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Lattice equations

Continuous media (PDE) Discrete media (Lattice Equation)

e Fruitful to include structure of underlying space into models.
e Differential equations on lattices (LDEs) are becoming increasingly popular.



Mixed Type Functional Differential Equations (MFDE)

Looking for travelling wave solutions for LDEs, one immediately encounters

2(t) = G(x). (1)
e x is a continuous function with z(t) € R"™.
e x; € C([—1,1]) is the state of x at t, i.e.,

x(0) = x(t +6), 6ec|-1,1] .

e G:(C([-1,1]) — R™ is sufficiently smooth.

Note that @(¢) depends on both past and future values of x.

Eq. (1) is called a functional differential equation of mixed type (MFDE).



MFDE Applications

Lattice equations have arisen in many disciplines.

e Image processing
Chua and Roska (1993): cellular networks for recognizing edges / outlines in
pictures

e Material science (crystals)

Bates and Chmaj (1999): Ising model for phase transitions.

e Biology
Keener and Sneed (1998): signal propagation through nerves with discrete gaps.

Particular focus on direction dependence and propagation failure of travelling
waves.

New numerical methods have been developed to study these features (E. Van
Vleck, C. Elmer, S. Verduyn-Lunel, H.).

Propagation failure analyzed theoretically (J. Mallet Paret, A. Hoffman)



MFDEs vs Delay Equations

Consider the homogeneous MFDE

#(t) = a(t — 1) + x(t + 1).
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(Example due to Harterich, Sandstede, Scheel (2002) )



MFDEs vs Delay Equations

Consider the MFDE

#(t) = a(t — 1) + x(t + 1).

x(t) - 0, X(t-1) =1 ===>x(1+1) =
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e Continuity lost = ill-defined as an initial value problem.



MFDE: Theory

e No semigroup techniques available; RFDE theory not directly applicable.

e Various authors have worked on theory for linear equation
Ax = f, (Ax)(t) = &(t) — L.

— Early work by Bellman and Cooke (1963), Rustichini (1989).

— Mallet-Paret (1999) established Fredholm properties for A.

— Mallet-Paret, Verduyn Lunel (2001) and independently Harterich et al.
provided exponential dichotomies for A.

e Nonlinear theory until recently much less developed.

— Global results by Mallet-Paret (1999) for bistable cubic systems.

— Piecewise-linear cartoon nonlinearities analyzed using Fourier transform
techniques, by C. Elmer, E. Van Vleck, J. Mallet-Paret, J. Cahn, S. Chow,
W. Shen



MFDE: Center Manifolds

Interested in solutions to (2) near equilibria T or periodic solutions x = p.

#(t) = G(x1). (2)

Flow cannot be defined for (2). Mielke and Kirchgassner faced with similar
problem when considering elliptic PDEs, but still managed to construct a CM.

(2006) H. + VL: All solutions to (2) sufficiently close to equilibrium Z lie on a
finite dimensional center manifold. J. Dyn. D:iff. Eqns 19, 497-560.

(2007) H. + VL: All solutions to (2) sufficiently close to periodic solution p lie on

a finite dimensional center manifold ( under discreteness condition on the
Floquet spectrum ). MI report 2007-07; submitted.



MFDE: Center Manifolds

Example: consider the variational equation around an equilibrium =,
o(t) = v(t — 1) +v(t +1) — 20(t) + v(t)*
Construction of CM based upon work by Mallet-Paret on linear operator A.

(Av)(t) = 0(t) — v(t — 1) — v(t + 1) + 20(t).

Substitute v(t) = exp(zt) to obtain characteristic equation,

Alz)=z—e % —e"+2.

We have A(0) = 0 leading to eigenfunction ¢ +— 1 for eigenvalue z = 0.

Write Xy C C(|—1,1]) for the generalized eigenspace for all eigenvalues A(z) =0
on imaginary axis.

Dynamics on center manifold is described by an explicit ODE on X.

Opens up full finite dimensional toolbox in our co-dim setting.



MFDE Applications ||

Lattice differential equations are not the only application of MFDEs.

e Solving optimal control problems with delays.
Hughes (1968): Euler Lagrange equations for such problems are MFDEs.

Benhabib & Nishimura (1979): introduced high dimensional economic growth
optimal control model. Periodic orbits established.

