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Abstract

We present an extension of the first proof for the unconditional security of the BB84 quantum
key distribution protocol which was given by Mayers. We remove the constraint that a perfect
BB84 quantum source is required and the proof given here covers a range of practical quantum
sources. Nothing is assumed about the detector except that the efficiency with which signals

are detected is basis and key-bit independent.

1 Introduction

This paper presents an extension of the first proof for the unconditional security of a quantum key
distribution protocol, which was given by Mayers in [15]. The proof given here applies to a more
general class of quantum sources than the perfect single photon source analyzed in [15] and now
covers a range of practical quantum key distribution schemes, which includes the examples analyzed
in [10].

The goal of any key distribution system is to allow two participants, typically called Alice and
Bob, who initially share no information, to share a secret random key at the end of the procedure.
This secret key could then be used by both Alice and Bob to encrypt messages they wish to send to
each other through an insecure public channel they do not trust, so that anybody who intercepts the
encrypted message will learn nothing about the original message. There are many methods available
to encrypt messages, but they all require that Alice and Bob share a private key. As an example
we mention the classic Vernon one-time pad encryption scheme, which requires Alice and Bob to
share a private bit-string k& of length n to encrypt a message m containing n bits. Alice computes

the encrypted message m' via m’[i] = m[i] @ k[i] and sends m’ to Bob, who finds m by computing



m'[i] @ k[{]. An eavesdropper who intercepts the encrypted message m’ but has no information on
the private key k will learn practically nothing about the message m.

If Alice and Bob agree to physically meet before exchanging any secret messages, it is of course
very easy for them to generate and share a secret bit-string. However, in the current information
society in which there are millions of participants who wish to communicate in a private manner,
it is very impractical if not impossible for every pair of parties to meet and exchange keys. One
requires key distribution protocols in which all communication between Alice and Bob is public and
can be monitored by a potential eavesdropper Eve. However, after the protocol has terminated, Eve
should know practically nothing about the key which Alice and Bob share. At the moment, there
are a number of classical key distribution systems which accomplish this task, but they are only
secure by virtue of the limited amount of computational power available to Eve. The classic RSA
cryptosystem for example relies upon the fact that it is extremely difficult to factorize products of
two very large prime numbers. The goal of a quantum key distribution system is to provide users
with the comforting idea that the security of the system depends merely on the laws of nature and
not on the unknown capabilities of adversaries. With the possible rise of quantum computers which
can factorize numbers in polynomial time, it can be argued that this is not merely a theoretical
issue.

A typical quantum key distribution protocol requires Alice to be in possession of a quantum
source and Bob to have a detection unit, which can perform some sort of measurement on the

quantum states Alice sends. In the BB84 protocol, which was proposed by Bennett and Brassard

s

[1], Alice’s source should be able to produce photons linearly polarized at angles of exactly 0, 7,

5 and %”. Alice chooses secretly and randomly a string of basis-bits a € {4, x}" and a string of
key-bits g € {0,1}" = F3. For every index i, Alice’s source produces a photon polarized at g[i|5 if
the corresponding basis bit was + and a photon polarized at 7 4 g[i] 5 if the corresponding basis bit
was X. Bob also chooses a secret string of basis bits b € {4, x}" and measures the polarization of
each photon sent by Alice in the 4 basis or the x basis, depending on b. In this way he determines
a secret bit-string h which reflects the outcome of his measurements. The key observation is that
if Bob and Alice share the same basis-bit for some photon, then g and h will agree, while if their
basis-bits differ, Bob will measure a zero or a one with equal probability. By comparing their choice
of basis a and b after the photon transmissions, Alice and Bob can thus decide where g and h agree
and use this information to define a secret key. Any potential eavesdropper Eve who intercepts
the photons Alice sends to Bob has no information on the basis a Alice is using and thus cannot
conclusively decide on Alice’s key-bits g by performing measurements on the photons. Even worse, if
she wishes to remain undetected, she must resend a photon to Bob, which in general will destroy the

correlation between g and h. Intuitively, Alice and Bob can thus detect Eve with a large probability



of success by randomly choosing half of the exchanged photons where their bases a and b agree and
revealing their key-bits g and h for these photons. If there are too many errors they should abort
the protocol, because Eve may know too much, while if the number of errors is small Eve knows
nearly nothing and a key can safely be defined using the remaining part of the photons.

The key distribution scheme we consider is a minor variant of the BB84 protocol. Since the
introduction of this protocol in 1984, a great deal of effort has been spent in order to prove that it
is secure against any attack by Eve allowed by the laws of quantum physics. Many limited attacks
were analyzed [1, 2, 3, 4, 5, 8, 9, 13], but it was only in 1996 that Mayers provided the first proof of
unconditional security [15]. By now, Mayers argument has been followed up by other proofs of the
security of ideal single-photon quantum key distribution [7, 17]. In particular, in [17] the authors
relate the BB84 protocol to an entanglement purification protocol and give a conceptually simple
security proof.

We note here that unconditional security only means that there is no restriction on Eve’s attack.
It thus does not mean that there is no condition on the apparatus used by Alice and Bob and it is
exactly this point that distinguishes the different security proofs now available. The major advantage
of the framework used in the Mayers proof is that it assumes nearly nothing about the detector Bob
uses, as opposed to e.g. the proof in [17], which requires an ideal detector together with an ideal
source. Here the term ideal means that the equipment performs exactly as specified by the protocol.
In [10] a minor extension of the argument in [17] is used to analyze slight deviations from the ideal
source and detector, but there are still explicit assumptions on the source, channel and detector.
The weakness of the original Mayers proof is the assumption that the source emits perfectly aligned
photons at a rate of exactly one per pulse. In practice, perfect single photon sources are not available
and practical implementations use either dim laser pulses or post-selected states from parametric
downconversion. Unfortunately, both signal types contain multi-photon contributions which might
seriously compromise the security of quantum key distribution. In addition, there is always a slight
spread in the polarization axes of the emitted photons.

In [11], Mayers argument is extended to include multi-photon sources and it is shown that
the security of BB84 is maintained if the fraction of pulses that contain more than one photon is
sufficiently small. This paper deals with the issue of the imperfect polarization, by showing that
the BB84 protocol remains secure if the deviation from the perfect source is small, in a sense which
we will make precise. In particular, our analysis allows for uncertainties in the functioning of the
quantum equipment and even hardware imperfections deliberately introduced by an adversary. We
do not cover the multi-photon situation, but we believe that it is merely a technicality to apply a
similar extension of the type in [11] to the proof given here. Our proof follows closely the lines of

[11, 15] and makes use of the ideas contained therein.



This paper is organized as follows. In Section 2, we define the variant of the BB84 protocol we
will analyze. Section 3 introduces the notion of a quasiperfect source and discusses some practical
types of quantum sources that are included by this definition. We provide exact definitions for the
concepts of privacy and security against tampering in Section 4 and use these definitions to state

our main theorems. The technical proofs of these theorems will be given in Section 5.

