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Abstract

We study the well-posedness of initial value problems for nonlinear functional differential-algebraic equations

of mixed type. We are interested in solutions to such problems that admit a single jump discontinuity at

time zero. We focus specially on the question whether unstable equilibria can be stabilized by appropriately

choosing the size of the jump discontinuity. We illustrate our techniques by analytically studying an eco-

nomic model for the interplay between inflation and interest rates. In particular, we investigate under which

circumstances the central bank can prevent runaway inflation by appropriately hiking the interest rate.

Key words: functional differential equations, advanced and retarded arguments, interest rates, inflation

rates, initial value problems, indeterminacy, impulsive equations.

1 Introduction

In this paper we consider a class of initial value problems that includes the prototypes

Ix′(ξ) = x(ξ) +
∫ 1

−1
x(ξ + σ)dσ + f

(
x(ξ)

)
for all ξ ≥ 0,

x(τ) = φ(τ) for all − 1 ≤ τ ≤ 0,
(1.1)

in which I is a n × n diagonal matrix that is allowed to be either singular or invertible, while the
nonlinearity f is required to have f(0) = Df(0) = 0. We require the solution x to be continuous for
all ξ > 0, but we will allow it to have a single discontinuity at ξ = 0. More precisely, we require that
the limit x(0+) := limξ↓0 x(ξ) exists but allow x(0+) 6= φ(0). Our main goal is to characterize the
set of initial conditions

(
φ, x(0+)

)
∈ C([−1, 0],Rn) × Rn that lead to a bounded solution to (1.1)

that decays to zero as ξ →∞ and to determine whether such solutions are unique.
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If the matrix I is non-singular, the first line of (1.1) is called a functional differential equation of
mixed type (MFDE). On the other hand, if I is singular, we refer to this equation as a functional
differential-algebraic equation of mixed type (MFDAE). The word ‘mixed’ here reflects the fact that
the nonlocal term in (1.1) involves shifts in the argument of x that are both positive and negative.

The current paper should be seen as a continuation of the program initiated in [16, 17]. In
particular, in [16] solutions to the initial value problem (1.1) were not allowed to have jumps. In
addition, we restricted ourselves to purely differential systems where I is invertible and purely alge-
braic systems where I = 0. Furthermore, we only considered linear equations. By contrast, in [17]
we considered smooth nonlinear algebraic equations and constructed local center manifolds around
equilibrium solutions. Special care needed to be taken to address the intricate compatibility condi-
tions that the nonlinear terms must satisfy. We continue this analysis here for (1.1) and construct
local stable manifolds for the zero equilibrium, under less restrictive conditions on the nonlinear
terms.

Due to the possibility for solutions to (1.1) to admit jumps at ξ = 0, our work here is closely
related to the theory of impulsive differential equations. The main difference is that models involving
impulsive equations typically prescribe the size of the jump as part of the dynamics, whereas we treat
this jump as a parameter that can be freely chosen to control the further evolution of the system.
Impulsive ODEs have been widely studied in the literature; see for example [1, 2, 20–22] and the
references therein. Technical complications related to the smoothness of solutions prevented these
ODE results from being easily generalized to impulsive delay differential equations. Nevertheless, the
basic theory concerning existence and uniqueness of solutions to such equations has been successfully
developed in [3, 4, 24].

One of the more intriguing phenomena that has been uncovered by these studies, is that jumps
can stabilize systems that would be unstable under the usual smooth dynamics. Considerable effort
has been spent to establish criteria that can guarantee equilibria for impulsive delay differential
equations to be asymptotically stable [23, 26]. The typical tools used for this purpose are Lyapunov
functions and Razumikhin techniques.

We take a completely different route in this paper and focus directly on the linear part of (1.1),
using Green’s functions to account for the jumps. This allows us to quantify the stabilizing effect that
these jumps have. In particular, depending on the choice of φ ∈ C([−1, 0],Rn), there may be zero,
one, or an entire family of values for x(0+) that lead to a bounded solution. The tools developed in
this paper should help to distinguish between these situations.

As discussed extensively in [16], the fact that we consider MFDEs and MFDAEs poses additional
complications besides those that are encountered for impulsive delay differential equations. Even in
the purely differential case where I is invertible, the problem (1.1) differs from traditional initial
value problems in the sense that the initial condition φ does not provide sufficient information to
calculate x′(0). In essence, the natural mathematical state space for (1.1) is given by C([−1, 1],Rn),
which of course differs from the space C([−1, 0],Rn) that our initial condition φ belongs to. One
of the interesting consequences of this discrepancy is that even if φ and x(0+) are both fixed, the
problem (1.1) can still have multiple bounded solutions.

Motivation

Differential equations involving both advanced and retarded arguments arise in a number of different
settings. They have played a very visible role in the study of travelling wave solutions to lattice
differential equations [27, 28]. In addition, a result due to Hughes [14] shows that these equations
arise as the Euler-Lagrange optimality conditions when studying optimal control problems that
involve time delays [15, 32]. In this paper however, our primary motivation for the study of (1.1)
comes from the area of macro-economic modelling.

Inspired by Benhabib and his coworkers [5, 7], let us consider a toy model that describes the
interaction between inflation and interest rates in a simple closed economy under the supervision
of a central bank. Writing R(t) for the interest rate and π(t) for the inflation rate at time t, the
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dynamical behaviour of R for t ≥ 0 is given by

Λ′(R(t))R′(t) = Λ(R(t))
[
r + π(t)−R(t)

]
. (1.2)

Here the constant r denotes the temporal discount factor and the function Λ is related to the
utility function, which roughly describes the welfare that is associated to a marginal increase in
consumption. For our purposes here, we note that Λ > 0 and either Λ′ ≡ 0 or Λ′ 6= 0.

In order to close the system, we need to describe the relation between π and R. In order to do
this, we introduce the two functions

πb(t) =
R 0
−Ωb

eβ
bσπ(t+σ)dσ

R 0
−Ωb

eβbσdσ
,

πf (t) =
R Ωf

0 e−β
fσπ(t+σ)dσ

R Ωf
0 e−β

fσdσ
.

(1.3)

Here πb(t) describes the recent inflation averaged over the past Ωb > 0 time units and πf (t) describes
the expectation for the inflation over the upcoming Ωf > 0 time units, weighted by the exponential
rates βb > 0 and βf > 0. Our key assumption is that π and R are constrained on the manifold in
function space that is described by

R(t) = ρ
(
χ1π

b(t) + χ2π
f (t) + χ3π(t)

)
. (1.4)

Here ρ is a smooth function that has ρ′ > 0, while the additional parameters satisfy χ1 ≥ 0, χ2 ≥ 0,
χ3 > 0 and χ1 + χ2 + χ3 = 1. Roughly speaking, the requirement (1.4) states that the interest rate
is determined directly by weighing the present, past and future expectations for the inflation.

Note that the assumptions above imply that (1.4) can be inverted locally to yield π(t) as a
function of R(t), πb(t) and πf (t). In particular, the variable π(t) can be eliminated from (1.2) and
(1.3) to yield a three dimensional system of the form (1.1), with one differential and two algebraic
components. The appropriate initial condition for this system can be written as(

R(τ), πb(τ), πf (τ)
)

=
(
φR(τ), φb(τ), φf (τ)

)
, −Ωb ≤ τ ≤ 0, (1.5)

where (φR, φb, φf ) ∈ C([−Ωb, 0],R)3.
Let us consider the situation at time t = 0 and suppose that the initial functions (φR, φb, φf ) have

been fixed. Our toy economy has a central bank, which has the power1 to make an instantaneous
adjustment to the interest rate at t = 0. In the terminology of (1.1), it has the ability to choose
R(0+) = limt↓0R(t). In keeping with its mandate to stabilize the inflation rate, the central bank
wishes to make this decision in such a way that R(t) and π(t) converge as t→∞ to an equilibrium
state (R∗, π∗) of our model.

The question we are interested in is whether such a step is possible for arbitrary initial conditions
(φR, φb, φf ) in the vicinity of such an equilibrium. The secondary concern is to determine if such
a choice for R(0+) is unique or if multiple trajectories exist for a single initial condition that all
converge to the same equilibrium.

Indeterminacy

A well-known problem in the area of macro-economic research is that societies that have seemingly
similar economic structures and initial conditions often experience markedly disparate growth paths.
The term indeterminacy is widely used to refer to economic models that reproduce this uncertainty
in some fashion. This topic has attracted significant interest and we refer the reader to [6] for an
informative survey paper.

1The description of the model given here is a simplified version of the discussion in [5, 7] and ignores many economic
subtleties in the derivation of (1.2)-(1.4).
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Roughly speaking, two main mechanisms have been used to introduce indeterminacy into models.
On the one hand, economically relevant variables have been coupled with additional external vari-
ables in order to incorporate extrinsic uncertainty. The dynamics of these external variables can be
either random or deterministic. This approach was pioneered by Cass and Shell [9], who referred to
such external variables as ’sunspots’ in honor of a nineteenth century attempt by Jevons to attribute
business crises to solar anomalies [19].

On the other hand, it has long been believed that expectations of market participants play a major
role in the evolution of markets. Venditti and his coworkers have studied the concept of indeterminacy
along these lines by analyzing systems where several different sequences of self-fulfilling expectations
exist simultaneously [25]. The model (1.2) discussed above should be seen in a similar spirit.

Many authors have considered the issue of indeterminacy in temporally discrete models with
finite degrees of freedom. For example, in [5] a discrete version of the model (1.2) described above
is considered. In particular, the past inflation rate is sampled at a small number of equidistant time
intervals and subsequently used to calculate the interest and inflation rates at the next time step.

Such models are typically written as discrete dynamical systems on Rn, for which m ≤ n initial
conditions can be freely chosen. The remaining variables are considered to be external and hence
are excluded from the ’economic’ initial condition. Restricting oneself to trajectories that converge
to an equilibrium, the degree of indeterminacy can be readily computed by subtracting the number
of initial conditions m from the dimension of the stable manifold around the equilibrium under
consideration, assuming that suitable non-degeneracy conditions are satisfied. Detailed discussions
of these concepts can be found in [8, 12, 30].

Such dimension counting arguments no longer suffice to study the indeterminacy of continuous
time models such as (1.2), since the dimension of the space of initial conditions C([−Ωb, 0],R3) and
the dimension of the natural state space C([−Ωb,Ωf ],R3) are both infinite. Nevertheless, using the
techniques developed in this paper, the notion of indeterminacy can be quantified and analytically
calculated under a number of different assumptions on the relevant parameters.

Characteristic Equations

Our analysis of the nonlinear problem (1.1) will rely heavily upon our understanding of linear initial
value problems of the form

x′(ξ) = L evξ x for all ξ ≥ 0,
x(τ) = φ(τ) for all − 1 ≤ τ ≤ 0. (1.6)

Assume for the moment that x is a continuous Rn-valued function on the interval [−1,∞) and
that the operator L is a bounded linear map from C

(
[−1, 1],Rn) into Rn. We will use the notation

evξ x ∈ C([−1, 1],Rn) to denote the state of x evaluated at ξ, defined by [evξ x](θ) = x(ξ+ θ) for all
−1 ≤ θ ≤ 1. The initial condition φ is taken from the set C([−1, 0],Rn).

In the special case that Lψ only depends on the part of ψ in the interval [−1, 0], the problem
(1.6) reduces to an initial value problem for a retarded functional differential equation (RFDE). Such
systems have been studied extensively during the last three decades, resulting in a rich and diverse
literature on the subject. Using the theory described in [13], the well-posedness of (1.6) can be read
off directly from the characteristic function ∆L : C→ C

n×n, that can be written as

∆L(z) = z − Lez·. (1.7)

Indeed, if the characteristic equation det ∆L(z) = 0 admits no roots with Re z ≥ 0, then any
φ ∈ C([−1, 0],Rn) can be extended to a bounded continuous solution. If this property fails, one
can characterize the set of initial conditions that can be extended by studying the number and
multiplicity of the roots of det ∆L(z) = 0 that have Re z ≥ 0 and subsequently employing spectral
projections.
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As we shall see in §5.1, the characteristic function ∆L also plays a major role when studying
discontinuous solutions to (1.6). Indeed, one can define a Green’s function ĜL for this equation by
writing

ĜL(ξ) =
1

2π

∫ ∞
−∞

eiνξ∆L(iν)−1 dν. (1.8)

This Green’s function satisfies (1.6) and has a jump precisely at ξ = 0, which makes it ideally suited
for our analysis.

Let us now return to the general case where Lψ depends on the values of ψ in the entire interval
[−1, 1]. In this case, our investigation is complicated by the fact that the characteristic equation
det ∆L(z) = 0 will in general have an infinite number of roots on both sides of the imaginary axis.
In addition, we reiterate that in this situation the natural mathematical state space C([−1, 1],Rn)
differs from the space C([−1, 0],Rn) containing our initial condition φ.

The key result that we exploit heavily in this paper was obtained by Mallet-Paret and Verduyn
Lunel in [29]. In particular, restricting ourselves to the scalar situation where n = 1, the authors
show that for every ν ∈ R there exists a Wiener-Hopf factorization

(z − ν)∆L(z) = ∆L−(z)∆L+(z), (1.9)

in which ∆L− and ∆L+ are the characteristic functions associated to a retarded respectively ad-
vanced functional differential equation, i.e. ∆L±(z) = z − L± exp(z·) for some pair of operators
L− ∈ L(C([−1, 0],C),C) and L+ ∈ L(C([0, 1],C),C). In §2.2 we describe how the well-posedness of
the initial value problem (1.6) can be understood once such a factorization has been obtained, by
separately studying initial value problems for the operators L− and L+. We also recall our results
from [16] that show how one can proceed in the typical situation that a Wiener-Hopf factorization is
not easily computable. In §5.2 we describe how the Green’s function ĜL can again be used to obtain
results in the discontinuous setting.

Returning to our prototype equation (1.1), let us now assume that I is singular so that we are
dealing with a MFDAE. A single differentiation yields

Ix′′(ξ) = x′(ξ) + x(ξ + 1)− x(ξ − 1) +Df(x(ξ))x′(ξ). (1.10)

The linear part of this equation can easily be seen to be a pure differential equation. This smoothening
property is a key requirement that we will impose on the differential-algebraic systems that we
consider in this paper.

By construction, any solution to (1.1) will automatically satisfy (1.10). However, the converse is
not true and care has to be taken to isolate the superfluous solutions to (1.10). This is a relative
minor point when dealing with algebraic delay equations, since one can simply incorporate the
algebraic condition into the initial condition space C([−1, 0],Rn). This is no longer true for (1.1),
since the algebraic conditions need to be verified on intervals of the form [ξ− 1, ξ+ 1]. In particular,
the initial condition φ ∈ C([−1, 0],Rn) itself no longer provides sufficient information to verify these
conditions. In §5.3 we address this issue for the linear part of (1.1) by using spectral projections and
Laplace transform techniques, generalizing prior results that were obtained in [16]. Finally, in §5.4
we show how the nonlinear terms can be incorporated.

We conclude this introduction by giving a brief overview of the structure of this paper. In §2 we
recall the existing theory for initial value problems involving RFDEs and MFDEs in the situation
that only continuous solutions are allowed. This discussion sets the stage for our main results, which
we state in §3. By explicitly describing the consequences of our results in a number of different
scenarios, we hope that they will be accessible to a wide audience. With this in mind, we further
illustrate our results by applying them in §4 to the economic model (1.2) described above. Finally,
in §5 we provide the technical proofs for our results.

5



Fig. 1: Panels (ii) and (iii) illustrate how the operators ev−ξ and evξ act on the continuous function depicted
in panel (i).

2 Continuous Solutions to Initial Value Problems

In this section we review the existing theory concerning initial value problems for linear delay dif-
ferential equations and functional differential equations of mixed type. At present, we are concerned
only with solutions of such equations that do not admit discontinuities. The results for linear delay
differential equations are well-known, but we include them here to set the stage for our main results
and develop the notation we will use throughout this paper.

2.1 Delay Differential Equations

Let us start by considering the autonomous linear homogeneous delay differential equation

x′(ξ) = L− ev−ξ x. (2.1)

Here L− is a bounded linear operator from C([−1, 0],Cn) into Cn and the notation ev−ξ x stands for
the function in C([−1, 0],Cn) that has

[ev−ξ x](θ) = x(ξ + θ), −1 ≤ θ ≤ 0, (2.2)

as illustrated in Figure 1(ii). To ease our notation, we will write

X− = C([−1, 0],Cn). (2.3)

We are primarily interested in determining which functions φ ∈ X− can be extended to solutions
to (2.1) that can be bounded by prescribed exponentials. To this end, we introduce the following
two families of function spaces, parametrized by η ∈ R,

BC⊕η = {x ∈ C([−1,∞),Cn), ‖x‖η := supξ≥−1 e
−ηξ |x(ξ)| <∞},

BC−η = {x ∈ C((−∞, 0],Cn), ‖x‖η := supξ≤0 e
−ηξ |x(ξ)| <∞}.

(2.4)

Using these function spaces, we introduce two families of solution sets for (2.1),

PL−(η) =
{
x ∈ BC−η | x′(ξ) = L− ev−ξ x for all ξ ≤ 0

}
,

QL−(η) =
{
x ∈ BC⊕η | x′(ξ) = L− ev−ξ x for all ξ ≥ 0

}
.

(2.5)

As in [29], we also need the spaces

PL−(η) =
{
φ ∈ X− | φ = ev−0 x for some x ∈ PL−(η)

}
,

QL−(η) =
{
φ ∈ X− | φ = ev−0 x for some x ∈ QL−(η)

}
, (2.6)
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which contain the initial segments of the solution sets PL− and QL− in the natural state space
X− = C([−1, 0],Cn). For any φ ∈ QL−(η), we write x = EL−φ for the unique x ∈ QL−(η) that
has ev−0 x = φ. We also use this extension operator EL− to map PL−(η) back into PL−(η) in the
analogous fashion.

It is well known that crucial information concerning PL−(η) and QL−(η) is encoded in the
characteristic function ∆L−(z) : C→ C

n×n associated to (2.1), which is given by

∆L−(z) = zI − L−ez·I, (2.7)

where I is the n× n identity matrix. Indeed, upon introducing the notation

n+
L−

(η) = #{z ∈ C | det ∆L−(z) = 0 and Re z > η}, (2.8)

where all roots are counted according to their multiplicity, we have the following result.

Proposition 2.1 (See [13, Thms. 7.2.1 and 7.6.1]). Consider the linear system (2.1) and choose
η ∈ R in such a way that the characteristic equation det ∆L−(z) = 0 admits no roots with Re z = η.
Then the spaces PL−(η) and QL−(η) are closed and satisfy

C([−1, 0],Cn) = PL−(η)⊕QL−(η). (2.9)

In addition, the space PL−(η) is spanned by the n+
L−

(η) generalized eigenfunctions associated to the
roots of det ∆L−(z) = 0 that have Re z > η.

2.2 Mixed Type Equations

We now turn our attention to the linear homogeneous functional differential equation of mixed type
(MFDE)

x′(ξ) = L evξ x. (2.10)

In this case, L is a bounded linear operator from C([−1, 1],Cn) into Cn and the notation evξ x now
stands for the function in C([−1, 1],Cn) that has

[evξx](θ) = x(ξ + θ), −1 ≤ θ ≤ 1, (2.11)

as illustrated in Figure 1(iii). To ease our notation, we will write

X = C([−1, 1],Cn) (2.12)

and add the following family of function spaces to the list (2.4),

BC	η = {x ∈ C((−∞, 1],Cn), ‖x‖η := supξ≤1 e
−ηξ |x(ξ)| <∞}, (2.13)

where again η ∈ R. As before, we are interested in the following solution sets for (2.10),

PL(η) =
{
x ∈ BC	η | x′(ξ) = L evξ x for all ξ ≤ 0

}
,

QL(η) =
{
x ∈ BC⊕η | x′(ξ) = L evξ x for all ξ ≥ 0

}
.

