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Abstract

We address the classical problem of propagation failure for monotonic fronts of the discrete Nagumo equation.

For a special class of nonlinearities that support unpinned “translationally invariant” stationary monotonic

fronts, we prove that propagation failure cannot occur. Properties of travelling fronts in the discrete Nagumo

equation with such special nonlinear functions appear to be similar to those in the continuous Nagumo

equation.
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1 Introduction

To illustrate the central topic of this paper, let us consider the discrete Nagumo equation

u̇j =
1
h2

(
uj+1 + uj−1 − 2uj

)
+ f(uj ; a), j ∈ Z, (1.1)

with the cubic nonlinearity

f(u ; a) = 2(1− u2)(u− a), −1 < a < 1. (1.2)

This lattice differential equation (LDE) plays an important role when studying signal propagation
through nerve fibres [7, 19] and has inspired a large volume of work on spatially discrete models in
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Fig. 1: Panel (i) depicts the McKean caricature f(u ; a) = sign(u− a)− u, while the piecewise linear zigzag
nonlinearity considered in [11] is shown in panel (ii). Panel (iii) illustrates the assumption (Hg2) on ḡ.

many different scientific areas [4, 5, 9, 13, 22]. One may arrive at (1.1) by discretizing the Nagumo
PDE

ut = uxx + f(u ; a), x ∈ R, (1.3)

on a lattice with node distance h. It is well-known that for any a ∈ (−1, 1), the PDE (1.3) admits
travelling front solutions u(x, t) = ū(x− ct) with

lim
ξ→±∞

ū(ξ) = ±1. (1.4)

The unique wave speed c = c(a) satisfies c(0) = 0 and ∂ac(0) > 0 and the wave profile has ū′(ξ) > 0
for all ξ ∈ R.

Similarly, there exists a unique wave speed c = c(a) for which the LDE (1.1) admits a travelling
front uj(t) = ū(j + ct) that satisfies (1.4) and is nondecreasing with respect to j [23]. As above, the
wave speed is nondecreasing with respect to a, but it no longer needs to be strictly increasing. In
fact, writing [a−, a+] for the maximal interval on which c(a) = 0, it may happen that a− < a+, in
which case we say that (1.1) admits propagation failure.

Keener established that the Nagumo LDE (1.1) with the cubic nonlinearity (1.2) admits prop-
agation failure for all sufficiently large h [20], but at present it is still unknown whether this holds
for all h > 0. A significant step towards confirming this was made by Hoffman and Mallet-Paret
[16]. These authors provided a generic condition on the nonlinearity f in (1.1) that guarantees
propagation failure, but unfortunately this condition is hard to verify in practice.

We emphasize that these issues may depend subtly on the nonlinearity. For example, the explicit
calculations in [6] show that (1.1) with the McKean caricature depicted in Figure 1(i) admits prop-
agation failure for all h > 0. The theory developed in [24] shows that this also holds for smooth
nonlinearities that are sufficiently close to this sawtooth. On the other hand, if f is given by a
piecewise linear zigzag nonlinearity as in Figure 1(ii), one can exclude this phenomenon for all h in
a countably infinite set [11]. Additional results and numerical studies can be found in [1, 12–14].

Stationary solutions: discrete families

In order to understand the mechanism that causes propagation failure, it is important to study the
stationary solutions to (1.1). To this end, let us look for stationary solutions u(t) = p to (1.1)-(1.2)
by writing rj = pj+1 and solving the discrete planar system

pj+1 = rj ,
rj+1 = −pj + 2rj − h2f(rj ; a). (1.5)

One may easily verify that the two equilibria (±1,±1) are both saddles at a = 0. Following Qin and
Xiao [25], dynamical system methods can now be used to show that (1.5) admits solutions p(s) and
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Fig. 2: The stable and unstable manifolds Ws(1, 1) and Wu(−1,−1) associated to the discrete system (1.5)
can intersect in several ways. Black circles are used to represent the site-centered solutions p(s) and orange
squares are used for the bond-centered solutions p(b). In Panel (i) the aforementioned manifolds intersect
transversely, which means p(s) and p(b) will persist for a ≈ 0. Panel (ii) illustrates the saddle-node bifurcation
at a = a± that destroys these two branches of stationary solutions. Panel (iii) depicts the case covered by
assumption (Hp). One can interpolate freely between p(s) and p(b) to find a one-parameter family of stationary
solutions p(ϑ) to (1.9) at a = 0.

p(b) that satisfy

lim
j→±∞

p
(s)
j = lim

j→±∞
p

(b)
j = ±1, p

(s)
−j = −p(s)

j , p
(b)
−j+1 = −p(b)

j . (1.6)

These solutions are hence referred to as site-centered and bond-centered solutions. For each j ∈ Z,
the pairs

(
p

(s)
j , p

(s)
j+1

)
and

(
p

(b)
j , p

(b)
j+1

)
lie in the intersection of the unstable manifold Wu(−1,−1) and

the stable manifold W s(1, 1). If these intersections are transverse, both solutions p(s) and p(b) will
persist for a ≈ 0. One expects these branches to coalesce and terminate in a saddle–node bifurcation
at a = a±; see panels (i) and (ii) in Figure 2. The first nonrigorous analysis of this type for (1.1)-(1.2)
was performed by Erneux and Nicolis [13].