2 The Protocol

In this section we define the variant of Bennett and Brassard’s BB84 protocol we shall analyze. Alice
and Bob first together specify a number of parameters, then the quantum transmissions take place
and finally a classical negotiation is performed to define the key.

We employ a so-called randomizing box in the protocol, which is assumed to act independently of
Alice and Bob and in addition is trusted by both Alice and Bob. In particular, we shall assume that
Eve cannot get at the information in the box before it is announced and Eve cannot intercept the
announcement of the basis-bit to Bob in step (QT5). The presence of this box is merely a technical
convenience in the proof and poses no real restriction on the protocol, since the box may simply be
taken to be Bob’s computer. If Alice does not trust Bob’s computer, she should not be exchanging
a secret key with him in the first place.

The protocol requires that Alice is in possession of a quantum source which, given a basis-bit
a € {0,1} and a key-bit g € {0,1}, produces some quantum state pg, which need not necessarily
be pure. Alice should also be able to send this quantum state to Bob along some quantum channel
which is vulnerable to attack. In Section 4 we shall introduce the constraints on the quantum source
and pre-agreement parameters which are necessary in order for the protocol to be private. However,
we shall assume nothing about the quantum channel or the measurement performed by Bob, except
that Bob’s detector efficiency is basis-independent. Of course, if the key distribution system is to
be practical in a sense that Alice and Bob often share a key at the end of the protocol, both Bob’s
equipment and the quantum channel will have to be adequate. The beauty of Mayers argument [15]

is that these two issues of privacy and usefulness are cleanly separated from each other.

Pre-agreement

Alice and Bob together specify the following operating parameters.
P1. The length m of the private key to be generated.

P2. The threshold ép > 0 for the error rate of the validation test.



P3.

P4.

P5.

P6.

The number of bits n > m which should be used for the validation test and for the key

definition.

A positive constant ey such that Niotal = 2[5(4 4 €x)n] is the number of quantum signals to

be exchanged, where [z] denotes the smallest integer which is at least as large as z.

A security parameter € > 0, which directly determines the asymptotic security level of the

protocol.

A r X n binary parity check matrix F' for some integer 1 < r < n and a m X n binary privacy

amplification matrix K. See Appendix B for more information on parity check matrices.

Quantum Transmission

Alice and Bob repeatedly perform the following procedure, until the number of successfully ex-

changed photons is Niota1- Each time a random choice has to be made, this should be done using a

uniform distribution, i.e. every possibility should have equal probability to occur.

QT1.
QT2.
QT3.
QT4.

QTS5.

Alice chooses randomly a basis-bit a and a key-bit g.
Alice announces to Bob that she is about to send a signal.
Alice prepares the state pg and sends it to Bob.

Alice announces the signal has been sent.

Bob requests a random basis-bit b from the box if the previous one has been used. If Bob
receives a signal, he performs a measurement on the received state, giving a value h. He
informs Alice that the photon has been received and the number of successfully exchanged
photons is incremented by one. If Bob does not receive a signal, he announces this and does

nothing, retaining the basis-bit for future use.

Classical Negotiation

Alice and Bob go through the following steps and checks. If one of the checks is not passed, the

protocol is aborted and Alice chooses her key < randomly from F5* in such a way that each < € F3’

has equal probability to be chosen. As in the quantum transmission phase, all random choices should

be made using a uniform distribution.

C1.

C2.

The randomizing box announces Bob’s basis be IFéV total and a random set R containing Nigar /2

positions, which will be used for the verification test.

Bob announces h[R].



C3.

C4.

C5.

C6.

7.

Cs.

C9.

3

The randomizing box announces a random permutation 7 of the Niota elements.

Alice announces her basis @ € F5"***! and Alice and Bob calculate the set Q = {i | a[i] = b[i]}

on which their bases agree.

Alice and Bob check that the number of positions in R on which their bases agree is at least
n and that the same holds for R = {i | i ¢ R}.

Let Sp be the set that contains the first n positions in QN R, where first refers to the ordering

which results after applying the permutation 7. Alice announces ¢g[Sp].

Alice and Bob check that the number of differences dg, between h and g on Sp satisfies

dg, < |6pn], where |x] denotes the largest integer y satisfying y < .

Let Sk be the set that contains the first n positions in Q N R, where first again refers to
the ordering which results after applying the permutation 7. Alice announces the syndrome
§= F§[Sk] and defines the key K = K g[Sk].

Bob applies error correction to his bits H[S;g] using the syndrome § to get A’ [Sk] and defines

the key Kp = K % [Sk]. See Appendix B for details on error correction.

The source

In the BB84 protocol one requires a source with takes as input a basis-bit a and a key-bit g and

produces a state pg over some finite dimensional Hilbert space Hsy.. We shall prove the security of

BB84 for a special class of sources which we call quasiperfect sources. In this section we introduce

and discuss this notion, which is defined formally below.

Definition 3.1. A source which emits quantum states {p¢ Zigi over some finite Hilbert space Hgyc

is called quasiperfect with parameters (B,p,7qp) if there exist projection matrices QY and @g for

a=0,1and g =0, 1, such that the following conditions hold.

S1.

S2.

S3.

S4.

S5.

QY+ QL :@24—@}1 =1y, fora=0,1.
We have the identity p§ + p§ = p§ + p and correspondingly define H = pJ + pd.
TrQ9H =1fora=0,1and g =0,1.

There exist unitary T, such that TIQIT = @g for a = 0,1 and g = 0,1. In addition,
TIHT, = H for a=0,1.

@2H@}1 =0fora=0,1.



S6. @gp%@g = ~gp;@g for a = 0,1 and g = 0, 1, where we have introduced the notation @ = 1 —a.

S7. There exist unitary S, such that both SIQ9S, and SipJS, are diagonal for a = 0,1 and

g =0,1. In particular, this means that Q¢ and pJ commute.
S8. TrQ9pd < B for a=10,1 and g =0, 1.

S9. Letting A9 be the set of eigenvalues of the Hermitian matrix Q9H — @gH and defining
AY =3 5 cns [Al, we have A§ <, fora =0,1and g =0,1.

O

The following lemma states some elementary properties of a quasiperfect source which follow

directly from the definitions given above.

Lemma 3.1. Consider a quasiperfect source with the corresponding matrices @g, Q¢ and H and let
AY be defined as in (S9). Then the following identities hold for all a = 0,1 and g =0, 1.

QUpLQL = -QUpZQL,
TrQlp, = TrQLpl, (1)
A0 — AL

Proof. The first identity follows immediately from properties (S2) and (S5). The last two identities
follow immediately from (S2) and (S1). O

In order to give some insight on the practical value of the above rather technical definition of
a quasiperfect source, we give two examples of such a source. In particular, we show that our
definition encompasses the ideal single-photon source analyzed in the Mayers proof [15] and we give
a nontrivial example which is very important for practical key distribution schemes.

We recall that an ideal BB84 source emits the states pg = |¥(a, 9))(¥(a, g)| with

m(o,o):(é), \1/(0,1):<(1)> 2)

and



for ¢ = 0,1, where R(«) is the unitary rotation matrix with angle a. It is easy to see that this ideal
source is also quasiperfect with parameters (0,0), by taking Q9 = Q9 = p9, Sy = 1 and S; = R(—7%).