(2.14)

The initial segments of these solutions in the natural state space X = C([−1, 1],Cn) are contained
in the spaces

PL(η) =
{
ψ ∈ X | ψ = ev0 x for some x ∈ PL(η)

}
,

QL(η) =
{
ψ ∈ X | ψ = ev0 x for some x ∈ QL(η)

}
.

(2.15)
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We will write EL for the extension operator that maps the initial condition ψ ∈ QL(η) back to the
unique x = ELψ ∈ QL(η) that has ev0 x = ψ, while acting similarly on PL(η). The characteristic
function associated to (2.10) is given by

∆L(z) = zI − Lez·I. (2.16)

Although X is the natural state space for the MFDE (2.10), our applications require us to
consider initial values in the ‘shorter’ spaces C([−1, 0],Cn) and C([0, 1],Cn). An important role is
therefore reserved for the restriction operators

π+
PL(η) : PL(η)→ C

(
[0, 1],Cn

)
, ψ 7→ ψ|[0,1],

π−QL(η) : QL(η)→ C
(
[−1, 0],Cn

)
, ψ 7→ ψ|[−1,0].

(2.17)

The following result shows that for appropriate values of η, the state space X is decomposed by
PL(η) and QL(η). In addition, the restriction operators (2.17) are Fredholm, which means that their
kernels are finite dimensional, while their ranges are closed and of finite codimension. We recall that
the index of a Fredholm operator F is determined by the formula

ind(F ) = dim Ker(F )− codim Range(F ). (2.18)

Proposition 2.2 (see [29, 31]). Consider the linear system (2.10) and choose η ∈ R in such a
way that the characteristic equation det ∆L(z) = 0 admits no roots with Re z = η. Then the spaces
PL(η) and QL(η) are closed and satisfy

C([−1, 1],Cn) = PL(η)⊕QL(η). (2.19)

In addition, the operators π+
PL(η) and π−QL(η) defined in (2.17) are Fredholm, with

ind(π+
PL(η)) + ind(π−QL(η)) = −n. (2.20)

To obtain more detailed information on the restriction operators π+
PL(η) and π−QL(η), we need to

impose the following additional restriction on the linear operator L. We remark that this condition
is significantly weaker than the atomicity condition used in [29, Eq. (2.3)], which requires s± = 0 to
hold in (HL).

(HL) There exist quantities s± ≥ 0 and non-singular n × n matrices J± such that the following
asymptotic expansions hold,

∆L(z) = z−s+ez(J+ + o(1)) as z →∞,

∆L(z) = z−s−e−z(J− + o(1)) as z → −∞. (2.21)

Proposition 2.3 (see [29, Thm. 5.2] and [16, Prop. 2.2]). Consider the linear system (2.10)
and suppose that (HL) is satisfied. Then for any monic2 polynomial p of degree n, there exist linear
operators

L− ∈ L
(
C([−1, 0],Cn),Cn

)
, L+ ∈ L

(
C([0, 1],Cn),Cn

)
, (2.22)

with associated characteristic matrices

∆L±(z) = zI − L±ez· I (2.23)

for which the splitting

p(z) det ∆L(z) = det ∆L−(z) det ∆L+(z) (2.24)

holds.

2A polynomial p(z) is called monic if the coefficient associated to the highest power of z is one, e.g. p(z) = z + 2.
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The splitting (2.24) is referred to as a Wiener-Hopf factorization for the symbol ∆L and we will
call any such triplet (p, L−, L+) a Wiener-Hopf triplet for L. In general, such triplets need not be
unique. Indeed, in [29] a mechanism is given by which pairs of roots of the characteristic equations
det ∆L±(z) = 0 may be interchanged. Nevertheless, it turns out to be possible to extract a quantity
that does not depend on the chosen splitting (2.24). To this end, let us consider any Wiener-Hopf
triplet (p, L−, L+) for L and pick an η ∈ R for which the equation p(z) = 0 admits no roots with
Re z = η. We now introduce the integer

n]L(η) = n−L+
(η)− n+

L−(η) + n+
p (η) (2.25)

that is defined by

n+
L−

(η) = #{z ∈ C | det ∆L−(z) = 0 and Re z > η},

n−L+
(η) = #{z ∈ C | det ∆L+(z) = 0 and Re z < η},

n+
p (η) = #{z ∈ C | p(z) = 0 and Re z > η}.

(2.26)

This quantity n]L(η) is invariant in the following sense.

Proposition 2.4 (see [29, Thm. 5.2] and [16, Prop. 2.3]). Consider the linear system (2.10)
and suppose that (HL) is satisfied. Fix any η ∈ R for which the characteristic equation det ∆L(z) = 0
admits no roots with Re z = η. Then the quantity n]L(η) is invariant across all Wiener-Hopf triplets
(p, L−, L+) for L that have p(η + iν) 6= 0 for all ν ∈ R.

In the special case that (2.10) is scalar (i.e., for which n = 1), the quantities n]L(η) can be used
to characterize the kernels and ranges of the Fredholm operators π−QL(η) and π+

PL(η). This dimension
restriction is related to the fact that the splitting (2.24) only features the determinant of ∆L.

Proposition 2.5 (see [29, Thms. 6.1-6.2] and [16, Prop. 2.4]). Consider a scalar version of
the linear system (2.10) and suppose that (HL) is satisfied. Fix any η ∈ R for which the characteristic
equation ∆L(z) = 0 admits no roots with Re z = η. Then the following identities hold,

dim Kerπ+
PL(η) = max{−n]L(η), 0}, codim Rangeπ+

PL(η) = max{n]L(η), 0},
dim Kerπ−QL(η) = max{n]L(η)− 1, 0}, codim Rangeπ−QL(η) = max{1− n]L(η), 0}.

(2.27)

To aid the reader, the next three results explore the implications of the identities (2.27) for initial
value problems involving the MFDE (2.10).

Corollary 2.6. Consider a scalar version of (2.10) that satisfies (HL) and suppose that n#
L (η) ≤ 0.

Then there is a subspace V ⊂ C([−1, 0],C) of codimension 1−n#
L (η) such that for every φ ∈ V there

is a unique y ∈ BC⊕η that solves (2.10) and has ev−0 y = φ.

Corollary 2.7. Consider a scalar version of (2.10) that satisfies (HL) and suppose that n#
L (η) = 1.

Then for every φ ∈ C([−1, 0],C) there is a unique y ∈ BC⊕η that solves (2.10) and has ev−0 y = φ.

Corollary 2.8. Consider a scalar version of (2.10) that satisfies (HL) and suppose that n#
L (η) ≥ 2.

Then for any φ ∈ C([−1, 0],C) there is a y ∈ BC⊕η that solves (2.10) and has ev−0 y = φ. In addition,
z ∈ BC⊕η also solves (2.10) with ev−0 y = φ if and only if z − y = ELψ, for some ψ ∈ C([−1, 1],C)
that is contained in the (n#

L (η)− 1)-dimensional space Kerπ−QL(η).

9



Unfortunately, it is often intractable to find Wiener-Hopf triplets for a prescribed operator L.
This often prevents us from computing n]L(η) directly from (2.25). The following result addresses
this difficulty and allows n]L(η) to be calculated in settings where a Wiener-Hopf triplet is not
readily available for the system (2.10) under consideration. The only requirement is that a Wiener-
Hopf triplet is available for some reference system that can be continuously transformed into the
original system without violating (HL). Please note however that the exponents s± appearing in this
condition (HL) need not remain constant during this transformation.

Proposition 2.9 (see [16, Thm. 2.5]). Consider a continuous path

Γ : [0, 1]→ L
(
C([−1, 1],Cn),Cn

)
(2.28)

and suppose that the operators Γ(µ) satisfy (HL) for all 0 ≤ µ ≤ 1. Fix any η ∈ R and suppose that
the characteristic equation det ∆Γ(µ)(z) = 0 admits roots with Re z = η for only finitely many values
of µ ∈ [0, 1] and that µ ∈ (0, 1) for all such µ. Then we have the identity

n]Γ(1)(η)− n]Γ(0)(η) = −cross(Γ, η), (2.29)

in which the crossing number cross(Γ, η) denotes the net number of roots of the characteristic equation
det ∆Γ(µ)(z) = 0, counted with multiplicity, that cross the line Re z = η from left to right as µ
increases from 0 to 1.

The situation that we will encounter in §4.1.3 during the analysis of our model is covered by the
following special case.

Corollary 2.10. Consider a continuous path

Γ : [0, 1]→ L
(
C([−1, 1],Cn),Cn

)
(2.30)

and suppose that the operators Γ(µ) satisfy (HL) for all 0 ≤ µ ≤ 1. Fix any η ∈ R and suppose that
for all 0 ≤ µ ≤ 1 the characteristic equation det ∆Γ(µ)(z) = 0 admits no roots with Re z = η. Then
we have

n]Γ(1)(η) = n]Γ(0)(η). (2.31)

3 Main Results

In this section we present our main results, which we will prove in §5. We start by focussing on initial
value problems for linear delay differential equations and MFDEs in §3.1 and §3.2, where we now
allow solutions to admit a single discontinuity at ξ = 0. The presence of these jumps forces us to take
care that the linear operators L− and L featuring in our systems are well-defined even when acting
on discontinuous solution segments. In §3.3 we shift our attention to smooth differential-algebraic
systems. In particular, we establish a connection between initial value problems for such equations
and their non-algebraic counterparts studied in §3.1 and §3.2. Finally, in §3.4 we turn to our chief
interest and study initial value problems for nonlinear differential-algebraic systems.

3.1 Differential Delay Equations

We return to the delay equation (2.1), but now wish to allow solutions that have a discontinuity at
ξ = 0. To make this more precise, let us introduce the two families of function spaces

BC+
η = {x ∈ C

(
[0,∞),Cn

)
, ‖x‖η := supξ≥0 e

−ηξ |x(ξ)| <∞},

B̂C
⊕
η = C([−1, 0],Cn)×BC+

η ,
(3.1)

10



Fig. 2: Panel (i) depicts a function bx that is multi-valued at ξ = 0. Panels (ii) and (iii) illustrate how the
operators bev−0 and ev−0 act on bx.

parametrized by η ∈ R. We will seek our solutions to (2.1) from the latter family. Any x̂ = (φ, y) ∈
B̂C

⊕
η can be interpreted as a regular function on [−1,∞) that is multi-valued at ξ = 0. In particular,

we will use the notation x̂(ξ) = y(ξ) whenever ξ > 0, x̂(θ) = φ(θ) for −1 ≤ θ < 0 and write
x̂(0+) = y(0) and x̂(0−) = φ(0) to distinguish between the two values at zero.

The evaluation operators (2.2) applied to a function x̂ ∈ BC⊕η will no longer all map into
C([−1, 0],Cn). Let us therefore introduce the family of function spaces

X̂−α = C([−1, α],Cn)× C([α, 0],Cn), (3.2)

for any −1 < α < 0, together with the special case

X̂−0 = C([−1, 0],Cn)× Cn. (3.3)

Using these new spaces, we can introduce an appropriate set of evaluation operators êv−ξ for ξ ≥ 0.
For 0 ≤ ξ < 1, we define

êv−ξ : B̂C
⊕
η → X̂−ξ, êv−ξ (φ, y) =

(
φ(ξ + ·), y(ξ + ·)

)
, (3.4)

which is depicted in Figure 3(ii). In particular, if x̂ = (φ, y) ∈ B̂C
⊕
η , then in the special case ξ = 0

we have

êv−0 x̂ =
(
φ, y(0)

)
, (3.5)

as illustrated in Figure 2(ii). For ξ ≥ 1 we will write

êv−ξ : B̂C
⊕
η → X− = C([−1, 0],Cn), [êv−ξ (φ, y)](θ) = y(ξ + θ), (3.6)

since there is no need to distinguish between êv−ξ and ev−ξ . Let us emphasize here that we will
continue to use the operator ev−0 , which maps into the space X− = C([−1, 0],Cn) and acts on a

function x̂ = (φ, y) ∈ B̂C
⊕
η as

ev−0 x̂ = φ, (3.7)

as illustrated in Figure 2(iii). The reader should contrast this definition to (3.5).
Let us now consider a bounded linear operator L− : C([−1, 0],Cn)→ C

n. In order to formulate a
well-posed delay differential equation, we need to specify how L− should be extended to the spaces

11



X̂−α introduced above. To accomplish this task, we note that the Riesz representation theorem implies
that there exists a unique

µ ∈ NBV([−1, 0],Cn×n) (3.8)

such that we have the representation

L−φ =
∫ 0

−1

dµ(σ)φ(σ), (3.9)

for all φ ∈ C([−1, 0],Cn). We will refer to µ as the measure associated to L−.
We recall here that the set NBV([−1, 0],Cn×n) contains all Cn×n-valued functions µ that are

right-continuous on (−1, 0), are normalized to have µ(−1) = 0 and have bounded variation on [−1, 0];
see [11, App. I]. Let us summarize some important properties that these measures have.

Lemma 3.1. If µ ∈ NBV([−1, 0],Cn×n) then for any −1 ≤ ϑ < 0 the right-hand limits µ(ϑ+) are
well-defined, while for any −1 ≤ ϑ ≤ 0 the left-hand limits µ(ϑ−) are well-defined. In addition, µ is
continuous on [−1, 0] except possibly at a countable number of points.

Notice that for any µ ∈ NBV([−1, 0],Cn×n) and any −1 < α ≤ 0, we can define two new
measures

µlα ∈ NBV([−1, α],Cn×n), µrα ∈ NBV([α, 0]) (3.10)

by writing

µlα(ϑ) = µ(ϑ), −1 ≤ ϑ < α,

µlα(α) = µ(α−),

µrα(α) = 0

µrα(ϑ) = µ(ϑ)− µ(α−), α < ϑ ≤ 0.

(3.11)

Using these new measures, we extend L− to X̂−0 by writing

L−(φ, v) =
∫ 0

−1

dµl0(σ)φ(σ) +
(
µ(0)− µ(0−)

)
v, (3.12)

for any (φ, v) ∈ X̂−0 = C([−1, 0],Cn) × Cn. In addition, for any −1 < α < 0 we extend L− to X̂−α
by writing

L−(φl, φr) =
∫ α

−1

dµlα(σ)φl(σ) +
∫ 0

α

dµrα(σ)φr(σ) (3.13)

for any (φl, φr) ∈ X̂−α = C([−1, α],Cn)× C([α, 0],Cn).
The best way to grasp the implications of this extension is to consider an example. Suppose

therefore that for φ ∈ C([−1, 0],C) we have

L−φ = φ(0) + φ(−1) +
∫ 0

−1

σφ(σ)dσ (3.14)

In this case, the extension of L− to X̂−0 would be given by

L−(φ, v) = v + φ(−1) +
∫ 0

−1

σφ(σ)dσ. (3.15)

12



Stated more practically, if x̂ ∈ B̂C
⊕
η , then any reference to x̂(0) in the right hand side of (2.1)

should be interpreted as x̂(0+). We emphasize that this bias for right-hand limits is a deliberate
choice on our part. This decision is motivated by our interest in initial value problems that are posed
in forward time. When studying differential equations this choice is not material, but in §3.3 it will
turn out to be crucial.

Our preparations complete, we are now ready to study the delay differential equation

x̂′(ξ) = L− êv−ξ x̂ (3.16)

and look for solutions x̂ ∈ B̂C
⊕
η . Before we proceed, we need to comment on the notion of a solution

to (3.16), aided by the following observation.

Lemma 3.2 (see §5.1). Consider any x̂ ∈ B̂C
⊕
η . Then the map ξ 7→ L− êv−ξ x̂ is continuous for

all ξ ≥ 0 except possibly at a countable number of points.

In particular, we will need to look for functions x̂ ∈ B̂C
⊕
η that satisfy (3.16) for almost all ξ ≥ 0.

Note that any such solution x̂ = (φ, y) automatically satisfies y ∈W 1,∞
η

(
[0,∞),Cn

)
, where we have

introduced the function space

W 1,∞
η

(
[0,∞),Cn

)
= {x : e−η·x(·) ∈W 1,∞([0,∞),Cn

)
}. (3.17)

This motivates the introduction of the solution spaces

Q̂L−(η) =
{
x̂ ∈ B̂C

⊕
η | x̂′(ξ) = L− êv−ξ x̂ for almost all ξ ≥ 0

}
,

Q̂L−(η) =
{
φ̂ ∈ X̂−0 | φ̂ = êv−0 x̂ for some x̂ ∈ Q̂L−(η)

}
.

(3.18)

As before, we will write ÊL− to map φ̂ ∈ Q̂L−(η) back to the function x̂ ∈ Q̂L−(η) that has êv−0 x̂ = φ̂.
Our main result describes the space Q̂L−(η) in considerable detail.

Theorem 3.3 (see §5.1). Consider the delay equation (3.16), pick η ∈ R in such a way that the
characteristic equation det ∆L−(z) = 0 admits no roots with Re z = η and recall the integer n+

L−
(η)

defined in (2.8).
If n+

L−
(η) = 0, then we have

Q̂L−(η) = X̂−0 = C([−1, 0],Cn)× Cn. (3.19)

On the other hand, if n+
L−

(η) > 0, then there exist bounded linear operators

M` : X− = C([−1, 0],Cn)→ C, 1 ≤ ` ≤ n−(η), (3.20)

together with an integer

1 ≤ s ≤ min{n+
L−

(η), n} (3.21)

and a set of s linearly independent vectors

α` ∈ Cn, 1 ≤ ` ≤ s, (3.22)

such that any pair (φ, v) ∈ X̂−0 satisfies (φ, v) ∈ Q̂L−(η) if and only if

α†`v = M`φ for 1 ≤ ` ≤ s,

0 = M`φ for s < ` ≤ n+
L−

(η).
(3.23)
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Note that this result does not specify how the integer s, the vectors α` and the operators M`

can be computed. This situation is remedied in §5.1, where we develop the machinery to attack
this problem. For the moment however, the following result gives a more explicit characterization
of Q̂L−(η) in the special case that det ∆L−(z) = 0 only has simple roots to the right of the line
Re z = η.

Corollary 3.4 (see §5.1). Pick any η ∈ R. Consider the delay equation (3.16) and suppose that
the collection of roots of the characteristic equation det ∆L−(z) = 0 that have Re z ≥ η consists of
a set of n+

L−
(η) distinct simple roots {z`} that all have Re z` > η. For all 1 ≤ ` ≤ n+

L−
(η), choose a

non-zero vector α` ∈ Cn that satisfies

∆†L−(z`)α` = 0. (3.24)

Then for any φ ∈ C([−1, 0],Cn) and any v ∈ Cn that satisfies

α†`v = −α†`
∫ 0

−1

dµ(σ)ez`σ
∫ 0

σ

e−z`τφ(τ)dτ (3.25)

for all 1 ≤ ` ≤ n+
L−

(η), there exists a unique x̂ ∈ B̂C
⊕
η that solves (5.4) and has êv−0 x̂ = (φ, v).

In particular, if the set of vectors {α`} is linearly independent, the quantity s appearing in The-
orem 3.3 satisfies s = n+

L−
(η).

To illustrate the consequences of the results above for initial value problems involving (3.16), we
explicitly describe a number of scenarios.

Corollary 3.5. Consider the delay equation (3.16) and pick η ∈ R in such a way that the character-
istic equation det ∆L−(z) = 0 admits no roots with Re z = η. If n+

L−
(η) = 0, then for every v ∈ Cn

and every φ ∈ C([−1, 0],Cn) there is a unique x̂ ∈ B̂C
⊕
η that solves (3.16) and has êv−0 x̂ = (φ, v).

Corollary 3.6. Consider the delay equation (3.16) and pick η ∈ R in such a way that the charac-
teristic equation det ∆L−(z) = 0 admits no roots with Re z = η. Suppose that n+

L−
(η) ≥ 1.

Then there exists a subspace V ⊂ C([−1, 0],Cn) of codimension n+
L−

(η) − s and a subspace
W ⊂ Cn of codimension s such that the following holds true.

For every φ ∈ V there exists a x̂ ∈ B̂C
⊕
η that solves (3.16) and has ev−0 ŷ = φ. In addition,

ŷ ∈ B̂C
⊕
η also solves (3.16) with ev−0 ŷ = φ, if and only if ŷ − x̂ = ÊL−(0, w) for some w ∈ W.