Stationary solutions: continuous families

In this paper, we are interested in the degenerate situation that p(s) and p(b) are part of a smooth fam-
ily of stationary solutions. As illustrated in Figure 2(iii), this means that Ws(1, 1) and Wu(−1,−1)
coincide at a = 0. In this case, it is not immediately clear if any intersections of these two manifolds
survive for a 6= 0.

We do not expect this type of degeneracy to occur for (1.1) with the cubic nonlinearity (1.2),
but there certainly are more general discretizations of the PDE (1.3) with (1.2) that do have this
property. Consider for example the LDE

u̇ =
1
h2

(
uj−1 + uj+1 − 2uj

)
+ (1− u2

j )(uj+1 + uj−1 − 2a), j ∈ Z. (1.7)

One may directly verify that for any a, ϑ ∈ R, this equation is satisfied by

uj(t) = tanh
(
arcsinh(h)(j − ct+ ϑ)

)
, c =

2a
arcsinh(h)

. (1.8)

We thus have a branch of stationary solutions at a = 0 that is parametrized by ϑ ∈ R. In particular,
we are in the situation depicted in Figure 2(iii). In [3], Barashenkov and his coauthors constructed
several additional discretizations of (1.3) that also have this degeneracy, generalizing earlier results
in [10, 15, 21, 26].

In view of the explicit solutions (1.8), it is clear that a− = a+ = 0 holds for (1.7). In particular,
this equation does not suffer from propagation failure. In terms of Figure 2(iii), the manifolds
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Wu(−1, 1) and Ws(1, 1) separately completely as a moves away from zero and therefore none of the
stationary solutions mentioned above survives this transition. The absence of propagation failure
can be very useful in many situations, for example when using LDEs to spatially discretize a PDE.

Main Results

The main goal of this paper is to show that the situation described above for (1.7) extends to the
broad class of bistable parameter-dependent LDEs that are commonly referred to as normal families
[23]. In particular, we consider the LDE

u̇j = g
(
uj−1, uj , uj+1 ; a

)
, j ∈ Z, uj ∈ R (1.9)

and assume that g is monotonically increasing with respect to uj−1 and uj+1, while ḡ(u ; a) :=
g(u, u, u ; a) behaves much like the cubic (u− a)(1− u2); see Figure 1(iii). Furthermore, we assume
that at some a = a∗, the system (1.9) admits a smooth one-parameter branch of stationary solutions
that is ‘translationally invariant’ in the sense of Figure 2(iii). Our main results state that these
conditions are sufficient to prevent (1.9) with a 6= a∗ from having any stationary solutions that
increase monotonically with respect to j ∈ Z.

The conditions (Hg1)-(Hg2) below give a more precise definition of the concept of a normal family.
We remark that these assumptions are slightly stronger than their counterparts in [23], where less
smoothness was imposed on the nonlinearity g.

(Hg1) The nonlinearity g is C3-smooth, with ∂u1g(u1, u2, u3; a) > 0 and ∂u3g(u1, u2, u3; a) > 0 for
all (u1, u2, u3) ∈ R3 and a ∈ (−1, 1). In addition, we have

∂ag
(
u1, u2, u3; a) < 0 (1.10)

for all a ∈ (−1, 1) and all (u1, u2, u3) ∈ R3 that have −1 < u1 < u2 < u3 < 1.

(Hg2) Setting ḡ(u; a) := g(u, u, u; a), we have

ḡ(±1; a) = 0, ḡ(a; a) = 0,
ḡ(u; a) < 0 for u ∈ (−1, a) ∪ (1,∞), ḡ(u; a) > 0 for u ∈ (−∞,−1) ∪ (a, 1), (1.11)

for every −1 < a < 1, together with

∂uḡ(±1; a) < 0, ∂uḡ(a; a) > 0,
∂uaḡ(−1; a) < 0, ∂uaḡ(1; a) > 0. (1.12)

The degeneracy requirement that we need to impose on the stationary solutions to (1.9) at a = a∗
is given by the following.

