the nonlinearity g it is possible to design systems for which this pinning is
absent [15, 26]. Understanding the pinning phenomenon is an important and challenging mathematical
problem that also has practical ramifications.

Periodicity In this paper we study waves that connect spatially homogeneous stationary solutions of
(1.1) with spatially heterogeneous 2-periodic stationary solutions. It is well known that many physical
systems exhibit spatially periodic features [22, 23, 37]. Examples that also feature spatial discreteness
include the presence of twinning microstructures in shape memory alloys [4] and the formation of domain-
wall microstructures in dielectric crystals [41].

In many cases the underlying periodicity comes from the spatial system itself. For example, in [19, 20,
25] the authors consider chains of alternating masses connected by identical springs (and vice versa). The
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Figure 2: A monochromatic travelling wave of (1.1) (left panel) connects two spatially homogeneous sta-
tionary solutions. A bichromatic travelling wave of (1.1) (right panel) connects a spatially homogeneous
stationary solution with a spatially heterogeneous one.

dynamical behaviour of such systems can be easily modelled by LDEs with periodic coefficients. In certain
limiting cases the authors were able to construct so-called nanopterons, which are multi-component wave
solutions that have low-amplitude oscillations in their tails.

However, periodic patterns also arise naturally as solutions to spatially homogeneous discrete systems.
Indeed, we shall see in §3 that the LDE (1.1) with d > 0 admits many periodic equilibria. In addition,
the results in [31] explore the periodicity and chaos present in the set of equilibria to homogeneous LDEs
with simplified nonlinearities.

It is also possible to introduce a natural periodicity into the structure of (1.1) by taking d < 0. This
can be seen by introducing new variables vj = (−1)juj , which restores the applicability of the comparison
principle. This choice essentially decomposes the lattice sites Z into two groups Zodd and Zeven that each
have their own characteristic behaviour.

Such anti-diffusion models have been used to describe phase transitions for grids of particles that
have visco-elastic interactions [8, 9, 42]. In [5] this problem has been analyzed in considerable detail.
The authors show that the resulting two component system admits co-existing patterns that can be both
monostable and bistable in nature. Similar results with piecewise linear nonlinearities but more general
couplings between neighbours can be found in [43].

Bichromatic waves In this paper we are interested in the parameter region where cmc(a, d) = 0. In
a subset of this region it is possible to show that (1.1) has spatially heterogenous stable equilibria. We
focus on the simplest case and consider so-called bichromatic (two-color) equilibria, which are spatially
periodic with period two. As such, they are closely connected to solutions of the Nagumo equation posed
on a graph with two vertices. We set out to construct bichromatic front-solutions to (1.1), which can be
seen as waves that connect the spatially homogeneous equilibrium u ≡ 0 with such a 2-periodic state. We
emphasize that these differ from the traditional front-solutions (1.2) in the sense that the odd and even
lattice sites each have their own waveprofile, as illustrated in Figure 2. Consequently, the bichromatic
front-solutions are not monotone.

Our first main contribution is contained in §3, where we give a detailed description of the set of
parameters (a, d) where such 2-periodic equilibria exist and where they are stable. In contrast to the
setting encountered in [5], the relevant bifurcation curves cannot all be described explicitly. Besides a
global result stating that the number of such equilibria decreases as d is increased, we also obtain precise
asymptotics that describe the boundaries near the three corners (a, d) ∈ {(0, 0), (1/2, 1/24), (1, 0)} in
Figure 1.

As in [5], these preparations allow the existence of bichromatic fronts to be established in a straight-
forward fashion. Indeed, one can apply the general theory developed by Chen, Guo and Wu in [11]
for discrete periodic systems that admit a comparison-principle. These results imply that there exists
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a unique wavespeed cbc(a, d) for which such bichromatic (bc) fronts exist. If cbc(a, d) 6= 0, the Fred-
holm theory developed in [28] together with the techniques from [27, §3] can be used to show that these
travelling fronts depend smoothly on (a, d) and are nonlinearly stable.

However, these general results cannot distinguish between the cases cbc(a, d) = 0 and cbc(a, d) 6= 0
where we have standing respectively travelling fronts. This should be contrasted to the situation for the
PDE (1.3), where the sign of the wavespeed is given by the sign of a simple integral [21]. Indeed, there
is a large set of parameters (a, d) for which the discrete bichromatic fronts fail to travel, even though the
analogous integral does not vanish.

Our second main contribution is that we provide explicit criteria in §4 that can guarantee cbc = 0
or cbc > 0. Together these results cover most of the parameter region where bichromatic fronts exist.
In any case, they provide a two-component generalization of the coercivity conditions introduced in [33],
which ensure cmc(a, d) 6= 0 for the boundary regions a ≈ 1 and a ≈ 0.

Our arguments to guarantee cbc = 0 are closely related to the setup used by Keener [30] to establish
that monochromatic waves are pinned for 0 < d� 1. In particular, for small values of d one can neglect
the diffusion term in §1.1 and use properties of the cubic to show that the derivative of the waveprofile
must change signs. This contradicts the fact that waveprofiles must be strictly monotonic if they travel.

On the other hand, in §4 we develop an intuitive geometric construction involving reflections to
describe a planar recurrence relation that standing bichromatic fronts must satisfy. This allows us to
rule out the presence of such fronts when a scalar inequality is violated. This consequently implies the
presence of travelling bichromatic fronts.

The parameter regimes where these two arguments apply both converge towards the corner points
(0, 0) and (1, 0). Near these corners we need the delicate asymptotics described above to distinguish
between the two cases.

Colliding fronts One of the main reasons for our interest in these bichromatic fronts is that they
present mechanisms via which the stable homogeneous states u = 0 and u = 1 can spread throughout
the domain, even though the primary invasion waves are blocked from propagation. By using similar
techniques as in [44], we believe it should be possible to construct entire solutions consisting of a right-
travelling bichromatic front connection between the homogeneous equilibrium u ≡ 0 and a 2-periodic
intermediate state that collides with a left-travelling bichromatic connection between 2-periodic interme-
diate state and the homogeneous equilibrium u ≡ 1; see Figure 3. The resulting state after the collision
is then a pinned monochromatic front that connects 0 with 1. We have been able to numerically verify
the existence of these solutions in the parameter regions predicted by the theory developed in this paper.

Acknowledgements HJH acknowledges support from the Netherlands Organization for Scientific Re-
search (NWO) (grant 639.032.612). LM acknowledges support from the Netherlands Organization for
Scientific Research (NWO) (grant 613.001.304).

2 Main Results

Our interest here is in the lattice differential equation

ẋj(t) = d
[
xj−1(t)− 2xj(t) + xj+1(t)

]
+ g
(
xj(t); a

)
(2.1)

posed on the one-dimensional lattice, i.e., j ∈ Z. The bistable nonlinearity is explicitly given by

g(u; a) = u(1− u)(u− a), (2.2)
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Figure 3: Colliding front of (1.1) consisting of a right-travelling bichromatic front connection between
the homogeneous equilibrium u ≡ 0 and a 2-periodic intermediate state that collides with a left-travelling
bichromatic connection between the 2-periodic state and the homogeneous equilibrium u ≡ 1.

with a ∈ (0, 1). Our results concern so-called bichromatic (two-colour) travelling wave solutions to the
LDE (2.1). Such solutions can be written in the form

xj(t) =

 Φu(j − ct) if j is even,

Φv(j − ct) if j is odd,
(2.3)

for some wavespeed c ∈ R and R2-valued waveprofile

Φ = (Φu,Φv) : R→ R2. (2.4)

Substituting this Ansatz into (2.1) we obtain the travelling wave system

−cΦ′u(ξ) = d
[
Φv(ξ − 1)− 2Φu(ξ) + Φv(ξ + 1)

]
+ g
(
Φu(ξ); a

)
,

−cΦ′v(ξ) = d
[
Φu(ξ − 1)− 2Φv(ξ) + Φu(ξ + 1)

]
+ g
(
Φv(ξ); a

)
.

(2.5)

Upon introducing the functions

G(u, v; a, d) =

 G1(u, v; a, d)

G2(u, v; a, d)

 =

 2d(v − u) + g(u; a)

2d(u− v) + g(v; a)

 , (2.6)

we see that any stationary solution
(Φu,Φv)(ξ) =

(
u, v
)

(2.7)

to (2.5) must satisfy the nonlinear algebraic equation

G(u, v; a, d) = 0. (2.8)

The full bifurcation diagram for this equation is described in §3. For our purposes here however it
suffices to summarize a subset of the conclusions from this analysis, which we do in our first result below.
In particular, there exists a region Ωbc in the (a, d)-plane for which the spatially homogeneous system
(u̇, v̇) = G(u, v; a, d) has a stable equilibrium

(
ubc(a, d), vbc(a, d)

)
that can be interpreted as a bichromatic

equilibrium state for the LDE (2.1).
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Proposition 2.1 (see §3). There exists a continuous curve dbc : [0, 1] → [0, 1
24 ] with dbc( 1

2 ) = 1
24 and

dbc(1 − a) = dbc(a) so that for every 0 ≤ d < dbc and 0 < a < 1 the system (2.8) has nine distinct
equilibria (u, v) ∈ [0, 1]2. Upon writing

Ωbc = {0 < d < dbc(a) and 0 < a < 1}, (2.9)

there exist C∞-smooth maps
(ubc, vbc) : Ωbc → (0, 1)2 (2.10)

with ubc < a < vbc so that for every (a, d) ∈ Ωbc we have

G
(
ubc(a, d), vbc(a, d); a, d

)
= 0 (2.11)

together with

detD1,2G
(
ubc(a, d), vbc(a, d); a, d

)
> 0, TrD1,2G

(
ubc(a, d), vbc(a, d); a, d

)
< 0. (2.12)

We note that the statements (2.11)-(2.12) are also valid upon replacing the bichromatic rest-state
(ubc, vbc) by the monochromatic equilibria (0, 0) and (1, 1). We will be interested in waves that connect
these mono- and bichromatic equilibria together. More precisely, we set out to find solutions to (2.5) that
satisfy either the ’lower’ boundary conditions

lim
ξ→−∞

Φ(ξ) = (0, 0), lim
ξ→+∞

Φ(ξ) = (ubc, vbc), (2.13)

or the ’upper’ boundary conditions

lim
ξ→−∞

Φ(ξ) = (ubc, vbc) lim
ξ→+∞

Φ(ξ) = (1, 1). (2.14)

The result below summarizes several key facts concerning the existence and uniqueness of such waves. It
introduces subregions of Ωbc denoted by Tlow and Tup where the bichromatic travelling waves (2.3) exist
with nonzero speeds clow > 0 and cup < 0; see Figure 4. With the exception of the inequalities clow ≥ 0
and cup ≤ 0, these properties follow directly from the theory developed in [11, 28].

Theorem 2.2 (see §4.1). There exist continuous maps

clow : Ωbc → [0,∞), cup : Ωbc → (−∞, 0] (2.15)

that satisfy the following properties.

(i) Upon introducing the open sets

Tlow = {(a, d) ∈ Ωbc : clow > 0},

Tup = {(a, d) ∈ Ωbc : cup < 0},
(2.16)

the functions clow and cup are C∞-smooth on Tlow respectively Tup.

(ii) There exist C∞-smooth functions

Φlow : Tlow →W 1;∞(R;R2), Φup : Tup →W 1;∞(R;R2), (2.17)

such that for any # ∈ {low,up} and any (a, d) ∈ T#, the pair

(c,Φ) =
(
c#(a, d),Φ#(a, d)

)
(2.18)

satisfies (2.5) together with the boundary condition (2.13) if # = low or (2.14) if # = up. In
addition, we have the componentwise inequality Φ′# > (0, 0).
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Figure 4: Numerical bounds for the parameter sets Ωbc, Tlow and Tup introduced in Theorem 2.2, in the
neighbourhood of the cusp ( 1

2 ,
1
24 ).

(iii) For any # ∈ {low,up} and any (a, d) ∈ Ωbc \T#, there exists a non-decreasing function Φ : R→ R2

that satisfies (2.5) with c = 0 together with the boundary condition (2.13) if # = low or (2.14) if
# = up.

(iv) Pick # ∈ {low,up} and (a, d) ∈ Ωbc and consider any c 6= 0 together with a function Φ ∈
W 1,∞(R;R2) that satisfies (2.5) together with the boundary condition (2.13) if # = low or (2.14)
if # = up. Then we must have c = c#(a, d) and Φ = Φ#(a, d)(· − ϑ) for some ϑ > 0. In particular,
we have (a, d) ∈ T#.

(v) Pick # ∈ {low,up} and (a, d) ∈ Ωbc and consider any non-decreasing function Φ : R → R2 that
satisfies (2.5) with c = 0 together with the boundary condition (2.13) if # = low or (2.14) if # = up.
Then we must have (a, d) ∈ Ωbc \ T#.

We numerically determined the locations of the sets Tlow and Tup in Figure 4. In particular, we
simulated (2.1) with an initial condition that consists of the stable periodic pattern multiplied by a
hyperbolic tangent. By checking if this solution converges to a travelling or stationary pattern one can
decide whether (a, d) ∈ Tlow.

We now introduce the notation

γ±(a) =
1

3

[
a+ 1±

√
a2 − a+ 1− 6dbc(a)

]
. (2.19)

Writing αa for the inverse of the strictly increasing function

[0, γ−(a)] 3 v 7→ v − g(v; a)

2dbc(a)
, (2.20)

we formally introduce the quantity

Γ(a) = 2γ+(a)− g′(γ+(a);a)
dbc(a) − ubc

(
a, d−bc(a)

)
−max

{
u ∈

[
0, ubc

(
a, d−bc(a)

)]
: 2u− g(u;a)

dbc(a) − vbc

(
a, d−bc(a)

)
= αa(u)

} (2.21)

for any 0 < a < 1. Here the notation d−bc(a) refers to the limit d ↑ dbc(a). The geometric interpretation
of this definition will be clarified in §4.2. However, we wish to emphasize here that one only needs
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information concerning the quantities (dbc, ubc, vbc) associated to the two-dimensional algebraic problem
G(u, v; a, d) = 0 in order to compute Γ(a). In particular, there is an essential difference1 between
computing Γ(a) and using the numerical procedure above to check whether c 6= 0.