Rustichini (1989): Added delay into framework. E-L equations are MFDE. Even

scalar model now vyields the desired periodic orbits, using Hopf bifurcation
theorem with the CM-reduction.

e Recent models in economic theory lead directly to MFDEs (H. d'Albis and E.
Augeraud-Veron).
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Overlapping Generations

A —A
Individuals

Population

e Proposed by H. d'Albis + E. Augeraud-Véron (2006).
e Population consists of a continuum of individuals, that have fixed lifespan Tj;s..
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Overlapping Generations: The Individual

Consumptionc (o.t) | |Wagesw (o, t)
MAXIMIZE

/_\ | Assets a (o, t )

Interest rate r(t
(1 Birth-time/ f

Actual time

e Each individual wishes to maximize his lifetime consumption, but may not die
In debt.



Overlapping Generations: The Collective
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e Assumption: Consumers can make predictions for interest rate.
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Overlapping Generations: The Dynamics

Population

k(t)

e Equilibrium at ¢y requires summation over all living indv (blue line).
e Condition for k(tp) involves all values k(tg + 0) for 6 = —Tiite - . . Tiife.
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Overlapping Generations: The Mathematics

We have Tiie = 1.

Goal of every individual born at time s is to maximize his lifetime welfare, given by

s+1
/ Inc(s, 7)dr.

Solving this optimization problem shows that the optimal asset distribution a*(s, t)
depends on the interest rates and wages during the lifetime of an individual, i.e.,

a*(s,t) = F(rsi,wsy,t — ),

for some F. Here oy € C([0,1]) is defined by rs1.(0) = (s + 6).

The total amount of capital at any time ¢ is given by

namely the total amount of assets owned by living individuals.
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Overlapping Generations: The Mathematics - |l

The interest rate r(¢) and wages w(t) can be related to the captial k(%).

This allows one to derive an equilibrium condition for the amount of capital k()
in the market at time ¢.

k(t) = f(kt)—oz f*f( +1—t) [7 k()2 expl—a [ k(u)2*~ 'du]dvds
ft . SH *exp|—a [, k(u)?*'duldvds.

Due to all the integrals, a single differentiation leads to the MFDE

k(t) = g(ky).

We call this an index one problem.
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Index 2 example

A slight variant of the model above involves retirement. Also proposed by H.
d'Albis + E. Augeraud-Véron (2005). We now have Ty > 1, while everybody
retires at unit age. Every worker receives wages w = 1, while retired persons

receive w = (.

Welfare now given by

—1

/ e (s, )T
T.
S

1—0-1

Equilibrium condition for the interest rate given by

s+1
1 = /t f eXp ft dS.
t—Tiife f

lelfeexp (1—-o0) ft

We call this an index 2 problem, because 2 differentiations are needed to obtain
MFDE.
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Problems

Recall the equilibrium condition for the interest rate

s+1
1= /t J. el J, —ds
t—Tife f

s+Tiife eXp 1 o ft

e [wofold differentiation leads to MFDE.
e Linearization of MFDE leads to characteristic equation (with T" = Tj;s)

A(z) ~[-Te* 4+ (1 —0)e*t + (Te* =T +1—0)e ' + (T —2+20) + 0T?27.
e Double root at z = 0.
e Periodic orbits interesting from economic point of view.
e Would like to invoke Hopf bifurcation theorem.
e Double root adds annoying resonance.
e Unclear how to lift back solutions.
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Differential-Algebraic Functional Equations

This gives motivation to study the differential-algebraic equation
e The matrix A is singular.

e We require that ¢-fold differentiation turns (3) into a regular MFDE.

e This integer ¢ should be seen as the index of (3), in analogy with finite
dimensional Differential-Algebraic equations (DAEs).

e Want to construct smooth center manifold directly for (3).

e Allows us to capture all solutions to (3) that stay in the neighbourhood of an
equilibrium .
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Overlapping Generations: Hopf bifurcations

Recall the equilibrium condition for the interest rate

+1
:/t J. el Jy 7 —ds. (4)
T f s+Tife

exp[—(1 — o) ft

H + E. Augeraud-Veron + S. Verduyn-Lunel (2007): Center manifold can be
constructed for smooth differential-algebraic equations like (4), J. Diff. Eqns, to
appear.

Flow on center manifold is described by explicit ODE.
Linear part of flow induced by characteristic equation for (4).
Double root at z = 0 thus no longer a problem!