(Hp) There exists a p̄ ∈ BC3(R,R)1 such that for any ϑ ∈ R, the constant function u(t) = p(ϑ)

given by

p
(ϑ)
j = p̄(j + ϑ) (1.13)

satisfies (1.9) with a = a∗ for some a∗ ∈ (−1, 1). In addition, this function p̄ has p̄′(ξ) > 0 for
all ξ ∈ R and satisfies the limits

lim
ξ→±∞

p̄(ξ) = ±1. (1.14)

1The notation BC3 means that p̄ and its first three derivatives are uniformly bounded on R.
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Theorem 1.1. Consider the system (1.9) and suppose that (Hg1), (Hg2) and (Hp) are satisfied.
Then for every a ∈ (−1, 1), the system (1.9) admits a solution of the form

uj(t) = ū(j − ct) (1.15)

for some wave speed c ∈ R and wave profile ū ∈ C1(R,R) that has ū′(ξ) > 0 for all ξ ∈ R and

lim
ξ→±∞

ū(ξ) = ±1. (1.16)

The wave speed c = c(a) depends C1-smoothly on a, with c(a∗) = 0 and ∂ac(a) > 0 for all a ∈ (−1, 1).

The next two results address the uniqueness of the travelling waves described above. The first one
excludes two classes of stationary solutions for a 6= a∗, namely j-monotonic solutions and solutions
that are close to pϑ for some ϑ ∈ R, but not necessarily j-monotonic. The second result states
that the waves appearing in Theorem 1.1 are unique among all waves that connect ±1 and travel
with non-zero speed.2 This actually follows directly from [23, Thm. 2.1], but we include it here for
completeness.

Corollary 1.2. Consider the system (1.9) and suppose that (Hg1), (Hg2) and (Hp) are satisfied.
There exists a constant δ > 0 such that the following holds true. Suppose that (1.9) admits a sta-
tionary solution

uj(t) = uj (1.17)

for some a ∈ (−1, 1). Suppose that uj1 ≤ uj2 holds for all j1 ≤ j2 together with limj→±∞ uj = ±1,
or alternatively that |a− a∗| < δ and

∣∣u− p(ϑ)
∣∣ < δ for some ϑ ∈ R. Then we must have a = a∗.

Corollary 1.3 ([23, Thm. 2.1]). Consider the system (1.9) and suppose that (Hg1), (Hg2) and
(Hp) are satisfied. Pick any a ∈ (−1, 1) and suppose that (1.9) admits a solution of the form

uj(t) = ū(j − ct) (1.18)

for some c 6= 0 and ū ∈ C1(R,R) that satisfies the limits

lim
ξ→±∞

ū(ξ) = ±1. (1.19)

Then u must be a temporal translate of the solution described in Theorem 1.1.

The proof of Theorem 1.1 and Corollary 1.2 can be found in §2. We conclude the paper in §3
with some numerical examples and a brief discussion.

Acknowledgements. This project was initiated during the NSERC USRA work of P. Foltin
at McMaster University (May-August, 2008). The authors thank A. Scheel for useful discussions.
HJH acknowledges support from the Netherlands Organization for Scientific Research (NWO). DP is
supported by the NSERC grant. BS is partially supported by the NSF through grant DMS-0907904.

2 Proof of Main Results

In this section we prove Theorem 1.1 and Corollary 1.2. We focus on the dynamics of the lattice
system (1.9) for a near a∗. In particular, we show that the manifold of equilibriaM(a∗) = {p(ϑ)}ϑ∈R
at a = a∗ persists as an invariant manifoldM(a) for (1.9) with a near a∗. To aid us, we write T for
the right-shift operator that acts as (T u)j = uj−1 and note that

p(ϑ) = T p(ϑ+1) (2.1)

2Notice that this excludes the possibility of non-monotonic travelling waves that connect ±1.
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Fig. 3: Panel (i) depicts the manifold M(a∗) after factoring out the symmetry T . Each point on the circle
represents an equivalence class p(ϑ) with ϑ ∈ S1. We show that M(a∗) is normally hyperbolic and that it
persists as M(a) for a near a∗. As illustrated in panel (ii), one or more of the equilibria can survive for
a 6= a∗, in which case (1.9) suffers from propagation failure. However, if (1.9) is a normal family, the flow
on M(a) must behave as shown in panel (iii), inducing travelling wave solutions to (1.9).

holds for all ϑ ∈ R. After factoring out the symmetry T , the manifold M(a∗) can hence be seen as
a circle of equilibria; see Figure 3(i). In principle, some of these equilibria can survive for a 6= a∗, as
illustrated in Figure 3(ii) and discussed in §3. However, by computing the flow on M(a) to leading
order, we show that the situation described in Figure 3(iii) arises whenever the system (1.9) is a
normal family. The travelling waves described in Theorem 1.1 can subsequently be read off from the
shift-periodic solution to (1.9) that is induced by the flow on M(a).