The main contribution of the present paper is contained in our final result, which provides analytical
bounds for the parameter regions Tlow and Tup where the bichromatic waves actually travel (i.e., where
clow > 0 respectively cup < 0). Both regions contain a neighbourhood of the cusp (a, d) = ( 1

2 ,
1
24 ). In

addition, the corners (0, 0) and (1, 0) are accumulation points for the sets Tup respectively Tlow.

Theorem 2.3 (see §4.3). The sets Tlow and Tup satisfy the following properties.

(i) For each (a, d) ∈ Tup we have d > 1
8a

2, while for each (a, d) ∈ Tlow we have d > 1
8 (1− a)2.

(ii) If (a, d) ∈ Tlow then also (a′, d) ∈ Tlow for all (a′, d) ∈ Ωbc that have a′ ≥ a. On the other hand, if
(a, d) ∈ Tup then also (a′, d) ∈ Tup for all (a′, d) ∈ Ωbc that have a′ ≤ a.

(iii) There exists ε > 0 so that we have the inclusions

(a, d) ∈ Tlow ∩ Tup (2.22)

for all (a, d) ∈ Ωbc that have

0 <

∣∣∣∣a− 1

2

∣∣∣∣+

∣∣∣∣d− 1

24

∣∣∣∣ < ε. (2.23)

(iv) The expression (2.21) is well-defined for all 0 < a < 1. If Γ(a∗) > 0 for some 0 < a∗ < 1, then there
exists ε > 0 so that (a, d) ∈ Tlow for all (a, d) ∈ Ωbc that have

0 < |a− a∗|+ |d− dbc(a∗)| < ε. (2.24)

(v) The inequality Γ(a) > 0 holds whenever 1 − a > 0 is sufficiently small. In particular, we have
(0, 0) ∈ T up and (1, 0) ∈ T low.

Using numerics we have verified that Γ(a) > 0 holds for a ∈
[
.498, .999]; see §4.3. Together with (ii)

and (v) above, this strongly suggests that Tlow is a connected set that extends towards the right boundary
of Ωbc. By symmetry, this is equivalent to the statement that Tup is a connected set that extends towards
the left boundary of Ωbc.

3 Bichromatic stationary solutions

In this section we uncover the structure of the solution set to G(u, v; a, d) = 0 as a function of the
parameters (a, d). Our first result shows that for d� 1 this equation only has the monochromatic roots
(0, 0), (a, a) and (1, 1). The threshold d+(a) between this region and the region with five distinct roots can
be explicitly computed. However, we only have qualitative and asymptotic results for the boundary d−(a)
where the root-count increases to the maximal value of nine. In Figure 5 we compare these asymptotics
to numerically computed values for d−(a). We remark here that the monotonicity of the root count with
respect to d does not hold for general bistable nonlinearities g.

Proposition 3.1 (see §3.5). There exist two continuous functions

d± : [0, 1]→ [0,∞) (3.1)

that satisfy the following properties.

1The first problem is three dimensional, while the second problem is infinite dimensional and hence involves truncations.
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Figure 5: Comparison of the asymptotics for d− described in Proposition 3.1 (v) with the numerically
computed border of the set Ω−.

(i) For any 0 < a < 1 we have the explicit expression

d+(a) =
g′(a; a)

4
, (3.2)

together with the identities

d−(a) = d−(1− a), d+(a) = d+(1− a) (3.3)

and the inequality d−(a) < d+(a). In addition, we have

d−(0) = d+(0) = d−(1) = d+(1) = 0 (3.4)

together with d−( 1
2 ) = 1

24 .

(ii) We have d− ∈ C∞
(
[0, 1

2 )
)
∩ C∞

(
( 1

2 , 1]
)
. In addition, d− is strictly increasing on [0, 1

2 ] and strictly
decreasing on [ 1

2 , 1].

(iii) Pick any a ∈ (0, 1). The equation G(u, v; a, d) = 0 has nine distinct roots for 0 ≤ d < d−(a), five
distinct roots for d− < d < d+(a) and three distinct real roots for d ≥ d+(a).

(iv) Pick any a ∈ (0, 1). The equation G(u, v; a, d) = 0 has seven distinct roots for d = d−(a) if a 6= 1
2

and five if a = 1
2 .

(v) We have the expansion d−(a) = 1
8a

2+ 1
32a

4+O(a5) for a ↓ 0. In addition, writing a− : [0, 1
24 ]→ [0, 1

2 ]
for the inverse function of d− on [0, 1

2 ], we have the expansion

a−(d) =
1

2
−
√
−1152(d− 1

24
)3 +O

(
(d− 1

24
)2
)

(3.5)

as d ↑ 1
24 .

In order to break the symmetry caused by the swap u ↔ v, we set out to describe the roots of
G(u, v; a, d) = 0 that have v > u. To this end, we introduce two regions

Ω− = {(a, d) : 0 < a < 1 and 0 < d < d−(a)},

Ω+ = {(a, d) : 0 < a < 1 and d−(a) < d < d+(a)}
(3.6)
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Figure 6: Illustration of the functions (uA, vA), (uB , vB), (uC , vC) from Proposition 3.2 and the function
(uD, vD) from Proposition 3.3 for a = .45 (left panel) and a = .5 (right panel). The bifurcations occuring
at d+(a) and d−(a) are indicated by squares and circles; see Proposition 3.1.

that are studied separately in the two results below. In Ω− there are three such bichromatic equilibria
with v > u. These equilibria can be ordered and the middle one is the only stable one. Two (or three) of
these equilibria collide at d = d−(a) in a saddle node (or pitchfork) bifurcation, leaving a single unstable
bichromatic equilibrium in Ω+. This equilibrium in turns collides with its swapped counterpart and the
monochromatic equilibrium (a, a) on the boundary d+(a). These processes are illustrated in Figure 6. In
particular, we see that Ω− coincides with the set Ωbc introduced in §2; cf. Figures 4 and 5.

Proposition 3.2 (see §3.5). There exist continuous functions

(uA, vA) : Ω− → [0, 1]2 (uB , vB) : Ω− → [0, 1]2, (uC , vC) : Ω− → [0, 1]2 (3.7)

that satisfy the following properties.

(i) Pick any (a, d) ∈ Ω−. Then we have

G(u#(a, d), v#(a, d); a, d) = 0 (3.8)

for all # ∈ {A,B,C}. If also (a, d) ∈ Ω−, then the matrix

D1,2G(u#(a, d), v#(a, d); a, d) (3.9)

has two strictly negative eigenvalues if # = B or one strictly positive and one strictly negative
eigenvalue if # ∈ {A,C}.

(ii) For any 0 ≤ a ≤ 1 we have the identities

(uA, vA)(a, 0) = (0, a), (uB , vB)(a, 0) = (0, 1), (uC , vC)(a, 0) = (a, 1). (3.10)

(iii) For any (a, d) ∈ Ω− we have the ordering

0 < uA(a, d) < uB(a, d) < uC(a, d) < a < vA(a, d) < vB(a, d) < vC(a, d). (3.11)

11



(iv) For any a ∈ [0, 1
2 ] we have

(uB , vB)
(
a, d−(a)

)
= (uC , vC)

(
a, d−(a)

)
, (3.12)

while for any a ∈ [ 1
2 , 1] we have

(uA, vA)
(
a, d−(a)

)
= (uB , vB)

(
a, d−(a)

)
. (3.13)

Proposition 3.3 (see §3.5). There exist continuous functions

(uD, vD) : Ω+ → [0, 1]2 (3.14)

that satisfy the following properties.

(i) Pick any (a, d) ∈ Ω+. Then we have

G(uD(a, d), vD(a, d); a, d) = 0. (3.15)

If also (a, d) ∈ Ω+, then the matrix

D1,2G(uD(a, d), vD(a, d); a, d) (3.16)

has one strictly positive and one strictly negative eigenvalue.

(ii) For any 0 ≤ a ≤ 1 we have the identity

(uD, vD)
(
a, d+(a)

)
= (a, a). (3.17)

(iii) For any (a, d) ∈ Ω+ we have the ordering

0 < uD(a, d) < a < vD(a, d) < 1. (3.18)

(iv) For any a ∈ [0, 1
2 ] we have the identity

(uD, vD)
(
a, d−(a)

)
= (uA, vA)

(
a, d−(a)

)
= (uB , vB)

(
a, d−(a)

)
, (3.19)

while for any a ∈ [ 1
2 , 1] we have

(uD, vD)
(
a, d−(a)

)
= (uB , vB)

(
a, d−(a)

)
= (uC , vC)

(
a, d−(a)

)
. (3.20)

Corollary 3.4. For any (a, d) ∈ Ω−, we have the identities(
uA, vA

)
(a, d) =

(
1− vC , 1− uC

)
(1− a, d),(

uB , vB
)
(a, d) =

(
1− vB , 1− uB

)
(1− a, d),(

uC , vC
)
(a, d) =

(
1− vA, 1− uA

)
(1− a, d).

(3.21)

In addition, for any (a, d) ∈ Ω+ we have the identity(
uD, vD

)
(a, d) =

(
1− vD, 1− uD

)
(1− a, d). (3.22)
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Proof. The symmetry g(1− u, 1− a) = −g(u, a) implies that

G(1− u, 1− v; 1− a, d) = −G(u, v; a, d). (3.23)

In addition, we have G(u, v; a, d) = 0 if and only if G(v, u; a, d) = 0. The statements hence follow from
the ordering (3.11).

Our final result concerns the special case a = 1
2 , in which case it is possible to be more explicit. In

particular, the bichromatic roots (uB , vB) and (uD, vD) lie on the line u + v = 1 and collide precisely
when g′(u; 1

2 ) = g′(v; 1
2 ) = 0.

Corollary 3.5. For any 0 ≤ d ≤ 1
24 we have

uB(
1

2
, d) = 1− vB(

1

2
, d), (3.24)

while for any 1
24 ≤ d ≤

1
16 = d+(1/2) we have

uD(
1

2
, d) = 1− vD(

1

2
, d). (3.25)

In addition, we have the identities

uA( 1
2 ,

1
24 ) = uB( 1

2 ,
1
24 ) = uC( 1

2 ,
1
24 ) = uD( 1

2 ,
1
24 ) = 1

2 −
1
6

√
3,

vA( 1
2 ,

1
24 ) = vB( 1

2 ,
1
24 ) = vC( 1

2 ,
1
24 ) = uD( 1

2 ,
1
24 ) = 1

2 + 1
6

√
3.

(3.26)

3.1 Saddle-nodes around a = 0

In this section we construct the branches (uB , vB) and (uC , vC) of solutions to G(u, v; a, d) = 0 in the
regime where (a, d) ≈ (0, 0). In particular, we define

H(u, v; a, d) = G(u, 1 + v; a, d) (3.27)

and determine the zeroes of H for which (u, v, a, d) are small.

Proposition 3.6. There exist constants δa > 0, δd > 0 and ε > 0 together with a function dc : (0, δa)→
(0, δd) and a constant K ≥ 1 so that the following holds true.

(i) For every 0 < a < δa and 0 < d < dc(a) the equation H(u, v; a, d) = 0 has precisely two solutions
on the set {|u|+ |v| < ε}.

(ii) For every 0 < a < δa and dc(a) < d < δd the equation H(u, v; a, d) = 0 has no solutions on the set
{|u|+ |v| < ε}.

(iii) For every 0 < a < δa we have the estimate∣∣∣∣dc(a)− 1

8
a2 − 1

32
a4

∣∣∣∣ ≤ Ka5. (3.28)

(iv) For every 0 < a < δa and the equation H(u, v; dc(a), a) = 0 has precisely one solution
(
uc(a), vc(a)

)
on the set {|u|+ |v| < ε}. We have the estimates∣∣uc(a)− 1

2a
∣∣ ≤ Ka4,∣∣vc(a) + 1

4a
2 + 1

8a
3
∣∣ ≤ Ka4.

(3.29)
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Writing H(u, v; a, d) =
(
H1(u, v; a, d), H2(u, v; a, d)

)T
we can compute

H1(u, v; a, d) = u2 − ua− u3 + u2a+ 2d+ 2dv − 2du,

H2(u, v; a, d) = −v − 2v2 + va− v3 + v2a+ 2du− 2d− 2dv.
(3.30)

Our strategy is to use the identity H2 = 0 to eliminate v and then recast H1 = 0 into the normal form
of a saddle-node bifurcation.

Lemma 3.7. Pick δ > 0 sufficiently small. Then there exist constants ε > 0 and K ≥ 1 together with
functions

α0 : (−δ, δ)2 → R, α1 : (−δ, δ)2 → R, Rα;2 : (−δ, δ)3 → R (3.31)

that satisfy the following properties.

(i) For every (u, a, d) ∈ (−δ, δ)3 the equation H2(u, v; a, d) = 0 has a unique solution v = v∗ in the set
{|v| < ε}. This solution is given by

v∗(u; a, d) = α0(a, d) + α1(a, d)u+ u2Rα;2(u; a, d). (3.32)

(ii) Upon writing
α0(a, d) = −2d− 2ad+ Sα0

(a, d),

α1(a, d) = 2d+ Sα1
(a, d),

(3.33)

the bounds
|Sα0(a, d)| ≤ K(d2 + |d| a2),

|Sα1
(a, d)| ≤ K |d| (|a|+ |d|), (3.34)

together with
|∂dSα0(a, d)| ≤ K(|d|+ a2),

|∂dSα1
(a, d)| ≤ K(|a|+ |d|)

(3.35)

hold for all (a, d) ∈ (−δ, δ)2.