When we are dealing with scalar versions of (3.16), i.e., when n = 1, the ambiguity with respect
to the integer s and the vectors α` disappears. As a consequence, the results simplify considerably.

Corollary 3.7. Consider a scalar version of the delay equation (3.16) and pick η ∈ R in such a way
that the characteristic equation ∆L−(z) = 0 admits no roots with Re z = η. Suppose that n+

L−
(η) ≥ 2.

Then there is a subspace V ⊂ C([−1, 0],C) of codimension n+
L−

(η) − 1 such that for every φ ∈ V

there is a unique x̂ ∈ B̂C
⊕
η that solves (3.16) and has ev−0 x̂ = φ.

Corollary 3.8. Consider a scalar version of the delay equation (3.16) and pick η ∈ R in such a
way that the characteristic equation ∆L−(z) = 0 admits no roots with Re z = η. If n+

L−
(η) = 1, then

for every φ ∈ C([−1, 0],Cn) there is a unique x̂ ∈ B̂C
⊕
η that solves (3.16) and has ev−0 x̂ = φ.

Before we conclude this section, we introduce some terminology that will help us to compare our
results here to similar results in the sequel. In particular, we introduce the operators

π−bQL− (η)
: Q̂L−(η)→ C

(
[−1, 0],Cn

)
, (φ, v) 7→ φ,

π̂−bQL− (η)
: Q̂L−(η)→ C

(
[−1, 0],Cn

)
× Cn, (φ, v) 7→ (φ, v).

(3.26)
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Corollary 3.9. Consider the setting of Theorem 3.3 and recall the integer s introduced there, with
the identification s = 0 in the special case n+

L−
(η) = 0. Then we have the identities

codim Range π̂−bQL(η)
= n+

L−
(η), dim Ker π̂−bQL(η)

= 0, (3.27)

together with

codim Rangeπ−bQL(η)
= n+

L−
(η)− s, dim Kerπ−bQL(η)

= n− s. (3.28)

3.2 Mixed Type Equations

We now turn our attention back to the MFDE (2.10) and study solutions that admit a discontinuity
at ξ = 0. Much as in §3.1, we need to introduce the family of function spaces

X̂α = C([−1, α],Cn)× C([α, 1],Cn), (3.29)

again parametrized by −1 < α ≤ 0. Any bounded linear operator L : C([−1, 1],Cn) → C
n can be

represented by a measure µ ∈ NBV ([−1, 1],Cn×n) by means of

Lψ =
∫ 1

−1

dµ(σ)ψ(σ). (3.30)

For any −1 < α ≤ 0 we can define a pair of measures

µlα ∈ NBV([−1, α],Cn×n), µrα ∈ NBV([α, 1]) (3.31)

by writing

µlα(ϑ) = µ(ϑ), −1 ≤ ϑ < α,

µlα(α) = µ(α−),

µrα(α) = 0

µrα(ϑ) = µ(ϑ)− µ(α−), α < ϑ ≤ 1.

(3.32)

Using these new measures, we extend L to X̂α by writing

L(ψl, ψr) =
∫ α

−1

dµlα(σ)ψl(σ) +
∫ 0

α

dµrα(σ)ψr(σ), (3.33)

for any (ψl, ψr) ∈ X̂α = C([−1, α],Cn)× C([α, 1],Cn).
The MFDE we are interested in can now be written as

x̂′(ξ) = L êvξ x̂. (3.34)

Here the operators êvξ map B̂C
⊕
η into X̂−ξ for 0 ≤ ξ < 1 in a fashion similar to (3.4); see Figure

3(iii). As before, we have êvξ = evξ for ξ ≥ 1. The solution sets we are interested in are defined by

Q̂L(η) =
{
x̂ ∈ B̂C

⊕
η | x̂′(ξ) = L êvξ x̂ for almost all ξ ≥ 0

}
,

Q̂L(η) =
{
ψ̂ ∈ X̂0 | ψ̂ = êv0 x̂ for some x̂ ∈ Q̂L(η)

}
,

(3.35)

where as before, we write ÊL to map ψ̂ ∈ Q̂L(η) back to the function x̂ ∈ Q̂L(η) that has êv0 x̂ = ψ̂.
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Fig. 3: Panel (i) depicts a function bx that is multi-valued at ξ = 0. Panels (ii) and (iii) illustrate how the
operators bev−ξ and bevξ act on bx, for 0 ≤ ξ < 1.

Our main result in this section describes the restriction operators

π−bQL(η)
: Q̂L(η)→ C

(
[−1, 0],C

)
(ψl, ψr) 7→ ψl,

π̂−bQL(η)
: Q̂L(η)→ C

(
[−1, 0],C

)
× C (ψl, ψr) 7→

(
ψl, ψr(0)

)
,

(3.36)

which generalize those introduced in (2.17). We emphasize that our results at present only work for
scalar versions of (3.34), since we need to build on the theory described in §2.2.

Theorem 3.10 (see §5.2). Consider a scalar version of the MFE (3.34) and suppose that (HL)
is satisfied. Suppose furthermore that the characteristic equation ∆L(z) = 0 admits no roots with
Re z = η. Then the operator π̂−bQL(η)

is Fredholm and the following identities hold,

codim Range π̂−bQL(η)
= max{1− n#

L (η), 0}, dim Ker π̂−bQL(η)
= max{n#

L (η)− 1, 0}. (3.37)

In addition, the operator π−bQL(η)
is Fredholm and we have

codim Rangeπ−bQL(η)
= max{−n#

L (η), 0}, dim Kerπ−bQL(η)
= max{n#

L (η), 0}. (3.38)

To illustrate the implications of this theorem for initial value problems involving (3.34), we
analyze the different scenarios in the following results.

Corollary 3.11. Consider the setting of Theorem 3.10. If n#
L (η) < 0, then there is a subspace

V ⊂ C([−1, 0],C) of codimension −n#
L (η) such that for every φ ∈ V there is a unique x̂ ∈ B̂C

⊕
η that

solves (3.34) and has ev−0 x̂ = φ.

Corollary 3.12. Consider the setting of Theorem 3.10. If n#
L (η) = 0, then for every φ ∈ C([−1, 0],C)

there is a unique x̂ ∈ B̂C
⊕
η that solves (3.34) and has ev−0 x̂ = φ.

Corollary 3.13. Consider the setting of Theorem 3.10. If n#
L (η) = 1, then for any φ ∈ C([−1, 0],C)

and any v ∈ C there is a unique x̂ ∈ B̂C
⊕
η that solves (3.34) and has êv−0 x̂ = (φ, v).

Corollary 3.14. Consider the setting of Theorem 3.10. If n#
L (η) > 1, then for any φ ∈ C([−1, 0],C)

and any v ∈ C there is a x̂ ∈ B̂C
⊕
η that solves (3.34) and has êv−0 x̂ = (φ, v). In addition, ŷ ∈ B̂C

⊕
η

also solves (3.34) with êv−0 ŷ = (φ, v) if and only if ŷ − x̂ = ELψ, for some ψ ∈ C([−1, 1],C) that is
contained in the (n#

L (η)− 1)-dimensional space Kerπ−QL(η) mentioned in Proposition 2.5.
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3.3 Differential-Algebraic Equations

We are now ready to turn our attention to linear differential-algebraic equations of the form

Ix′(ξ) = M êvξ x. (3.39)

Here I is a diagonal (n × n)-matrix that has I2 = I and M is a bounded linear operator from
C([−1, 1],Cn) into Cn that we extend to the spaces X̂α with −1 < α ≤ 0 in the same fashion as
in §3.2. We remark that our results in this section do not require the condition (HL) to hold. In
particular, the theory presented here is also applicable to delay equations. However, as explained
in §1, the true power of these results come to light only when studying equations that have both
delayed and advanced terms.

We are interested in systems that can be closely related to a differential system of the form
(3.34). In order to clarify this relationship, we introduce the characteristic function

δI,M (z) = Iz −Mez·I (3.40)

that is associated to (3.39). The restriction on M that we need in this paper can now be captured
by the following condition on the characteristic function.

(HM) There exist a bounded linear operator L : C([−1, 1],Cn)→ C
n, a constant α ∈ C and a set of

non-negative integers `1, . . . , `n ∈ Z≥0 such that

Jα(z)δI,M (z) = ∆L(z), (3.41)

where Jα : C→ C
n×n denotes the diagonal matrix function

Jα(z) = diag
(
(z − α)`1 , . . . , (z − α)`n

)
. (3.42)

Please note that the purely algebraic components of the system (3.39) are unaffected if the
corresponding components of M are multiplied by a non-zero factor. In particular, the corresponding
rows of δI,M can be rescaled without affecting the dynamics of (3.39). Adjusting M in such a manner
will typically be necessary in order to show that all the terms (z − α)` appearing in (3.42) have
coefficient one. Furthermore, we remark that a simple matching of asymptotics along the imaginary
axis shows that

Jα(α) = I, (3.43)

or alternatively, that `i = 0 if and only if Iii = 1.
The condition (HM) is related to the fact that we require any solution to the differential-algebraic

equation (3.39) to also satisfy the MFDE (3.34) with the operator L featuring in (HM).
We will be interested in the solution spaces

pI,M (η) =
{
x ∈ BC	η | Ix′(ξ) = M evξx for all ξ ≤ 0

}
,

qI,M (η) =
{
x ∈ BC⊕η | Ix′(ξ) = M evξx for all ξ ≥ 0

}
, (3.44)

which both contain solutions to (3.39) that do not admit a discontinuity at ξ = 0. However, when
considering functions that are allowed to be multi-valued at ξ = 0, care must be taken to ensure
that (3.39) is well-posed. The following result is important in this respect, as it shows that the part
of the right-hand side of (3.39) that corresponds to the purely algebraic equations is continuous.

Lemma 3.15 (see §5.3). Suppose that (HM) is satisfied. Then for any x̂ ∈ B̂C
⊕
η , the function

ξ 7→ (I − I)M êvξ x̂ (3.45)

is continuous.
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We recall that Lemma 3.2 implies that the map ξ 7→ IM êvξ x̂ is continuous except possibly at
a countable number of points. This motivates the definition

q̂I,M (η) =
{
x̂ ∈ B̂C

⊕
η | Ix̂′(ξ) = IM êvξ x̂ for almost all ξ ≥ 0

and 0 = (I − I)M êvξ x̂ for all ξ ≥ 0
}
.

(3.46)

Our main result relates these spaces pI,M (η), qI,M (η) and q̂I,M (η) to their counterparts PL(η),
QL(η) and Q̂L(η) that were defined for the differential equation (3.34). In particular, initial value
problems for (3.39) can be studied using the techniques outlined in §3.1 and §3.2.

Theorem 3.16 (see §5.3). Consider the differential-algebraic equation (3.39) and suppose that
(HM) is satisfied. Choose any η∗ ∈ R for which the characteristic equation det δI,M (z) = 0 admits
no roots with Re z = η∗. Then there exists a bounded linear operator L′ : C([−1, 1],Cn) → C

n such
that

Jη∗(z)δM (z) = ∆L′(z). (3.47)

In addition, for every η < η∗ we have

qM (η) = QL′(η), (3.48)

while for every η > η∗ we have

pM (η) = PL′(η). (3.49)

Finally, for any η < η∗ we have

q̂M (η) = Q̂L′(η). (3.50)

3.4 Nonlinear Equations

We are now ready to turn to the main goal of this paper and discuss initial value problems for non-
linear differential-algebraic equations. In particular, we will set out to study the nonlinear equation

Ix̂′(ξ) = M êvξx̂+M
(
êvξx̂

)
(3.51)

and look for solutions in the spaces B̂C
⊕
−η for η ≥ 0. In particular, we will assume that x = 0 is

an equilibrium for (3.51) and investigate how the stable manifold of this equilibrium intersects the
space of initial conditions C([−1, 0],Cn).

As in §3.3, the matrix I needs to be diagonal with I2 = I, while the bounded linear operator M
that maps C([−1, 1],Cn) into Cn should satisfy (HM). The conditions on the nonlinearity M that
we need are described below.

(HM) Recall the constants `1, . . . , `n appearing in (HM). There exists an integer k ≥ 1 and a set of
operators

M(s)
i :

⋃
−1<α≤0

X̂−α × Cn → C, 0 ≤ s ≤ `i, 1 ≤ i ≤ n (3.52)

that satisfies the following properties for each 1 ≤ i ≤ n and each 0 ≤ s ≤ `i.

(i) For each −1 < α ≤ 0, the map M(s)
i is Ck-smooth as a map from X̂−α × Cn into C.

(ii) For every K > 0, there exists a constant C such that for any −1 < α ≤ 0 and any
(ψ̂, v) ∈ X̂α × Cn that has

∥∥∥(ψ̂, v)
∥∥∥ < K, we have∥∥∥DjM(s)
i (ψ̂, v)

∥∥∥ < C, 0 ≤ j ≤ k. (3.53)
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(iii) We have M(s)
i (0, 0) = DM(s)

i (0, 0) = 0.

(iv) Pick a function x̂ ∈ B̂C
⊕
0 ∩W

1,1
loc ([0,∞),Cn). Then the function fi defined by

fi : ξ 7→
(
M
(
êvξ x̂

))
i

(3.54)

satisfies fi ∈W `i,1
loc ([0,∞),C). Furthermore, we have

Dsfi(ξ) =M(s)
i

(
êvξ x̂, x̂′(ξ)

)
(3.55)

for almost all ξ ≥ 0.

We remark that this condition is a little more involved than one usually encounters for invariant
manifold results. Conditions (i) and (ii) basically state that the mapsM(s)

i are Ck-smooth, but care
must be taken to account for the fact that these operators must be defined simultaneously on the
different spaces X̂α. On the other hand, condition (iv) is necessary to ensure that the nonlinearity
respects the differentiability structure that the linear part of the differential-algebraic equation im-
poses. A simpler version of this condition that does not involve the derivative x̂′(ξ) can be found in
[17, (HR1)-(HR2)], but the version stated here is necessary to cover the applications we consider in
this paper.

Before we state our results, we have to comment on what we consider to be a solution to (3.51).

In particular, we say that x̂ ∈ B̂C
⊕
η solves (3.51) if it satisfies

Ix̂′(ξ) = IM êvξ x̂+ IM
(
êvξ x̂

)
(3.56)

for almost all ξ ≥ 0, together with

0 = (I − I)M êvξ x̂+ (I − I)M
(
êvξ x̂

)
(3.57)

for all ξ ≥ 0.
Recalling the solution spaces q̂I,M (η) defined by (3.46), we introduce the sets

q̂I,M (η) =
{
ψ̂ ∈ X̂0 | ψ̂ = êv0 x̂ for some x̂ ∈ q̂I,M (η)

}
(3.58)

that contain the initial segments of these solutions, together with the open balls

V̂δη = {ψ̂ ∈ q̂I,M (η) for which
∥∥∥ψ̂∥∥∥ < δ} ⊂ X̂0 (3.59)

in these spaces, defined for any δ > 0.
Our main result describes the local stable manifold of the zero equilibrium of (3.51). In particular,

it shows that this stable manifold is a graph over V̂δ0 .

Theorem 3.17 (see §5.4). Consider the nonlinear system (3.51) and suppose that (HM) and (HM)
are satisfied. Suppose furthermore that the characteristic equation det δI,M (z) = 0 admits no solu-
tions with Re z = 0. Then there exist constants δ > 0, δ∗ > 0 and η∗ > 0, a bounded linear projection
operator

Π̂bqI,M (0) : X̂0 → q̂I,M (0) (3.60)

and a Ck-smooth map

û∗ : V̂δ0 → B̂C
⊕
−η∗ (3.61)

that satisfy the following properties.
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(i) For any ψ̂ ∈ V̂δ0 , the function û∗(ψ̂) satisfies the nonlinear equation (3.51).

(ii) For any ψ̂ ∈ V̂δ0 , we have

Π̂bqI,M (0) êv0 û
∗(ψ̂) = ψ̂. (3.62)

(iii) Suppose that x̂ ∈ B̂C
⊕
0 satisfies the nonlinear equation (3.51) and that |x̂(ξ)| ≤ δ∗ for all

ξ ≥ −1. Then we have

x̂ = û∗
(

Π̂bqI,M (0) êv0 x̂
)
. (3.63)

(iv) We have the derivative

D[êv0 û
∗](0) = I. (3.64)

In order to analyze the consequences of this theorem, we introduce the familiar restriction oper-
ators

π−bqI,M (η) : q̂I,M (η)→ C
(
[−1, 0],Cn

)
, (ψl, ψr) 7→ ψl,

π̂−bqI,M (η) : q̂I,M (η)→ C
(
[−1, 0],Cn

)
× Cn, (ψl, ψr) 7→

(
ψl, ψr(0)

)
.

(3.65)

The results below outline six scenarios that may arise for initial value problems associated to (3.51).
We start by picking a small initial condition φ ∈ C([−1, 0],Cn) and discussing whether φ can be
extended to a solution to (3.51) that decays to zero at a specified exponential rate. We note that
this solution is allowed to have a discontinuity at ξ = 0.

In our first scenario, every small φ ∈ C([−1, 0],Cn) can be uniquely extended. In particular, the
discontinuity depends directly on φ. We note that there may exist other extensions of φ, but these
will all leave a fixed small neighbourhood of the zero equilibrium at some point.

Definition 3.18 (Stabilizable). The equilibrium x = 0 of (3.51) is of type (S)η if there exist
constants δ > 0 and ε > 0 such that the following holds true.

For every φ ∈ C([−1, 0],Cn) that has ‖φ‖ < δ, there exists a unique x̂ = x̂(φ) ∈ B̂C
⊕
η that has

‖x̂‖η < ε, solves the nonlinear system (3.51) and satisfies ev−0 x̂ = φ.

Corollary 3.19 (see §5.4). Pick any η ≥ 0. Consider the nonlinear system (3.51), suppose that
(HM) and (HM) are satisfied and that det δI,M (z) = 0 admits no solutions with Re z = −η.

Suppose furthermore that

Rangeπ−bqI,M (−η) = C([−1, 0],Cn), Kerπ−bqI,M (−η) = {0}. (3.66)

Then the equilibrium x = 0 of (3.51) is of type (S)−η.

In our second scenario, any φ ∈ C([−1, 0],Cn) can still be extended, but no longer in a unique
fashion. In fact, there exists a whole continuous family of possible extensions that all decay to zero.

Definition 3.20 (Multi-Stabilizable). The equilibrium x = 0 of (3.51) is of type (MS)η,nker if
there exist constants δ > 0 and ε > 0 such that the following holds true.

For every pair φ ∈ C([−1, 0],Cn) and ρ ∈ Cnker that have ‖φ‖ < δ and |ρ| < δ, there exists a

function x̂ = x̂(φ, ρ) ∈ B̂C
⊕
η that has ‖x̂‖η < ε, solves the nonlinear system (3.51) and satisfies

ev−0 x̂ = φ. These functions are all distinct continuations of φ, in the sense that x̂(φ, ρ1) 6= x̂(φ, ρ2)
whenever ρ1 6= ρ2.
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Corollary 3.21 (see §5.4). Pick any η ≥ 0. Consider the nonlinear system (3.51), suppose that
(HM) and (HM) are satisfied and that det δI,M (z) = 0 admits no solutions with Re z = −η.

Suppose furthermore that

Rangeπ−bqI,M (−η) = C([−1, 0],Cn), nker := dim Kerπ−bqI,M (−η) > 0. (3.67)

Then the equilibrium x = 0 of (3.51) is of type (MS)−η,nker .

Our third scenario covers the situation in which there exists a branch of φ ∈ C([−1, 0],Cn) for
which no extension exists that decays to zero.

Definition 3.22 (Unstable). The equilibrium x = 0 of (3.51) is of type (U)η if there exists a
constant ε > 0 such that the following holds true.