For convenience, we rewrite the lattice system (1.9) as

u̇ = F(u, a) (2.2)

and look for solutions u that take values in the sequence space

`∞ = {u ∈ RZ : |u|`∞ := supj∈Z |uj | <∞}. (2.3)

The nonlinearity F : `∞ × (−1, 1) → `∞ inherits the C3-smoothness of the function g in (1.9). For
v, w ∈ `∞, we introduce the pairing

〈v, w〉 =
∑
j∈Z

vjwj , (2.4)

with the warning that additional constraints on v or w are needed to ensure that this sum is well-
defined.

In order to show thatM(a∗) persists as an invariant manifold, we need to show that it is normally
hyperbolic. To this end, let us introduce the operator L(ϑ) ∈ L(`∞) that is given by

L(ϑ) = ∂uF
(
p(ϑ), a∗

)
. (2.5)

Componentwise, we have

(L(ϑ)v)j = ∂u1g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ+ 1) ; a∗

)
vj−1

+∂u2g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ+ 1) ; a∗

)
vj

+∂u3g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ+ 1) ; a∗

)
vj+1

(2.6)

and it is easily verified that L(ϑ)p̄′(ϑ+ ·) = 0. The formal adjoint of L(ϑ) is given by

(L(ϑ)∗w)j = ∂u1g
(
p̄(j + ϑ), p̄(j + ϑ+ 1), p̄(j + ϑ+ 2) ; a∗

)
wj+1

+∂u2g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ+ 1) ; a∗

)
wj

+∂u3g
(
p̄(j + ϑ− 2), p̄(j + ϑ− 1), p̄(j + ϑ) ; a∗

)
wj−1.

(2.7)

Our first result states that L(ϑ) is a Fredholm operator.
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Lemma 2.1. For each ϑ ∈ R, L(ϑ) : `∞ → `∞ is a Fredholm operator with index zero. In addition,
solutions v = {vj} ∈ `∞ of L(ϑ)v = 0 or L(ϑ)∗v = 0 decay exponentially as j → ±∞. Finally, we
have the characterization

RangeL(ϑ) = {x ∈ `∞ | 〈w, x〉 = 0 for all w ∈ KerL(ϑ)∗}. (2.8)

Proof. We consider the characteristic functions associated to the operator L(ϑ) in the limits j → ±∞,
which are given by

∆±(z) = ∂u1g(±1,±1,±1; a∗)e−z + ∂u2g(±1,±1,±1; a∗) + ∂u3g(±1,±1,±1; a∗)ez. (2.9)

Our assumption ∂uḡ(±1, a∗) < 0 implies that the equations s∆−(z)+(1−s)∆+(z) = 0 do not admit
roots with Re z = 0 for any 0 ≤ s ≤ 1. The statement now follows directly from Corollary 2.6 and
Theorems 3.2 and 4.3 in [2].

We now proceed to show that M normally hyperbolic. For any operator L ∈ L(`∞), we introduce
the spectral sets3

σess(L) = {ζ ∈ C : λI − L is not a Fredholm operator with index zero},

σp(L) = {λ ∈ C \ σess(L) : Lv = λv for some non-zero v ∈ `∞}.
(2.10)

Instead of studying the eigenvalue equation L(ϑ)v = λv directly, we adapt the comparison principle
technique developed in [8, §8] to analyze the ODE

v̇ = L(ϑ)v (2.11)

and determine the growth rate of solutions.

Lemma 2.2. There exists δ > 0 such that λI−L(ϑ) is invertible for each ϑ ∈ R and each λ ∈ C\{0}
with Reλ ≥ −δ. In addition, we have

KerL(ϑ) = span {p̄′(ϑ+ ·)}, KerL(ϑ)∗ = span {q̄(ϑ+ ·)}, (2.12)

in which q̄ ∈ BC2(R,R) has q̄(ξ) > 0 for all ξ ∈ R. Finally, there is no v ∈ `∞ that satisfies
L(ϑ)v = p̄′(ϑ+ ·).

Proof. Using the assumption ∂uḡ(±1, a∗) < 0, we may argue as in the proof of Lemma 2.1 to find a
small δ > 0 such that Reλ < −δ holds for any λ ∈ σess(L(ϑ)).