(iii) For every (u, a, d) ∈ (−δ, δ)3 we have the bounds

|Rα;2(u; a, d)|+
∣∣R′α;2(u; a, d)

∣∣+
∣∣R′′α;2(u; a, d)

∣∣+
∣∣R′′′α;2(u; a, d)

∣∣ ≤ Kd2, (3.36)

together with

|∂dRα;2(u; a, d)|+
∣∣∂dR′α;2(u; a, d)

∣∣+
∣∣∂dR′′α;2(u; a, d)

∣∣+
∣∣∂dR′′′α;2(u; a, d)

∣∣ ≤ K |d| . (3.37)

Proof. Substituting the Ansatz (3.32) into H2, we obtain the fixed point problems

α0 = −2d− 2dα0 + α0a+ α2
0a− 2α2

0 − α3
0,

α1 = 2d− 4α0α1 + 2α0α1a− 2dα1 + α1a− 3α2
0α1,

(3.38)

together with

R2 = 2α0R2a+R2a+ α2
1a− 3α0α

2
1 − 2dR2 − 2α2

1 − 3α2
0R2 − 4α0R2

+(2α1R2a− 6α0α1R2 − 4α1R2 − α3
1)u

+(R2
2a− 3α0R

2
2 − 2R2

2 − 3α2
1R2)u2

−3α1R
2
2u

3 −R3
2u

4.

(3.39)
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These fixed point problems can be successively solved for small a, d and u, along with their differentiated
counterparts. The desired estimates can subsequently be obtained in a standard fashion by computing
Taylor expansions.

In order to eliminate v from H1, we define the function

J (u; a, d) = H1(u, v∗(u; a, d); a, d)

= β0(a, d) + β1(a, d)u+ u2
(
1 + a− u+Rβ;2(u; a, d)

)
,

(3.40)

which forces us to write
β0(a, d) = 2d+ 2dα0(a, d),

β1(a, d) = −a− 2d+ 2dα1(a, d),

Rβ,2(u; a, d) = 2dRα;2(u; a, d).

(3.41)

By applying a shift to u the linear term in (3.40) can be removed, transforming (3.40) into a normal form
for saddle node bifurcations.

Lemma 3.8. Pick δ > 0 sufficiently small. Then there exist constants ε > 0 and K ≥ 1 together with
functions

u∗ : (−δ, δ)2 → R, ζ0 : (−δ, δ)2 → R, Rζ;2 : (−δ, δ)3 → R (3.42)

that satisfy the following properties.

(i) For every (ũ, a, d) ∈ (−δ, δ)3, we have the identity

J (u∗(a, d) + ũ; a, d) = ζ0(a, d) + ũ2
[
1 +Rζ;2(ũ; a, d)

]
. (3.43)

(ii) Upon writing

u∗(a, d) = 1
2a+ d− 1

8a
2 + 1

2ad−
1
16a

3 + Su∗(a, d),

ζ0(a, d) = 2d− 1
4a

2 − da− 5d2 + 1
8a

3 + 1
4da

2 − 1
64a

4 + Sζ0(a, d),
(3.44)

the bounds
|Su∗(a, d)| ≤ K

[
d2 + a2 |d|+ a4

]
,

|Sζ0(a, d)| ≤ K(a5 + |d|3 + d2 |a|+ |a|3 |d|), (3.45)

together with
|∂dSu∗(a, d)| ≤ K

[
|d|+ a2

]
,

|∂dSζ0(a, d)| ≤ K(d2 + |d| |a|+ |a|3)
(3.46)

hold for all (a, d) ∈ (−δ, δ)2.

(iii) For every (ũ, a, d) ∈ (−δ, δ)3 we have the bounds

|Rζ;2(ũ; a, d)| ≤ K(|a|+ |d|),∣∣∣R′ζ;2(ũ; a, d)
∣∣∣ ≤ K |d|3 .

(3.47)
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Proof. We first introduce the notation

Nβ;2;u∗(ũ; a, d) = ũ−2
[
Rβ;2(u∗ + ũ)−Rβ;2(u∗; a, d)−R′β;2(u∗; a, d)ũ

]
(3.48)

for ũ 6= 0, together with Nβ;2;u∗(0; a, d) = 1
2R
′′
β;2(u∗; a, d). This allows us to compute

J (u∗ + ũ, a, d) = γ0(a, d, u∗) + γ1(a, d, u∗)ũ+
(
1 + a− 3u∗ +Rγ;2(ũ; a, d, u∗)

)
ũ2, (3.49)

in which

γ0(a, d, u∗) = β0 + β1u∗ + u2
∗[1 + a− u∗ +Rβ;2(u∗)],

γ1(a, d, u∗) = β1 + u2
∗[−1 +R′β;2(u∗; a, d)] + 2u∗[1 + a− u∗ +Rβ;2(u∗)],

Rγ;2(ũ; a, d, u∗) = (u∗ + ũ)2Nβ;2;u∗(ũ; a, d) +R′β;2(u∗; a, d)(2u∗ũ+ ũ2) +Rβ;2(u∗; a, d).

(3.50)

On account of (3.36) we have2

|Nβ;2;u∗(ũ; a, d)|+
∣∣N ′β;2;u∗(ũ; a, d)

∣∣ ≤ C ′1 (3.51)

and hence also
|Rγ;2(ũ; a, d, u∗)|+

∣∣R′γ;2(ũ; a, d, u∗)
∣∣ ≤ C ′2. (3.52)

Setting γ1 = 0 leads to the fixed point problem

u∗ = −1

2
β1 − au∗ +

3

2
u2
∗ −

1

2
u2
∗R
′
β;2(u∗; a, d)− u∗Rβ;2(u∗; a, d), (3.53)

which has a unique small solution that we write for the moment as

u∗(a, d, β1) = −1

2
β1 +

1

2
aβ1 +

3

8
β2

1 −
1

2
a2β1 −

9

8
aβ2

1 −
9

16
β3

1 + S̃u∗(a, d, β1). (3.54)

In a standard fashion one obtains the bound∣∣∣S̃u∗(a, d, β1)
∣∣∣ ≤ C ′3[β4

1 + |a| |β1|3 + (a2 + d2)β2
1 + (|a|3 + |d|3) |β1|

]
. (3.55)

Differentiating (3.53) we obtain

Ddu∗ = − 1
2∂dβ1 − 1

2u
2
∗∂dR

′
β;2(u∗; a, d)− u∗∂dRβ;2(u∗; a, d)

−aDdu∗ + 3u∗Ddu∗ − u∗R′β;2(u∗; a, d)Ddu∗ −Rβ;2(u∗; a, d)Ddu∗,
(3.56)

which yields the estimate∣∣∣∣Ddu∗ −
[
− 1

2
+

1

2
a+

3

4
β1

]
∂dβ1

∣∣∣∣ ≤ C ′4[d2 |β1|+ a2 + |a| |β1|+ β2
1

]
|∂dβ1| . (3.57)

Using the bounds ∣∣β0(a, d)− [2d− 4d2]
∣∣ ≤ C ′5d

2(|a|+ |d|),

|β1(a, d) + (a+ 2d)| ≤ C ′5d
2,

(3.58)

2All primed constants in this paper are strictly positive and do not depend on the variables appearing on the left hand
side of the inequalities where they appear.
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together with
|∂dβ0(a, d)− [2− 8d]| ≤ C ′5 |d| (|a|+ |d|),

|∂dβ1(a, d) + 2| ≤ C ′5 |d|
(3.59)

and finally

|Rβ;2(u∗; a, d)|+
∣∣R′β;2(u∗; a, d)

∣∣+
∣∣R′′β;2(u∗; a, d)

∣∣+
∣∣R′′′β;2(u∗; a, d)

∣∣ ≤ C ′6 |d|3 , (3.60)

the desired estimates follow by writing

ζ0(a, d) = γ0

(
a, d, u∗(a, d)

)
,

Rζ;2(ũ; a, d) = a− 3u∗(a, d) +Rγ;2

(
ũ, a, d, u∗(a, d)

) (3.61)

and computing ∂dζ0 directly.

Proof of Proposition 3.6. We note first that the map

ũ 7→ ũ
√

1 +Rζ;2(ũ; a, d) (3.62)

is invertible for (ũ, a, d) ∈ (−δ, δ)3. In order to find dc it hence suffices to solve ζ0(a, dc) = 0, which gives
the fixed-point problem

dc =
1

8
a2 − 1

16
a3 +

1

128
a4 +

1

2
adc −

1

8
dca

2 +
5

2
d2
c −

1

2
Sζ0(a, dc). (3.63)

Our estimate on ∂dSζ0 guarantees the existence of a unique small solution for small a. The estimate
(iii) now follows in a standard fashion. Writing uc = u∗

(
a, dc(a)

)
and vc = v∗

(
u∗(a, dc(a)); a, dc(a)

)
the

expansions in (iv) follow directly by substitution.

3.2 The cusp bifurcation around a = 1/2

Our goal here is to unfold the structure of the solution-set to G(u, v; a, d) near the critical point (a, d) =
(1/2, 1/24) where the branches (u#, u#) with # ∈ {A,B,C,D} all collide in a cusp bifurcation; see
Figures 1 and 6. In particular, we introduce the cusp location

(ucp, vcp, acp, dcp) =
(
umin( 1

2 ), umax( 1
2 ), 1

12 ,
1
24

)
=

(
1
2 −

1
6

√
3, 1

2 + 1
6

√
3, 1

2 ,
1
24

) (3.64)

together with the function

Hcp(u, v; a, d) = G
(
ucp + u, vcp + v; acp + a, dcp + d

)
(3.65)

and set out to determine the zeroes of Hcp for which (u, v, a, d) are small.

Proposition 3.9. There exist constants δa > 0, δd > 0 and ε > 0 together with a function ac : (−δd, 0)→
(0, δa) and a constant K ≥ 1 so that the following holds true.

(i) For every 0 ≤ d < δd and any a ∈ (−δa, δa), the equation Hcp(u, v; a, d) = 0 has precisely one
solution on the set {|u|+ |v| < ε}.

(ii) For every −δd < d < 0 and a ∈ (−δa, δa) with |a| > ac(d), the equation Hcp(u, v; a, d) = 0 has
precisely one solution on the set {|u|+ |v| < ε}.
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(iii) For every −δd < d < 0 and a ∈
(
−ac(d), ac(d)

)
, the equation Hcp(u, v; a, d) = 0 has precisely three

solutions on the set {|u|+ |v| < ε}.

(iv) For any −δd < d < 0, the equation Hcp(u, v; ac(d), d) = 0 has precisely two solutions on the set
{|u|+ |v| < ε}.

(v) For any d ∈ (−δd, 0) we have the estimate∣∣∣ac(d)−
√
−1152d3

∣∣∣ ≤ Kd2. (3.66)

In order to recast our equation into an efficient form, we introduce two functions (h1, h2) by writing h1(p, q; a, d)

h2(p, q; a, d)

 =

 1 1

1 −1

Hcp

(
p+ q, p− q; a, d

)
, (3.67)

which can be evaluated as

h1(p, q; a, d) = − 1
3a+ 2ap2 − 6pq2 + 2aq2 − 2

3

√
3aq − 2p3 + 2

√
3pq,

h2(p, q; a, d) = − 2
3

√
3ap− 1

3q + 4
3

√
3d+

√
3p2 +

√
3q2 − 6p2q − 8dq + 4apq − 2q3.

(3.68)

Since h2 contains a term that is linear in q, we set out to eliminate this variable by demanding h2 = 0.

Lemma 3.10. Pick δ > 0 sufficiently small. Then there exist constants ε > 0 and K ≥ 1, together with
functions

α0 : (−δ, δ)2 → R, α1 : (−δ, δ)2 → R, α2 : (−δ, δ)2 → R, Rα;3 : (−δ, δ)3 → R (3.69)

that satisfy the following properties.

(i) For every (p, a, d) ∈ (−δ, δ)3 the equation h2(p, q; a, d) = 0 has a unique solution q = q∗ in the set
{|q| < ε}. This solution is given by

q∗(p; a, d) = α0(a, d) + α1(a, d)p+ α2(a, d)p2 + p3Rα;3(p; a, d). (3.70)

(ii) Upon writing

α0(a, d) = 4
√

3d+ Sα0
(a, d),

α1(a, d) = −2
√

3a+ Sα1(a, d),

α2(a, d) = 3
√

3 + Sα2(a, d),

(3.71)

the bounds
|Sα0

(a, d)| ≤ Kd2, |DSα0
(a, d)| ≤ K |d| ,

|Sα1(a, d)| ≤ K |a| |d| , |DSα1(a, d)| ≤ K(|a|+ |d|),

|Sα2
(a, d)| ≤ K(|d|+ a2), |DSα2

(a, d)| ≤ K

(3.72)

hold for all (a, d) ∈ (−δ, δ)2.

(iii) For every (p, a, d) ∈ (−δ, δ)3 we have the bounds

|Rα;3(p; a, d)| ≤ K(|a|+ |p|), |Da,dRα;3(p; a, d)| ≤ K, (3.73)

together with ∣∣∣R(i)
α;3(p; a, d)

∣∣∣+
∣∣∣Da,dR

(i)
α;3(p; a, d)

∣∣∣ ≤ K (3.74)

for all 1 ≤ i ≤ 6.