For every sufficiently small δ > 0, there exists a function φ ∈ C([−1, 0],Cn) that has ‖φ‖ < δ

such that any function x̂ ∈ B̂C
⊕
−η that has ‖x̂‖−η < ε and solves the nonlinear system (3.51), must

have

ev−0 x̂ 6= φ. (3.68)

Corollary 3.23 (see §5.4). Pick any η ≥ 0. Consider the nonlinear system (3.51), suppose that
(HM) and (HM) are satisfied and that det δI,M (z) = 0 admits no solutions with Re z = −η.

Suppose furthermore that

dim Kerπ−bqI,M (−η) < codim Rangeπ−bqI,M (−η). (3.69)

Then the equilibrium x = 0 of (3.51) is of type (U)−η.

Notice that we have given no results in the case that

0 < codim Rangeπ−bqI,M (−η) ≤ dim Kerπ−bqI,M (−η). (3.70)

This can be understood by observing that nonlinear effects play a role here. For example, if one has
equality in (3.70), one would like to conclude that the zero equilibrium is of type (S)−η. In order to
verify this however, one would need to compute the second order derivative [D2ev−0 û

∗](0) and check
that no degeneracies occur. For instance, if M = 0, then obviously the zero equilibrium is of type
(U)−η.

Naturally, this entire analysis can be repeated for the restriction operators π̂−bqI,M (−η). This time,
we consider a small initial condition φ ∈ C([−1, 0],Cn) together with a small v ∈ Cn. The question
at hand is then whether the function φ can be extended to a solution to (3.51) that decays to zero
at a specified exponential rate and has a jump at ξ = 0 of size v − φ(0).

Definition 3.24 (Gap-Stabilizable). The equilibrium x = 0 of (3.51) is of type (GS)η if there
exist constants δ > 0 and ε > 0 such that the following holds true.

For every pair (φ, v) ∈ C([−1, 0],Cn) × Cn that has ‖(φ, v)‖ < δ, there exists a unique x̂ =

x̂(φ, v) ∈ B̂C
⊕
η that has ‖x̂‖η < ε, solves the nonlinear system (3.51) and satisfies êv−0 x̂ = (φ, v).

Corollary 3.25 (see §5.4). Pick any η ≥ 0. Consider the nonlinear system (3.51), suppose that
(HM) and (HM) are satisfied and that det δI,M (z) = 0 admits no solutions with Re z = −η.

Suppose furthermore that

Range π̂−bqI,M (−η) = C([−1, 0],Cn)× Cn, Ker π̂−bqI,M (−η) = {0}. (3.71)

Then the equilibrium x = 0 of (3.51) is of type (GS)−η.
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Definition 3.26 (Gap-Multi-Stabilizable). The equilibrium x = 0 of (3.51) is of type (GMS)η,nker

if there exist constants δ > 0 and ε > 0 such that the following holds true.
For every pair (φ, v) ∈ C([−1, 0],Cn) × Cn and ρ ∈ Cnker that have ‖(φ, v)‖ < δ and |ρ| < δ,

there exists a function x̂ = x̂(φ, v, ρ) ∈ B̂C
⊕
η that has ‖x̂‖η < ε, solves the nonlinear system (3.51)

and satisfies êv−0 x̂ = (φ, v). These functions are all distinct continuations of (φ, v), in the sense that
x̂(φ, v, ρ1) 6= x(φ, v, ρ2) whenever ρ1 6= ρ2.

Corollary 3.27 (see §5.4). Pick any η ≥ 0. Consider the nonlinear system (3.51), suppose that
(HM) and (HM) are satisfied and that det δI,M (z) = 0 admits no solutions with Re z = −η.

Suppose furthermore that

Range π̂−bqI,M (−η) = C([−1, 0],Cn)× Cn, nker := dim Ker π̂−bqI,M (−η) > 0. (3.72)

Then the equilibrium x = 0 of (3.51) is of type (GMS)−η,nker .

Definition 3.28 (Gap-Unstable). The equilibrium x = 0 of (3.51) is of type (GU)η if there exists
a constant ε > 0 such that the following holds true.

For every sufficiently small δ > 0, there exists a pair (φ, v) ∈ C([−1, 0],Cn) × Cn that has

‖(φ, v)‖ < δ such that any function x̂ ∈ B̂C
⊕
η that has ‖x̂‖η < ε and solves the nonlinear system

(3.51), must have

êv−0 x̂ 6= (φ, v). (3.73)

Corollary 3.29 (see §5.4). Pick any η ≥ 0. Consider the nonlinear system (3.51), suppose that
(HM) and (HM) are satisfied and that det δI,M (z) = 0 admits no solutions with Re z = −η.

Suppose furthermore that

dim Ker π̂−bqI,M (−η) < codim Range π̂−bqI,M (−η). (3.74)

Then the equilibrium x = 0 of (3.51) is of type (GU)−η.

4 Examples

In this section we return to the model from economic theory that we discussed in the introduction.
Our goal is to illustrate the application range of the results described in §3. In particular, we discuss
how the technical issues that arise in practice can be handled and hope that our analysis here will
prove insightful to readers that encounter similar problems.

The full nonlinear model that we set out to analyze is given by

Λ′ (R(t)) dR(t)
dt = Λ (R(t)) [r + π (t)−R(t)]

πb(t) =
R 0
−Ωb

eβ
bσπ(t+σ)dσ

R 0
−Ωb

eβbσdσ
,

πf (t) =
R Ωf

0 e−β
fσπ(t+σ)dσ

R Ωf
0 e−β

fσdσ
,

(4.1)

where the additional identity

π(t) = (1− χ1 − χ2)−1[ρ−1(R(t))− χ1π
b(t)− χ2π

f (t)] (4.2)

serves to close the system. This latter equation was obtained by isolating π(t) from the expression

R (t) = ρ
(
(1− χ1 − χ2)π (t) + χ1π

b(t) + χ2π
f (t)

)
. (4.3)
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Since we will be studying solutions that are allowed to have a discontinuity at t = 0, we emphasize
that any references to R(0), πb(0) and πf (0) in the system (4.1) should be interpreted as R(0+),
πb(0+) and πf (0+).

Looking for equilibria
(
R(t), πb(t), πf (t)

)
= (R∗, πb∗, π

f
∗ ), we see that we must have

R∗ − r = ρ−1(R∗) = πb∗ = πf∗ . (4.4)

Assuming for the moment that (4.4) has a solution, we introduce the quantities

π∗ = πb∗ = πf∗ ,

ρ′∗ = ρ′(ρ−1(R∗)) = ρ′(π∗),

κχ = 1− χ1 − χ2,

A∗ = [(ρ′∗)
−1 − κχ]−1,

κb =
[ ∫ 0

−Ωb
eβ

bσdσ
]−1

,

κf =
[ ∫ Ωf

0
e−β

fσdσ
]−1

,

Λ∗ = − Λ(R∗)
Λ′(R∗)

.

(4.5)

We will make the following assumption concerning these parameters.

(hp) We have χ1 ≥ 0, χ2 ≥ 0 and κχ > 0. In addition, we have Ωb > 0, Ωf > 0, βb > 0 and βf > 0.
Finally, the function ρ is C1-smooth, with ρ′∗ > 0 but ρ′∗ 6= (1− χ1 − χ2)−1.

Let us make a couple of observations concerning (hp) before we proceed. First of all, notice
that sufficient conditions that guarantee that (4.4) has a unique solution are not hard to find. For
example, it suffices to require that ρ′(π) > 1 for all π ∈ R or alternatively that ρ′(π) < 1 for all
π ∈ R.

Second, we note that the assumption on ρ′∗ ensures that ρ−1(R) is well-defined for allR sufficiently
close to the equilibrium R∗. Furthermore, the constant A∗ can have both signs, depending on the
size of ρ′∗.

Finally, we remark that we have not made any assumptions concerning Λ∗ yet. In fact, we
will split our analysis into two separate parts that are covered by the following mutually exclusive
assumptions.

(HPS) The equilibrium equation (4.4) has a solution that satisfies (hp). In addition, the function Λ
is constant, i.e., Λ′(R) = 0 for all R ∈ R.

(HPF) The equilibrium equation (4.4) has a solution that satisfies (hp). In addition, we have Λ∗ > 0.

Note that (HPS) describes the singular situation where the first line of (4.1) reduces to an algebraic
equation, while (HPF) leaves the full mixed differential-algebraic system intact.

4.1 The Singular System

In this section, we concentrate on the dynamics of (4.1) under the singular condition (HPS). In this
case, the first line of (4.1) reduces to

R(t) = r + π(t), (4.6)

from which we derive the nonlinear algebraic equation

R(t) = r + κ−1
χ [ρ−1

(
R(t)

)
− χ1π

b(t)− χ2π
f (t)]. (4.7)
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Using the two remaining lines of (4.1), we can eliminate the variables πb and πf to arrive at

κχ(R(t)− r) = ρ−1
(
R(t)

)
− χ1κb

∫ 0

−Ωb
eβ

bσ(R(t+ σ)− r) dσ

−χ2κf
∫ Ωf

0
e−β

fσ(R(t+ σ)− r) dσ,
(4.8)

which in turn can be rewritten as

κχR(t)− ρ−1
(
R(t)

)
= r − χ1κb

∫ 0

−Ωb
eβ

bσR(t+ σ) dσ

−χ2κf
∫ Ωf

0
e−β

fσR(t+ σ) dσ.
(4.9)

Our main goal is to determine which of the scenario’s outlined in §3.4 is applicable to the
equilibrium R(t) = R∗. In particular, given an initial condition φR ∈ C([−Ωb, 0],R) that is close
to R∗, we wish to determine if (4.9) admits a solution R̂(t) that decays to R∗ as t → ∞ and has
R̂(σ) = φR(σ) for −Ωb ≤ σ < 0. This solution R̂(t) is allowed to have a single discontinuity at t = 0.
In addition, we wish to know whether this solution is unique. If not, does it become unique if R̂(0+)
is also specified besides φR?

In order to answer these questions, we need to separate the system (4.9) into its linear and
nonlinear parts. To do this, we linearize around the equilibriumR(t) = R∗ by making the replacement
R(t) 7→ R∗ +R(t). This leads to the system

κχR(t) = 1
ρ′∗
R(t) +N

(
R(t)

)
− χ1κb

∫ 0

−Ωb
eβ

bσR(t+ σ) dσ

−χ2κf
∫ Ωf

0
e−β

fσR(t+ σ) dσ,
(4.10)

where N : R→ R stands for the nonlinear function

N (R) = ρ−1(R∗ +R)− ρ−1(R∗)−
1
ρ′∗
R. (4.11)

Note first that the nonlinearity depends only on the value R(t), which together with the smoothness
of ρ−1 shows that (HM) is satisfied.

Let us rewrite the system as

0 = M êvtR−A∗N
(
R(t)

)
, (4.12)

where M acts on a function ψ̂ as

Mψ̂ = −ψ̂(0+) + χ1κbA∗
∫ 0

−Ωb
eβ

bσψ̂(σ) dσ + χ2κfA∗
∫ Ωf

0

e−β
fσψ̂(σ) dσ. (4.13)

The characteristic function associated to the linear part of (4.12) is given by

δ0,M (z) = 1− χ1κbA∗
∫ 0

−Ωb
e(z+βb)σ dσ − χ2κfA∗

∫ Ωf

0
e(z−βf )σ dσ. (4.14)

In order to show that condition (HM) is satisfied, we pick any γ ∈ R and introduce the operator
L(γ) : C([−Ωb,Ωf ],R)→ R that acts as

L(γ)ψ = γψ(0) + χ1κbA∗
[
ψ(0)− e−βbΩbψ(−Ωb)− (γ + βb)

∫ 0

−Ωb
eβ

bσψ(σ) dσ
]

+χ2κfA∗
[
e−β

fΩfψ(Ωf )− ψ(0)− (γ − βf )
∫ Ωf

0
e−β

fσψ(σ) dσ
]
.

(4.15)

A short calculation now yields the identity

(z − γ)δ0,M (z) = ∆L(γ)(z), (4.16)

which shows that (HM) is indeed satisfied. We now proceed to analyze the characteristic function
δ0,M (z) in a number of different scenarios.
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4.1.1 Backward-Looking Variables Only

In this part we will study the singular problem (4.9) under the additional assumption that χ2 = 0.
Notice that this turns (4.9) into a delayed algebraic equation. The characteristic function now reads

δ0,M (z) = 1− χ1κbA∗
∫ 0

−Ωb
e(z+βb)σdσ. (4.17)

We start by characterizing the roots of δ0,M (z) = 0.

Lemma 4.1. Suppose that (HPS) holds and that χ2 = 0. If ρ′∗ > (1 − χ1)−1, then any root of the
characteristic equation δ0,M (z) = 0 satisfies Im z 6= 0 and Re z < −βb.

On the other hand, if 0 < ρ′∗ < (1 − χ1)−1, then δ0,M (z) = 0 has a simple root at z = z∗ for
some z∗ ∈ R. We have z∗ < 0 if 0 < ρ′∗ < 1, z∗ = 0 if ρ′∗ = 1 and z∗ > 0 if 1 < ρ′∗ < (1− χ1)−1. If
z 6= z∗ also solves δ0,M (z) = 0, then we have Im z 6= 0 and Re z < min{−βb, z∗}.

Proof. We will start by looking for solutions to δ0,M (p) = 0 that have p ∈ R. If ρ′∗ > (1− χ1)−1, we
have A∗ < 0 and hence δ0,M (p) > 0 for all p ∈ R. If on the other hand ρ′∗ < (1 − χ1)−1, we have
A∗ > 0 which implies δ′0,M (p) > 0 for all p ∈ R. In view of the limits

lim
p→−∞

δ0,M (p) = −∞, lim
p→∞

δ0,M (p) = 1, (4.18)

there now exists a unique z∗ ∈ R with δ0,M (z∗) = 0. Using the identity

δ0,M (0) = 1− χ1κbA∗
∫ 0

−Ωb
eβ

bσdσ =
1− ρ′∗

1− (1− χ1)ρ′∗
, (4.19)

we conclude that z∗ < 0 for 0 < ρ′∗ < 1, z∗ = 0 for ρ′∗ = 1 and z∗ > 0 for 1 < ρ′∗ < (1− χ1)−1.
It remains to consider complex roots of δ0,M (z) = 0. For any pair p, q ∈ R, we may write

Re δ0,M (p+ iq) = 1− χ1κbA∗
∫ 0

−Ωb
e(βb+p)σ cos(qσ)dσ,

Im δ0,M (p+ iq) = −χ1κbA∗
∫ 0

−Ωb
e(βb+p)σ sin(qσ)dσ.

(4.20)

For any p > −βb, the map σ 7→ e(βb+p)σ is a strictly increasing function. In particular, if we also
have q > 0 then ∫ 0

−Ωb
e(βb+p)σ sin(qσ)dσ < 0. (4.21)

A similar identity for q < 0 shows that Im δ0,M (p + iq) 6= 0 for all p > −βb and q 6= 0. Directly
computing

qδ0,M (−βb + iq) = q + iχ1κbA∗(1− e−iqΩ
b

) (4.22)

shows that in fact δ0,M (p+ iq) 6= 0 for all p ≥ −βb and q 6= 0.
Finally, notice that for any q 6= 0, we have∫ 0

−Ωb
e(βb+p)σ cos(qσ)dσ <

∫ 0

−Ωb
e(βb+p)σdσ. (4.23)

In particular, if A∗ > 0, p ≥ z∗ and q 6= 0, we may estimate

Re δ0,M (p+ iq) > δ0,M (p) ≥ 0, (4.24)

which concludes the proof.
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Corollary 4.2. Suppose that (HPS) is satisfied and that χ2 = 0. If ρ′∗ > (1− χ1)−1 or 0 < ρ′∗ < 1,
then the equilibrium R∗ of the nonlinear system (4.9) is of type (S)0.

Proof. Fix γ > 0. Recalling the operator L(γ) from (4.15), Theorem 3.16 implies that

q̂I,M (0) = Q̂L(γ)(0). (4.25)

Note that n+
L(γ)(0) = 1, which due to Corollary 3.9 implies that

codim Rangeπ−bqI,M (0) = 0, dim Kerπ−bqI,M (0) = 0. (4.26)

The result now follows from Corollary 3.19.

Corollary 4.3. Suppose that (HPS) is satisfied and that χ2 = 0. If 1 < ρ′∗ < (1 − χ1)−1, then the
equilibrium R∗ of the nonlinear system (4.9) is of type (U)0.

Proof. For any γ > 0, we now have n+
L(γ)(0) = 2. Corollary 3.9 hence implies that

codim Rangeπ−bqI,M (0) = 1, dim Kerπ−bqI,M (0) = 0. (4.27)

The result now follows from Corollary 3.23.

In the critical case ρ′∗ = 1, the characteristic equation satisfies δ0,M (0) = 0. One would have to
construct a center manifold to properly analyze the dynamics near the equilibrium R∗.

4.1.2 Forward-Looking Variables Only

We now study the singular problem (4.9) under the additional assumption that χ1 = 0. This turns
(4.9) into an advanced algebraic equation. The charactistic function now reads

δ0,M (z) = 1− χ2κfA∗
∫ Ωf

0
e(z−βf )σdσ (4.28)

and as before we proceed by studying the roots of δ0,M (z) = 0.

Lemma 4.4. Suppose that (HPS) holds and that χ1 = 0. If ρ′∗ > (1 − χ2)−1, then any root of the
characteristic equation δ0,M (z) = 0 must have Im z 6= 0 and Re z > βf .

On the other hand, if 0 < ρ′∗ < (1 − χ2)−1, then δ0,M (z) has a simple root at z = z∗ for some
z∗ ∈ R. We have z∗ > 0 if 0 < ρ′∗ < 1, z∗ = 0 if ρ′∗ = 1 and z∗ < 0 if 1 < ρ′∗ < (1− χ2)−1. If z 6= z∗
also solves δ0,M (z) = 0, then we have Im z 6= 0 and Re z > max{βf , z∗}.

Proof. The statements follow from Lemma 4.1 after making the substitutions z 7→ −z and σ 7→
−σ.

Corollary 4.5. Suppose that (HPS) holds and that χ1 = 0. If 0 < ρ′∗ < 1 or ρ′∗ > (1− χ2)−1, then
the equilibrium R∗ of (4.9) is of type (GU)0. In particular, there exists ε > 0 such that the only
solution R to (4.9) that has |R(t)−R∗| < ε for all t ≥ 0 is R(t) = R∗.

Proof. Fix γ > 0, which ensures that

q̂0,M (0) = Q̂L(γ)(0). (4.29)

Notice that the part of any initial condition on [−Ωb, 0] plays no role in the dynamics of (4.9). In
particular, since n−L(γ) = 0, we have

q̂0,M (0) = Q̂L(γ)(0) = C([−Ωb, 0],C)× {0}. (4.30)

The conclusion now follows from Corollary 3.29.
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Corollary 4.6. Suppose that (HPS) holds and that χ1 = 0. If 1 < ρ′∗ < (1 − χ2)−1, then the
equilibrium R = R∗ of (4.9) is of type (GS)0. In particular, there exists δ > 0 such that for any R0

that has |R0 −R∗| < δ, (4.9) admits a solution R that has R(0) = R0 and limt→∞R(t) = R∗.

Proof. Fix γ > 0. In this, case we have n−L(γ)(0) = 1, which implies that

q̂0,M (0) = C([−Ωb, 0],C)× span{φ∗}, (4.31)

where φ∗(σ) = ez∗σ is the eigenfunction corresponding to the eigenvalue z∗ of L(γ) that has Re z∗ < 0.
Since φ∗(0) = 1, the conditions of Corollary 3.25 are all satisfied.

4.1.3 Mixed Variables

We now assume that both χ1 > 0 and χ2 > 0. In this case, it no longer suffices to analyze the
characteristic equation δ0,M (z) = 0, since it will have an infinite number of roots on both sides of
the imaginary axis. Instead, we will need to apply the results from §3.2, which require us to compute
the quantity n#

L(γ)(0). We have found it to be intractable to compute a Wiener-Hopf factorization
directly for the operators L(γ), so we use the path following technique outlined in Proposition 2.9.