We study the point spectrum in an indirect fashion by looking at the ODE (2.11) posed on `∞,
which admits the stationary solution vj(t) = p̄′(ϑ + j). Let us now pick β > 0 in such a way that
∂uḡ(±1; a∗) < −β. Since p̄′ > 0, there exists K > 0 such that

βKp̄′(ϑ+ j)− β − (L(ϑ)1)j ≥ 0 (2.13)

holds for all j ∈ Z, which can be verified using the limits

lim
j→±∞

(L(ϑ)1)j = ∂uḡ(±1; a∗) < −β. (2.14)

The assumptions ∂u1g > 0 and ∂u3g > 0 imply that (2.11) admits a comparison principle. More
precisely, any solution v to (2.11) satisfies

|vj(t)| ≤
(
e−βt +K(1− e−βt)p̄′(ϑ+ j)

)
|v(0)|`∞ (2.15)

3Where appropriate, `∞ should be interpreted as a subset of CZ instead of RZ.
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for all t ≥ 0, which can be established as in [8, §8]. For any T > 0, we write ΦT for the bounded
linear map that sends v(0) to v(T ) for solutions to (2.11). Following the construction in [8, §8], we
conclude that ∣∣σess

(
ΦT
)∣∣ < 1, σp

(
ΦT
)
\ {1} ⊂ {ζ ∈ C : |ζ| < 1}, (2.16)

while 1 ∈ σp(ΦT ) is a simple eigenvalue. Recall that eigenvalues outside the essential spectrum
are isolated and σp

(
L(ϑ+1)

)
= σp

(
L(ϑ)

)
. All statements concerning L(ϑ) now follow from these

observations, exploiting the fact that T > 0 can be chosen arbitrarily.
For every ϑ ∈ R, Lemma 2.1 implies that there exists a non-trivial q(ϑ) ∈ Ker(L(ϑ)∗). Since

p̄′(ϑ+ ·) depends C2-smoothly on ϑ, one can ensure that the same holds for q(ϑ), with q(ϑ+1)
j = q

(ϑ)
j+1.

One can now take q̄(ξ) = q
(ξ)
0 . Finally, one may imitate the proof of [23, Thm 4.1] to show that

q̄(ξ) 6= 0 for all ξ ∈ R.

We remark that [23, Thm. 2.2] implies that p̄ approaches its limiting values at an exponential
rate. In addition, since F is C3-smooth, Lemma 2.1 implies that p̄′, p̄′′, p̄′′′, q̄, q̄′ and q̄′′ all decay
exponentially at ±∞. In particular, we may define a C2-smooth family of projections P (ϑ) ∈ L(`∞)
by

P (ϑ) = p̄′(ϑ+ ·)Q(ϑ), Q(ϑ)v = 〈q(ϑ), v〉, (2.17)

after normalizing q(ϑ) to ensure that Q(ϑ)p̄′(ϑ+ ·) = 1.
Since we are interested in the dynamics of (2.2) near the manifold M = {p(ϑ)}ϑ∈R, we look for

solutions that can be written as

u(t) = p(θ(t)) + v(t), (2.18)

for some functions θ ∈ C1(R,R) and v ∈ C1(R, `∞) that satisfy the normalization condition

Q
(
θ(t)

)
v(t) = 0, t ∈ R. (2.19)

In terms of these new coordinates, we have M(a∗) = {(ϑ, 0)}ϑ∈R. For a near a∗, this invariant
manifold persists as M(a) = {ϑ, v∗(ϑ, a)}, in which the function v∗ is described by the following
result.

Lemma 2.3. Consider the LDE (2.2) and suppose that (Hg1),(Hg2) and (Hp) are all satisfied. Then
there exists a constant δa > 0 together with a C1-smooth function v∗ : R × [a∗ − δa, a∗ + δa] → `∞

such that the following holds true.

(i) For some constant C > 0 we have |v∗(ϑ, a)|`∞ ≤ C |a− a∗| for all ϑ ∈ R. In addition,
v∗(ϑ, a) = T v∗(ϑ+ 1, a).

(ii) There exists a constant δ > 0 such that any solution to (2.2) with |a− a∗| < δa of the form
(2.18) - (2.19) that has |v(t)|`∞ < δ for all t ∈ R, must have v(t) = v∗

(
θ(t), a

)
for all t ∈ R.