We now give the nontrivial example of a quasiperfect source which can be seen as a generalization
of the ideal BB84 source. To do this, we consider probability distributions on the interval [0, 27]. If
p is such a distribution, we define the quantities

27 27

sp = [, pla)sin(2a)da, o = Jy pla)cos(2a)da, (5)
s = [Tp)sin(@)da, P = [7pla)cos*(a)da.

For any angle ¢, we define the shifted distribution p® by p?(a) = p((a + ¢) mod 27r).

Theorem 3.2. Consider two probability distributions po(a) and pi(a) on [0,27] and define the

angles ¢, = %arctan i:: for a =20,1. Then the source which produces the states

27
pi= [ pa(@)R(@) IPR()da (6)

is a quasiperfect source with parameters (Bqp, Vqp), Wwhere

(2 (@)

Bep = max (Spqsovspm)v
0 1
Ygp = min (2’8111((151 — ¢g — %)| ,2|sin(¢07¢1 — §)|)

Proof. We start by calculating

R(a)'IYR(a) = (

8q0 cos? o + §g1 sin® « (—1)93 sin 2cx )

(—1)9% sin 2 840 8in” @ + 547 cos? a
Now recalling that sin (2(cc — ¢)) = sin 2a cos(—2¢) + cos 2a sin(—2¢), we see that

Spa = COS(—20q)sp, + sin(—2¢q)cp, =0, (9)
by definition of ¢,. This allows us to write

pe = 7T p% (@) R(a + 6a) TYR(a + ¢o)da

2m

R(%)T( . p%(a)R(a)TIgR(a)da)R(¢a)

5900(2)a + 6918(3))(1 0
= R<¢a)T Pa ba (2) (2) R(¢a>'
0 SQOSP% +5glc P

Pa”

(10)

Now notice p§ + pb = o8 + p} = 1, = H. Defining Q9 = R(¢a) I?R(¢,) and S, = R(~¢.),

we immediately see that S, simultaneously diagonalizes Q9 and pd for a = 0,1 and g = 0,1. It is
(2)

also easy to see that Tr Q9pd = 8 g0

define

which establishes the claim about the parameter 3,,. We also

~ 4 (11)



Since

1 (=1 1 0 A (12
(-1)9 1 0 -1 (-1)9 1 ’

one immediately verifies (S6) by rotating the axis system over —¢,. Condition (S4) is satisfied if
one defines Ty = R(¢1 — § — ¢o) and T1 = R(§ + ¢o — ¢1). Finally, we calculate

(13)

sin? —lgn
Aa - R(_dja)T(Qg - QS)R(_(ZS@) == ( S (¢a) 2 S 2¢a ) 7

—3sin2y, - sin? (1))

in which 1 = ¢1 — ¢o — § and 91 = —y. Since the eigenvalues of A, are £sin(v,), the statement
in the claim about the parameter 74, immediately follows using Lemma 3.1, if we notice that in the
s

definition (11) we could have flipped the sign in front of the angle 7.

O

Remark 3.1. If the probability distribution p, is symmetric around some angle oy, then ¢, = aq.
The theorem shows how the parameters (Bqp, Yqp) quantify the deviation of a quasiperfect source from
the ideal BB84 source.

The theorem above illustrates how a security proof which holds when a quasiperfect source
with small parameters (8gp, v4p) is used will significantly generalize the applicability of the original
Mayers proof and will cover a range of practical quantum key distribution schemes. In particular,
since it is never possible in real life to perfectly align the polarization of the emitted photons, the
possibility to allow a small angular spread in these polarization axes is an essential element of a
practical security proof. We remark here that in Theorem 3.2 we required that the shape of the
probability distribution which governs the alignment of the photon only depends on the basis-bit
and not on the key-bit. However, a convenient way to construct a source that satisfies property (S2)
is to introduce an auxiliary system A’ with associated Hilbert space H /. One then produces an
entangled state ps 4 and performs a measurement M,, which depends only on the basis-bit a, acts
only on the system A’ and has two possible outcomes. If the key-bit g is determined by the outcome
of the measurement M,, the shape of the probability distribution depends only on this measurement
and hence only on the basis-bit a, which justifies the practicality of our assumption.

In this framework it is also possible to analyze the situation in which Eve performs a limited
basis dependent attack, as discussed in [10]. This situation arises for example when we assume
that Eve has supplied to Alice the source used for the quantum transmissions. She could then have
programmed the source to rotate the emitted photon slightly (relative to the ideal source) if the
corresponding basis bit was a 0. She might even let the source vary the cheating strategy. However,
as long as Eve does not know during the quantum transmission phase which cheating tactic the

source is going to apply, it is sufficient to analyze the situation in which the source always emits the



averaged state pg. We note here that this assumption means that Eve and the source do not share
any non-constant correlated random variables. This includes among others the absolute time and
the number of already emitted photons.

Of course, the issue remains how one can test whether or not a source is quasiperfect and
estimate the parameters. In [14], the authors describe the issue of testing uncharacterized quantum
equipment. They show how to construct a so-called self-checking source which is guaranteed to be a
perfect BB84 source. However, their arguments assume that some specific probability distribution
is known exactly, which is of course never the case. We remark that it may be possible to adapt

their argument to include quasiperfect sources, but we do not discuss this issue here.

4 Main results

In this section we state our main results, which concern the privacy and reliability of the BB84
protocol we discussed in Section 2. We shall consider the BB84 protocol in which a quasiperfect

source with parameters (8yp, Yqp) is used and where in addition the conditions below hold.

Assumption 4.1. Let )\ be such that

A
1—A

1
Op 2 S+ Byp. (14)

The minimal weight d,, of linear combinations of rows from F and K that contain at least one row
from K satisfies d,, > 2(ﬁ5p + %qu + €)n, where the weight of a bit-string ¢ € FY is defined to
be the quantity d(7, 6), i.e. the number of ones in v. In addition, the matrix F is the parity check
matriz of a linear code which can correct [(dp + €)n] errors. Finally, Bob’s detector efficiency is
basis and key-bit independent, i.e. the probability that a photon is successfully exchanged between

Alice and Bob is independent of the basis-bit used by Bob and the key-bit chosen by Alice.