18



Proof. Substituting the Ansatz (3.70) into h2, we obtain the fixed point problems

1
3α0 = 4

3

√
3d− 8dα0 +

√
3α2

0 − 2α3
0,

1
3α1 = − 2

3

√
3a+ 4α0a+ 2

√
3α0α1 − 6α2

0α1 − 8α1d,

1
3α2 =

√
3− 6α0 +

√
3α2

1 + 4aα1 − 6α2
1α0 + 2

√
3α0α2 − 6α2

0α2 − 8dα2,

(3.75)

together with

1
3Rα;3 = −2α3

1 − 6α1 + 2
√

3α1α2 − 12α2α1α0 + 4aα2 + 2
√

3α0Rα;3 − 6α2
0Rα;3 − 8dRα;3

+
(√

3α2
2 − 6α2 − 6α2

1α2 − 6α0α
2
2 + 2

√
3α1Rα;3 − 12α0α1Rα;3 + 4aRα;3

)
p

+
(

2
√

3α2Rα;3 − 6α1α
2
2 − 6α2

1Rα;3 − 6R3 − 12α0α2Rα;3

)
p2

+
(√

3R2
α;3 − 2α3

2 − 12α2α1Rα;3 − 6α0R
2
α;3

)
p3

+
(
− 6α2

2Rα;3 − 6α1R
2
α;3

)
p4 − 6α2R

2
α;3p

5 − 2R3
α;3p

6.

(3.76)

These fixed point problems can be successively solved for small a, d and p, which yields the desired
estimates.

In order to eliminate q from h1, we define the function

J (p; a, d) = h̃1(p, q∗(p; a, d), a, d) (3.77)

and obtain the following representation.

Corollary 3.11. Pick δ > 0 sufficiently small. Then there exist a constant K ≥ 1, together with
functions

β0 : (−δ, δ)2 → R, β1 : (−δ, δ)2 → R, β2 : (−δ, δ)2 → R, Rβ;3 : (−δ, δ)3 → R (3.78)

that satisfy the following properties.

(i) For every (p, a, d) ∈ (−δ, δ)3 we have

J (p; a, d) = β0(a, d) + β1(a, d)p+ β2(a, d)p2 + p3[16 +Rβ;3(p; a, d)]. (3.79)

(ii) Upon writing
β0(a, d) = − 1

3a+ Sβ0
(a, d),

β1(a, d) = 24d+ Sβ1(a, d),

β2(a, d) = −16a+ Sβ2
(a, d),

(3.80)

the bounds

|Sβ0(a, d)| ≤ K |a| |d| , |DSα0(a, d)| ≤ K(|a|+ |d|),

|Sβ1
(a, d)| ≤ K(a2 + d2), |DSα1

(a, d)| ≤ K(|a|+ |d|),

|Sβ2
(a, d)| ≤ K |a| (|d|+ a2), |DSα2

(a, d)| ≤ K(|a|+ |d|)
(3.81)

hold for all (a, d) ∈ (−δ, δ)2.
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(iii) For every (p, a, d) ∈ (−δ, δ)3 we have the bounds

|Rβ;3(p; a, d)| ≤ K(|d|+ a2 + |a| |p|+ p2),∣∣∣R′β;3(p; a, d)
∣∣∣ ≤ K(|a|+ |p|),

|Da,dRβ;3(p; a, d)|+
∣∣∣Da,dR

′
β;3(p; a, d)

∣∣∣ ≤ K,

(3.82)

together with ∣∣∣R(i)
β;3(p; a, d)

∣∣∣+
∣∣∣Da,dR

(i)
β;3(p; a, d)

∣∣∣ ≤ K (3.83)

for all 2 ≤ i ≤ 6.

Proof. Substitution yields

β0 = − 1
3a−

2
3

√
3aα0 + 2aα2

0,

β1 = 4aα0α1 − 2
3

√
3aα1 − 6α2

0 + 2
√

3α0,

β2 = 4aα0α2 − 2
3

√
3aα2 + 2a− 12α0α1 + 2

√
3α1 + 2aα2

1,

(3.84)

together with

Rβ;3 = 4aα1α2 − 6α2
1 − 12α0α2 + 2

√
3(α2 − 3

√
3)− 2

3

√
3aRα;3 + 4aα0Rα;3

+
(

2aα2
2 − 12α1α2 + 2

√
3Rα;3 + 4aα1Rα;3 − 12α0Rα;3

)
p

+
(

4aα2Rα;3 − 6α2
2 − 12α1Rα;3

)
p2

+
(

2aR2
α;3 − 12α2Rα;3

)
p3 − 6R2

α;3p
4.

(3.85)

The desired estimates can be determined directly from these expressions.

By applying a (small) shift to p the undesired quadratic term in (3.79) can be eliminated. The
bifurcation curve in (a, d) space can subsequently be found by determing when the remaining equation
has roots of order two or higher.

Lemma 3.12. Pick δ > 0 sufficiently small. Then there exists a constant K ≥ 1 together with functions

ζ0 : (−δ, δ)2 → R, ζ1 : (−δ, δ)2 → R, ζ3 : (−δ, δ)2 → R (3.86)

and
p∗ : (−δ, δ)2 → R, Rζ;4 : (−δ, δ)3 → R (3.87)

that satisfy the following properties.

(i) For every (p̃, a, d) ∈ (−δ, δ)3, we have the identity

J (p∗(a, d) + p̃; a, d) = ζ0(a, d) + ζ1(a, d)p̃+ ζ3(a, d)p̃3 + p̃4Rζ;4(p̃; a, d). (3.88)

(ii) Upon writing
ζ0(a, d) = − 1

3a+ Sζ0(a, d),

ζ1(a, d) = 24d+ Sζ1(a, d),

ζ3(a, d) = 16 + Sζ3(a, d),

(3.89)
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the bounds

|Sζ0(a, d)| ≤ K(|a| |d|+ |a|3), |DSζ0(a, d)| ≤ K(|a|+ |d|),

|Sζ1(a, d)| ≤ K(a2 + d2), |DSζ1(a, d)| ≤ K(|a|+ |d|),

|Sζ3(a, d)| ≤ K(|a|+ |d|), |DSζ3(a, d)| ≤ K

(3.90)

hold for all (a, d) ∈ (−δ, δ)2.

(iii) For every (p̃, a, d) ∈ (−δ, δ)3 we have the bounds

|Rζ;4(p̃; a, d)|+
∣∣∣R′ζ;4(p̃; a, d)

∣∣∣+
∣∣∣R′′ζ;4(p̃; a, d)

∣∣∣ ≤ K,

|Da,dRζ;4(p̃; a, d)|+
∣∣∣Da,dR

′
ζ;4(p̃; a, d)

∣∣∣ ≤ K.
(3.91)

Proof. We first introduce the notation

Nβ;3;p∗(p̃; a, d) = p̃−3
[
Rβ;3(p∗ + p̃; a, d)−Rβ;3(p∗; a, d)−R′β;3(p∗; a, d)p̃− 1

2
R′′β;3(p∗; a, d)p̃2

]
(3.92)

for p̃ 6= 0, with Nβ;3;p∗(0; a, d) = 1
6R
′′′
β;3(p∗; a, d). This allows us to compute

J (p∗ + p̃; a, d) = γ0(a, d, p∗) + γ1(a, d, p∗)p̃+ γ2(a, d, p∗)p̃
2

+
[
16 +Rγ;3(p̃; a, d, p∗)

]
p̃3,

(3.93)

in which

γ0(a, d, p∗) = β0(a, d) + β1(a, d)p∗(a, d) + β2(a, d)p∗(a, d)2

+p3
∗
[
16 +Rβ;3(p∗; a, d)

]
,

γ1(a, d, p∗) = β1(a, d) + 2β2(a, d)p∗

+p3
∗R
′
β;3(p∗; a, d) + 3p2

∗
[
16 +Rβ;3(p∗; a, d)

]
,

γ2(a, d, p∗) = β2(a, d) + 1
2p

3
∗R
′′
β;3(p∗; a, d) + 3p2

∗R
′
β;3(p∗; a, d) + 3p∗

[
16 +Rβ;3(p∗; a, d)

]
,

(3.94)

together with

Rγ;3(p̃; a, d, p∗) = (p∗ + p̃)3Nβ;3;p∗(p̃; a, d) + 1
2 (3p2

∗ + 3p∗p̃+ p̃2)R′′β;3(p∗; a, d)

+(3p∗ + p̃)R′β;3(p∗; a, d) +Rβ;3(p∗; a, d).
(3.95)

On account of (3.83) we have

|Nβ;3;p∗(p̃; a, d)|+
∣∣N ′β;3;p∗(p̃; a, d)

∣∣+
∣∣N ′′β;3;p∗(p̃; a, d)

∣∣+
∣∣N ′′′β;3;p∗(p̃; a, d)

∣∣ ≤ C ′1 (3.96)

and hence also

|Rγ;3(p̃; a, d, p∗)|+
∣∣R′γ;3(p̃; a, d, p∗)

∣∣+
∣∣R′′γ;3(p̃; a, d, p∗)

∣∣+
∣∣R′′′γ;3(p̃; a, d, p∗)

∣∣ ≤ C ′2 (3.97)

for small |p̃|.
Setting γ2(a, d, p∗) = 0 leads to a fixed-point equation for p∗, which has a unique small solution

p∗(a, d) that admits the bounds

|p∗(a, d)| ≤ C ′3 |β2(a, d)| ≤ C ′4a, |Da,dp∗(a, d)| ≤ C ′4. (3.98)
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The results hence follow by writing

ζ0(a, d) = γ0

(
a, d, p∗(a, d)

)
,

ζ1(a, d) = γ1

(
a, d, p∗(a, d)

)
,

ζ3(a, d) = 16 +Rγ;3

(
0; a, d, p∗(a, d)

)
,

(3.99)

together with

Rζ;4(p̃; a, d) = p̃−1
[
Rγ;3

(
p̃; a, d, p∗(a, d)

)
−Rγ;3

(
0; a, d, p∗(a, d)

)]
(3.100)

for p̃ 6= 0 and
Rζ;4(0; a, d) = R′γ;3

(
0; a, d, p∗(a, d)

)
. (3.101)

Here we use (3.97) to get bounds on Rζ;4 and its derivatives.

Proof of Proposition 3.9. In order to find roots of order two or higher we need to solve the system

ζ0(a, d) + ζ1(a, d)p̃+ ζ3(a, d)p̃3 + p̃4Rζ;4(p̃, a, d) = 0,

ζ1(a, d) + 3ζ3(a, d)p̃2 + 4p̃3Rζ;4(p̃, a, d) + p̃4R′ζ;4(p̃, a, d) = 0.
(3.102)

Solving the second equation we find two branches

p̃±(a, d) = ±
√
−d/2 + Sp̃±(a, d), (3.103)

in which we have
Sp̃±(a, d) ≤ C ′1(|a|+ |d|),

Da,dSp̃±(a, d) ≤ C ′1.
(3.104)

Plugging this into the first line of (3.102) we obtain

1

3
a = ±16d

√
−d/2 +O(d2 + |ad|+ |a|3 + a2

√
|d|), (3.105)

from which the desired expression for ac follows.

3.3 Geometry of the cubic

Our strategy to establish Propositions 3.1-3.3 hinges upon geometric properties of the cubic g(u; a). As
a preparation, we introduce the notation

uinfl(a) =
1

3
(a+ 1) (3.106)

together with

umin(a) = uinfl(a)− 1

3

√
1− a(1− a), umax(a) = uinfl(a) +

1

3

√
1− a(1− a) (3.107)

and note that
g′
(
umin(a); a

)
= 0, g′′

(
uinfl(a); a

)
= 0, g′

(
umax(a); a

)
= 0. (3.108)

In addition, we note that g′′(u; a) > 0 for u < uinfl(a) and g′′(u; a) < 0 for u > uinfl(a). When 0 < a < 1
2

we have the ordering
0 < umin(a) < a < uinfl(a) < umax(a) < 1. (3.109)
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Figure 7: The functions v± defined in Lemmata 3.13-3.14 for a = 0.45 (left) and a = 0.5 (right). In the
latter case the derivatives have a discontinuity at umin( 1

2 ).

Recalling the definition (2.6), one readily sees that

G1(u, v; a, d) +G2(u, v; a, d) = g(u; a) + g(v; a). (3.110)

In order to exploit the fact that this identity does not depend on d, we first use basic properties of the
cubic to parametrize solutions to g(u; a) + g(v; a) = 0. Restricting ourselves to a ∈ [0, 1

2 ], it is possible to
construct two solution curves v±(u) that are defined for u ∈ [0, a]; see Figure 7.

Lemma 3.13. Fix 0 < a < 1
2 . Then there are two constants

a < v−;max < v+;min < 1 (3.111)

together with two C∞-smooth functions

v− : [0, a]→ [a, v−;max], v+ : [0, a]→ [v+;min, 1] (3.112)

that satisfy the following properties.

(i) We have g(u; a) = −g(v−(u); a) = −g(v+(u); a) for all 0 ≤ u ≤ a.

(ii) If g(u; a) = −g(v; a) for some pair u ∈ (0, a) and v ∈ [0, 1], then v = v−(u) or v = v+(u).

(iii) We have v−(0) = v−(a) = a and v+(0) = v+(a) = 1.

(iv) We have the identities
v′±(u) = −[g′(v±(u); a)]−1g′(u; a) (3.113)

for all 0 ≤ u ≤ a.

(v) We have v′−(u) > −1 for all 0 ≤ u < a, together with v′−(a) = −1.

Proof. Since 0 < a < 1
2 we have g(umax(a); a) > −g(umin(a); a), which implies that v±(u) 6= umax(a).

Properties (i)-(iv) hence follow immediately from the implicit function theorem.
To obtain (v), we take umin(a) < u < a and recall a < v−(u) < umax. If v−(u) ≤ uinfl(a) then

clearly g′(v−(u); a) > g′(u; a) > 0, as desired. In order to hande the remaining case v−(u) > uinfl(a), we
introduce the reflection urefl = 2uinfl(a)−u. Exploiting the point symmetry of the graph of g(·; a) around
its inflection point

(
uinfl(a), g(uinfl(a); a)

)
, the inequality g(uinfl(a); a) > 0 implies that

uinfl(a) < v−(u) < urefl. (3.114)

23



Since g′′(ũ; a) < 0 for ũ > uinfl(a), we obtain

g′
(
v−(u); a

)
> g′(urefl; a) = g′(u; a) > 0, (3.115)

which implies v′−(u) > −1.