(iii) Consider the C2-smooth function Ψ : R→ R given by

Ψ(ϑ) = Q(ϑ)∂aF(p(ϑ), a∗). (2.20)

There exists a C1-smooth function h∗ : R× [a∗ − δa, a∗ + δa]→ R with h∗(ϑ+ 1, a) = h∗(ϑ, a)
and h∗(ϑ, a) = O(|a− a∗|2), such that any solution to the ODE

θ̇ = (a− a∗)Ψ(θ) + h∗(θ, a), (2.21)

with |a− a∗| < δa yields a solution u(t) = p(θ(t)) + v∗(θ(t), a) to (2.2).
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Proof. Without loss of generality, we assume that a∗ = 0. Choose a C∞-smooth function χ : R→ R

such that χ(v) = v when |v| < 1 and χ(v) = 0 when |v| > 2. For δ > 0, write χδ : `∞ → `∞ for the
C∞-smooth function

χδ(v)j = χ(vj/δ), (2.22)

Plugging the Ansatz (2.18) into (2.2), we find that any solution that has |v(t)|`∞ < δ for all t ∈ R
will satisfy

v̇ = L(θ)v + a
(
I − P (θ)

)
∂aF(p(θ), 0) +N1(θ, v, a)

θ̇ = aQ(θ)∂aF(p(θ), 0) +N2(θ, v, a),
(2.23)

in which

N1(ϑ, v, a) =
(
I − P (ϑ)

)
N (ϑ, χδ(v), a) + P (ϑ)S(ϑ, χδ(v), a),

N2(ϑ, v, a) = Q(ϑ)N (ϑ, χδ(v), a)−Q(ϑ)S(ϑ, χδ(v), a), (2.24)

with

N (ϑ, v, a) = F(p(ϑ) + v, a)− L(ϑ)v − a∂aF(p(ϑ), 0),
S(ϑ, v, a) =

[
1− (1−Q′(ϑ)v)−1

][
a∂aF(p(ϑ), 0) +N (ϑ, v, a)

]
.

(2.25)

By construction, there exists C > 0 such that

|Ni(ϑ, v, a)| ≤ C(δ + δa)2,
|Ni(ϑ1, v1, a)−Ni(ϑ2, v2, a)| ≤ C(δ + δa)(|ϑ1 − ϑ2|+ |v1 − v2|`∞) (2.26)

hold for i = 1, 2 and |a| < δa. One may now proceed as in [17, §6-7] to show that (2.23) admits a
unique solution (v(t), θ(t)) for any |a| < δa and any initial condition θ(0) = ϑ0 with Q(ϑ0)v(0) = 0.
The desired function v∗ is now given by v∗(ϑ0, a) = v(0).

With Lemma 2.3 in hand, our main result can easily be established by analyzing the scalar ODE
(2.21) that describes the flow on M(a).

Proof of Theorem 1.1. Without loss of generality, assume again that a∗ = 0. The results in [23, §2]
imply that c(a) is C1-smooth with ∂ac(a) > 0 whenever c 6= 0.4 We hence only need to consider a
near zero. The inequality (1.10) implies that

Ψ(ϑ) = Q(ϑ)∂aF(p(ϑ), 0) < 0 (2.27)

for all ϑ ∈ R. Introducing the rescaled time τ = at, (2.21) becomes

∂τθ(τ) = Ψ
(
θ(τ)

)
+ a−1h∗(θ(τ), a). (2.28)

In particular, there exists T∗ > 0 and a C1-smooth function T (a) = O(a), defined for a near zero,
such that any solution to (2.28) will have

θ(τ + T∗ + T (a)) = θ(τ)− 1 (2.29)

for all τ ∈ R. Picking a 6= 0 and writing u(t) for the associated solution to (2.2), we see that

u
(
t+ a−1(T∗ + T (a)

)
= T u(t). (2.30)

Choosing ū(ξ) = u0

(
− ξa−1(T∗ + T (a))

)
, one easily verifies that

uj(t) = ū
(
j − at/

(
T∗ + T (a)

))
, (2.31)

which means that u is a travelling wave that moves to the right with speed c(a) = a/(T∗ + T (a)).
This formula remains valid for a = 0, which establishes the C1-smoothness of c(a). It remains to
show that ū satisfies the limits (1.16), but this follows directly from [23, Lemma 6.1].

4This is the only place where the condition ±∂uaḡ(±1, a) > 0 in (Hg2) is needed.
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Fig. 4: Selected wave profiles and wave speed plot for (3.1) with the nonlinearity g = g1 defined in (3.7). No
propagation failure occurs and the wave profiles ū remain smooth as a→ 0.

Proof of Corollary 1.2. If the stationary solution has uj1 ≤ uj2 whenever j1 ≤ j2, the conclusion
follows directly from [23, Thm. 2.1]. In the other case, the result follows directly from item (ii) in
Lemma 2.3.