Consider any possible attack by an eavesdropper Eve on the BB84 protocol. In general, Eve will
record all the classical messages announced by Alice and Bob and perform a number of operations and
measurements on the quantum states transmitted through the quantum channel, possibly combined
with measurements on auxiliary systems. Such an auxiliary system could for example be a random
number generator in order to introduce a certain randomness in the applied eavesdropping tactic.
After completion of all her operations, Eve will have acquired a vector v of information of some kind,
which we will consider to be an element in the set V of all possible outcomes of her experiments.
We will consider the situation in which Eve has a fixed strategy for eavesdropping, that is, if all the
measurements on the external systems yield the same outcome and all the classical announcements
by Alice and Bob are the same, then Eve will perform the same operations and measurements on

the emitted quantum states. In this framework, the eavesdropping tactic employed by Eve defines

10



a probability distribution P on the product space F3* x V, where P(R,v) denotes the probability
that the key defined by Alice is K and the information obtained by Eve is v. If Alice and Bob want
the key they share at the end of the protocol to remain secret, then for any tactic employed by Eve
the outcome v should yield very little information about the key K. This measure of correlation is

conveniently expressed by the Shannon entropy Hp(R | v), which is defined as

Hp(i|v)=— Y Y P(#wv)log, P(i | v). (15)
REFY veV

Here P(R | v) = P(R,v)/P(v) denotes the conditional probability distribution of & given v. Note
that in the ideal case the random variables ¥ and v are independent and each key K is equally

probable, which means P(R,v) = P(R)P(v) = 27" P(v). This immediately implies H(R | v) = m.
Our main result is expressed in the following theorem, which states that, under suitable operating
conditions, the maximal deviation from the ideal value of the conditional Shannon entropy that Eve
can achieve decreases exponentially as n increases, even if the rate of key generation m/n is kept at

a constant level.

Theorem 4.1. Consider the BB8/ protocol in which a quasiperfect source with parameters (3,7) is
used and suppose that the conditions in Assumption 4.1 hold. Consider any eavesdropping strategy
that Eve can employ and let V be the set of all possible outcomes of her measurements. Denote by
P the probability distribution on the space F5' x V associated with the random variable that gives
jointly the key K € Iy defined by Alice and the information v obtained by Eve. Then there exist two
functions €1(n,m,€) and N(€), which are both independent of the strategy employed by Eve, such
that

Hp(R|v) >m—e(n,m,e), (16)

or alln > €). Moreover, for any A > 0, there exist constants p(A,e) > 0 an ,€) >0, suc
f ll N M. f A>0, th ) A 0 and C(A 0 h
that

0 < e1(n,m,e) < C(\, e)eHrm (17)

for all m which satisfy m < An.

The proof of this theorem will be given in subsequent sections. For the moment, we remark that
Corollary B.3 implies that the number of rows r of a parity check matrix F’ which meets the conditions
in Assumption 4.1 can be chosen to satisfy r/n ~ Hs(2(6p + €)), where A(n) ~ B(n) means
lim,, % =1 and H, is the binary entropy function Hy(z) = —(zlogy z + (1 — z)logy(1 — z)).
In view of this value for r, Lemma’s B.2 and B.4 imply that we can choose a privacy amplification

matrix K with m rows that satisfies Assumption 4.1, where
1 3
m/n ~1—Hy(2(6p +€)) — Ha(2(6p + Bgp + 3 Yap + 5<-:)). (18)

11



To obtain this expression we have substituted ﬁép ~ op + %e + Bqp- We can thus use the BB84
protocol to generate keys at the asymptotic rate m/n given by (18), where the privacy level of
the protocol increases as n increases. In the case where B4, = 74p = 0, this means we can choose
dp = 5% and still generate key-bits at a rate of m/n ~ 6.2%.

We remark here that the rate (18) is only a worst-case bound and is far from optimal. In par-
ticular, if one relaxes the requirement that the error correcting code can correct all errors with
weight less than (dp + €)n to the requirement that this can be done with probability exponen-
tially close to one, it is possible to choose r/n ~ Hy(dp + €). Furthermore, in Remark 5.1 we
conjecture that it is possible to improve the third term in (18), which would lead to the bound
m/n ~1— Hy(6p) — Hy(0p + Bgp + 37qp), Where we have taken e ~ 0.

It still remains to address the issue of the reliability of the BB84 protocol. In the situation that
all the verification tests succeed and Bob and Alice have both defined a key Kp and < respectively,
they will need some assurance that they indeed share the same private key. This is guaranteed by

the following theorem.

Theorem 4.2. Consider the BB8/ protocol in which a quasiperfect source with parameters ([3,7) is
used and suppose that the conditions in Assumption 4.1 hold. Then there exists a function es(n,€),
bounded by es(n, €) < C(e)e PO for some C(e) > 0 and D(e) > 0, such that for any tactic employed
by Eve, P(k # kg N'P) < ea(n,¢€), in which P(k # kg N'P) denotes the probability that the keys

defined by Bob and Alice are not equal while all the verification tests have succeeded.

Proof. We consider the case where @, l_;, g, hand S = Sp U Sk are fixed but where R and 7 may still
vary, that is, we do not know the partition of S into Sp and Sx. We write P’ for the conditional
probability distribution induced by this situation. Since R and 7 are uniformly distributed and are
only announced after Bob has made his measurement to determine h, each partition of S is equally
probable. Let E = dg(g, i_i) denote the total number of errors on S. The error correcting code
employed in the protocol can correct [(dp + €)n] errors, which means the keys defined by Alice and
Bob will only differ if dg, (g, h) > [(6p 4 €)n], while the test P only succeeds if ds, (g, h) < |6pn].

First suppose that E > dpn + (dp + €)n. Then

[6pn] E 2 ) )
Pr#rpnP)<278 ) <Z> <c2(8) 7 < =T rrion, (19)
i=0
where we have used Corollary A.4 with p = % and t = % — Lﬁ’;nj > . Now suppose that

E < dpn+ (6p + €)n. Then

E 2 32
, _E E —2(4(@p+iom) /B f%((l”i’if )n
P(H#KJBHP)SQ E ] <e 2 2 <e P2 , (20)
i=[(dp+e)n+1]

12



Les 3 .
3 and t = LIW -32 M Summing over

all conditional probabilities P’ completes the proof. O

where we have used Lemma A.3 with p =

5 Proof of Main Result

In this section, we set out to prove our main result Theorem 4.1. To do this, we first introduce two

new protocols which differ from BB84, but for which it is easier to analyze the attack by Eve.

5.1 Reduction

We shall refer to the first modified protocol as BB84M. It consists of the following modifications to
the BB84 protocol defined in Section 2.

e Before the quantum transmission, the box announces to Alice through a completely secure

channel the positions R.

e In step (QT5), the randomizing box announces the bit bto Bob, defined by b= bif the position

under consideration is in & and b = b otherwise.
e In step (C1), the randomizing box announces b for all positions, as usual.

Note that Bob doesn’t know a priori which positions are in R, so during the transmission phase
he will not know which basis-bit will be announced by the box. The intuitive idea behind this
modification is that in this situation, Bob has measured in the wrong basis for all the positions in
Sk and thus has no information about Alice’s key. This modified procedure hence does not define a
key distribution system, but is used only in the proof. In this light, we do not need to worry about
the practicality of any of these modifications (for example, the private announcement of R by the
box to Alice). All that is required is that in principle it is possible. The usefulness of this modified
protocol is established by the following result.

Proposition 5.1. For any strategy adopted by a potential eavesdropper Eve, the random wvariable
giving jointly Alice’s private key and the information gathered by Eve has the same probability dis-

tribution in both protocols.