Lemma 3.14. Fix a = 1
2 . Then there are two functions

v− : [0, a]→ [a, umax(a)], v+ : [0, a]→ [umax(a), 1] (3.116)

that satisfy items (i) - (iii) from Lemma 3.13 together with the following additional properties.

(i) We have
v−
(
umin(a)

)
= v+

(
umin(a)

)
= umax(a). (3.117)

(ii) For any u ∈ [0, a] \ {umin(a)} we have the identities

v′±(u) = −[g′(v±(u); a)]−1g′(u; a). (3.118)

(iii) We have v−(u) = 1− u for all umin(a) ≤ u ≤ 1, while v+(u) = 1− u for all 0 ≤ u ≤ umin(a).

(iv) We have the limits
lim

u↑umin(a)
v′−(u) = lim

u↓umin(a)
v′+(u) = +1, (3.119)

together with

lim
u↑umin(a)

v′′−(u) = lim
u↓umin(a)

v′′+(u) = −4

3

√
3. (3.120)

Proof. Items (i) and (iii) follow directly from the symmetry of g(·; a), while (ii) follows from the implicit
function theorem. To obtain (iv), we first compute

g(umin + u; a) = g(umin; a) +
1

2

√
3u2 − u3, g(umax + v; a) = −g(umin; a)− 1

2

√
3v2 − v3. (3.121)

In particular, the identity
g(umin + u; a) = −g(umax + v; a) (3.122)

can be rewritten as

v2 = u2 − 2

3

√
3
[
u3 + v3

]
, (3.123)

which can be interpreted as a fixed point problem for v2 upon assuming that v and u have the same sign.
For small |u| this problem has a solution that can be expanded as

v2 = u2 − 4

3

√
3u3 +O(u4), (3.124)

which yields

v = u− 2

3

√
3u2 +O(u3). (3.125)

The desired limits follow directly from this expansion.
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3.4 Tangencies

Let us now fix a ∈ [0, 1
2 ]. In order to find solutions to G(u, v; a, d) = 0 with d > 0, we introduce the

function

vd(u) = u− g(u; a)

2d
(3.126)

and note that the results above show that it suffices to find u ∈ [0, a] for which one of the equations

v±(u) = vd(u) (3.127)

holds.
Our goal here is to show that non-transverse intersections of this type can only occur at local minima

of v± − vd. Together with the strict monotonicity

∂dvd(u) < 0 (3.128)

that holds for u ∈ (0, a), this will allow us to obtain global results in §3.5.
For the moment, we note that

v−(a) = vd(a) = a (3.129)

for every d > 0. In addition, we may compute

v′d(a) = 1− g′(a; a)

2d
, (3.130)

together with
v′−(a) = −[g′(a; a)]−1g′(a; a) = −1. (3.131)

In particular, when g′(a) = 4d the intersection (3.129) is tangential. In the sequel we show that in fact
v− > vd on [0, a) for this critical value of d.

For intersections with u ∈ (0, a) such explicit computations are significantly harder to carry out, which
is why we pursue a more indirect approach here. As a preparation, we compute

v′′±(u) = − g′′(u)

g′
(
v±(u)

) − g′(u)2

g′
(
v±(u)

)3 g′′(v±(u)
)

(3.132)

together with

v′′d (u) = −g
′′(u)

2d
. (3.133)

In addition, for any κ ≤ g′(uinfl(a); a) = 1
3 (a2 − a+ 1), we introduce the expressions

ul(κ) = uinfl(a)−
√

1
3 (g′(uinfl(a); a)− κ),

ur(κ) = uinfl(a) +
√

1
3 (g′(uinfl(a); a)− κ).

(3.134)

It is easy to verify that ul(κ) and ur(κ) are the two solutions to the quadratic equation g′(u; a) = κ.

Lemma 3.15. Fix 0 < a ≤ 1
2 and d > 0 and suppose that

v′#(u) = v′d(u) = β (3.135)

for some # ∈ {−,+} and 0 ≤ u ≤ a, with u 6= umin(a) in case a = 1
2 . Then the following statements

hold.
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(i) We have

2d[v′′#(u)− v′′d (u)] =
1

1− β
g′′(u; a) +

β3

1− β
g′′
(
v#(u); a

)
. (3.136)

(ii) If # = − then we have β ∈ [−1, 0) ∪ (1,∞). On the other hand, the inclusion β ∈ (0, 1) holds if
# = +.

(iii) We have u = ul
(
2d(1− β)

)
.

(iv) Suppose that # = −. Then the identity

v#(u) = ul
(
2d(1− β−1)

)
(3.137)

holds if v−(u) ≤ uinfl(a). On the other hand, we have

v#(u) = ur
(
2d(1− β−1)

)
(3.138)

if v−(u) > uinfl(a).

(v) The identity
v#(u) = ur

(
2d(1− β−1)

)
(3.139)

holds if # = +.

Proof. We first consider the case 0 < a < 1
2 . For any 0 ≤ ũ ≤ a, one sees that v′d(ũ) = 1 holds if and

only if g′(ũ; a) = v′±(ũ) = 0, which shows that β /∈ {0, 1}.
For any 0 ≤ ũ ≤ a we have g′(v+(ũ); a) < 0 and hence

sign
[
v′+(ũ)

]
= sign

[
g′(ũ; a)

]
. (3.140)

If # = +, this shows that g′(u; a) > 0 and v′d(u) > 0, hence β ∈ (0, 1).
On the other hand, we have g′(v−(ũ); a) > 0 for all 0 ≤ ũ ≤ a. If g′(u; a) < 0 then we have

v′d(u) = β > 1, while if g′(u; a) > 0 and # = − we may use item (v) from Lemma 3.13 to conclude

−1 ≤ v′−(u) = β < 0, (3.141)

which establishes (ii).
In order to obtain (iii), it suffices to recall the bound u ≤ a ≤ uinfl(a) and note that the identity

v′∗(u) = β implies that
g′(u) = 2d(1− β). (3.142)

On the other hand, the identity v′±(u) = β implies

g′
(
v±(u)

)
= −2dβ−1(1− β). (3.143)

Items (iv) and (v) now follow directly, remembering that v+(u) ≥ umax(a) ≥ uinfl(a).
Exploiting (3.132) we may now compute

v′′±(u) = β
2d(1−β)g

′′(u; a) + (2d)2(1−β)2β3

(2d)3(1−β)3 g′′(v±(u); a)

= β
2d(1−β)g

′′(u; a) + β3

2d(1−β)g
′′(v±(u); a).

(3.144)

The desired identity in (i) hence follows directly from (3.133). In order to conclude the proof, it suffices
to note that the arguments above remain valid when a = 1

2 . Indeed, the critical cases g′(u; a) = 0 and
g′(v±; a) = 0 are excluded by the requirement that u 6= umin(a).
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Lemma 3.16. Fix 0 < a ≤ 1
2 and suppose that

v′−(u) = v′d(u) (3.145)

for some umin(a) ≤ u < a and d > 0, with u 6= umin(a) if a = 1
2 . Then we have

v′′−(u) > v′′d (u). (3.146)

Proof. Exploiting (v) of Lemma 3.13 and (ii) of Lemma 3.15 we have v′−(u) ∈ (−1, 0). In addition, the
inequalities v−(u) > u and g′′′ < 0 imply that g′′(v−(u); a) ≤ g′′(u; a). Writing β = v′−(u) we may hence
estimate

2d[v′′−(u)− v′′d (u)] ≥ 1
1−β g

′′(u; a) + β3

1−β g
′′(u; a

)
= β3+1

1−β g
′′(u; a)

> 0,

(3.147)

in which we used g′′(u; a) > 0.

Intersections with v′±(u) > 0 are more delicate to analyze. Items (i), (iii) and (iv) of Lemma 3.15
suggest that it is worthwhile to consider the two functions

hl(β) = 1
2d(1−β)

[
g′′
(
ul
(
2d(1− β)

)
; a
)

+ β3g′′
(
ul
(
2d(1− β−1)

)
; a
)]
,

hr(β) = 1
2d(1−β)

[
g′′
(
ul
(
2d(1− β)

)
; a
)

+ β3g′′
(
ur
(
2d(1− β−1)

)
; a
)]
.

(3.148)

Lemma 3.17. Pick 0 < a ≤ 1
2 and 0 < d ≤ g′(a;a)

4 . Then for any β > 1 the inequality

hl(β) < 0 (3.149)

holds, while for any β ∈ (0,∞) \ {1} we have

hr(β) > 0. (3.150)

Proof. Observe first that for β > 0 we have

max{2d(1− β), 2d(1− β−1)} ≤ 2d ≤ g′(a; a)

2
≤ g′(uinfl(a); a)

2
, (3.151)

which implies that hl(β) and hr(β) are well-defined.
A little algebra yields

hl(β) =
√

3
d(1−β)

[√
g′(uinfl(a); a) + 2d(β − 1) + β3

√
g′(uinfl(a); a) + 2dβ−1(1− β)

]
,

hr(β) =
√

3
d(1−β)

[√
g′(uinfl(a); a) + 2d(β − 1)− β3

√
g′(uinfl(a); a) + 2dβ−1(1− β)

]
.

(3.152)

It is clear that hl(β) < 0 for β > 1. Upon writing

∆(β) = g′(uinfl(a); a) + 2d(β − 1)−
(
β6g′(uinfl(a); a) + 2dβ5(1− β)

)
= (1− β6)

(
g′(uinfl(a); a)− 2d

)
+ 2dβ(1− β4),

(3.153)

it is easy to verify that ∆(β) < 0 for β > 1 and ∆(β) > 0 for 0 < β < 1. This yields the final inequality
(3.150).
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Lemma 3.18. Pick 0 < a ≤ 1
2 and 0 < d ≤ g′(a;a)

4 . Then we have

v′−(0) < v′d(0). (3.154)

In addition, suppose that
v′−(u) = v′∗(u) (3.155)

for some 0 ≤ u ≤ a, with u 6= umin(a) if a = 1
2 . Then one of the following two statements must hold.

(a) We have the inequality
v′′−(u) > v′′d (u). (3.156)

(b) We have the identities

u = a, d =
g′(a)

4
, v′′−(u) = v′′d (u). (3.157)

Proof. An easy computation yields

v′d(0) = 1− g′(0; a)

2d
≥ 1− 2g′(0; a)

g′(a; a)
> −g

′(0; a)

g′(a; a)
= v′−(0). (3.158)

We introduce the critical value

uc = sup{0 ≤ u ≤ a : v−(ũ) ≤ uinfl(a) for all 0 ≤ ũ ≤ u} (3.159)

and remark that uc = 0 when a = 1
2 . This allows us to define the value

uI = sup
{

0 ≤ u ≤ min{uc, umin(a)} : v′d(u) > v′−(u)
}
, (3.160)

which again satisfies uI = 0 when a = 1
2 .

We claim that also v′d(uI) > v′−(uI). Indeed, assuming this is false we can define β = v′d(uI) =
v′−(uI) ≥ 0. Item (ii) of Lemma 3.15 the implies β > 1. Since hl(β) < 0 we must have

v′′−(uI) < v′′d (uI), (3.161)

which yields a contradiction.
In particular, if (3.155) holds then we must have u ≥ min{umin(a), uc}. If umin(a) ≤ u < a, Lemma

3.16 shows that (a) must hold. On the other hand, if uc ≤ u < umin(a), then we can define β = v′d(u) =
v′−(u) ≥ 0 and conclude as above that β > 1. In addition, we have v−(u) ≥ uinfl(a), which allows us to
use hr(β) > 0 and item (iv) of Lemma 3.15 to show that (a) must hold. In the final case u = a, the
remarks at the start of this section together with a direct computation of v′′d (a) and v′′−(a) imply the
identities in (b).

In the remainder of this section we collect several consequences of these computations. In each case,
we either rule out non-transverse intersections of v± with vd or show that they must occur at local minima
of v± − vd.

Corollary 3.19. Fix 0 < a ≤ 1
2 together with 0 < d ≤ g′(a;a)

4 and suppose that

v′+(u) = v′d(u) (3.162)

for some 0 ≤ u ≤ a, with u 6= umin(a) if a = 1
2 . Then we have

v′′+(u) > v′′d (u). (3.163)
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Proof. Using the fact that hr(β) > 0 for β ∈ (0, 1), this follows directly from items (i), (ii) and (v) of
Lemma 3.15.

Corollary 3.20. Fix 0 < a ≤ 1
2 together with 0 < d < g′(a;a)

4 and suppose that

v′−(u) = v′∗(u) (3.164)

for some 0 ≤ u ≤ a, with u 6= umin(a) if a = 1
2 . Then we have

v′′−(u) > v′′d (u). (3.165)

In addition, we have
v′−(a) > v′d(a). (3.166)

Proof. The first inequality follows directly from the fact that option (b) in Lemma 3.18 cannot hold
because of the restriction on d. The final inequality can be verified directly by noting that

v′d(a) = 1− g′(a; a)

2d
< 1− 2g′(a; a)

g′(a; a)
= −1 = v′−(a). (3.167)

Corollary 3.21. Fix 0 < a ≤ 1
2 together with d = g′(a;a)

4 . Then we have

v′−(u) < v′d(u) (3.168)

for all 0 ≤ u < a, with the exception of u = umin(a) in the special case a = 1
2 .