Recalling the operators L(γ) from (4.15), a short calculation yields

∆L(γ) (z) = z − γ − χ1κbA∗ z−γz+βb

(
1− e−(z+βb)Ωb

)
+χ2κfA∗ z−γz−βf

(
1− e(z−β

f)Ωf
)
.

(4.32)

We introduce the operators

L−(γ) : C([−Ωb, 0],R)→ R, L+(γ) : C([0,Ωf ],R)→ R (4.33)

that are defined by

L−(γ)φR = χ1κbA∗
(
φR(0)− e−βbΩbφR(−Ωb)− (γ + βb)

∫ 0

−Ωb
eβ

bσφR(σ) dσ
)

+γφR(0),

L+(γ)φR = −χ2κfA∗
(
φR(0)− e−βfΩfφR(Ωf )− (γ − βf )

∫ 0

Ωf
e−β

fσφR(σ) dσ
)

+γφR(0).

(4.34)

A short calculation shows that

∆L−(γ) (z) = z − γ − χ1κbA∗
z − γ
z + βb

(
1− e−(z+βb)Ωb

)
,

∆L+(γ) (z) = z − γ + χ2κfA∗
z − γ
z − βf

(
1− e(z−β

f)Ωf
)
.

In particular, we have

∆L−(γ)(z)∆L+(γ)(z) = (z − γ)
(
∆L(γ)(z)− χ1χ2κbκfA2

∗ Ξγ(z)
)
. (4.35)

Here we have introduced the function Ξγ(z) that is given by

Ξγ(z) = z−γ
(z+βb)(z−βf )

(
1− e−(z+βb)Ωb

)(
1− e(z−β

f)Ωf
)

= −
(
βf + βb

)−1
(
γ−βf
z−βf −

γ+βb

z+βb

)(
1− e−(z+βb)Ωb

)(
1− e(z−β

f)Ωf
)

= −
(
βf + βb

)−1 ((γ + βb)Ξb (z) + (γ − βf )Ξf (z)
)
,

(4.36)
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in which

Ξb (z) = − 1
z+βb

(
1− e−(z+βb)Ωb − e(z−β

f)Ωf + e−β
bΩb−βfΩf+z(Ωf−Ωb)

)
,

Ξf (z) = 1
z−βf

(
1− e−(z+βb)Ωb − e(z−β

f)Ωf + e−β
bΩb−βfΩf+z(Ωf−Ωb)

)
.

(4.37)

Upon introducing two operators Lf , Lb ∈ L
(
C([−Ωb,Ωf ],R),R

)
that act as

LbRt =
∫ Ωf

−Ωb
eβbσR (t+ σ) dσ +

(
1 + e−(βf+βb)Ωf

) ∫ 0

Ωf
eβ

bσR (t+ σ) dσ

+e−(βf+βb)Ωf
∫ Ωf−Ωb

0
eβ

bσR(t+ σ) dσ,

LfRt =
∫ Ωf

−Ωb
e−β

fσR(t+ σ)dσ +
(
1 + e−(βf+βb)Ωb

) ∫ −Ωb

0
e−β

fσR(t+ σ) dσ

+e−(βf+βb)Ωb
∫ 0

Ωf−Ωb
e−β

fσR(t+ σ) dσ,

(4.38)

we can compute

Lbe
z· = 1

z+βb

[
e(z+βb)Ωf − e−(z+βb)Ωb + (1 + e−(βf+βb)Ωf )(1− e(z+βb)Ωf )

+e−(βf+βb)Ωf (e(z+βb)(Ωf−Ωb) − 1)
]

= −Ξb(z)

Lfe
z· = 1

z−βf
[
e(z−βf )Ωf − e−(z−βf )Ωb + (1 + e−(βf+βb)Ωb)(e−(z−βf )Ωb − 1)

+e−(βf+βb)Ωb(1− e(z−βf )(Ωf−Ωb))
]

= −Ξf (z).

(4.39)

In particular, upon introducing the path of operators

Γγ(µ) = L+ (1− µ)χ1χ2κbκfA2
∗(β

f + βb)−1
(

(γ − βf )Lf + (γ + βb)Lb
)
, (4.40)

we find that

∆Γγ(µ)(z) = ∆L(γ)(z)− (1− µ)χ1χ2κbκfA2
∗Ξγ(z). (4.41)

This in turn implies that

∆Γγ(0) = (z − γ)−1∆L+(γ)(z)∆L−(γ)(z),

∆Γγ(1) = ∆L(γ)(z).
(4.42)

In particular, the path Γγ(µ) interpolates between an operator Γγ(0) for which a Wiener-Hopf
factorization is available and the operator Γγ(1) that we want to analyze.

We proceed by studying the roots of the two characteristic equations ∆L±(γ)(z) = 0. To this end,
we introduce the analytic functions

ΨL−(z) = (z − γ)−1∆L−(γ)(z) = 1− χ1κbA∗
∫ 0

−Ωb
e(z+βb)σdσ,

ΨL+(z) = (z − γ)−1∆L+(γ)(z) = 1 + χ2κfA∗
∫ 0

Ωf
e(z−βf )σdσ.

(4.43)

Observing the similarity with (4.17) and (4.28), we can repeat the proof of Lemma 4.1 to obtain the
following two results.

28



Lemma 4.7. Suppose that (HPS) holds and that both χ1 > 0 and χ2 > 0. If ρ′∗ > (1− χ1 − χ2)−1,
then any root of ΨL−(z) = 0 must have Im z 6= 0 and Re z < −βb.

On the other hand, if 0 < ρ′∗ < (1 − χ1 − χ2)−1, then ΨL−(z) = 0 has a simple root at z = z∗
for some z∗ ∈ R. We have z∗ < 0 if 0 < ρ′∗ < (1 − χ2)−1, z∗ = 0 if ρ′∗ = (1 − χ2)−1 and z∗ > 0 if
(1 − χ2)−1 < ρ′∗ < (1 − χ1 − χ2)−1. If z 6= z∗ also solves ΨL−(z) = 0, then we have Im z 6= 0 and
Re z < min{−βb, z∗}.

Lemma 4.8. Suppose that (HPS) holds and that both χ1 > 0 and χ2 > 0. If ρ′∗ > (1− χ1 − χ2)−1,
then any root of ΨL+(z) = 0 must have Im z 6= 0 and Re z > βf .

On the other hand, if 0 < ρ′∗ < (1 − χ1 − χ2)−1, then ΨL+(z) = 0 has a simple root at z = z∗
for some z∗ ∈ R. We have z∗ > 0 if 0 < ρ′∗ < (1 − χ1)−1, z∗ = 0 if ρ′∗ = (1 − χ1)−1 and z∗ < 0 if
(1 − χ1)−1 < ρ′∗ < (1 − χ1 − χ2)−1. If z 6= z∗ also solves ΨL+(z) = 0, then we have Im z 6= 0 and
Re z > max{βf , z∗}.

The next step is to analyze the equation ∆Γγ(µ)(z) = 0 and search for roots that cross the
imaginary axis as µ is increased from zero to one. To this end, we introduce the function

Ψµ(z) = (z − γ)−1∆Γγ(µ)(z) (4.44)

and compute

Ψµ(z) = 1− χ1κbA∗
∫ 0

−Ωb
e(βb+z)σdσ + χ2κfA∗

∫ 0

Ωf
e(z−βf )σdσ

−(1− µ)χ1χ2κbκfA2
∗
∫ 0

−Ωb
e(βb+z)σdσ

∫ 0

Ωf
e(z−βf )σdσ.

(4.45)

Lemma 4.9. Suppose that (HPS) holds and that both χ1 > 0 and χ2 > 0. Suppose furthermore that
0 < ρ′∗ < 1 or that ρ′∗ > (1 − χ1 − χ2)−1. Then the equation Ψµ(z) = 0 has no roots with Re z = 0
for any 0 ≤ µ ≤ 1.

Proof. Using (4.45) we compute

Re Ψµ(iq) = 1− χ1κbA∗
∫ 0

−Ωb
eβ

bσ cos(qσ)dσ − χ2κfA∗
∫ Ωf

0
e−β

fσ cos(qσ)dσ

+(1− µ)χ1χ2κbκfA2
∗

( ∫ 0

−Ωb
eβ

bσ cos(qσ)dσ
∫ Ωf

0
e−β

fσ cos(qσ)dσ

+
∫ −Ωb

0
eβ

bσ sin(qσ)dσ
∫ Ωf

0
e−β

fσ sin(qσ)dσ
)
,

Im Ψµ(iq) = χ1κbA∗
∫ −Ωb

0
eβ

bσ sin(qσ)dσ − χ2κfA∗
∫ Ωf

0
e−β

fσ sin(qσ)dσ
)

+(1− µ)χ1χ2κbκfA2
∗

( ∫ 0

−Ωb
eβ

bσ cos(qσ)dσ
∫ Ωf

0
e−β

fσ sin(qσ)dσ

+
∫ −Ωb

0
eβ

bσ sin(qσ)dσ
∫ Ωf

0
e−β

fσ cos(qσ)dσ
)
.

(4.46)

For any q > 0, we have the inequalities

0 <
∫ 0

−Ωb
eβ

bσ cos(qσ)dσ <
∫ 0

−Ωb
eβ

bσdσ,

0 <
∫ Ωf

0
e−β

fσ cos(qσ)dσ <
∫ Ωf

0
e−β

fσdσ,

0 <
∫ −Ωb

0
eβ

bσ sin(qσ)dσ,

0 <
∫ Ωf

0
e−β

fσ sin(qσ)dσ.

(4.47)
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Note that A∗ > 0 whenever ρ′∗ < (1− χ1 − χ2)−1. For any 0 ≤ µ ≤ 1, this allows us to compute

Re Ψµ(iq) ≥ 1− χ1κbA∗
∫ 0

−Ωb
eβ

bσ cos(qσ)dσ − χ2κfA∗
∫ Ωf

0
e−β

fσ cos(qσ)dσ

≥ 1− χ1κbA∗
∫ 0

−Ωb
eβ

bσdσ − χ2κfA∗
∫ Ωf

0
e−β

fσdσ

= 1−ρ′∗
1−ρ′∗(1−χ1−χ2) ,

(4.48)

with equality if and only if q = 0 and µ = 1. In particular, if 0 < ρ′∗ < 1, the characteristic equation
ΨΓ(µ)(z) = 0 has no roots with Re z = 0.

On the other hand, we have A∗ < 0 if ρ′∗ > (1 − χ1 − χ2)−1. This immediately implies that
Re Ψµ(iq) ≥ 1 for all q ∈ R, which completes the proof.

In the special cases that 0 < ρ′∗ < 1 or that ρ′∗ > (1−χ1−χ2)−1, we now have sufficient information to
compute the quantity n#

L(γ)(0). This in turn allows us to draw conclusions concerning the equilibrium
solution R(t) = R∗ to (4.9).

Corollary 4.10. Suppose that (HP) holds and that both χ1 > 0 and χ2 > 0. Suppose furthermore
that 0 < ρ′∗ < 1 or that ρ′∗ > (1 − χ1 − χ2)−1. If γ > 0, then we have n#

L(γ)(0) = 0, while if γ < 0,

then we have n#
L(γ)(0) = 1.

Proof. Since no roots cross the imaginary axis as µ is increased from zero to one, we may apply
Proposition 2.9 to find

n#
L(γ)(0) = n#

Γγ(1)(0) = n#
Γγ(0)(0) = n−L+(γ)(0)− n+

L−(γ)(0) + n+
pγ (0), (4.49)

where pγ(z) = (z − γ).
If γ > 0, then we have n−L+(γ)(0) = 0, n+

L−(γ)(0) = 1 and n+
pγ (0) = 1, which gives n#

L(γ)(0) = 0.
On the other hand, if γ < 0, then we have n−L+(γ)(0) = 1, n+

L−(γ)(0) = 0 and n+
pγ (0) = 0, which gives

n#
L(γ)(0) = 1.

Corollary 4.11. Suppose that (HPS) holds and that both χ1 > 0 and χ2 > 0. Suppose furthermore
that 0 < ρ′∗ < 1 or that ρ′∗ > (1− χ1 − χ2)−1. Then the equilibrium R = R∗ of (4.9) is of type (S)0.

Proof. We pick γ > 0, which gives n#
L(γ)(0) = 0. Since q̂I,M (0) = Q̂L(γ)(0), we can use Theorem

3.10 to conclude that

codim Rangeπ−bqI,M (0) = 0, dim Kerπ−bqI,M (0) = 0. (4.50)

This allows us to apply Corollary 3.19.

In the remaining case 1 < ρ′∗ < (1−χ1−χ2)−1, we can only draw definitive conclusions concerning
real roots to Ψµ(z) = 0 that cross the imaginary axis.

Lemma 4.12. Suppose that (HPS) holds and that both χ1 > 0 and χ2 > 0. If 1 < ρ′∗ < min{(1 −
χ1)−1, (1 − χ2)−1}, there is precisely one µ∗ ∈ [0, 1] such that Ψµ∗(0) = 0 and in fact 0 < µ∗ < 1.
The same conclusion holds if max{(1− χ1)−1, (1− χ2)−1} < ρ′∗ < (1− χ1 − χ2)−1.

On the other hand, if min{(1 − χ1)−1, (1 − χ2)−1} < ρ′∗ < max{(1 − χ1)−1, (1 − χ2)−1}, then
Ψµ(0) < 0 for all 0 ≤ µ ≤ 1.

Proof. The conclusion follows from the identity

Ψ0(0) = (1− χ1κbA∗
∫ 0

−Ωb
eβ

bσdσ)(1 + χ2κfA∗
∫ 0

Ωf
e−β

fσdσ)

=
(

1−ρ′∗(1−χ2)
)(

1−ρ′∗(1−χ1)
)(

1−ρ′∗(1−χ1−χ2)
)2 ,

Ψ1(0) = 1− χ1κbA∗
∫ 0

−Ωb
eβ

bσdσ + χ2κfA∗
∫ 0

Ωf
e−β

fσdσ

= 1−ρ′∗
1−ρ′∗(1−χ1−χ2) .

(4.51)
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together with d
dµΨµ(0) < 0.

Besides the root crossings at zero mentioned above, we typically also expect complex roots to
cross the imaginary axis if 1 < ρ′∗ < (1 − χ1 − χ2)−1. Consider for example the symmetric case
χ1 = χ2, Ωb = Ωf and βf = βb. Fixing µ = 1, we have Im Ψ1(iq) = 0 for all q ∈ R. Together with
the limits limq→±∞Re Ψ1(iq) = 1 and Re Ψ1(0) < 0, we find that ∆L(γ)(z) = 0 has at least one
pair of purely imaginary roots. In particular, in order to compute the quantities n#

L(γ)(0), the easiest
approach appears to be to resort to numerics.

4.2 The Full System

In this part we return to the full problem (4.1) under the assumption (HPF). Our goal is to consider
an initial condition

Φ = (φR, φb, φf ) ∈ C([−Ωb, 0],R)3 (4.52)

and determine in which sense this initial condition can be extended to a solution to (4.1) that decays
to the equilibrium (R∗, π∗, π∗).

We linearize around this equilibrium by making the replacements R(t) 7→ R∗ + R(t), πb(t) 7→
π∗ + πb(t) and πf (t) 7→ π∗ + πf (t), which transforms the system (4.1) into

R′(t) = −Λ∗
[
−R(t) + κ−1

χ

(
1
ρ′∗
R(t)− χ1π

b(t)− χ2π
f (t)

)]
+MR

(
R(t), πb(t), πf (t)

)
πb(t) = κbκ

−1
χ

∫ 0

−Ωb
eβ

bσ
(

1
ρ′∗
R(t+ σ)− χ1π

b(t+ σ)− χ2π
f (t+ σ)

)
dσ

+Mb

(
evtR

)
πf (t) = κfκ

−1
χ

∫ Ωf

0
e−β

fσ
(

1
ρ′∗
R(t+ σ)− χ1π

b(t+ σ)− χ2π
f (t+ σ)

)
dσ

+Mf

(
evtR

)
.

(4.53)

Here we have used the function N defined in (4.11) to introduce the nonlinearities

MR

(
R, πb, πf ) = −Λ∗κ−1

χ N (R) +
[ Λ(R∗+R)

Λ′(R∗+R) −
Λ(R∗)
Λ′(R∗)

][
−R+ κ−1

χ

(
N (R) + (ρ′∗)

−1R− χ1π
b − χ2π

f
)]
,

Mb(ψR) = κbκ
−1
χ

∫ 0

−Ωb
eβ

bσN
(
ψR(σ)

)
dσ,

Mf (ψR) = κfκ
−1
χ

∫ Ωf

0
e−β

fσN
(
ψR(σ)

)
dσ.

(4.54)

Introducing the notation Ψ(t) =
(
R(t), πb(t), πf (t)

)
, we can write the system as

IΨ′(t) = MevtΨ +M(evtΨ). (4.55)

Here I is the diagonal matrix I = diag(1, 0, 0), while M : C([−Ωb,Ωf ],R)3 → R
3 denotes the

nonlinear function

M
(
ψR, ψb, ψf

)
=
(
MR

(
ψR(0), ψb(0), ψf (0)

)
,Mb(ψR),Mf (ψR)

)
(4.56)

and the linear operator M : C([−Ωb,Ωf ],R)3 → R
3 captures the remaining terms in (4.53). The
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characteristic function for the linear part of this system is given by

δI,M (z) =


z − Λ∗

κχρ
′
∗−1

κχρ′∗
−Λ∗ χ1

κχ
−Λ∗ χ2

κχ

− κb
ρ′∗κχ

∫ 0

−Ωb
e(z+βb)σdσ 1 + χ1κb

κχ

∫ 0

−Ωb
e(z+βb)σdσ χ2κb

κχ

∫ 0

−Ωb
e(z+βb)σdσ

− κf
ρ′∗κχ

∫ Ωf

0
e(z−βf )σdσ

χ1κf
κχ

∫ Ωf

0
e(z−βf )σdσ 1 + χ2κf

κχ

∫ Ωf

0
e(z−βf )σdσ

 .

(4.57)

In order to show that (HM) is satisfied, we pick any γ ∈ R and define the linear operator L(γ) :
C([−Ωb,Ωf ],R)3 → R

3 that acts on Ψ = (ψR, ψb, ψf ) as

(L(γ)Ψ)1 = −Λ∗
[
− ψR(0) + κ−1

χ

(
1
ρ′∗
ψR(0)− χ1ψb(0)− χ2ψf (0)

)]
,

(L(γ)Ψ)2 = γψb(0) + κb
ρ′κχ

[
ψR(0)− e−βbΩbψR(−Ωb)− (γ + βb)

∫ 0

−Ωb
eβ

bσψR(σ) dσ
]

−χ1κb
κχ

[
ψb(0)− e−βbΩbψb(−Ωb)− (γ + βb)

∫ 0

−Ωb
eβ

bσψb(σ) dσ
]

−χ2κb
κχ

[
ψf (0)− e−βbΩbψf (−Ωb)− (γ + βb)

∫ 0

−Ωb
eβ

bσψf (σ) dσ
]
,

(L(γ)Ψ)3 = γψf (0) + κf
ρ′κχ

[
e−β

fΩfψR(Ωf )− ψR(0)− (γ − βf )
∫ Ωf

0
e−β

fσψR(σ) dσ
]

−χ1κf
κχ

[
e−β

fΩfψb(Ωf )− ψb(0)− (γ − βf )
∫ Ωf

0
e−β

fσψb(σ) dσ
]

−χ2κf
κχ

[
e−β

fΩfψf (Ωf )− ψf (0)− (γ − βf )
∫ Ωf

0
e−β

fσψf (σ) dσ
]
.

(4.58)

Upon writing

Jγ(z) = diag(1, z − γ, z − γ), (4.59)

it is not hard to see that

Jγ(z)δI,M (z) = ∆L(γ)(z), (4.60)

which verifies (HM). As expected, any solution to the linear equation IΨ′(t) = M evt Ψ(t) will
automatically also satisfy Ψ′(t) = L(γ) evt Ψ(t) for any γ ∈ R.