Proof. The only thing that has been changed is the announcement of the basis-bit from the ran-
domizing box to Bob, but this cannot be intercepted by Eve due to the assumption on this box.
Since Alice’s choice for @ and g are equivalent the emitted states are also equivalent. Since Bob’s
detector efficiency is basis independent, the subsets of photons which are successfully exchanged

during the quantum transmission phase are equivalent. Also the information announced by Bob and
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the randomizing box is exactly the same, since on R the outcome of Bob’s measurement is unmod-
ified. Alice does not use the announced string R during the transmission phase, so this makes no
difference. So all the information which could be obtained by Eve, from either the quantum channel
or the classical announcements, remains completely equivalent and thus the associated probability

distributions are equal. O

We have seen that it is enough to prove the privacy in the modified protocol BB84M discussed
above. However, if we can prove privacy in a further modified protocol BB84MM in which Eve
receives more information than in the above protocol and can have a larger influence on the an-
nouncements, then this will immediately also imply privacy of the BB84M protocol and hence the
original BB84 protocol.

In particular, we shall consider BB84MM which consists of the following further modifications
to BB84M.

e Alice generously announces g[Sk]| in step (C6) instead of merely g[Sp].

e Eve and Bob work together, that is, Bob tells Eve the announcement of the basis-bit he receives

from the box and they together perform any measurement they want to determine a vector h.
e Bob announces the complete vector A before the announcement of R by the box in (C1).

The next proposition shows that it is indeed sufficient to prove the privacy of BB84MM against
all possible attacks.

Proposition 5.2. Consider any eavesdropping tactic Eve can employ on BB84M and let P be
the probability distribution of the resulting random wvariable which gives jointly Alice’s key and the
information gathered by Eve . Then there is a corresponding eavesdropping tactic on BB8/MM with
probability distribution P’ that satisfies Hpr < Hp.

Proof. Notice that for any tactic on BB84M Eve can do exactly the same thing to eavesdrop on
BB84MM., by letting Bob perform the same measurement as in BB84M to get h. The only difference
is that now Eve receives more classical information than she did in BB84MM, i.e. v/ = (v, Coxtra)s
where v’ is Eve’s information in the BB84MM protocol and v denotes the information gathered in

the BB84M protocol. We compute

Hp = ReFp > vey P'(R,v') logy W = 2 ReFp Dovev PR 0) 2o o FI);EgZ,)) log, Plfég,);)/)
< Trerp Toev PR 0% (Tevo ey pisen) = Hr,

(21)
in which the inequality follows from Lemma A.5. Here we have used the notation chxmlv to denote
the sum over all Coxtra for which (v, Coxtra) € V'.

O
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Notice that this final reduction makes it possible to consider Eve and Bob as a single participant

we shall call Eve-Bob, who wishes to find out as much as possible about Alice’s key.

5.2 Formalism

In this section we describe the formalism used to model Eve-Bob’s attack on BB84MM. The system
encountered by Eve-Bob can be seen as a state in a Hilbert space H,ys = He ® Hg, where H¢ is
a Hilbert space which describes all the classical bit-strings generated during the protocol by Alice
and the randomizing box and Hg = ®£V:“1’tal Hsre is the state space for the ensemble of transmitted
quantum states. We have H¢e = span{|c)}.cc for some set C of states which we will define later.
Each state ¢ € C' will correspond to a classical bit-string and since these bit-strings can be perfectly
distinguished from one another, the corresponding states are all mutually orthogonal.

Any quantum state in a Hilbert space H is fully defined by the corresponding density matrix,
which is a Hermitian linear operator p : H — H that satisfies Tr p = 1 and (z, pz) > 0 for all z € H.
For finite dimensional Hilbert spaces such an operator is described by a Hermitian nonnegative
matrix with unit trace. The density matrix p,,s for any state in H,ys encountered by Eve-Bob can
be written in the canonical form

psys = D P(O)le)(c] @ p, (22)

cev
where V' is a subset of C' and P is a probability distribution on V', i.e. P(c) >0and )’ . P(c) = 1.
For notational convenience, we define the concept of a measurement operator, which will be used

to describe measurements on quantum systems.

Definition 5.1. A measurement operator on a Hilbert space H is a linear Hermitian operator
F : H — H that satisfies (x, Fz) > 0 for all x € H. O

The result of a general measurement on a system described in a Hilbert space H can be seen
as an outcome of a random variable ¢ reflecting the measured physical quantity. The probability
distribution of the outcomes can be described using a positive operator valued measure, defined

below.

Definition 5.2. A positive operator valued measure (POVM) on a Hilbert space H consists of
a set of outcomes @ together with a set {F,}qcq of measurement operators on H, such that
> geq Fq = 1. For every outcome ¢ of the measurement, the probability of obtaining that outcome

when performing the measurement on a system with state p is given by Tr F,p. [

We note here that the POVM description can include measurements performed on external
systems and possible probes attached to the state p. We refer to [16] for a general discussion on

generalized measurements.
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Eve-Bob’s attack can be seen as a generalized measurement on the emitted state and thus can
be described using the POVM formalism. Actually, two measurements are performed: one before
the classical announcements by Alice and the randomizing box and one after these announcements.
However, it is technically easier to describe the attack as a single POVM acting on the complete
state psys. We will use the restriction that the measurement of h is made before Alice and the box
make their announcements to derive a constraint on the form of the POVM. To reflect the special
nature of the classical announcements, we may assume that we can decompose every measurement
operator on Hy,s as a sum of terms II¢ ® E°, where II¢ is a projection operator which can be
written as IIY = 3 __ , |c)(c| for some subset A C C' and E¥ is a measurement operator acting on
the state space Hg of the photons. Now we may always assume for Eve-Bob’s POVM that each
measurement operator consists of a single term, as we can otherwise split the measurement operator
into multiple operators. This gives more detailed information than the original POVM and hence
has a lower conditional Shannon entropy, as can be seen from the proof of Proposition 5.2.

From now on, we will omit the vector sign on bit-strings if the distinction between a bit and a
bit-string is clear from the context. The set of all classical states is given by C' = {(a, g, 7, R, s)},
running over all possible combinations, noting that the syndrome s is a function of all the other
classical variables. We consider the string b announced by the box to Eve-Bob to be fixed during our
analysis and since Bob’s basis b can thus be calculated given R, we do not include b as part of the
information in C'. As a further convenient restriction, we assume that the set C' contains only those
classically generated bit-strings that pass the verification test (C5). Since the key chosen by Alice is
perfectly uniformly distributed if this test fails, it is possible to impose this restriction without loss
of generality.

The classical announcements received by Eve-Bob are y = (a, g[Sx], R, s, 7) and we define ) to
be the set of all such announcements y which are possible under the restriction that the test (C5)
passes. The complete view v that Eve-Bob gets from her measurements is given by v = (y, l_i, ),
where j describes any additional information Eve-Bob can infer out of her measurements. Thus Eve-
Bob’s attack can be described by a POVM {F,} in which F, = H?(f(v) ® E5. To reflect the fact that
the measurement of h is also a POVM and occurs without any knowledge of the classical outcomes,
we may write Evl n e = 1y, ®E,€ for some measurement operator E,f . For convenience, we assume
that the set V is finite, which is a reasonable assumption due to the nature of any measuring device.
However, it is merely a technical issue to extend the argument given here to infinite sets V), so this
discussion can be avoided. Without loss of generality, we may also assume that P(v) > 0 for all
v € V, since any view with P(v) = 0 does not contribute to the conditional Shannon entropy. Finally,
we need only consider attacks for which P(P) > 0, where P C V is the subset of V which consists

of all views v which pass the verification test (C7). Indeed, if this condition is not satisfied, the
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protocol is trivially secure since then the key that Alice chooses is independent of her interactions

with Eve-Bob. We summarize the above discussion by defining the concept of a normalized attack.