Proof. It is easy to verify that v′−(a) = v′d(a) and v′′−(a) = v′′d (a). We also compute

v′′′d (a) = −2
g′′′(a; a)

g′(a; a)
=

12

a(1− a)
> 0 (3.169)

together with

v′′′− (u) = − g′′′(u;a)
g′(v−(u);a) − 3 g

′′(u;a)g′(u;a)
g′(v−(u);a)3 g

′′(v−(u); a)

−3 g′(u;a)3

g′(v−(u);a)5 g
′′(v−(u); a)2 + g′(u;a)3

g′(v−(u);a)4 g
′′′(v−(u); a),

(3.170)

which gives

v′′′− (a) = −6
g′′(a; a)2

g′(a; a)2
≤ 0. (3.171)

In particular, we see that
v′−(a− ε) < v′d(a− ε) (3.172)

for all sufficiently small ε > 0. If a 6= 1
2 , the conclusion now follows from (3.154) together with (a) from

Lemma 3.18.
For a = 1

2 , one also needs to use the identities

v′d
(
umin(a)

)
= 1, v′′d

(
umin(a)

)
= −12

√
3 (3.173)

together with the limits in item (iv) of Lemma 3.14 to conclude that

v′−(umin(a)− ε) < v′d(umin(a)− ε) (3.174)

for all sufficiently small ε > 0. The arguments above allow us to extend this to ε ∈ (0, umin(a)]. In
addition, we have v′−(ũ) = −1 < v′d(ũ) for umin(a) < ũ < a.
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Corollary 3.22. Pick 0 < a ≤ 1
2 and 0 < d ≤ g′(a;a)

4 . Then we have

v′−(u) < v′d(u) (3.175)

for all 0 ≤ u < umin(a).

Proof. Writing dc = g′(a;a)
4 , we may use Corollary 3.21 to compute

v′d(u) = 1− 1

2d
g′(u; a) ≥ 1− 2

g′(a; a)
g′(u; a) = v′dc(u) > v′−(u) (3.176)

for u ∈ [0, umin(a)).

Corollary 3.23. Fix a = 1
2 and 0 < d ≤ g′(a;a)

4 . Then we have

v′+(u) > v′d(u) (3.177)

for all umin(a) < u ≤ a.

Proof. Item (iv) of Lemma 3.14 allow us to compute

v′d
(
umin(a)

)
= 1 = lim

u↓umin(a)
v′+(u) (3.178)

together with
v′′d
(
umin(a)

)
< lim
u↓umin(a)

v′′+(u), (3.179)

which allows us to conclude that

v′+(umin(a) + ε) > v′d(umin(a) + ε) (3.180)

for all sufficiently small ε > 0. Corollary 3.19 allows us to extend this conclusion to the desired interval
ε ∈

(
0, a− umin(a)

)
.

3.5 Structure

We are now ready to analyze the global structure of the solution set to G(u, v; a, d) = 0. Our first two
results fix a ∈ (0, 1

2 ] and track the intersections of the curves v± that were introduced in §3.3 with the
curve vd introduced in §3.4. These intersections disappear as the parameter d is increased; see Figure 8.

Lemma 3.24. Fix 0 < a ≤ 1
2 . Then there exists a continuous strictly increasing function

uAD : [0,
g′(a; a)

4
]→ [0, a] (3.181)

that satisfies the following properties.

(i) We have uAD(0) = 0 and uAD( g
′(a;a)

4 ) = a.

(ii) The identity v−
(
uAD(d)

)
= vd

(
uAD(d)

)
holds for any 0 < d ≤ g′(a;a)

4 .

(iii) Suppose that v−(u) = vd(u) for some 0 < d ≤ g′(a;a)
4 and 0 ≤ u ≤ a. Then in fact u ∈ {uAD(d), a}.

(iv) Consider any 0 < d < g′(a;a)
4 for which (a, d) 6= ( 1

2 ,
1
24 ). Then we have the inequality

v′−
(
uAD(d)

)
< v′d

(
uAD(d)

)
. (3.182)
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v-

vd with d<d-(a)

vd- (a)

(uAD,vAD)

(uB,vB) (uC,vC)
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1

a

v+

v-

vd with d-(a)<d<d+(a)

vd+ (a)

(uAD,vAD)

0 a

1

a

Figure 8: Fix 0 < a < 1
2 . The branches uB and uC described in Lemma 3.25 arise as the two intersections

of v+ and vd on [0, a], which collide as d ↑ d−(a) (left). On the other hand, the branch uAD described in
Lemma 3.24 arises as the unique intersection of the curves v− and vd on [0, a), which converges to a as
d ↑ d+(a) (right).

(v) For any d > g′(a;a)
4 and 0 ≤ u < a we have v−(u) > vd(u).

Proof. For convenience, we introduce the function hd(u) = v−(u)− vd(u) and set out to count the zeroes

of hd on the interval [0, a]. We first note that hd(a) = 0 for all d > 0. When d = g′(a;a)
4 this is in fact the

only zero, which can be seen by using (3.168) and explicitly verifying the inequality

v−
(
umin(a)

)
> vd

(
umin(a)

)
(3.183)

for (a, d) = (1
2 ,

g′( 1
2 ; 12 )

4 ).

On the other hand, (3.166) implies that hd has at least two zeroes for 0 < d < g′(a;a)
4 . Furthermore,

we claim that hd has precisely two zeroes for 0 < d ≤ d1 upon choosing d1 > 0 to be sufficiently small.
Indeed, for any u ∈ (0, a) we have v′′d (u) < 0 and we can enforce

|v′d(u)|+ vd(u) ≥ 1 + max
0≤ũ≤a

{
∣∣v′−(ũ)

∣∣} (3.184)

by restricting the size of d > 0.
We now pick ε > 0 in such a way that the function hd is strictly decreasing on [0, umin(a) + ε] for all

d1 ≤ d ≤ g′(a;a)
4 . This is possible because Corollary 3.22 allows us to enforce h′d < 0 on this interval, with

the exception of the single point u = umin(a) when a = 1
2 .

Let us now define the critical value

dc = sup{d1 ≤ d ≤
g′(a; a)

4
: hd = 0 has two distinct solutions on [0, a]} (3.185)

and assume for the moment that dc < g′(a; a)/4. The preparations above show that there exists umin(a) <
u < a with hdc(u) = 0 and h′dc(u) = 0. Corollary 3.20 now implies h′′dc(u) > 0. As a consequence of the
monotonicity ∂dvd(u) < 0, this means that for all sufficiently small δ > 0, the function hd with d = dc− δ
must have at least three zeroes. This yields a contradiction, which implies that dc = g′(a; a)/4.

We may hence define uAD(d) ∈ [0, a] to be the left-most root of hd(u) = 0 for 0 < d ≤ dc. The
statements (i)-(v) follow readily from the observations above together with the monotonicity ∂dvd(u) < 0
that holds for u ∈ (0, a).
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Lemma 3.25. Fix 0 < a ≤ 1
2 . Then there exists a constant 0 < d− < g′(a;a)

4 together with two
continuous functions

(uB , uC) : [0, d−]→ [0, a]× [0, a] (3.186)

that satisfy the following properties.

(i) We have (uB , uC)(0) = (0, a) and uB(d−) = uC(d−).

(ii) The function uB is strictly increasing, while the function uC is strictly decreasing.

(iii) For any 0 < d ≤ d− the identity v+(u#) = vd(u#) holds for # ∈ {B,C}.

(iv) If v+(u) = vd(u) for some 0 < d ≤ d− and 0 ≤ u ≤ a then in fact u ∈ {uB(d), uC(d)}.

(v) For any 0 < d < d− we have

v′+
(
uB(d)

)
< v′d

(
uB(d)

)
, v′+

(
uC(d)

)
> v′d

(
uC(d)

)
. (3.187)

If a 6= 1
2 , then we also have

v′+
(
uC(d−)

)
= v′+

(
uB(d−)

)
= v′d

(
uB(d−)

)
= v′d

(
uC(d−)

)
. (3.188)

(vi) For any d > d− the inequality v+(u) > vd(u) holds for all 0 ≤ u ≤ a.

(vii) If a = 1
2 then we have d−( 1

2 ) = 1
24 together with uB( 1

24 ) = uC( 1
24 ) = umin(a).

Proof. Writing hd(u) = v+(u)−vd(u), we observe first that hd is strictly decreasing on [0, umin(a)] because
v′d > 0 and v′+ < 0 on the interior of this interval.

In addition, in the special case a = 1
2 we can use Corollary 3.23 to conclude that hd is strictly

increasing on [umin(a), a]. Since hd
(
umin(a)

)
= 0 occurs precisely when d = 1

24 , all the desired statements
can be easily verified.

Throughout the remainder of this proof we therefore assume that 0 < a < 1
2 . Arguing as in the proof

of Lemma 3.24, we may pick d1 > 0 in such a way that hd has precisely two zeroes on [0, a] for every
0 < d ≤ d1. This allows us to define the critical value

d− = sup{d1 ≤ d : hd = 0 has two distinct solutions on [0, a]}. (3.189)

Since v− < v+ it is clear that d− <
g′(a;a)

4 .
Let us assume for the moment that hd− has two or more zeroes on [0, a]. This implies that there

exists at least one u ∈ (0, a) for which hd−(u) = 0 and h′d−(u) = 0. Using Corollary 3.20 it follows that

h′′d−(u) > 0 must hold for all such zeroes. As a consequence of the monotonicity ∂dvd(u) < 0, this means
that for all sufficiently small δ > 0, the function hd with d = d− − δ must have at least three zeroes.
This yields a contradiction, which by continuity shows that hd−(u) = 0 has precisely one root on [0, a].
Upon defining uB(d) and uC(d) to be the left-most respectively right-most root of hd(u) = 0, the desired
properties (i) - (vii) can be easily verified.

Recalling the function G introduced in (2.6), we see that

D1,2G(u, v; a, d) =

 g′(u)− 2d 2d

2d g′(v)− 2d

 . (3.190)

In order to study the stability and parameter-dependence of the roots constructed in Lemmata 3.24-3.25,
it is crucial to understand when the determinant of D1,2G vanishes. The result below states that this
happens at tangential intersections of v± and vd.
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Lemma 3.26. Fix 0 < a < 1
2 together with d > 0 and suppose that

v#(u) = vd(u) (3.191)

for some # ∈ {−,+} and u ∈ [0, a]. Then we have detD1,2G(u, vd(u); a, d) = 0 if and only if v′#(u) =
v′d(u).

Proof. We first consider the case v′#(u) = 0, which occurs when g′(u; a) = 0 and hence u = umin(a).

Using 0 < a < 1
2 we see that

v−(u) < umax(a) < v+(u). (3.192)

Writing v = vd(u) = v±(u), we hence obtain g′(v; a) 6= 0 and hence

detD1,2G(u, v; a, d) = −2dg′(v; a) 6= 0. (3.193)

Since v′d(u) = 1, the desired equivalence indeed holds for this case.
Assuming now that v′#(u) 6= 0 and hence g′(u; a) 6= 0, we again write v = vd(u) = v#(u) and use

(3.113) to compute
g′(v; a) = −[v′#(u)]−1g′(u; a). (3.194)

In particular, we find

detD1,2G(u, v; a, d) = (g′(u; a)− 2d)
(
− [v′#(u)]−1g′(u; a)− 2d

)
− 4d2

= −[v′#(u)]−1g′(u; a)2 − 2dg′(u; a) + 2d[v′#(u)]−1g′(u; a)

= 2dg′(u; a)[v′#(u)]−1
[
1− g′(u;a)

2d − v′#(u)
]

= 2dg′(u; a)[v′#(u)]−1
[
v′d(u)− v′#(u)

]
,

(3.195)

from which the statement follows.

In order to characterize the dependence of d−(a) on a, we introduce the function

Gsn(u, v, d; a) =
(
G1(u, v; a, d), G2(u, v; a, d),detD1,2G(u, v; a, d)

)T
(3.196)

and symbolically write

[D1,2,3Gsn(u, v, d; a)]−1 =
[

detD1,2,3Gsn(u, v, d; a)
]−1


∗ ∗ ∗

∗ ∗ ∗

γ1(u, v, d; a) γ2(u, v, d; a) γ3(u, v, d; a)

 .

(3.197)
For any 0 < a ≤ 1

2 , we use the functions defined in Lemma 3.25 to introduce the notation

ω(a) =
(
uB
(
d−(a)

)
, v+

(
uB(d−(a))

)
, d−(a)

)
=
(
uC
(
d−(a)

)
, v+

(
uC(d−(a))

)
, d−(a)

)
, (3.198)

which corresponds to the critical point where the branches uB and uC collide.

Corollary 3.27. Upon fixing 0 < a < 1
2 , the following two statements are equivalent.

(a) The identity Gsn(u, v, d; a) = 0 holds for some d > 0 and some pair (u, v) ∈ [0, 1]2 that has v ≥ u.

(b) We have (u, v, d) = ω(a) or (u, v, d) = (a, a, g
′(a;a)

4 ) .
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Proof. As a preparation, we note that detD1,2G(a, a; a, d) = 0 if and only if d = g′(a;a)
4 . In addition, it

is easy to check that detD1,2G(0, 0; a, d) > 0 and detD1,2G(1, 1; a, d) > 0 for all d ≥ 0.
The implication (b) → (a) can now be verified directly using Lemma 3.26 and (3.188). In addition,

we only need to establish the reverse implication under the additional assumption that v > u.
Let us therefore assume that (a) holds with g(u) = −g(v) 6= 0, which allows us to write

0 < u < a < v < 1. (3.199)

In particular, Lemma 3.13 implies that v = v−(u) or v = v+(u). Lemma 3.26 together with (3.187) and
(3.182) now imply that (b) must hold.

Lemma 3.28. We have the identities

γ1(0, 1, 0; 0) = −2,

γ2(0, 1, 0; 0) = 0.
(3.200)

In addition, the identity
γ3(ω(a); a) = 0 (3.201)

holds for any 0 < a < 1
2 , together with the inequalities

detD1,2,3Gsn(ω(a); a) < 0,

γ1(ω(a); a)− γ2(ω(a); a) < 0,

γ1(ω(a); a)γ2(ω(a); a) ≥ 0.