In order to verify condition (HM), we need to exploit the explicit structure of the nonlinearity
M. In particular, the integrals that are present in the definitions of Mb and Mf ensure that the
time derivative of the map t→M(evtΨ) depends only on evtΨ and Ψ′(t). The remaining required
properties follow immediately from the construction of the nonlinearities and the smoothness of the
function ρ−1.

In the companion paper [10], we analyze the characteristic function δI,M (z) in the two special
cases that either χ1 = 0 or χ2 = 0. In combination with the results in §3.4, this analysis yields the
following characterizations for the equilibrium (R∗, π∗, π∗).

Corollary 4.13 (see [10]). Suppose that (HPF) is satisfied and that χ2 = 0. If ρ′∗ > 1, then the
equilibrium (R(t), πb(t)) = (R∗, π∗) of (4.1) is of type (S)0.

Corollary 4.14 (see [10]). Suppose that (HPF) is satisfied and that χ2 = 0. If 0 < ρ′∗ < 1, then
the equilibrium (R(t), πb(t)) = (R∗, π∗) of (4.1) is of type (MS)0.

Corollary 4.15 (see [10]). Suppose that (HPF) is satisfied and that χ1 = 0. If ρ′∗ > (1 − χ2)−1,
then the equilibrium (R∗, π∗) of (4.1) is of type (GU)0. In fact, there exists ε > 0 such that the
only solution (R, πf ) to (4.1) that has |R(t)−R∗|+ |πf (t)− π∗| < ε for all t ≥ 0 is (R(t), πf (t)) =
(R∗, π∗).
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The complexity of the characteristic equation det δI,M (z) = 0 forces us to resort to numerical
studies to analyze the situation where χ1 = 0 and 0 < ρ′∗ < (1−χ2)−1. In particular, let us suppose
that det δI,M (z) = 0 has n∗ ≥ 0 roots to the left of the imaginary axis and write ψ1, . . . , ψn∗ for the
associated eigenfunctions. Upon introducing the space

V := span{ψ1(0), . . . , ψn∗(0)} ⊂ R2, (4.61)

we note that the equilibrium (R∗, π∗) is of type (GU)0 if n∗ ≤ 1, of type (GS)0 if V = R
2 and n∗ = 2

and of type (GMS)0 if V = R
2 but n∗ > 2. If V 6= R

2 but n∗ ≥ 2, then we can draw no conclusions
without a more detailed analysis that includes the nonlinear terms.

We conclude by remarking that the mixed case where both χ1 > 0 and χ2 > 0 is out of our reach
for the moment, because the results in §3.2 are only available for scalar systems. We are hopeful
that this situation can be remedied in the near future.

5 Proof of Main Results

In this section we set out to prove the main results outlined in §3. The main tool that we use to
analyze linear initial value problems is the Fourier transform, which transforms time shifts into mul-
tiplication operators. We recall here that the Fourier transform F+(f) of a function f ∈ L2(R,Cn)
and the inverse Fourier transform F−(g) of any g ∈ L2(R,Cn) are given by

F+(f)(ν) =
∫∞
−∞ e−iνξf(ξ)dξ, F−(g)(ξ) = 1

2π

∫∞
−∞ eiνξg(ν)dν. (5.1)

Our analysis will focus on the Green’s function ĜL associated to a linear operator L : C([−1, 1],Cn)→
C
n, which is given by

F+(ĜL)(ν) = ∆−1
L (iν) (5.2)

and solves

Ĝ′L(ξ) = L evξ ĜL + δ(ξ) (5.3)

in the sense of distributions. In particular, ĜL has a discontinuity at ξ = 0. We exploit this fact
heavily in order to build a bridge between the solution spaces Q̂L(η) that allow for such discontinuities
and their traditional counterparts QL(η).

5.1 Delay Differential Equations

In this section we set out to prove Theorem 3.3, which concerns the differential delay equation

x̂′(ξ) = L− êv−ξ x̂, (5.4)

where L− is a bounded linear operator from X− = C([−1, 0],Cn) to Cn that acts on the larger
spaces X̂−α as explained in §3.1. We start by providing a proof for Lemma 3.2, which states that for

any x̂ ∈ B̂C
⊕
η , the map ξ 7→ L−êv−ξ x is continuous for almost all ξ ≥ 0.

Proof of Lemma 3.2. Note that we only have to establish continuity for almost all ξ ∈ (0, 1). Lemma
3.1 implies that the set of points in (−1, 0) at which µ is discontinuous is at most countable. We will
show that if µ is continuous at some θ ∈ (−1, 0), then the function w defined by w(ξ) = L− êv−ξ x̂ is
continuous at ξ = −θ. Indeed, writing x̂ = (φ, y), note that for any sufficiently small h we have

w(ξ) =
∫ θ
−1
dµ(σ)φ(ξ + σ) +

∫ 0

θ
dµ(σ)y(ξ + σ)

w(ξ + h) =
∫ θ−h
−1

dµ(σ)φ(ξ + h+ σ) +
∫ 0

θ−h dµ(σ)y(ξ + h+ σ), (5.5)

33



where µ is the measure associated to L− via (3.9). In particular, we may compute

w(ξ + h)− w(ξ) =
∫ θ−h
−1

dµ(σ)[φ(ξ + h+ σ)− φ(ξ + σ)]

+
∫ 0

θ
dµ(σ)[y(ξ + h+ σ)− y(ξ + σ)]

+
∫ θ
θ−h dµ(σ)[y(ξ + h+ σ)− φ(ξ + σ)].

(5.6)

The first two lines are of order o(1) as h→ 0 on account of the continuity of φ and y. The third line
is also of order o(1) as h→ 0, because the total variation of µ over the interval [θ− h, θ] vanishes as
h→ 0. This latter fact is a consequence of our assumption that µ is continuous at θ.

Returning to (5.4), we are ready to study the Green’s function for this equation. To aid us, we
introduce the two special functions

H+
z (ξ) =

{
e−zξ for ξ ≥ 0,
0 for ξ < 0,

H−z (ξ) =
{
ezξ for ξ ≤ 0,
0 for ξ > 0,

(5.7)

in which we will always choose z ∈ C in such a way that Re z > 0. The Fourier transforms of these
functions are hence given by

F+(H+
z )(ν) =

1
z + iν

, F+(H−z )(ν) =
1

z − iν
. (5.8)

In addition, for any pair z1, z2 ∈ C with Re z1 > 0 and Re z2 > 0, we introduce the combined
function

Hz1,z2(ξ) =
{
ez1ξ for ξ ≤ 0,
e−z2ξ for ξ ≥ 0, (5.9)

which is continuous on R. The Fourier transform is given by

F+(Hz1,z2)(ν) =
1

z1 − iν
+

1
z2 + iν

, (5.10)

which is a function of class L1(R,C).

Proposition 5.1. Consider the delay equation (5.4) and suppose that the characteristic equation
det ∆L−(z) = 0 admits no roots with Re z = 0. Then there exists a function

ĜL− = (GlL− , G
r
L−) ∈ C((−∞, 0],Cn×n)× C([0,∞),Cn×n) (5.11)

that satisfies the following properties.

(i) For almost every ξ ≥ 0, ĜL− satisfies the differential equation

Ĝ′L−(ξ) = L− êv−ξ ĜL− , (5.12)

while GlL− satisfies

(GlL−)′(ξ) = L− ev−ξ G
l
L− , (5.13)

for every ξ ≤ 0.
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(ii) There exist constants K > 0 and κ > 0 such that∣∣∣ĜL−(ξ)
∣∣∣ ≤ Ke−κ|ξ|, ξ ∈ R. (5.14)

(iii) Writing I for the n× n-identity matrix, we have

GrL−(0)−GlL−(0) = I. (5.15)

(iv) The Fourier transform of ĜL− is given by

F+(ĜL−)(ν) = ∆L−(iν)−1. (5.16)

Proof. The estimates [18, Lem. 3.1] imply that the map ν 7→ ∆L−(iν)−1 is of class L2(R,Cn×n),
which allows us to apply the inverse Fourier transform to (5.16) in order to define ĜL−(ξ) as a
function in L2(R,Cn×n).

To show that ĜL− is continuous on the half-lines R− and R+, we pick an arbitrary α > 0 and
introduce the function

Ψ(ν) = F+(ĜL−)(ν)−F+(H+
α I)(ν) = ∆(iν)−1 − 1

α+ iν
I. (5.17)

Again using the estimates [18, Lem. 3.1] one finds the asymptotic expansion

Ψ(ν) = O(1/ν2), ν → ±∞, (5.18)

which implies that Ψ ∈ L1(R,Cn×n). In particular, standard properties of the Fourier transform
now imply that

F−(Ψ) = ĜL− −H+
α I ∈ C(R,Cn×n) ∩ L∞(R,Cn×n). (5.19)

This establishes (iii) and (iv). The remaining properties (i) and (ii) are standard properties of the
Green’s function that can be established as in the proof of [27, Thm. 4.1].

The Green’s function ĜL− is the key ingredient that allows us to compare solutions to the delay
equation (2.1) and its counterpart (5.4) that allows for jumps at ξ = 0. Indeed, if x ∈ BC⊕0 satisfies

(2.1), then for any v ∈ Cn the function x+ ĜL−v is contained in B̂C
⊕
0 and solves (5.4). Conversely,

if ŷ ∈ B̂C
⊕
0 solves (5.4), then the function

x = ŷ − ĜL−
(
ŷ(0+)− ŷ(0−)

)
(5.20)

solves (2.1) and satisfies x ∈ BC⊕0 , since it is continuous. In particular, this shows that

Q̂L−(0) = QL−(0)⊕ span
Cn{ĜL−}. (5.21)

In order to exploit this and establish a relationship between QL−(0) and Q̂L−(0), we need to closely
study the function

ev−0 ĜL− ∈ C([−1, 0],Cn). (5.22)

We proceed by picking any root z∗ of the characteristic equation det ∆L−(z) = 0 and recalling
the associated spectral projection

Πsp
L−

(z∗) : C([−1, 0],Cn)→ C([−1, 0],Cn) (5.23)
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that is given by

[Πsp
L−

(z∗)φ](θ) = Resz=z∗ e
zθ∆L−(z)−1

[
φ(0) +

∫ 0

−1

dµ(σ)ezσ
∫ 0

σ

e−zτφ(τ)dτ
]
. (5.24)

This operator projects onto the generalized eigenspace associated to the root z∗ and plays an impor-
tant role in characterizing QL−(0) ⊂ C([−1, 0],Cn). Indeed, we have the following representation.

Lemma 5.2 (see [11, Chp. IV]). Consider the delay differential equation (2.1) and suppose that
the characteristic equation det ∆L−(z) = 0 admits no roots with Re z = 0. Then any function
φ ∈ C([−1, 0],Cn) satisfies φ ∈ QL−(0) if and only if

Πsp
L−

(z)φ = 0 (5.25)

for all z ∈ C that have Re z > 0 and det ∆L−(z) = 0.

To simplify our notation in the sequel, we now introduce the spectral set

Σ+
L−

= {z ∈ C | det ∆L−(z) = 0 and Re z > 0} (5.26)

together with its associated spectral projection

Πsp
L−

(Σ+
L−

) =
∑

z∗∈Σ+
L−

Πsp
L−

(z∗). (5.27)

Lemma 5.2 implies that

QL−(0) = {φ ∈ C([−1, 0],Cn) for which Πsp
L−

(Σ+
L−

)φ = 0}. (5.28)

In order to describe Πsp
L−

(Σ+
L−

) in a bit more detail, let us introduce a set of functions

ψ` ∈ C(R,Cn), 1 ≤ ` ≤ n+
L−

(0), (5.29)

that span the space of generalized eigenfunctions corresponding to the spectral set Σ+
L−

. There exists
a set of linearly independent linear operators

M̃` ∈ L
(
C([−1, 0],Cn),C

)
, 1 ≤ ` ≤ n+

L−
(0), (5.30)

that allow us to write

Πsp
L−

(Σ+
L−

)φ =

n+
L−

(0)∑
`=1

ψ`M̃`φ. (5.31)

In order to characterize Q̂L−(0), we need to determine how ev−0 ĜL− projects onto the generalized
eigenspace associated to the eigenvalues in Σ+

L−
. The following technical result shows that these

projections typically do not vanish.

Lemma 5.3. Consider the delay differential equation (2.1) and suppose that the characteristic equa-
tion det ∆L−(z) = 0 admits no roots with Re z = 0. Then the following identity holds for all z∗ that
have Re z∗ > 0 and det ∆L−(z∗) = 0,

[Πsp
L−

(z∗) ev−0 ĜL− ](θ) = −Resz=z∗e
zθ∆L−(z)−1. (5.32)
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Proof. First of all, notice that ev−0 ĜL− = ev−0 G
l
L−

. In addition, for any α > 0 we recall from (5.17)
the L1(R,Cn×n) function

Ψ(ν) = ∆L−(iν)−1 − 1
α+ iν

I. (5.33)

We note that F−(ΨL−) is a continuous function that agrees with GlL− on R−. In particular, for any
ξ ≤ 0 we may write

GlL−(ξ) = [F−(Ψ)](ξ) =
1

2π

∫ ∞
−∞

eiνξΨ(ν) dν. (5.34)

We now proceed by computing the integral

T1(z) =
∫ 0

−1

dµ(σ)ezσ
∫ 0

σ

e−zτGlL−(τ) dτ, (5.35)

which using the representation (5.34) can be written as

T1(z) = 1
2π

∫ 0

−1
dµ(σ)ezσ

∫ 0

σ
e−zτ

∫∞
−∞ eiντ [∆−1

L−
(iν)− 1

α+iν I] dν dτ

= 1
2π

∫∞
−∞

[ ∫ 0

−1
dµ(σ)ezσ

∫ 0

σ
e(iν−z)τ dτ

][
∆−1
L−

(iν)− 1
α+iν I] dν,

(5.36)

where we used Fubini’s theorem to change the order of integration. Proceeding with the τ -integration,
we obtain

T1(z) = 1
2π

∫∞
−∞

1
iν−z

[ ∫ 0

−1
dµ(σ)(ezσ − eiνσ)

][
∆−1
L−

(iν)− 1
α+iν I] dν

= 1
2π

∫∞
−∞

1
iν−z

[
(z − iν)I + ∆L−(iν)−∆L−(z)

][
∆−1
L−

(iν)− 1
α+iν I] dν

= − 1
2π

∫∞
−∞

[
∆−1
L−

(iν)− 1
α+iν I] dν

+ 1
2π

∫∞
−∞

1
iν−z

[
∆L−(iν)−∆L−(z)

][
∆−1
L−

(iν)− 1
α+iν I] dν

= −GlL−(0) + 1
2π

∫∞
−∞

1
(iν−z)(α+iν) [(α+ iν)I −∆L−(iν)] dν

− 1
2π∆L−(z)

∫∞
−∞

1
iν−z

[
∆−1
L−

(iν)− 1
α+iν I] dν.

(5.37)

Notice that when computing the residual in (5.24), any terms that are analytic in z can be ignored.
This allows us to neglect the final term in the last line above and compute

[Πsp
L−

(z∗) ev−0 ĜL− ](θ) = Resz=z∗ e
zθ∆L−(z)−1T2(z), (5.38)

in which we have

T2(z) = 1
2π

∫∞
−∞

1
z+α [ 1

iν−z −
1

α+iν ][α+
∫ 0

−1
dµ(σ)eiνσ]I dν

= α
2π(z+α)

∫∞
−∞[ 1

iν−z −
1

α+iν ]I dν

+ 1
2π(z+α)

∫ 0

−1
dµ(σ)

∫∞
−∞ eiνσ[ 1

iν−z −
1

α+iν ]I dν.

(5.39)

Restricting ourselves to situations where Re z > 0 and remembering that α > 0, we can use the
special function (5.9) to write

T2(z) = − α
z+αHz,α(0)I − 1

z+α

∫ 0

−1
dµ(σ)Hz,α(σ)I

= − α
z+αI −

1
z+α

∫ 0

−1
dµ(σ)ezσI

= − α
z+αI −

1
z+α

(
zI −∆L−(z)

)
= −I + 1

z+α∆L−(z).

(5.40)

Recalling the identity (5.38), we see that we can again neglect the term involving ∆L−(z), which
establishes (5.32) and completes the proof.
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Notice that in the proof of Lemma 5.3 the condition Re z∗ > 0 is explicitly needed. Indeed, if we
assume Re z∗ < 0, a similar calculation shows that [Πsp

L−
(z∗) ev−0 ĜL− ] = 0. This can be understood

by noting that GlL− satisfies (2.1) for all ξ ≤ 0, which shows that ev−0 G
l
L−
∈ PL−(0).

Proof of Theorem 3.3. We restrict ourselves to the case where η = 0. Our starting point is the
identity

Q̂L−(0) = QL−(0)⊕ span
Cn {ĜL−} (5.41)

discussed above. If n+
L−

(0) = 0, then Lemma 5.2 implies that QL−(0) = C([−1, 0],Cn), which
together with (5.41) and the jump condition (5.15) immediately implies

Q̂L−(0) = C([−1, 0],Cn)× Cn (5.42)

as desired.
Moving on to the case where n+

L−
(0) > 0, let us introduce a set of vectors

α̃` ∈ Cn, 1 ≤ ` ≤ n+
L−

(0) (5.43)

such that

Πsp
L−

(Σ+
L−

) ev−0 G
l
L−w =

n+
L−

(0)∑
`=1

ψ`α̃
†
`w. (5.44)

Lemma 5.3 guarantees that at least one of these vectors α̃` is non-zero.
Observe that a pair

(φ, v) ∈ X̂−0 = C([−1, 0],Cn)× Cn (5.45)

satisfies (φ, v) ∈ Q̂L−(0) if and only if

φ− ev−0 G
l
L−

(
v − φ(0)

)
∈ QL−(0), (5.46)

which is equivalent to the requirement

Πsp
L−

(Σ+
L−

)φ = Πsp
L−

(Σ+
L−

) ev−0 G
l
L−

(
v − φ(0)

)
. (5.47)

Using the operators (5.30) this can be rewritten as

M̃`φ = α̃†`
(
v − φ(0)

)
, 1 ≤ ` ≤ n+

L−
(0). (5.48)

Let 1 ≤ s ≤ n be the dimension of the space spanned by the vectors {α̃`} and reorder these vectors
in such a way that the set {α̃`}s`=1 is linearly independent. Since the remaining vectors α̃` for
s < ` ≤ n+

L−
can all be expressed as a linear combination of the s vectors in this set, the system

(5.48) can be rewritten in the required form (3.23).

Proof of Corollary 3.4. In the neighbourhood of a simple root z = z∗ of the characteristic equation
det ∆L−(z) = 0, the inverse of the characteristic function ∆L− can be expanded as [11, Chp. IV]

∆−1
L−

(z) = (z − z∗)−1β∗α
†
∗ +O(1), z → z∗, (5.49)

where β∗ and α∗ are two vectors that satisfy

∆L−(z∗)β∗ = 0, ∆†L−(z∗)α∗ = 0, α†∗∆
′
L−(z∗)β∗ = 1. (5.50)
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The spectral projection Πsp
L−

(z∗) is now given by

[Πsp
L−

(z∗)φ](θ) = ez∗θβ∗
[
α†∗φ(0) + α†∗

∫ 0

−1

dµ(σ)ez∗σ
∫ 0

σ

e−z∗τφ(τ)dτ
]
. (5.51)

In particular, for any w ∈ Cn we have

[Πsp
L−

(z∗)ev−0 ĜL−w](θ) = −ez∗θβ∗α†∗w. (5.52)

The identity (3.25) can now be read off from (5.47).