3 Examples

In this section we illustrate the application range of our results, using the numerical method devel-
oped in [18]. In particular, we consider the lattice system

u̇ = g
(
uj−1, uj , uj+1 ; a

)
(3.1)

for three different families g. We search for wave solutions of the form

uj(t) = ū(j − ct), lim
ξ→±∞

ū(ξ) = ±1, (3.2)

by numerically solving the functional differential equation

−cū′(ξ) = g
(
ū(ξ − 1), ū(ξ), ū(ξ + 1) ; a

)
. (3.3)

All our examples admit a branch of stationary solutions u(t) = p(ϑ) = p̄(ϑ + ·) at a = 0 that
satisfy the condition (Hp). However, in our last two examples we consider two families g that violate
the inequality (1.10) in the definition of a normal family. The presence of propagation failure now
depends on whether or not the ODE

θ̇ = (a− a∗)Ψ(θ) +O(|a− a∗|2) (3.4)

with

Ψ(ϑ) =
∑
j∈Z

q̄(ϑ+ j)∂ag
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ+ 1) ; a∗

)
(3.5)

admits equilibria for a 6= a∗. To determine this, one needs to have detailed information on the
function q̄, which we compute numerically alongside with the wave profiles ū by augmenting (3.3)
at a = 0 with the appropriate equation5 for q̄.

5To avoid numerical issues that arise in the singular limit c→ 0, an extra term −γū′′(ξ) is added to the left hand
side of (3.3), with γ = 10−6. The actual equation used to determine q̄ is given by

−γq̄′′(ξ) = (L(0)∗q̄)ξ + λ(ξ)q̄(ξ),
λ′(ξ) = 0,

(3.6)
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Fig. 5: Selected wave profiles and wave speed plot for (3.1) with the nonlinearity g = g2 defined in (3.9). As
in Example 1, no propagation failure occurs and the wave profiles ū remain smooth as a→ 0.

Example 1: A Normal Family

Inspired by [3], we consider the lattice system (3.1) with the nonlinearity g = g1 that is given by

g1

(
uj−1, uj , uj+1 ; a

)
= 4(uj−1 + uj+1 − 2uj) + 2(uj − a)(1− uj−1uj+1). (3.7)

This family satisfies the conditions (Hg1)-(Hg2) and is hence a normal family. When a = 0, one may
easily verify that the branch6

uj(t) = tanh
(
arcsinh(1/

√
2)(j + ϑ)

)
, ϑ ∈ R (3.8)

consists of stationary solutions to (3.1). In particular, (Hp) is also satisfied. Theorem 1.1 hence
implies that (3.1) does not admit propagation failure, which is confirmed by the wave profiles and
speeds depicted in Figure 4.

Example 2: A Non-Normal Family without Propagation Failure

Our second examples focusses on (3.1) with the nonlinearity g = g2 that is given by

g2

(
uj−1, uj , uj+1 ; a

)
= 4(uj−1 + uj+1 − 2uj) + 2(uj − a)(1− uj−1uj+1) + 5a sin(πuj). (3.9)

Since g1(· ; 0) = g2(· ; 0), condition (Hp) is also satisfied for this equation. However, the inequality
(1.10) in the definition of a normal family is now violated. Nevertheless, the numerical results in
Figure 5 indicate that (3.1) does not admit propagation failure. Indeed, one may verify numerically
that Ψ(ϑ) < 0 for all ϑ ∈ R, which shows that the ODE (3.4) admits no equilibria for sufficiently
small |a| > 0.

Example 3: A Non-Normal Family with Propagation Failure

In our final example, we study (3.1) with the nonlinearity g = g3 that is given by

g3

(
uj−1, uj , uj+1 ; a

)
= uj−1 + uj+1 − 2uj + (1− u2

j )(uj−1 + uj+1 − 2a)
+5a sin(πuj)(2 + 4

5uj).
(3.10)

with boundary conditions q(−L) = 0, q(L) = 0 and q(0) = 1 for some large L > 0.
6Replacing the factor 4 in (3.7) by h−2, the function ξ 7→ tanh(arcsinh(h/

√
1− 2h2)ξ) generates stationary solu-

tions to (3.1).
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Fig. 6: Selected wave profiles and wave speed plot for (3.1) with the nonlinearity g = g3 defined in (3.10).
Despite the smooth profile of the wave at a = 0, propagation failure occurs and the wave profiles are step
functions for 0 < a < a+ ≈ 0.36025.

Recalling (1.8), we see that (3.1) with a = 0 has a branch of stationary solutions given by

uj(t) = p
(ϑ)
j = p̄(j + ϑ) = tanh

(
arcsinh(1)(j + ϑ)

)
, (3.11)

which shows that (Hp) is satisfied. However, as in Example 2, the inequality (1.10) is violated.
We remark that the coefficients in g3 were chosen in such a way that

Ψ(0) < 0 < Ψ(1/2). (3.12)

The ODE (3.4) hence has at least two equilibria per unit interval whenever |a| is sufficiently small.
In particular, we expect (3.1) to admit propagation failure and this is confirmed in Figure 6.