(3.202)

Proof. Let us assume for the moment that Gsn(u, v, d; a) = 0, which directly implies

(g′(u; a)− 2d)g′(v; a) = 2dg′(u; a). (3.203)

In view of the identity

D1,2,3Gsn(u, v, d; a) =


g′(u; a)− 2d 2d 2(v − u)

2d g′(v; a)− 2d 2(u− v)

(g′(v; a)− 2d)g′′(u; a) (g′(u; a)− 2d)g′′(v; a) −2(g′(u; a) + g′(v; a))

 ,

(3.204)
we can use (3.203) to compute

detD1,2,3Gsn(u, v, d; a) = 2(v − u)
[
g′(u; a)(g′(u; a)− 2d)g′′(v; a)− g′(v; a)(g′(v; a)− 2d)g′′(u; a)

]
= 2(v − u)

[
2dg′(u; a)2 1

g′(v;a)g
′′(v; a)− g′(v; a)(g′(v; a)− 2d)g′′(u; a)

]
.

(3.205)
Expanding the subdeterminants of (3.204) and reusing (3.203), we also find

γ1(u, v, d; a) = 2d(g′(u; a)− 2d)g′′(v; a)− (g′(v; a)− 2d)2g′′(u; a),

γ2(u, v, d; a) = 2d(g′(v; a)− 2d)g′′(u; a)− (g′(u; a)− 2d)2g′′(v; a),

γ3(u, v, d; a) = 0,

(3.206)

which allows us to explicitly verify (3.200).

34



Let us now fix 0 < a < 1
2 . For any (u, v) ∈ [0, 1]2 and d > 0 we introduce the function

h
(
u, v, d

)
= 1

2dg
′′(u; a)− g′′(u;a)

g′(v;a) −
g′(u;a)2

g′(v;a)3 g
′′(v; a)

= 1
2dg′(v;a)2

[
g′(v; a)(g′(v; a)− 2d)g′′(u; a)− 2d g

′(u;a)2

g′(v;a) g
′′(v; a)

]
,

(3.207)

which allows us to rewrite (3.205) in the form

detD1,2,3Gsn(u, v, d; a) = −4d(v − u)g′(v; a)2h(u, v, d). (3.208)

Using (3.132) and (3.133) we observe that

v′′+(u)− v′′d (u) = h
(
u, v+(u), d

)
. (3.209)

In particular, Corollary 3.19 and (3.188) imply that

h
(
ω(a)

)
> 0, (3.210)

which shows that
detD1,2,3Gsn(ω(a); a) < 0, (3.211)

as desired.
Let us now write (u, v, d) = ω(a) and compute

γ1

(
ω(a); a

)
− γ2

(
ω(a); a

)
= g′(u)

(
g′(u)− 2d)g′′(v)− g′(v)

(
g′(v)− 2d)g′′(u)

= 1
2 (v − u)−1detDGsn(u, v, d; a)

≤ 0.

(3.212)

In addition, since u > umin(a) and hence v′d(u) = v′+(u) > 0, we have g′(u) < 2d. This allows us to define

α =
√

2d
(
2d− g′(u; a)

)3/2
g′′(v; a),

β =
√

2d
(
2d− g′(v; a)

)3/2
g′′(u; a)

(3.213)

and compute

γ1(ω(a); a)γ2(ω(a); a) = (4d2)(4d2)g′′(u; a)g′′(v; a) + (4d2)2g′′(u; a)g′′(v; a)

−2d(g′(u; a)− 2d)3g′′(v; a)2 − 2d(g′(v; a)− 2d)3g′′(u; a)2

= 2αβ + α2 + β2

≥ 0,

(3.214)

as desired.

Corollary 3.29. The map a 7→ ω(a) is C∞-smooth on (0, 1
2 ) and we have d′−(a) > 0.

Proof. Since d− < g′(a;a)
4 , we may use Corollary 3.27, together with the first inequality in (3.202) to

apply the implicit function and establish the C∞-smoothness of ω.
Since g′(a; a)/4 ↓ 0 as a ↓ 0, a squeezing argument shows that lima↓0 ω(a) = (0, 1, 0). Exploiting

(3.200), and (3.202), the continuity of γ1 and γ2 implies that

γ1(ω(a); a) < γ2(ω(a); a) ≤ 0 (3.215)
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for all 0 < a < 1
2 . In particlar, writing (u, v, d) = ω(a), we may use the inequalities

D2g(u; a) < 0, D2g(v; a) < 0 (3.216)

to compute

d′−(a) = −[detD1,2,3Gsn(ω(a); a)]−1
[
γ1(ω(a); a)D2g(u; a) + γ2(ω(a); a)D2g(v; a)

]
> 0. (3.217)

Proof of Proposition 3.1. Items (i), (iii), (iv) follow from Lemmata 3.24-3.25 and the observations in the
proof of Corollary 3.27. Item (ii) follows from Corollary 3.29, while the expansions in (v) follow from
Propositions 3.6 and 3.9.

Proof of Proposition 3.2. The identity g(1− u, 1− a) = −g(u, a) implies that

G(1− u, 1− v; 1− a, d) = −G(u, v; a, d). (3.218)

This allows us to extend the solutions constructed in Lemmata 3.24-3.25 to the entire interval 0 ≤ a ≤ 1
in the fashion outlined in Corollary 3.4, which yields (ii) and (iv).

To establish (i), we note that for each # ∈ {A,B,C} the sign of detD1,2G(u#, v#; a, d) is constant on
Ω− on account of Corollary 3.27. Using (ii) the eigenvalues of these matrices can be explicitly computed
at d = 0, which yields the desired stability properties.

To obtain the strict ordering in (iii), we fix 0 < a ≤ 1
2 and 0 < d < d−(a). We observe that

v+(u) ≥ v−(u) for u ∈ [0, a], with equality only at u = umin(a) for a = 1
2 . Since vd(0) = 0 this implies

that uA(a, d) < uB(a, d) and vA(a, d) < vB(a, d). By construction, we also have uB(a, d) < uC(a, d). In
addition, it cannot be the case that vB(a, d̃) = vC(a, d̃) for any 0 < d̃ < d−(a) since then G2 = 0 implies
that also uB(a, d̃) = uC(a, d̃). Using the general identity

Da,d(u#, v#) = −[D1,2G(u#, v#; a, d)]−1D3,4G(u#, v#; a, d) (3.219)

we see that

∂dv#(a, 0) = − 1

g′(v#(a, 0); a)

(
u#(a, 0)− v#(a, 0)

)
, (3.220)

which yields

∂dvB(a, 0) =
1

g′(1; a)
<

1− a
g′(1; a)

= ∂dvC(a, 0). (3.221)

These observations allow us to conclude vB(a, d) < vC(a, d), as desired.

Proof of Proposition 3.3. Arguing in a similar fashion as the proof of Proposition 3.2, the statements
follow from Lemma 3.24 and Corollary 3.27.

4 Travelling waves

Our goal here is to establish the existence of bichromatic wave solutions to the Nagumo LDE (2.1) and
to obtain detailed results concerning their speed. In particular, we establish Theorems 2.2 and 2.3, which
are the main results of this paper.

Upon introducing the standard discrete Laplacian

[∆+u](ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) (4.1)
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together with the off-diagonal matrix

J =

(
0 1
1 0

)
, (4.2)

the travelling wave system (2.5) can be rewritten as

−cΦ′ = dJ∆+Φ +G(Φ; a, d). (4.3)

For any (a, d) ∈ Ω−, we set out to seek solutions to (4.3) that satisfy the boundary conditions

lim
ξ→−∞

Φ(ξ) = (0, 0), lim
ξ→+∞

Φ(ξ) =
(
uB(a, d), vB(a, d)

)
. (4.4)

The existence of such solutions will be established in §4.1, where we also show c ≥ 0 and establish
Theorem 2.2. In §4.2 we subsequently set out to derive criteria that distinguish between the two cases
c = 0 and c > 0. We verify these criteria in §4.3 for parameters (a, d) ∈ Ω− that are close to the cusp
( 1

2 ,
1
24 ) and the corner (1, 0). This allows us to establish our main results contained in Theorem 2.3.

4.1 Existence of waves

Our preparatory work in §3 allows us to invoke the theory developed in [11] to establish a general
existence result for bichromatic waves. Indeed, the equilibria (0, 0) and (uB , vB) are both stable under
the dynamics of (u̇, v̇) = G(u, v; a, d) and all intermediate equilibria are unstable. Using a straightforward
estimate based on the ordering (3.11), the wavespeeds can be shown to be non-negative.

Lemma 4.1. Pick (a, d) ∈ Ω−. Then there exists a constant c ∈ R and a non-decreasing function
Φ : R → R2 that satisfy (4.3)-(4.4). This constant c is unique, while the function Φ is unique up to
translation if c 6= 0. In the latter case we also have Φ′(ξ) > (0, 0) for all ξ ∈ R.

Proof. These statements follow directly from the main results in [11].

Lemma 4.2. Pick (a, d) ∈ Ω−. Then the constant c defined in Lemma 4.1 satisfies c ≥ 0.

Proof. Suppose that c 6= 0. We estimate

−cΦ′v(ξ) = d[Φu(ξ + 1) + Φu(ξ − 1)− 2Φv(ξ)] + g(Φv(ξ); a)

≤ 2d[u− v(ξ)] + g(Φv(ξ); a).
(4.5)

Since 0 < uB(a, d) < a < vB(a, d), there exists ξ∗ ∈ R for which Φv(ξ∗) = uB(a, d). This yields

−cΦ′v(ξ∗) ≤ g(u; a) < 0, (4.6)

from which we conclude c > 0.

Writing c(a, d) and Φ(a, d) for the wavespeed and waveprofile defined in Lemma 4.1, we introduce the
set

T = {(a, d) ∈ Ω− : c(a, d) > 0}, (4.7)

which corresponds to the set Tlow used in §2. In addition, for any (a, d) ∈ T we introduce the linear
operators

La,d : W 1,∞(R;R2)→ L∞(R;R2), Ladj
a,d : W 1,∞(R;R2)→ L∞(R;R2), (4.8)

that act as
La,dφ = −c(a, d)φ′ − dJ∆+φ−DG(Φ(a, d); a, d)φ,

Ladj
a,dψ = c(a, d)ψ′ − dJ∆+ψ −DG(Φ(a, d); a, d)ψ.

(4.9)
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The results in [28, §8] imply that there exists Ψ = Ψ(a, d) ∈ W 1,∞(R;R2) with Ψ > (0, 0) for which we
have the identities

KerLa,d = span{Φ′(a, d)}, KerLadj
a,d = span{Ψ(a, d)} (4.10)

together with the normalization ∫ ∞
−∞
〈Ψ(ξ),Φ′(ξ)〉 dξ = 1. (4.11)

In particular, [32, Thm. A] implies that

RangeLa,d = {f ∈ L∞(R;R2) :

∫ ∞
−∞
〈Ψ(ξ), f(ξ)〉 dξ = 0}. (4.12)

These ingredients allow us to use the implicit function theorem to show that the pair (c,Φ) depends
smoothly on the parameters (a, d) ∈ T . In addition, we obtain a sign on ∂ac.

Lemma 4.3. The maps
T 3 (a, d) 7→ c(a, d) ∈ (0,∞),

T 3 (a, d) 7→ Φ(a, d) ∈ BC1(R;R2)
(4.13)

are C∞-smooth. In addition, we have
∂ac(a, d) > 0 (4.14)

for all (a, d) ∈ T .

Proof. The C1-smoothness of the maps (c,Φ) follows from [28, Thm. 2.3]. On account of the smoothness
of the function g, this can readily be extended to the desired C∞-smoothness by using the ideas in [28,
§8] to set up an implicit function argument along the lines of [33, Prop. 6.5].

Differentiating (4.3) with respect to a, we compute

−[∂ac]Φ
′ − c[∂aΦ′] = dJ∆+[∂aΦ] +DG(Φ; a, d)∂aΦ + ∂aG(Φ; a, d), (4.15)

which gives
−[∂ac]Φ

′ + La,d∂aΦ = ∂aG(Φ; a, d). (4.16)

Applying (4.12) and noting that ∂ag(u; a) = −u(1− u) < 0 for all u ∈ (0, 1), we obtain

−∂ac =

∫ ∞
−∞
〈∂aG(Φ(ξ); a, d),Ψ(ξ)〉 dξ < 0, (4.17)

as desired.

Corollary 4.4. If (a, d) ∈ T , then also (a′, d) ∈ T for all (a′, d) ∈ Ω− with a′ ≥ a.

Proof of Theorem 2.2. The statements follow directly from Lemmata 4.1-4.3.

4.2 Characterization of waves

We now set out to derive conditions that guarantee either c(a, d) = 0 or c(a, d) > 0. To this end, we
introduce the functions

ua,d(v) = v − g(v; a)

2d
, va,d(u) = u− g(u; a)

2d
(4.18)

and note that
u#(a, d) = ua,d

(
v#(a, d)

)
, v#(a, d) = va,d

(
u#(a, d)

)
(4.19)
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for each # ∈ {A,B,C} and (a, d) ∈ Ω−. The local extrema of these functions are located at the critical
points

γc;±(a, d) = 1
3 (a+ 1)± 1

3

√
a2 − a+ 1− 6d

= uinfl(a)±
√

1
3 (g′(uinfl(a); a)− 2d).

(4.20)

One can verify that the functions ua,d and va,d are strictly decreasing on [γc;−(a, d), γc;+(a, d)] and strictly
increasing outside this interval. The following ordering result exploits this characterization and will allow
us to establish c(a, d) = 0 for a significant portion of the parameter set Ω−.

Lemma 4.5. For any (a, d) ∈ Ω− we have the ordering

0 ≤ γc;−(a, d) ≤ a ≤ γc;+(a, d) ≤ vB(a, d). (4.21)

If (a, d) ∈ Ω− then the inequalities in (4.21) are all strict.

Proof. Let us first fix (a, d) ∈ Ω−. We note that 2d < 2d+(a) = g′(a;a)
2 ≤ g′(uinfl(a);a)

2 , which implies that
γc;±(a, d) are well-defined. In addition, this allows us to compute

u′a,d(a) = 1− g′(a; a)

2d
≤ −1, (4.22)

which means that a ∈
(
γc;−(a, d), γc;+(a, d)

)
.