5.2 Mixed Type Equations

We now set out to prove Theorem 3.10, which features the MFDE

x′(ξ) = L êvξx. (5.53)

Here L a bounded linear operator that maps X = C([−1, 1],C) into C and, for any −1 < α ≤ 0,
acts on the spaces X̂α as explained in §3.2. We start by remarking that a Green’s function

ĜL = (GlL, G
r
L) ∈ C((−∞, 0],C)× C([0,∞),C) (5.54)

can be defined for (5.53) by writing

F+(ĜL)(ν) = ∆−1
L (iν). (5.55)

This function satisfies properties that are similar to those mentioned in Proposition 5.1. In particular,
ĜL satisfies (5.53) for almost all ξ ≥ 0 and admits the jump

GrL(0)−GlL(0) = 1. (5.56)

Following the same arguments as in §5.1, one can conclude that

Q̂L(0) = QL(0)⊕ span{ĜL}. (5.57)

However, in the current setting we need to understand the relationship between ev−0 G
l
L and the

space

Rangeπ−QL(0) ⊂ C([−1, 0],C). (5.58)

The key ingredient that we will exploit in order to understand this relationship is provided by the
following technical result.

Lemma 5.4. Consider a scalar version of the MFDE (2.10) for which the characteristic equation
∆L(z) = 0 admits no roots with Re z = 0. Choose any z0 > 0, write p(z) = (z − z0) and let
(p, L−, L+) be a Wiener-Hopf triplet for L, which we recall implies that

(z − z0)∆L(z) = ∆L−(z)∆L+(z). (5.59)

Suppose furthermore that this Wiener-Hopf triplet has the special property that ∆L+(z) = 0 admits
no roots with Re z ≤ 0.

Then for any z∗ that has Re z∗ > 0, we have the identity

[Πsp
L−

(z∗) ev−0 ĜL](θ) = −Resz=z∗e
zθ∆L−(z)−1. (5.60)
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Proof. Using ev−0 ĜL = ev−0 G
l
L and writing µ− for the measure associated to L−, we recall the

definition

[Πsp
L−

(z∗) ev−0 ĜL](θ) = Resz=z∗e
zθ∆L−(z)−1

[
GlL(0) +

∫ 0

−1

dµ−(σ)ezσ
∫ 0

σ

e−zτGlL(τ)dτ
]

(5.61)

and start by studying the term

T1(z) =
∫ 0

−1

dµ−(σ)ezσ
∫ 0

σ

e−zτGlL(τ)dτ. (5.62)

Mimicking the computation (5.37), we see that we have, for any α > 0,

T1(z) = 1
2π

∫∞
−∞

1
iν−z [z − iν + ∆L−(iν)−∆L−(z)][∆−1

L (iν)− 1
α+iν ] dν

= − 1
2π

∫∞
−∞[∆−1

L (iν)− 1
α+iν ] dν

+ 1
2π

∫∞
−∞

1
iν−z [∆L−(iν)−∆L−(z)][∆−1

L (iν)− 1
α+iν ] dν

= −GlL(0) + 1
2π

∫∞
−∞

1
(iν−z)(α+iν) [(α+ iν)∆L−(iν)∆−1

L (iν)−∆L−(iν)] dν

− 1
2π∆L−(z)

∫∞
−∞

1
iν−z [∆−1

L (iν)− 1
α+iν ] dν

= −GlL(0) + 1
2π

∫∞
−∞

1
(iν−z)(α+iν) [(α+ iν)−∆L−(iν)] dν

− 1
2π∆L−(z)

∫∞
−∞

1
iν−z [∆−1

L (iν)− 1
α+iν ] dν

+ 1
2π

∫∞
−∞

1
iν−z [∆L−(iν)∆−1

L (iν)− 1] dν.

(5.63)

Comparing this to the expression (5.37) for T1(z) computed in the proof of Lemma 5.3, we find that
it now suffices to show that ∫ ∞

−∞

1
iν − z

[∆L−(iν)∆−1
L (iν)− 1] dν = 0 (5.64)

for all z in a small neighbourhood of z∗. To see this, observe that

1
iν−z [∆L−(iν)∆−1

L (iν)− 1] = 1
iν−z [(z − z0)∆−1

L+
(iν)− 1]

= [∆−1
L+

(iν)− 1
iν−z ] + (z − z0) 1

iν−z∆−1
L+

(iν).
(5.65)

Remembering that Re z > 0, we recall the special function H−z from (5.7) that has Fourier transform

F+(H−z )(ν) =
1

z − iν
. (5.66)

Applying arguments similar to those in the proof of Proposition 5.1, we can introduce the Green’s
function

ĜL+ = (GlL+
, GrL+

) ∈ C((−∞, 0],C)× C([0,∞),C) (5.67)

for the advanced equation

x′(ξ) = L+ ev+
ξ x, (5.68)

where the evaluation operator ev+
ξ now maps into C([0, 1],C). We note that GrL+

satisfies (5.68) for
all ξ ≥ 0. In addition, we have the usual jump condition

GrL+
(0)−GlL+

(0) = 1. (5.69)
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In particular, ĜL+ +H−z is a continuous function on R, which shows that∫ ∞
−∞

1
iν − z

[∆−1
L+

(iν)− 1
iν − z

] dν = GrL+
(0). (5.70)

On the other hand, the Fourier convolution theorem implies that

1
2π

∫∞
−∞

1
iν−z∆−1

L+
(iν) dν = [H−z ∗ ĜL+ ](0)

=
∫∞
−∞H−z (ξ)ĜL+(−ξ) dξ

=
∫ 0

−∞H−z (ξ)GrL+
(−ξ) dξ.

(5.71)

In particular, in order to establish (5.64) it suffices to show that GrL+(ξ) = 0 for all ξ ≥ 0. But
this follows from the differential equation (5.68), which implies that GrL+

∈ QL+(0). Indeed, in view
of our assumption that ∆L+(z) = 0 admits no roots with Re z ≤ 0, Proposition 2.1 implies that
QL+(0) = {0}.

Proof of Theorem 3.10. Without loss of generality, we will focus on the case that η = 0. Suppose
that we have a Wiener-Hopf factorization

(z − z0)∆L(z) = ∆L−(z)∆L+(z). (5.72)

By rearranging roots according to the procedure described in [29, Lem. 5.7], we can ensure that
Re z− ≤ Re z+ for any pair z−, z+ ∈ C that has ∆L−(z−) = 0 and ∆L+(z+). In addition, we can
ensure that Re z0 > 0 and ∆+(z0) = 0.

Let us first consider the situation that ∆L−(z) = 0 admits at least one root with Re z > 0.
Notice that this implies that all roots of ∆L+(z) = 0 have Re z > 0. Remembering that Re z0 > 0
and recalling the quantities (2.26), we may compute

n#
L (0) = n−L+

(0)− n+
L−

(0) + n+
z−z0(0) = −n+

L−
(0) + 1 ≤ 0, (5.73)

since in the current situation n+
L−

(0) ≥ 1. In particular, we need to establish the identities

dim Kerπ−bQL(0)
= 0, dim Ker π̂−bQL(0)

= 0, (5.74)

together with

codim Rangeπ−bQL(0)
= n+

L−
(0)− 1, codim Range π̂−bQL(0)

= n+
L−

(0). (5.75)

The key ingredients we will use here are the results [29, Thms. 5.3-5.4]3, which allow us to conclude
that

QL(0) = QL−(0). (5.76)

In particular, any ψ ∈ C([−1, 1],C) satisfies ψ ∈ QL(0) if and only if ev−0 ψ ∈ QL−(0), which can be
rewritten as

Πsp
L−

(Σ+
L−

) ev−0 ψ =

n+
L−

(0)∑
`=1

ψ`M̃`ev−0 ψ = 0, (5.77)

upon recalling the projection (5.27) and the operators (5.30).

3The results in [16] show how the proofs of these theorems can be adjusted for our weaker condition (HL).
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Turning our attention to the Green’s function ĜL, we remark that there exists a set

α̃` ∈ C, 1 ≤ ` ≤ n+
L−

(0), (5.78)

such that we can write

Πsp
L−

(Σ+
L−

) ev−0 ĜL =

n+
L−

(0)∑
`=1

α̃`ψ`. (5.79)

Lemma 5.4 guarantees that, possibly after reordering the eigenfunctions {ψ`}, we have α̃1 6= 0. In
particular, ev−0 ĜL /∈ QL−(0).

To see the statements (5.74) concerning the kernels of π̂−bQL(0)
and π−bQL(0)

, let us suppose that

x̂ ∈ Q̂L(0) has êv−0 x̂ = (0, v) for some v ∈ C. Then we have

x̂− ĜLv ∈ QL(0) = QL−(0) (5.80)

and hence

ev−0 x̂− ev−0 ĜLv = −ev−0 ĜLv ∈ QL−(0). (5.81)

Our discussion above implies that v = 0 and hence x̂ = 0.
Moving on to the identities (5.75), notice that (φ, v) ∈ C([−1, 0],C) × C satisfies (φ, v) ∈

Range π̂−bQL(0)
if and only if

φ− ev−0 ĜL
(
v − φ(0)

)
∈ QL−(0), (5.82)

which implies

Πsp
L−

(Σ+
L−

)φ = Πsp
L−

(Σ+
L−

) ev−0 ĜL
(
v − φ(0)

)
(5.83)

and hence

M̃`φ = α̃`
(
v − φ(0)

)
, 1 ≤ ` ≤ n+

L−
(0). (5.84)

This in turn can be rewritten as the system

v = φ(0) + α̃−1
1 M̃1φ

M̃`φ = α̃`α̃
−1
1 M̃1φ, 2 ≤ ` ≤ n+

L−
(0),

(5.85)

which consists of n+
L−

(0) linearly independent conditions on the pair (φ, v). Alternatively, this system
can be viewed as n+

L−
(0)− 1 conditions on φ, with v depending explicitly on φ. This establishes the

identities (5.75).
We now proceed to discuss the alternative situation in which all roots of ∆L−(z) = 0 have

Re z < 0. Again remembering that Re z0 > 0, we now compute

n#
L (0) = n−L+

(0)− n+
L−

(0) + n+
z−z0(0) = n−L+

(0) + 1 ≥ 1. (5.86)

In particular, we need to establish the identities

dim Kerπ−bQL(0)
= n#

L (0) = 1 + n−L+
(0), dim Ker π̂−bQL(0)

= n#
L (0)− 1 = n−L+

(0), (5.87)

together with

codim Rangeπ−bQL(0)
= 0, codim Range π̂−bQL(0)

= 0. (5.88)
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In this situation, [29, Thm. 5.3] gives us the inclusion

QL−(0) ⊂ QL(0). (5.89)

In addition, since n+
L−

(0) = 0 we have QL−(0) = C([−1, 0],C). In particular, for any pair (φ, v) ∈

C([−1, 0],C)× C, we can define x̂ ∈ B̂C
⊕
0 by way of

x̂ = EL− [φ− ev−0 ĜL(v − φ(0))] + ĜL(v − φ(0)). (5.90)

It is easy to see that x̂ ∈ Q̂L(0) with êv−0 x̂ = (φ, v), which establishes the identities (5.88).

To see (5.87), let us consider any x̂ ∈ B̂C
⊕
0 that has êv−0 x̂ = (0, v) for some v ∈ C. Then we

have x̂ ∈ Q̂L(0) if and only if

y = x̂− ĜLv + EL−ev−0 ĜLv (5.91)

satisfies y ∈ QL(0). Since ev−0 y = 0, this condition is equivalent to requiring

ev0 y ∈ Kerπ−QL(0), (5.92)

which is an (n#
L (0)− 1)-dimensional space according to Proposition 2.5.

5.3 Differential-Algebraic Equations

In this section we study the mixed differential-algebraic system

Ix′(ξ) = M êvξ x (5.93)

and set out to prove Theorem 3.16. We recall that I is a diagonal (n × n)-matrix that has I2 = I
and that there exists a measure µ ∈ NBV

(
[−1, 1],Cn×n

)
such that

Mψ =
∫ 1

−1

dµ(σ)ψ(σ) (5.94)

for any ψ ∈ C([−1, 1],Cn), while M is extended to X̂α for −1 < α ≤ 0 as in §3.2. Finally, remember
that the characteristic function for (5.93) is given by

δI,M (z) = Iz −Mez·I. (5.95)

Our arguments in this section will roughly follow the approach developed in [16, §5]. However, the
relevant computations need to be generalized to account for discontinuities and the fact that the
condition (HM) is weaker than its counterpart in [16].

We start by studying the condition (HM) in more detail. In particular, let us write

`∗ = max{`1, . . . , `n} (5.96)

and define n× n diagonal matrices Ji for 0 ≤ i ≤ `∗ such that

Jα(z) = J0 + J1(z − α) + . . .+ J`∗(z − α)`∗ . (5.97)

Notice that J0 = I, J2
i = Ji for all 0 ≤ i ≤ n and JiJj = 0 whenever i 6= j. In addition, we have

J0 + J1 + . . .+ J`∗ = I. (5.98)
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Lemma 5.5. Consider the system (5.93) and suppose that (HM) is satisfied. Recall the function µ
featured in (5.94). Then there exists a measure ζ ∈ NBV ([−1, 1],Cn×n) such that following holds
true.

(hµ1) For any 1 ≤ ` ≤ `∗, we have J`µ ∈W `−1
loc ([−1, 1],Cn×n), with

(−1)`−1[D`−1J`µ](σ) = −J`H(σ) +
∫ σ

−1

J`ζ(τ)dτ, −1 ≤ σ ≤ 1, (5.99)

in which H denotes the Heaviside function, which has H(σ) = 1 for all ξ ≥ 1 and H(σ) = 0
for all ξ < 0.

(hµ2) For any 2 ≤ ` ≤ `∗, we have

DsJ`µ(±1) = 0, 1 ≤ s ≤ `− 1. (5.100)

(hµ3) We have

J0ζ = −J0µ. (5.101)

Proof. Let us pick any 1 ≤ ` ≤ `∗. We can compute

J`∆L(z) = J`Jα(z)δI,M (z) = (z − α)`(−J`Mez·I). (5.102)

By filling the zero-rows of J`Mez·I and J`∆L(z) by shuffled versions of the non-zero rows, we can
build operators M̃ and L̃ that have J`M̃ = M and J`L̃ = L and

∆eL(z) = (z − α)`(−J`Mez·I) = δ
0,fM (z). (5.103)

This allows us to apply [17, Prop. 3.1] and conclude that all the statements in (hµ1) and (hµ2) hold
upon replacing J` replaced by I and µ by µ̃. Left multiplying by J` and exploiting that J`µ̃ = J`µ
subsequently yields the desired original properties (hµ1) and (hµ2). The remaining property (hµ3)
can be satisfied by observing that J0ζ can be freely chosen without interfering with (hµ1) and
(hµ2).

A first consequence of this result is that we can now establish Lemma 3.15, which states that the
portion of the right hand side of (5.93) associated with purely algebraic equations is continuous on

R+ for all x̂ ∈ B̂C
⊕
η .

Proof of Lemma 3.15. The property (hµ1) above implies that for ψ ∈ C([−1, 1],Cn) we may write

(I − J0)Mψ = −J1ψ(0) +
∫ 1

−1

ζ̃(σ)ψ(σ)dσ, (5.104)

for some ζ̃ ∈ NBV ([−1, 1],Cn×n). In particular, the only term that can lead to discontinuities is the
−J1ψ(0) term. However, our choice (3.33) implies that we interpret ψ(0) as ψ(0+) whenever there
is ambiguity. More precisely, let us choose any −1 < α ≤ 1 and consider a function

ψ̂ = (ψl, ψr) ∈ X̂α. (5.105)

We then have

(I − J0)Mψ̂ = −J1ψ
r(0) +

∫ α

−1

ζ̃(σ)ψl(σ)dσ +
∫ 1

α

ζ̃(σ)ψr(σ)dσ, (5.106)

which completes our proof.
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Using the function ζ appearing in Lemma 5.5, we introduce a new bounded linear operator

L∗ : C([−1, 1],Cn)→ C
n (5.107)

by writing

L∗ψ = (I − J0)ζ(1)ψ(ξ + 1)−
∫ 1

−1

dζ(σ)ψ(ξ + σ). (5.108)

We write µ∗ for the usual measure associated to L∗. Notice that

∆L∗(z) = z +
∫ 1

−1

dζ(σ)ezσ − (I − J0)ζ(1)ez. (5.109)

In addition, for 1 ≤ ` ≤ `∗ we introduce the measures

µ`(σ) =
`∗∑
i=`

(−1)i−`JiDi−`µ(σ) (5.110)

and the characteristic functions

δ`(z) = −
∫ 1

−1

dµ`(σ)ezσ. (5.111)

Notice that for every 1 ≤ ` ≤ `∗ we have the identity

J`δ`(z) = −
∫ 1

−1

J`dµ(σ)ezσ = J`δI,M (z). (5.112)

We also introduce the operators M` : C([−1, 1],Cn)→ C
n via

M`ψ =
∫ 1

−1

dµ`(σ)ψ (5.113)

and extend these operators in the usual fashion to the spaces X̂α. In particular, a short calculation
shows that for any ψ̂ = (ψl, ψr) ∈ X̂0, we have

M1ψ̂ =
∑`∗
i=1 Ji

[
− ψr(0) +

∫ 1

−1
ζ(σ)ψ̂(σ)dσ

]
= (I − J0)

[
− ψr(0) +

∫ 1

−1
ζ(σ)ψ̂(σ)dσ

]
.

(5.114)

There is an intricate relation between the algebraic system (5.93) and the MFDE

x′(ξ) = L∗ êvξ x. (5.115)

Our next two results serve as a preparation to help us exploit this relationship.

Lemma 5.6. For any 1 ≤ ` ≤ `∗, we have the identity

∆L∗(z) = (
`−1∑
i=0

Jiz
i)δI,M (z) + z`δ`(z). (5.116)

In particular, we have

∆L∗(z) = J0(z)δI,M (z). (5.117)
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Proof. Note first that the choice (hµ3) implies that

J0∆L∗(z) = J0z − J0

∫ 1

−1

dµ(σ)ezσ = J0δI,M (z). (5.118)

In addition, property (hµ1) implies

δ1(z) = −
∑`∗
i=1(−1)i−1Ji

∫ 1

−1
d[Di−1µ](σ)ezσ

= −
∑`∗
i=1

[
− Ji + Ji

∫ 1

−1
ζ(σ)ezσdσ

]
= (I − J0)

[
I −

∫ 1

−1
ζ(σ)ezσdσ

]
.

(5.119)

Turning our attention to ∆L∗(z), we integrate by parts to find∫ 1

−1

ezσdζ(σ) = ζ(1)ez − z
∫ 1

−1

ezσζ(σ)dσ, (5.120)

which shows that

(I − J0)∆L∗(z) = (I − J0)z + (I − J0)[ζ(1)ez − z
∫ 1

−1
ezσζ(σ)dσ

]
−(I − J0)ζ(1)ez

= (I − J0)z
[
I −

∫ 1

−1
ezσζ(σ)dσ

]
= zδ1(z)

(5.121)

and establishes (5.116) for ` = 1. We claim that it now suffices to show that

(I − J`)δ`(z) = zδ`+1(z) (5.122)

holds for all 1 ≤ ` ≤ `∗ − 1. Indeed, assuming this is the case, we can use (5.112) to write

δ`(z) = J`δ`(z) + zδ`+1(z)

= J`δI,M (z) + zδ`+1(z).
(5.123)

In order to show (5.122), we compute

(I − J`)δ`(z) = −(I − J`)
∑`∗
i=`(−1)i−`Ji

∫ 1

−1
d[Di−`µ](σ)ezσ

= −
∑`∗
i=`+1(−1)i−`Ji

∫ 1

−1
d[Di−`µ](σ)ezσ

= −
∑`∗
i=`+1(−1)i−`Ji

[
Di−`µ(1)ez −Di−`µ(−1)e−z

−z
∫ 1

−1
Di−`µ(σ)ezσdσ

]
= z

∑`∗
i=`+1(−1)i−`Ji

∫ 1

−1
Di−`µ(σ)ezσdσ

(5.124)

on account of (hµ2). Continuing our computation, we find

(I − J`)δ`(z) = z
∑`∗
i=`+1(−1)i−`Ji

∫ 1

−1
d[Di−`−1µ](σ)ezσ

= −z
∑`∗
i=`+1(−1)i−(`+1)Ji

∫ 1

−1
d[Di−(`+1)µ](σ)ezσ

= zδ`+1(z),

(5.125)

as desired. The final identity (5.117) follows from the observation that J`µ` = µ`.
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Lemma 5.7. For any ψ̂ = (ψl, ψr) ∈ X̂0, we have the identity

z
∫ 1

−1
dµ1(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ = (I − J0)

∫ 1

−1
dµ∗(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ

+(I − J0)ψr(0) +M1ψ̂.
(5.126)

In addition, for any integer 1 ≤ ` ≤ `∗ − 1, we have

z
∫ 1

−1
dµ`+1(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ = (I − J`)

∫ 1

−1
dµ`(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ

+M`+1ψ̂.
(5.127)

Proof. Setting out to establish (5.126), we observe that∫ 1

−1
dµ1(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ = (I − J0)

∫ 1

−1
ζ(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτdσ. (5.128)

An integration by parts shows that

(I − J0)
∫ 1

−1
ζ(σ)ψ̂(σ)dσ = −(I − J0)

∫ 1

−1
dµ∗(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ

+z(I − J0)
∫ 1

−1
ζ(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτdσ.