Definition 5.3. An attack by Eve-Bob on the BB84MM protocol is a normalized attack if it can
be described by a POVM {F, },ep on Hgys, for which the following identities hold.

N1. Every v € V can be written as v = (y, h, j), for some y € Y and h € Fév“’ta‘.

N2. The set V is finite and P(v) > 0 for all v € V, where P is the probability distribution induced
by Eve-Bob’s attack. In addition, P(P) > 0.

N3. For every v € V, the corresponding measurement operator can be decomposed as F,, = 11,

S
y(0)OEy

for some measurement operator Ef on Hg.

N4. For every h € Févt""‘“7 we have Zv‘h F, = 1y, ® E; for some measurement operator Ej on
Hs.

O

The above discussion combined with Propositions 5.1 and 5.2 implies that once we have estab-

lished the following result, the proof of Theorem 4.1 will be complete.

Theorem 5.3. Consider the BB84MM protocol in which a quasiperfect source with parameters
(Bgp> Yap) s used and suppose that the conditions in Assumption 4.1 hold. Then there exist a function
€1(n, m, €) that satisfies equation (17), together with a function N(€), such that for any normalized
attack on the BB84MM protocol (16) holds for all n > N (e).

The next lemma states some very useful properties that the measurement operators satisfy and

will be used often throughout the proof of Theorem 5.3.

Lemma 5.4. Consider a normalized attack on the BB84MDM protocol. For every classical out-

come y € Y, we have Zv|y ES = 1y,. In addition, for every y € Y and h € IFQV“’“'“, we have
S _ s
2ol By = By

Proof. The first identity can easily be seen by noting that for each ¢ € C, there is exactly one classical
outcome y which is compatible. We refer to this outcome as y(c). Each projection matrix Hg is
diagonal on the |c) basis, so we see that (c|IIS|¢) = &, (). But since Y, (c\H(;(U)|c>Ef = 1y, the
identity immediately follows, using the fact that every y has at least one compatible c. The second

identity can be proved similarly using (N4). O

It will turn out to be very convenient to consider the view z = (h, a, R, g[R], ) which gives part

of the information v gathered by Eve-Bob. We write z. = (a, R, g[R], ) for the classical part of
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the view z, together with Z and Z. for the set of all possible views z and z. respectively. Upon

calculating the measurement operator for this partial view, we find
Fo=) F=> 3 F=> Z HC@ES (Ynf) o B,y =S @ By, (29)
|z ylze v|(y,h(2)) ylze v|(y,h(z ylze

which expresses the nontrivial fact that the measurement operator for any z remains a simple tensor

product. With similar reasoning as in the proof of Lemma 5.4 we may conclude that for any z.,
s
Z Ry = Tns- (24)
z|ze
The following lemma shows how we can reduce a trace over the complete space Hys into a trace

which runs merely over the state space for the photons Hg.

Lemma 5.5. Consider a density matriz psys of a state in Hsys = He @ Hg of the form

pays = 3 PO} (c] © pe. (25)
ceV

where p. is a density matriz of a state in Hg and P is a probability distribution on V. Consider a

measurement operator of the form

F= (Y lo) e FS, (26)

ceEA

where A C V. Then for any linear operators W' and W? acting on Hg, we have
Tro,,. (FW?'psysW?) = P(A)Tr 30, (FFW ! pyys aW?), (27)

where pgys. 4 15 given by 1y /Tr 1y, if P(A) =0 and otherwise by

puh = BT > Pl (28)
Proof. We have
Tr (FW poysW2) = 57 57 P()Tr () ele!) ()T (FS W W) (20)
ceAceV

Noticing Tr (|e){c|c}{c'|) = e, We see that the above expression reduces to

> P(O)Tr (FSW'pW?) = Tr (FSW!' Y~ P(c)pW?). (30)
ceEA ceEA
From this the claim immediately follows. O
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Let us consider the setting described in Theorem 5.3. For convenience, we define the function
gln,e) = en 4 6_562”7 which vanishes exponentially as n increases. For any integer N and any
two bitstrings b, w € FY, we introduce the notation QZU = ®i\il Q;“[S] and similarly define @? We
also define, for any z € Z and any constant ¢, > 0, the projection operator Ily(z, e.) via

HO(Zch') - Z Qia (31)
WEW (z,er)
where W(z7e£) = {'LB S Févmtal ‘ dS;c (’lf},ﬁ(z)) > (ﬁé’p + %’}/qp + CL)TL}, in which A is defined by
(14). Using the above definitions, we introduce the subset of views L., C P C V, defined by

L, = {1} eP|Tr [FUﬁO(Z,EL)pﬁo(Z,EL)} < g(n,e)P(v)}. (32)

In [15], views v € L, were said to satisfy the small sphere property. Our approach to proving Theorem
5.3 will be to decompose the state emitted by the source via p = ((Io+(1—1Io)) p(Ilp+(1—1TIo)) and
correspondingly split the expression P(k,v) = Tr Fy ,p. For views which satisfy the small sphere
property we shall use the fact that Tr Fﬁ,vﬁopﬁo is small to bound the differences P(k1,v)—P(k2,v),
which proves that v does not yield a significant amount of information on the key . The following
proposition roughly says that almost every view v € P satisfies the small sphere property, which
makes it reasonable to assume that views which do not possess this property do not pose a large

security threat.

Proposition 5.6. Consider the BB8/MM protocol in which a quasiperfect source with parameters
(Bgp> Yqp) is used and suppose that the conditions in Assumption 4.1 hold. Consider any normal-

ized attack by Fve-Bob on BB8/MM and let P be the associated probability distribution. Then the
inequality P(Le) > P(P) — \/g(n,€) holds.

Proof. We consider a slight variant of BB84MM, which consists of the following modifications.
e For each position in R, Alice’s source produces p; instead of p,.

e For each position in R, Alice applies the unitary transformation Tg pT5 to the photon, which

makes it diagonal in the Q. measurement basis.

e Alice performs a measurement on each photon before sending it to Eve-Bob. For each position
i in R, Alice measures in the @),}; basis, while for each position in R, Alice measures in the

@a[i] basis. Alice records the results as g7 for future reference.