In particular, the function v 7→ ua,d(v) is strictly decreasing on [a, γc;+(a, d)]. On account of the
orderings

ua,d
(
vA(a, d)

)
= uA(a, d) < uB(a, d) = ua,d

(
vB(a, d)

)
, a < vA(a, d) < vB(a, d) (4.23)

we hence cannot have vB(a, d) ≤ γc;+(a). The results for the general case (a, d) ∈ Ω− now follow by
continuity.

Lemma 4.6. Consider any (a, d) ∈ Ω− for which d ≤ 1
8 (1− a)2. Then we have c(a, d) = 0.

Proof. Fix any 0 < a < 1, write d∗ = 1
8 (1− a)2 and suppose that (a, d∗) ∈ Ω−. On account of Corollary

4.4 it suffices to show that c(a, d∗) = 0. Assuming to the contrary that c = c(a, d∗) > 0, we compute

0 > −cΦ′v(ξ)

= d∗[Φu(ξ + 1) + Φu(ξ − 1)− 2Φv(ξ)] + g(Φv(ξ); a)

> −2d∗Φv(ξ) + g(Φv(ξ); a)

= −2d∗ua,d∗
(
Φv(ξ)

)
.

(4.24)

Since 0 < γc;+(a, d∗) < vB(a, d∗), there exists ξ∗ ∈ R for which Φv(ξ∗) = γc;+(a, d∗). The key point is
that

ua,d∗
(
γc;+(a, d∗)

)
= 0, (4.25)

which allows us to obtain a contradiction by picking ξ = ξ∗ in (4.24).

We now set out to derive a (non-sharp) condition that guarantees c(a, d) > 0. The strategy will be
to rule out the existence of standing bichromatic waves. Let us therefore pick any (a, d) ∈ Ω− \ T , which
implies c(a, d) = 0. Writing (Φu,Φv) = Φ(a, d) for the corresponding profile, we introduce the sequence

(ui, vi) =
(
Φu(2i),Φv(2i+ 1)

)
, (4.26)
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(ui,vi)
(ui+1,vi)

(ui+1,vi+1)

0 ubotutop uB
u

vbot

v top

vB

v

Figure 9: Illustration of the two reflections described by the system (4.30). The values have been modified
for illustrative purposes, since the real regions are minuscule.

which satisfies the limits

lim
i→−∞

(ui, vi) = (0, 0) lim
i→+∞

(ui, vi) = (uB(a, d), vB(a, d)
)
, (4.27)

together with the difference equation

0 = d
[
vi + vi−1 − 2ui

]
+ g(ui; a),

0 = d
[
ui+1 + ui − 2vi

]
+ g(vi; a).

(4.28)

Applying a shift to the first equation, we obtain the implicit system

vi+1 = 2
[
ui+1 − g(ui+1;a)

2d

]
− vi,

ui+1 = 2
[
vi − g(vi;a)

2d

]
− ui,

(4.29)

which can be written as
vi+1 = 2va,d(ui+1)− vi,

ui+1 = 2ua,d(vi)− ui.
(4.30)

In particular, we can obtain (ui+1, vi+1) by first reflecting (ui, vi) horizontally through the curve
u = ua,d(v) and then vertically through the curve v = va,d(u). Based on this geometric intuition, we set
out to construct a rectangle

[utop(a, d), uB(a, d)]× [vtop(a, d), vB(a, d)] (4.31)

that must contain (ui0+1, vi0+1) for some critical i0, together with a rectangle

[0, ubot(a, d)]× [0, vbot(a, d)] (4.32)

that must contain the intermediate point (ui0+1, vi0); see Figure 9.
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Lemma 4.7. There exist continuous functions

(vbot, vtop) : Ω− → [0, 1]2 (4.33)

that satisfy the inequalities

0 < vbot(a, d) < γc;−(a, d) < vtop(a, d) < γc;+(a, d) < vB(a, d) (4.34)

together with the identities

ua,d
(
vbot(a, d)

)
= ua,d

(
vtop(a, d)

)
= uB(a, d) (4.35)

for each (a, d) ∈ Ω−. Furthermore, these functions can be continuously extended to Ω− in such a way
that (4.35) holds whenever d > 0.

Proof. Pick any (a, d) ∈ Ω−. On account of the identity ua,d(0) = 0 and the inequalities

ua,d
(
γc;+(a, d)

)
< ua,d

(
vB(a, d)

)
= uB(a, d) < a = ua,d(a), (4.36)

the equation ua,d(v) = uB(a, d) has three distinct solutions on (0, vB(a, d)]. Using the fact that uB(a, 0) =
0, these solutions can be extended continuously to d = 0 by writing vbot(a, 0) = 0 and vtop(a, 0) = a.
The extension to d = d−(a) > 0 can be achieved by standard continuity arguments.

For any (a, d) ∈ Ω− with d > 0 we now define the constant

utop(a, d) = 2ua,d
(
γc;+(a, d)

)
− uB(a, d). (4.37)

We note that
(
utop(a, d), γc;+(a, d)

)
can be seen as the horizontal reflection of

(
uB(a, d), γc;+(a, d)

)
through the curve u = ua,d(v).

Lemma 4.8. Pick any (a, d) ∈ Ω− for which c(a, d) = 0 and consider the sequence {(ui, vi)} defined in
(4.26). Then there exists i0 ∈ Z for which(

utop(a, d), vtop(a, d)
)
≤
(
ui0+1, vi0+1

)
≤
(
uB(a, d), vB(a, d)

)
, (4.38)

while
(0, 0) ≤

(
ui0 , vi0

)
≤
(
uB(a, d), vbot(a, d)

)
. (4.39)

Proof. For any i ∈ Z we have the inequalities

ui ≤ ui+1 ≤ uB(a, d), (4.40)

which implies that we must have ui ≤ ua,d(vi) ≤ ui+1. In particular, we see that

ua,d(vi) ≤ uB(a, d), (4.41)

which implies that

vi /∈
(
vbot(a, d), vtop(a, d)

)
. (4.42)

In addition, we have
ui = 2ua,d(vi)− ui+1 ≥ 2ua,d(vi)− uB(a, d). (4.43)

In particular, for every i we either have

(0, 0) ≤ (ui, vi) ≤
(
uB(a, d), vbot(a, d)

)
(4.44)

or (
utop(a, d), vtop(a, d)

)
≤ (ui, vi) ≤

(
uB(a, d), vB(a, d)

)
. (4.45)

The limits (4.27) imply that there exists M � 1 so that (4.44) holds for all i ≤ −M and (4.45) holds for
all i ≥M . In particular, there must be jump between these two sets.
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For any (a, d) ∈ Ω− with d > 0, the inequalities (4.34) imply that the function ua,d is strictly increasing
on [0, vbot(a, d)]. This allows us to define an inverse

uinv
a,d : [0, uB(a, d)]→ [0, vbot(a, d)]. (4.46)

In addition, we introduce the function

va,d;r(u) = 2va,d(u)− vB(a, d), (4.47)

which can be interpreted as the vertical reflection of the line v = vB(a, d) through the curve v = va,d(u).
For any (a, d) ∈ Ω− with d > 0, these definitions allow us to introduce the notation

ubot(a, d) = max{u ∈ [0, uB(a, d)] : va,d;r(u) = uinv
a,d(u)}. (4.48)

On account of the inequalities

va,d;r(0) < 0 = uinv
a,d(0) < uinv

a,d

(
uB(a, d)

)
= vbot(a, d) < vB(a, d) = va,d;r

(
uB(a, d)

)
, (4.49)

one can verify that ubot is well-defined and continous in (a, d).

Lemma 4.9. Pick (a, d) ∈ Ω− and assume that

ubot(a, d) < utop(a, d) (4.50)

holds. Then we have c(a, d) > 0.

Proof. Suppose the contrary that c(a, d) = 0 and consider the sequence {(ui, vi)} defined by (4.26),
together with the critical value i0 ∈ Z that appears in Lemma 4.8. Since the sequence {ui} is non-
decreasing, we have ui0+1 ≥ ui0 which implies that

ui0+1 ≥ ua,d(vi0). (4.51)

Exploiting 0 ≤ vi0 ≤ vbot(a, d) this gives

0 ≤ vi0 ≤ uinv
a,d

(
ui0+1

)
. (4.52)

On the other hand, the inequality vi0+1 ≤ vB(a, d) yields

vi0 ≥ va,d;r(ui0+1). (4.53)

Combining this with (4.52), we see that ui0+1 ≤ ubot(a, d). However, (4.38) implies that ui0+1 ≥
utop(a, d), which yields the desired contradiction.

4.3 Verification of utop > ubot

In Figure 10 we show where one may numerically verify that the scalar inequality (4.50) holds, which

ensures that c(a, d) > 0. We also plot the curve d = (1−a)2

8 , below which we have established that
c(a, d) = 0. Taken together, we feel that these results cover a reasonable portion of the parameter space
Ω−.

Our final task is to analytically verify (without resorting to any numerics) that c(a, d) > 0 near the
cusp (a, d) =

(
1
2 ,

1
24

)
and the corner (a, d) = (1, 0). As a preparation, we construct a simplified but

weaker version of the condition utop > ubot by exploiting the monotonicity of va,d;r.

Lemma 4.10. Pick (a, d) ∈ Ω− with d > 0. Then the function va,d;r is strictly increasing on [0, uB(a, d)].
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Lemma 4.9 yields c>0

Ω-∖

0.50 0.52 0.54 0.56 0.58
a

0.025

0.030

0.035

0.040

d

Figure 10: The darkest region contains all pairs (a, d) where the assumption ubot(a, d) < utop(a, d) was
verified numerically. We also include the boundaries of the sets T and Ω− as computed numerically by
the procedure described in §2.

Proof. We note first that v′a,d(u) = 1 − g′(u;a)
2d > 0 for u ∈ [0, umin(a)]. In particular, we only have to

consider the case uB(a, d) > umin(a), which cannot occur for a = 1
2 .

Let us first assume that 0 < a < 1
2 . Using (3.187) or (3.188) we may conclude that

v′a,d
(
uB(a, d)

)
≥ v′+

(
uB(a, d)

)
> 0. (4.54)

Since uB(a, d) ≤ a ≤ γc;+(a, d) this implies that uB(a, d) ≤ γc;−(a, d). In particular, va,d and hence va,d;r

are strictly increasing on [0, uB(a, d)].
It remains to consider a ∈ ( 1

2 , 1). Since vB(1 − a, d) > umax(1 − a), we may use Corollary 3.4 to
conclude

uB(a, d) = 1− vB(1− a, d) < 1− umax(1− a) = umin(a). (4.55)

Corollary 4.11. Consider any (a, d) ∈ Ω− with d > 0 and suppose that

va,d;r

(
utop(a, d)

)
> vbot(a, d). (4.56)

Then we have utop(a, d) > ubot(a, d).

Proof. This follows from the uniform bound uinv
a,d ≤ vbot(a, d) and the fact that va,d;r is strictly increasing.

We now set out to verify the explicit condition (4.56) for the boundary points
(
a, d−(a)

)
with a ∼ 1

and a = 1
2 . Using the continuity of utop and ubot, this means that c(a, d) > 0 for all (a, d) ∈ Ω− that are

sufficiently close to these critical boundary points.

Lemma 4.12. We have the expansions

uB
(
a, d−(a)

)
= 1

4 (1− a)2 + 1
8 (1− a)3 +O

(
(1− a)4

)
,

vB
(
a, d−(a)

)
= 1− 1

2 (1− a) +O
(
(1− a)4

) (4.57)

as a ↑ 1.
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Proof. Exploiting Corollary 3.4 together with the symmetry d(a) = d(1− a), we obtain

uB
(
a, d−(a)

)
= 1− vB

(
1− a, d−(1− a)

)
, vB(a, d−(a)) = 1− uB

(
1− a, d−(1− a)

)
. (4.58)

The desired expansions hence follow from Proposition 3.6.

Lemma 4.13. We have the expansions

utop

(
a, d−(a)

)
= 1

4 (a− 1)2 +O
(
(1− a)3

)
,

va,d−(a);r

(
utop

(
a, d−(a)

))
= 1 +O

(
1− a

) (4.59)

as a ↑ 1.

Proof. These expansions can be found by substition of (4.57) into the definitions (4.37) and (4.47).

On account of the identity γc;−(1, 0) = 1
3 and the inequality vbot(a, d) ≤ γc;−(a, d), we see that

Corollary 4.11 implies that
utop

(
a, d−(a)

)
> ubot

(
a, d−(a)

)
(4.60)

whenever 1− a > 0 is sufficiently small.

Lemma 4.14. The inequality (4.56) holds for (a, d) = (1
2 ,

1
24 ).

Proof. Writing (acp, dcp) = (1
2 ,

1
24 ), we can explicitly compute

γc;+(acp, dcp) =
1

2
+

1

6

√
2, (4.61)

which together with the expressions (3.26) and (4.37) yields

utop(acp, dcp) =
1

2
− 4

9

√
2 +

1

6

√
3. (4.62)

Using (4.47) we obtain

vacp,dcp;r

(
utop(acp, dcp)

)
=

1

2
− 1240

243

√
2 +

229

54

√
3 ∼ 0.6286. (4.63)

In particular, we have

vacp,dcp;r

(
utop(acp, dcp)

)
> acp ≥ γc;−(acp, dcp) ≥ vbot(acp, dcp), (4.64)

as desired.

Proof of Theorem 2.3. Item (i), (ii) and (iii) follow from Lemma 4.6, Corollary 4.4 and Lemma 4.14
respectively. Item (iv) follows from Lemma 4.5, together with Lemma 4.9 and the continuity of the
functions ubot and utop. Indeed, the expression (2.21) can be rewritten as

Γ(a) = utop

(
a, d−(a)

)
− ubot

(
a, d−(a)

)
. (4.65)

Finally, item (v) follows directly from (4.60).
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