References

[1] K. A. Abell, C. E. Elmer, A. R. Humphries and E. S. Van Vleck (2005), Computation of Mixed
Type Functional Differential Boundary Value Problems. SIAM J. Appl. Dyn. Sys. 4, 755–781.

[2] N. C. Apreutesei and V. A. Volpert (2005), Solvability Conditions for some Difference Opera-
tors. Advances in Difference Equations 2005, 1–13.

[3] I. Barashenkov, O. Oxtoby and D. Pelinovsky (2005), Translationally Invariant Discrete Kinks
from One-Dimensional Maps. Phys. Rev. E 72, 035602(R).

[4] P. W. Bates and A. Chmaj (1999), A Discrete Convolution Model for Phase Transitions. Arch.
Rational Mech. Anal. 150, 281–305.

[5] J. W. Cahn (1960), Theory of Crystal Growth and Interface Motion in Crystalline Materials.
Acta Met. 8, 554–562.

[6] J. W. Cahn, J. Mallet-Paret and E. S. Van Vleck (1999), Traveling Wave Solutions for Systems
of ODE’s on a Two-Dimensional Spatial Lattice. SIAM J. Appl. Math. 59, 455–493.

[7] H. Chi, J. Bell and B. Hassard (1986), Numerical Solution of a Nonlinear Advance-Delay-
Differential Equation from Nerve Conduction Theory. J. Math. Bio. 24, 583–601.

[8] S. N. Chow, J. Mallet-Paret and W. Shen (1998), Traveling Waves in Lattice Dynamical
Systems. J. Diff. Eq. 149, 248–291.

12



[9] L. O. Chua and T. Roska (1993), The CNN paradigm. IEEE Trans. Circ. Syst. 40, 147–156.

[10] S. V. Dmitriev, P. G. Kevrekidis and N. Yoshikawa (2005), Discrete Klein–Gordon Models
with Static Kinks Free of the Peierls–Nabarro Potential. J. Phys. A. 38, 7617–7627.

[11] C. E. Elmer (2006), Finding Stationary Fronts for a Discrete Nagumo and Wave Equation;
Construction. Physica D 218, 11–23.

[12] C. E. Elmer and E. S. Van Vleck (2005), Dynamics of Monotone Travelling Fronts for Dis-
cretizations of Nagumo PDEs. Nonlinearity 18, 1605–1628.

[13] T. Erneux and G. Nicolis (1993), Propagating Waves in Discrete Bistable Reaction-Diffusion
Systems. Physica D 67, 237–244.

[14] G. Fath (1998), Propagation Failure of Traveling Waves in a Discrete Bistable Medium. Phys-
ica D 116, 176–190.

[15] S. Flach, Y. Zolotaryuk and K. Kladko (1999), Moving lattice Kinks and Pulses: an Inverse
Method. Phys. Rev. E 59, 6105–6115.

[16] A. Hoffman and J. Mallet-Paret, Universality of Crystallographic Pinning. J. Dyn. Diff. Eq.,
to appear.

[17] H. J. Hupkes and B. Sandstede (2009), Modulated Wave Trains for Lattice Differential Sys-
tems. J. Dyn. Diff. Eq. 21, 417–485.

[18] H. J. Hupkes and S. M. Verduyn-Lunel (2005), Analysis of Newton’s Method to Compute
Travelling Waves in Discrete Media. J. Dyn. Diff. Eq. 17, 523–572.

[19] J. Keener and J. Sneyd (1998), Mathematical Physiology. Springer–Verlag, New York.

[20] J. P. Keener (1987), Propagation and its Failure in Coupled Systems of Discrete Excitable
Cells. SIAM J. Appl. Math. 47, 556–572.

[21] P. G. Kevrekidis (2003), On a class of Discretizations of Hamiltonian Nonlinear Partial Dif-
ferential Equations. Physica D 183, 68–86.

[22] J. P. Laplante and T. Erneux (1992), Propagation Failure in Arrays of Coupled Bistable
Chemical Reactors. J. Phys. Chem. 96, 4931–4934.

[23] J. Mallet-Paret (1999), The Global Structure of Traveling Waves in Spatially Discrete Dynam-
ical Systems. J. Dyn. Diff. Eq. 11, 49–128.

[24] J. Mallet-Paret (2001), Crystallographic Pinning: Direction Dependent Pinning in Lattice
Differential Equations. Preprint.

[25] W.-X. Qin and X. Xiao (2007), Homoclinic Orbits and Localized Solutions in Nonlinear
Schrödinger Lattices. Nonlinearity 20, 2305–2317.

[26] J. M. Speight (1999), Topological Discrete Kinks. Nonlinearity 12, 1373–1387.

13