Characteristic equation for (4) can be analyzed explicitly and leads to curves of
Hopf bifurcations in (Tjit, o) plane.
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Overlapping Generations: Hopf bifurcations

o k=1 = k=06 © k=11
o k=2 e k=07 o k=12
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Optimizing of individual welfare leads to periodic cycles in interest rates
periods possible!

. Many
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Smooth Differential-Algebraic Equations of Mixed Type

We set out to construct a center manifold for the smooth differential-algebraic
equation

0 = Lx; + R(xy), (5)
under the assumption that any solution = to (5) automatically satisfies an MFDE

t(t) = Mxy + S(xy).

The nonlinearities R : C([—1,1]) — R and S : C([—1,1]) — R have

0
0

=
=N
=

|
T @
ne
S

|

and are sufficiently smooth.
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Sketch of proof

e Analyze the linear homogeneous equation
0= Lx¢
and determine set N of solutions that grow at most polynomially.
e Analyze the linear inhomogeneous equation
0= Lzg + f(£) (6)
and find an "inverse” K such that x = K f solves (6) and K projects out Nj.
e For y € Ny, construct solution u*(y) for fix point equation

u=y+ KR(u).

This fix point u*(y) is the desired solution of the main equation
Lut + R(Ut) = 0.
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Linear inhomogeneous equations

The important step is to analyze the linear inhomogeneous equation
0= th + f(t)7 (7)

for functions f : R — R.

Due to our smoothness assumption, there exists an integer ¢, such that (up to
constants)

A(z) = 27z — Mexp(2)) = 2" A (2),
where A, is characteristic matrix for the MFDE

z(t) = Maxy.

For f € W%2(R,R"™), we can hence solve (7) via Fourier transform, i.e.

AN

2(n) = A(in) " f(n) = Anr(in) " DEf(n).
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Linear MFDE

Want to construct "inverse” for A : BC,(R,R") — BCf;(R,R”), i.e. for functions

that grow as €"/*l at both 0.

Can be performed by splitting f € BCﬁ(R,R") into
f:q)—f+(1)+f+q)0f7

with

(I):I:f S Wi’(277_|_€) (Rv Rn)a

O.f € CrcWH2RR").

Care needs to be taken to ensure that components remain sufficiently smooth.

The operators @ should be seen as restrictions to [0, 00) and (—o0, 0], while @,
ensures that these restrictions can be taken smoothly.
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Splitting f

Splitting f=®_f+ P, f+ P f = f_ + for + fo,
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Cutoff function

Need to ensure that nonlinearity R is globally Lipschitz.

Normally this is done by choosing cutoff x and writing, for ¢ € C(|—1,1]),

Rs5(¢) ~ x(ll¢ll /0)R(¢)

However, this destroys our ability to take the /-th derivative of R

Need to embed our functions into bigger jet-space.

BCL(R,R") < (BC,(R,RM)™" := BC,(R,R") x ... x BCy(R,R")

(+1 coples

f = (f?Df7"'7D€f)

In the jet space the ¢ + 1 components are independent.
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Pseudo-inverse

The cut-off operators @ and ®, can be extended to act on functions f in the full
jetspace (BCn(R,R”))EH.

In the definitions, each occurrence of D?f is simply replaced by f;.

The pseudo-inverse K, is defined on the jet-space, namely

Kif = A (B3OS + @ f) + A (5Pof + 1)

(n) (=)
K,f = (I-— Py)KE.

Here Py, is projection onto N, the set of polynomially bounded solutions to
homogeneous equations.

If in fact f € BCﬁ(R,R”), then indeed AKCf = f and Py ,Kf = 0.

However, if f ¢ BCg(R,R”) is a true jet-function, then we have no interpretation
of Kf
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Modification of Nonlinearity

Smoothness implies that for any z € C(R,R"), t — R(x;) is C*-smooth.

Nonlinearity R induces substitution map R: BC), — BC’ﬁ, given by

(Ra)(t) = R(xy).

Let R : C([-1,1]) — R™ for 0 < s < £ be such that

D[t — R(x;)] = R (xy).

Modify each component separately with cut-off y.

Leads to globally Lipschitz continuous substitution map Ry : BC, — (BC,)“",
given by

(Rox)s = x(||z]l, /8) R ().
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Fix point equation

Fix point equation now given by
u=1vy-+ /Cnfig(u),
with
e y € Ny a polynomially bounded solution to 0 = Ly.
e u€ BC(R,R").

Can be treated mostly using standard techniques.

Special care needed to ensure that fix points are indeed solutions to our inital
equation.
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