Let p’ denote the state emitted by the source in this modified protocol and write P’ for the probability

distribution defined by Eve-Bob’s attack on this modified protocol. For convenience, we define

0= %. Without loss of generality, we shall assume that the first N‘g““ positions belong to R and
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the second & total positions belong to R. We write v7 = (a, R, g7) for the results received by Alice
and let V7 be the set of all possible results Alice can receive. We can then model the measurement
of Alice as a POVM

{M, =Nr© Qo Rgr[R)Q@ R gr[R)} (33)
vr €V
in which .
Q(a, R7 g [R]) — 2 total Qiﬁ][l] H®%Ncotal’ ( )
s , 34
~— 53 Niota ¢ T
Q(a7 R7 gT [R]) = 1H<§%Ntota1 ® ®i:%]\lfmtal+1 Z‘E][ ]

Notice that in this case, each measurement operator is in fact a projection operator. This allows us
to compute the state seen by Eve-Bob after Alice’s measurement, which is simply IIp/II if II is the
projection operator associated with the outcome received by Alice.

We now define a test 7, which is a function of Eve-Bob’s announcement of h and the results
of Alice’s measurement g7. The test 7 succeeds if the number dg,, (h, g7) of differences between h
and g7 on Sp satisfies dg, (h, g7) < én, while the number of differences ds,. (h, g7) on Sk satisfies
dsy (h,g7) > (6 + 374p + €)n. Formally, we can consider 7 to be a subset of the combined view
Z x Vr. Letting 7 (z) C V7 be the set of Alice’s views which pass the test given a value of z, we

can write 7 = (J,.z 2 X 7(z). We can thus calculate
=Y P(2T(2) =Y P(2|T(2))P(T(2)). (35)
2€EZ 2€Z

The interesting thing to note is that if 7 (z) is true, we know that the state after Alice’s measurement

is given by (Tr¢) 1¢ where ¢ = > vret(z) Loz P'Tluy . Now note that

S oM, =1Spe (> QlaRgr[R)Q@ R gr[R)) =1z @ T ()lo(2),  (36)

vr €7 (2) 9TEG(2)

in which G(z) = {g7 | ds, (97.h) < dnAds.(97,h) = (6 + 37gp + €)1}, Ilo(z) = (2, €) and

> @ (37)
wWEW (z)
where W (2) = {w € FY* | dg, (w, h(z)) > dn}. Here we have introduced the notation X =1—X
and used the fact that b[i] = ali] for every position i € Sk and b[i] = a[i] for every position i € Sp,
together with the completeness condition (S1).
The important observation now is that each emitted photon is diagonal on the basis it is measured

in, which allows us to write

Z I, p'Tloy = ( Z I, )p'( Z ;). (38)

vy €T (2) v €T (2) vr €T (2)
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Now define the projection operators Iz () and Hg(z) via ZUTET(Z) I, =17 = Hng ® Hg(z)
and note that
115 ) = I (=)o (2). (39)

Suppose now that Alice announces the result of her measurement g7 on each photon after Eve-
Bob have announced h. Given the partial outcome of Bob-Eve’s measurement h, Eve-Bob can now
announce a string Rguess, defined by Rguess|t] = 1 @ g7[i] @ h[i], where & denotes addition modulo
two. Denote by 7’ C Z x V7 the set of all events such that Rgyess differs from R on S USp on at
most n(1 — 37, — €) different positions, where we write R[i] = 1 if i € R and R[i] = 0 otherwise.
Then it is the case that 7 C 7", since the total number of differences between Rgyess and R for any
combined view in 7 is bounded by

1 1
d’P(RgueSS7 R) + dlC(Rguessa R) < on + n(l - (6 + 5%11) + 6)) = n(l - 571117 - 6)' (40)

Since Eve-Bob has no classical information when measuring i and in particular does not know
R, a correct announcement for Rgyess|?] for some position ¢ € Sp U Sk corresponds to a cor-

rect distinguishing of the state Qg[:]mH from @%Ti]mH . Here we have used the condition (S3) and

Q%[Ti]m H Qg[:]m = Qg[Ti]mH , together with a similar identity for Q, which both follow from (S4), (S7)
and the fact that each emitted photon is diagonal on the basis it is measured in.

Theorem A.2 in combination with (S9) shows that that the success rate for a correct announce-
ment of Rguess on any 0 < s < 2n positions is bounded from above by (% + %fyqp)s, since each
position in Sk U Sp has probability % to be in R. Thus, even if Eve-Bob chooses the optimal
strategy for determining Rguess Which has success rate pguc = % + ivqp, the probability P/(7’) that

dscusp (Rguess: B) < 2n(3 — 2e — 1/3) can be bounded from above by

1
2n(i+ie+1p)<i<on

O TR SR (o) VR (a1)

in which we have used Lemma A.3 with ¢t = % + %e + %B — Dsuc = %e. This allows us to conclude
the inequality P'(7) < P'(7T') < e~

On the other hand, we can use (35) to compute

P(T) = Y,czP(z17(2)P(T(2))
= Yucz (T Ellr(p/llr) /(T Tlzep) ) (T Tz ) (42)
> ez ToFIlz () p' Tz = 3o .c 2 oI @ B TIZ ) 0TI ).

We can now use Lemma 5.5 to transform the above expression into

PT) = P'(2)Tr (B 115 )0l T3 (). (43)
z2€EZ
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We remark here that the above expression resembles the definition of £ in (32), except for the
presence of the projection operator II;. The idea is that for views in P, II;p'II; =~ p’ in some sense,
since the number of errors on Sp is small. We thus set out to bound the quantity

A=Y"Tr (ang(z) PTE Ly — Fzﬁoplﬁo). (44)
zEP
We can use Lemma 5.5 in combination with the expression (39) for Hg.(z) to explicitly split the sum

over z € P and write
A = ZZCEZC ZZEVZC NP P(ZC)TI‘ Ef (ﬁlﬁop;cﬁlﬁo — ﬁop;cﬁo), (45)

where V,, = {z' € Z | 2, = z.}.

From now on, we shall consider z. to be fixed, so we consider each term in the sum above
individually. Note that z. contains information on the value g for each bit in R. We can thus write p,_
as a tensor product (possibly after reordering bits) p'R®p’§, in which ,0’§ =27 IRIg®IR Let a = a(z.)
and define the unitary matrix U, which diagonalizes p’, , ﬁo and II; simultaneously. Such a matrix
exists due to our assumptions (S7) and (S4) on the source, by letting U, = @ Sa) @ @7 Sa a[k
Note that II; operates only on pgp while I, operates only on p . In addition, since U, dependb
only on the classical part of z, we have for any z € V,

Tr EZS <ﬁ1ﬁopécﬁ1ﬁo — ﬁopécﬁo) =

Tr I‘Jg};ZSrJa(UT (1~ ) UatmU gy o Uat Ul gy (1~ ) Up @
U 00UV g ViU iy DoV ) =

TYUJEEUG( 4 411¢ @ Tid gng),

(46)

where everything marked with a superscript d has been diagonalized.
We now, independently of the non-classical part of z, bound each diagonal element of the matrix