(5.129)

Recalling the identity (5.114) completes the proof of (5.126).
Let us now pick 1 ≤ ` ≤ `∗ − 1 and set out to establish (5.127) by writing

T`(z) = (I − J`)
∫ 1

−1

dµ`(σ)ezσ
∫ 0

σ

e−zτ ψ̂(τ)dτ. (5.130)

Using (hµ2), we proceed as in (5.124) - (5.125) to compute

T`(z) = (I − J`)
∑`∗
i=`(−1)i−`Ji

∫ 1

−1
d[Di−`µ](σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ) dτ

=
∑`∗
i=`+1(−1)i−`Ji

∫ 1

−1
d[Di−`µ](σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ) dτ

= −z
∑`∗
i=`+1(−1)i−`Ji

∫ 1

−1
Di−`µ(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ) dτ dσ

+
∑`∗
i=`+1(−1)i−`Ji

∫ 1

−1
Di−`µ(σ)ψ̂(σ) dσ

= z
∫ 1

−1
dµ`+1(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ) dτ −M`+1ψ̂,

(5.131)

which establishes (5.127).

For any ψ̂ = (ψl, ψr) ∈ X̂0, we remark that a repeated application of Lemma 5.7 yields the identity∑`∗
`=1 z

`−1M`ψ̂ = −(I − J0)ψr(0)−
∫ 1

−1
dµ∗(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ) dτ

+J0(z)
∫ 1

−1
dµ(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ) dτ.

(5.132)

This identity can be used to study the relation between the algebraic equation (5.93) and the
differential equation (5.115).

Lemma 5.8. Consider any η ∈ R and a function x̂ ∈ B̂C
⊕
η that has

J0 x̂ ∈W 1,∞
η ([0,∞),Cn). (5.133)

Then x solves the differential-algebraic equation (5.93) for all ξ ≥ 0 if and only if x̂ solves the
differential equation (5.115) for ξ ≥ 0 and in addition satisfies the identities

M` êv0 x̂ = 0 (5.134)

for all integers 1 ≤ i ≤ `.
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Proof. Let us consider any x̂ ∈ B̂C
⊕
η that satisfies (5.133) and define the function v ∈ L∞η ([0,∞),Cn)

via

v(ξ) = J0 x̂
′(ξ)−M êvξ x̂. (5.135)

For any z with Re z > η, the Laplace transforms L[v](z) and L[x̂](z) are well-defined and related via

L[v](z) :=
∫∞

0
e−zξv(ξ)dξ

= J0

(
zL[x̂](z)− x̂(0+)

)
−
∫ 1

−1
dµ(σ)

∫∞
0
e−zξx̂(ξ + σ)dξ

= J0

(
zL[x̂](z)− x̂(0+)

)
−
∫ 1

−1
dµ(σ)ezσ

(
L[x̂](z) +

∫ 0

σ
e−zτ x̂(τ)dτ

)
= δI,M (z)L[x̂](z)− J0x̂(0+)−

∫ 1

−1
dµ(σ)ezσ

∫ 0

σ
e−zτ x̂(τ)dτ,

(5.136)

in which we have used Fubini’s theorem to change the order of integration. Similarly, if x̂ ∈ B̂C
⊕
η

and x̂′ ∈ BC+
η , then we may write

w(ξ) = x̂′(ξ)−
∫ 1

−1

dµ∗(σ)x̂(ξ + σ) (5.137)

and compute the Laplace transform L[w](z) for any z with Re z > η. A similar computation as
above and an application of (5.132) yields

L[w](z) = ∆L∗(z)L[x̂](z)− x̂(0+)−
∫ 1

−1
dµ∗(σ)ezσ

∫ 0

σ
e−zτ x̂(τ)dτ

= ∆L∗(z)L[x̂](z)− J0x̂(0+)− J0(z)
∫ 1

−1
dµ(σ)ezσ

∫ 0

σ
e−zτ x̂(τ)dτ

+
∑`∗
`=1 z

`−1M` êv0x̂.

(5.138)

Now, suppose that x̂ ∈ B̂C
⊕
η satisfies the differential-algebraic equation (5.93). The identities

(5.134) can be easily verified by differentiating (5.93) and subsequently using integration by parts
together with the boundary condition (hµ2). Using [17, Prop. 4.2(iii)], we may conclude that x̂′ ∈
L∞η ([0,∞),Cn). This means that the Laplace transform L[w](z) is well-defined for Re z > η. Com-
paring (5.136) and (5.138), noting that L[v](z) = 0 and using (5.134), we see that also L[w](z) = 0,
which implies that x̂ satisfies the differential equation (5.115). The converse statement can be easily
established by inspection of (5.134), (5.136) and (5.138).

In order to relate the criteria (5.134) back to a spectral projection as in [16], we need to introduce
the extended spectral projection

Π̂sp
L∗

(z∗) : X̂0 → C([−1, 1],Cn) (5.139)

that acts as follows on ψ̂ = (ψl, ψr) ∈ X̂0,

[Π̂sp
L∗

(z∗)ψ̂](θ) = Resz=z∗ e
zθ∆L∗(z)

−1
[
ψr(0) +

∫ 1

−1
dµ∗(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ

]
(5.140)

Lemma 5.9. Suppose that det δI,M (0) 6= 0. Then any ψ̂ = (ψl, ψr) ∈ X̂0 satisfies Π̂sp
L∗

(0)ψ̂ = 0 if
and only if

M` ψ̂ = 0 (5.141)

holds for all integers 1 ≤ ` ≤ `∗.
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Proof. Since ∆L∗(z) = J0(z)δI,M (z), we find that ∆L∗(z)
−1 can be written as

∆L∗(z)
−1 = (A0 +A1z + . . .+A`∗−1z

`∗−1)J0(z)−1 +O(1) (5.142)

as z → 0, with detA0 6= 0. Applying the identity (5.132), we find

[Π̂sp
L∗

(0)φ](θ) = Resz=0 e
zθ[
∑`∗−1
k=0 Akz

k]J0(z)−1
[
J0ψ

r(0)−
∑`∗
`=1 z

`−1M`ψ̂

+J0(z)
∫ 1

−1
dµ(σ)ezσ

∫ 0

σ
e−zτ ψ̂(τ)dτ

]
.

(5.143)

Since J0(z)−1J0 is analytic at z = 0, we obtain

−[Π̂sp
L∗

(0)φ](θ) = Resz=0 [
∑`∗−1
j=0

1
j!z

jθj ][
∑`∗−1
k=0 Akz

k][
∑`∗
i=1 z

−iJi][
∑`∗
`=1 z

`−1M`ψ̂]

=
∑`∗−1
j=0 bjθ

j
(5.144)

for some set {b0, . . . , b`∗−1} ⊂ Cn. Matching powers and exploiting the fact that A0 is invertible
shows that the condition b0 = b1 = . . . = b`∗−1 = 0 is equivalent to the requirement that

JiM` ψ̂ = 0 (5.145)

for all pairs (i, `) that have 1 ≤ ` ≤ i ≤ `∗. This in turn is equivalent to the condition (5.141).

Comparing the conditions in Lemma 5.8 and 5.9 and applying exponential shifts, we arrive at
the following result.

Lemma 5.10. Consider the setting of Theorem 3.16. Pick any η < η∗ and consider a function
x̂ ∈ B̂C

⊕
η . Then x̂ solves the differential-algebraic equation (5.93) for all ξ ≥ 0 if and only if x̂

solves the differential equation (5.115) for ξ ≥ 0 and in addition satisfies the identity

Π̂sp
L′(η∗) êv0 x̂ = 0. (5.146)

The final ingredient we need to prove Theorem 3.16 is to compute the modified spectral projection
of the Green’s function associated to an MFDE.

Lemma 5.11. Consider any bounded linear operator L : C([−1, 1],Cn)→ C
n. Then for any z∗ ∈ C

that has Re z∗ > 0, we have the identity

Π̂sp
L (z∗) êv0 ĜL = 0. (5.147)

Proof. Let us pick an arbitrary α > 0 and write

FL(ξ) = ĜL(ξ)−H+
α (ξ)I, (5.148)

which is a continuous function that has Fourier transform

F+(FL)(ν) = ∆−1
L (iν)− 1

α+ iν
I. (5.149)

In particular, we can repeat the calculation in the proof of Lemma 5.3 up to the first line of (5.40)
and write

[Π̂sp
L (z∗)êv0 FL](θ) = Resz=z∗e

zθ∆L(z)−1T1(z) (5.150)

in which we have

T1(z) = − α
z+αHz,α(0)I − 1

z+α

∫ 1

−1
dµL(σ)Hz,α(σ)I

= − α
z+αI −

1
z+α

∫ 0

−1
dµL(σ)ezσI − 1

z+α

∫ 1

0
dµL(σ)e−ασI,

(5.151)
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where µL here denotes the usual measure associated to L via (3.30). On the other hand, we can
write

[Π̂sp
L (z∗) êv0H

+
α I](θ) = Resz=z∗e

zθ∆L(z)−1T2(z) (5.152)

and directly use the definition (5.140) to compute

T2(z) = I +
∫ 1

0
dµL(σ)ezσ

∫ 0

σ
e−(z+α)τdτ

= I − 1
z+α

∫ 1

0
dµL(σ)ezσ + 1

z+α

∫ 1

0
dµL(σ)e−ασ

= I − 1
z+α

∫ 1

−1
dµL(σ)ezσ

+ 1
z+α

∫ 0

−1
dµL(σ)ezσ + 1

z+α

∫ 1

0
dµL(σ)e−ασ

= α
z+α + 1

z+α∆L(z)

+ 1
z+α

∫ 0

−1
dµL(σ)ezσ + 1

z+α

∫ 1

0
dµL(σ)e−ασ.

(5.153)

Recalling that the term involving ∆L(z) in T2(z) can be neglected in the residue computation, the
proof can be completed by comparing the expressions (5.151) and (5.153).

Proof of Theorem 3.16. Without loss of generality we will suppose that η∗ > 0 and that η = 0. In
view of Lemma 5.10, we may use the characterization [16, Lem. 5.4] to conclude that

qI,M (0) = QL′(0). (5.154)

We have already seen in §5.2 that

Q̂L′(0) = QL′(0)⊕ span
Cn{ĜL′}. (5.155)

Furthermore, Lemma’s 5.10 and 5.11 together imply that ĜL′ in fact solves the differential-algebraic
equation (5.93), which implies the identity

q̂I,M (0) = qI,M (0)⊕ span
Cn{ĜL′}. (5.156)

In particular, we conclude that Q̂L′(0) = q̂I,M (0), which concludes our proof.

5.4 Nonlinear Equations

We are now ready to study the local stable manifold of the nonlinear equation

Ix̂′(ξ) = M êvξ x̂+M
(
êvξ x̂

)
(5.157)

near the zero equilibrium. We employ the classic Lyapunov-Perron fixed point method to construct
the stable manifold.

As a first step, we need to study the linear inhomogeneous equation

Ix′(ξ) = M evξ x+ f(ξ). (5.158)

Recalling the function Jα and the integers `1, . . . , `n from (HM), we introduce the product spaces

WJη (R,Cn) = W `1,∞
η (R,Cn)×W `2,∞

η (R,C)× . . .×W `n,∞
η (R,C), (5.159)

where as usual we make the interpretation W 0,∞
η (R,C) = L∞η (R,C). On account of the structure

of the differential-algebraic system, we will only need to solve (5.158) for inhomogeneities f ∈
WJη (R,Cn).
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For any η ∈ R, we define the linear operator

ΛI,M : W 1,∞
η (R,Cn)→WJη (R,Cn) (5.160)

that is associated to (5.158) and defined by

ΛI,Mx = Ix′(ξ)−Mevξx. (5.161)

We note that it is not immediately clear that this operator indeed maps into WJη (R,Cn). In order
to clarify this, we recall the operator L appearing in (HM) and write

ΛL : W 1,∞(R,Cn)→ L∞(R,Cn) (5.162)

for the operator defined by

ΛLy = y′(ξ)− L evξ y. (5.163)

In addition, for any f ∈ WJη (R,Cn) we introduce the notation

Jα(D) =
(
(D − α)`1f1, . . . , (D − α)`nfn

)
∈ L∞(R,Cn) (5.164)

where D is the differentiation operator. We now have the following result.

Proposition 5.12. Consider the system (5.158) and suppose that (HM) is satisfied. Suppose fur-
thermore that the accompanying characteristic equation

det ∆L(z) = detJα(z)δI,M (z) = 0 (5.165)

admits no roots with Re z = η. Then the operator ΛI,M is an isomorphism from W 1,∞
η (R,Cn) into

WJη (R,Cn), with inverse given by

Λ−1
I,Mf = Λ−1

L Jα(D)f. (5.166)

Proof. The arguments used to establish [17, Prop. 6.2] can be copied almost verbatim.

From now on, we will assume that the quantity α appearing in (HM) satisfies α > 0, which
implies that for all η ≥ 0 we have

qI,M (−η) = QL(−η). (5.167)

This allows us to define a normalized solution operator for (5.158) posed on the half line R+. We
have the following result.

Lemma 5.13. Consider the system (5.158) and suppose that (HM) is satisfied and that α > 0.
Then for every η ≤ 0 there exists a bounded linear operator

Kη :WJη
(
[0,∞),Cn

)
→W 1,∞

η

(
[0,∞),Cn

)
∩BC⊕η (5.168)

that satisfies the following properties.

(i) For any f ∈ WJη
(
[0,∞),Cn

)
, the function x = Kηf satisfies (5.158) for all ξ ≥ 0.

(ii) For any f ∈ WJη
(
[0,∞),Cn

)
, we have

ΠQL(η) ev0Kηf = 0, (5.169)

where ΠQL(η) projects X onto QL(η) along PL(η); see (2.19).
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Proof. First, we note that we can proceed as in [17, Eqs. (6.17)-(6.18)] to define a bounded extension
operator

E :WJη
(
[0,∞),Cn

)
→WJη

(
R,Cn

)
(5.170)

such that (Ef)(ξ) = f(ξ) for all ξ ≥ 0. We then write

Kηf = Λ−1
I,MEf − ELΠQL(η)ev0Λ−1

I,MEf, (5.171)

from which the properties (i) and (ii) follow easily, exploiting the identification (5.167).

Let us now turn our attention to the nonlinearity M. For any η ∈ R, we introduce the function
space

Ŷη = B̂C
⊕
η ∩W 1,∞

η ([0,∞),Cn) (5.172)

that has the norm

‖ŷ‖bYη = ‖ŷ‖dBC⊕η + ‖ŷ‖W 1,∞
η

. (5.173)

In addition, for any δ > 0 we introduce the open ball

Ŷ δη = {ŷ ∈ Ŷη | ‖ŷ‖bYη < δ}. (5.174)

Lemma 5.14. Suppose that (HM) is satisfied and recall the integer k ≥ 1 appearing in this condi-
tion. Then the nonlinearityM is locally Lipschitz continuous as a map from Ŷ0 intoWJ0 ([0,∞),Cn).
In addition, M is a Ck-smooth map from

Ŷ δ−η →WJ−η([0,∞),Cn) (5.175)

for any η > 0 and δ > 0.

Proof. The statements follow directly from (HM) and item (iv) of [11, Lem. App.IV.1.1].

We can now set up the fixed point problem that will yield our desired stable manifold. In par-
ticular, let us pick η > 0 in such a way that det δI,M (z) = 0 admits no roots with −η ≤ Re z ≤ 0.
For any ψ̂ ∈ q̂I,M (0) = q̂I,M (−η), we note that any solution to the fixed point problem

û = ÊI,M ψ̂ +K−ηM(û) (5.176)

posed on the space Ŷ−η yields a solution to (5.157).

Proof of Theorem 3.17. The projection operator Π̂bqI,M (0) can be defined as

Π̂bqI,M (0)ψ̂ = ΠQL(0)

[
ψ̂ − êv0 ĜL(ψ̂(0+)− ψ̂(0−))

]
+ êv0 ĜL

(
ψ̂(0+)− ψ̂(0−)

)
. (5.177)

The statements (i) through (iv) can be established in a standard fashion by noting that the fixed
point problem (5.176) has a unique solution û = û∗(ψ̂) ∈ Ŷ0 for all sufficiently small ψ̂ ∈ q̂I,M (0).
The smoothness of the function û∗ follows from the implicit function theorem together with Lemma
5.14.

Proof of Corollaries 3.19 - 3.29. Without loss of generality, we will assume η = 0. We will only
concern ourselves with the statements concerning π−bqI,M (0). First of all, let us write

R = Rangeπ−bqI,M (0) ⊂ C([−1, 0],Cn), K̂ = Kerπ−bqI,M (0) ⊂ q̂I,M (0) (5.178)
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and note that R is closed and has finite codimension in C([−1, 0],Cn), while K̂ is finite dimensional.
In particular, we can can find a finite dimensional space R⊥ and a space K̂⊥ such that

C([−1, 0],Cn) = R⊕R⊥, q̂I,M (0) = K̂ ⊕ K̂⊥, (5.179)

together with a projection ΠR that maps C([−1, 0],Cn) onto R along R⊥ and a projection Π̂ bK that
maps X̂0 onto K̂ along K̂⊥. In the special case that R = C([−1, 0],Cn), we simply use ΠR = I. We
note that

π−bqI,M (0) : K̂⊥ → R (5.180)

is an isomorphism, which allows us to define a bounded inverse

[π−bqI,M (0)]
−1 : R→ K̂⊥. (5.181)

This in turn allows us to introduce a new solution operator K(2) to (5.158) that has the properties

ΠR ev−0 K(2) = 0, Π̂ bK êv0K(2) = 0. (5.182)

Indeed, we may write

K(1)f = K0f − ÊI,M [π−bqI,M (0)]
−1ΠR ev−0 K0f,

K(2)f = K(1)f − ÊI,M Π̂ bK êv0K(1)f.
(5.183)

For any sufficiently small φ ∈ R and ψ̂ ∈ K̂, we can now study the modified fixed point problem

û = ÊI,M [π−bqI,M (0)]
−1φ+ ÊI,M ψ̂ +K(2)M(û), (5.184)

which has a unique solution û = û∗(φ, ψ̂). By construction, we have

ΠR ev−0 û
∗(φ, ψ̂) = φ, Π̂ bK êv0 û

∗(φ, ψ̂) = ψ̂. (5.185)

All the statements in Corollaries 3.19 - 3.23 follow immediately from this characterization. The
statements in Corollaries 3.25 - 3.29 can be established in exactly the same fashion upon studying
the operator π̂−bqI,M (0).
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[7] J. Benhabib, S. Schmitt-Grohé and M. Uribe (2001), The Perils of Taylor Rules. J. Economic
Theory 96, 40–69.

[8] O. J. Blanchard and C. M. Kahn (1980), The Solution of Linear Difference Models under
Rational Expectations. Econometrica 48, 1305–1311.

[9] D. Cass and K. Shell (1983), Do Sunspots Matter? J. Political Economy 91, 193–227.
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