119 ¢ HId@IIdp gl’[d Without loss (possibly rearrange matrix positions) we shall assume the identities

lge O a 0 0
Que={ "0 ], Q= , (47)
0 0 0 1g

¢ = diag(ag 1, .-G gar Ba 15 -5 Baaa)y P = diag (33 1, --ﬂidg,ai,l, : --O‘Z,dg)- (48)
For intuition purposes, we remark that the « values are in general large when compared to the §
values. It is easy to see that (after rearranging), I1{ = H‘i 5p @ Liestr. Also write p/}g = pisflp ® plrgst,.
We now consider the diagonal D™ x D™ matrix I1{ Sp psd7> Hf) sp» Where D is the dimension of the
state space for a single photon Hg... Let w be a string in {0,1,...,D — 1}" and let e(w) be the

corresponding w-th diagonal element of pgip, that is,

T das )
H GSP 7[Z] wli]w(i]” (49)

i=1
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Similarly, we define p(w) to be the w-th diagonal element of Hﬁl’ s, Please note that p(w) = 1 if and
only if dg, (w, h) > én. We can also compute dg, (g,h) < dpn = (1 — A)on, by using the fact that
the test P has passed. Thus using the identity d(w,g) > d(w,h) — d(h, g) > (5 - (1- )\)5)71 = \on,
we see that if p(w) = 1 we must have dg, (w,g) > Adn. Since this last inequality depends only on

the value of g, we obtain the following bound, which only depends on z.,

p(w)e(w)p(w) < max(0, ds, (w, g) — Adn) H dgs” Z] o= B(w). (50)

asp (4] w[z]w[i]

Now, noting that (24) implies that for any u € {0,...,D — 1}Mwtal the corresponding diagonal
elements satisfy Y., p(UJESUq)uy < 1, one derives the inequality

YT <Trple®pf >, Bw= Y  Bw). (51)

2€Vs, we{0,1,...,D—1}n wef0,1,...,D—1}n
Defining V = {(a,b,c,d) € N} | (a +b+c+d) > Adon} and W = {0,1,..., D — 1}", we compute

9_49
NZ—i9

Ng
TR N (AN | CHU N | e

wew (1§,45,19,11) €V 20 wefl,...,dJ}id J=1 w'e{1,...,d3}NE —i8

where N¢ is the number of positions in Sp that have basis-bit a and key-bit g. This can be seen
by noting that given a choice of distance dg,(w,g) > Aén and a distribution of the errors over
the different bits, which can occur with [], | (]jgg) possibilities, there are still T], ()% (d9)Ne~"
compatible strings in w. Summing over the e(w) values for these strings gives the above expression.

Now notice that for any d,s € N and any set of reals ~q, ..., 74, we have

) H Yolj) = Z% : (53)
This can be easily seen by expanding the power. Using this, we obtain
Swew Buw) = Sagammer T CF) S 82,4 (S5, af )
= Z(ig,ig,ﬁl’,z‘})ev i_O[ (Jg)ﬁ;g(l _5a)N‘§_ii (54)
= Z(io,il)eV’ (]Z)O)

1 0
where V' = {(i,j) € N3 | i+ j > Adén} and 3, = Z?‘;l Be ;= Z;l;l Ba ;- This was obtained using
Lemma A.3, with

(Nl) (1)0(1 o ﬂO)Nofioﬂil(l 7 ﬂl)leil < 67%6271,

A
1—

t = A —max(fo, f1) = (55)

57> max(Tr Qppg, Tr Q1pY) > op — Bgp >

1
1— 2

where the last inequality follows from the assumption (14).
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Finally, this means we have obtained

A< Z Pl(z)e Cm = e 3¢ (56)
2c€EZ,
and hence
S T FIlpp'To = Y P'(z)Tr ESTop, Ty < e + e7 57, (57)
z€P z€P

We can now use the fact that since z. contains no information on g[R], p, = 2_|E|p§% ® HOR.
However this also holds for the state emitted in the real protocol, so we have p.. = p/,_. In addition,
since the modifications do not influence the choice of g[R], a, R and m, we also have the identity
P'(g[R],a,R,7) = P(g|R],a, R, ). This allows us to write

Z Tr F. T plly = Z Tr F,Ioplly < g(n,e). (58)
z€P veEVNP

We now employ Lemma A.6 with the probability distribution Pp(v) = P(v | P) = P(v)/P(P)
on P and ¢ = P(P)g(n,e)~ % to conclude that

Pp(L) > 1—+/g(n,e)/P(P). (59)
The claim now follows upon multiplying both sides of the above identity by P(P). O

Corollary 5.7. Suppose that eq > €. Then P(L.,) > P(P)— +/g(n,€).

Proof. The proof of Proposition 5.6 goes through if we replace € by ¢4 everywhere. Using the fact

that g(n,eq) < g(n,€), one easily sees

{v EP|Tr [Fvﬁo(z,ed)pﬁo(z,ed)} < g(ed,n)P(U)} cL., (60)
and hence P(L.,) > 1—+/g(n,eq) > 1 — +/g(n,e¢), which establishes the claim. O

The following proposition will be used to extract the key independent part of the probability

distribution P(k,v). The assumption (S6) on the source plays a crucial role in the proof.

Proposition 5.8. Consider a BB8/ source that is quasiperfect with parameters (Bqp,Vqp). Let F' be
an arbitrary r X n binary matriz and K be a m X n binary matriz, for some integers m, r and n that
satisfy 0 < m,r < r+m < n. Define d, to be the minimal weight of linear combinations of rows

from F and K that contain at least one row from K. Suppose that two arbitrary strings b,h € Fy

Xn
src

such that X@g = 0 for all strings j € FY that satisfy d(h,j) > d”’. For any k € FJ* and s € F3,
define the set

and a constant d" are given, such that d" < 1d,,. Let X be a measurement operator acting on H

Cus={9€Fy | Fg=sand Kg =k} (61)
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and the state

Prsis = Z ®pb[ (62)

gEC,Qb k=1

Then Tr Xp,, , is independent of k.

Proof. 1t is enough to show that for any two keys «, " € F5* and Ap = p,, ;5 — p,s 5 5, We have
QEApQL =0 (63)

for all strings k,l € F} that satisfy d(k,l) < d,,. Indeed, assuming this, write

TrXAp = 3, 3 TrXQEANQ), = 2ok lld(k 1) > Tr XQ§ ApQ)}

ALy Ok (64)
= D kldk > 1T QX QpAp

It can be seen that for every pair of strings k,l € Fy with d(k,l) > d,, either X@’g =0 or
Q' X = 0. Indeed, assuming the contrary, then d(k,h) < 1d, and also d(I,h) < id,. However
d(k,l) < d(k,h) + d(h,l) < dy, which immediately gives a contradiction. This fact now implies
Tr XAp = 0, which is the claim stated in the lemma.

We thus set out to show (63). Using (S6) and Lemma 3.1, we can define the matrices

af = QppiQ; = Q5m Q5 (65)
and
B = Qs Qs = ~ Qi Q5 (66)
With these definitions, for any four bits b, d, e, f € F; we can define the matrix %d’e’f by

VT = QleiQf = (3" (<) gy, (67)

where & denotes addition modulo two. We extend this definition to bit-strings b,d,e, f € Fy by
writing V! = @, V I Since VAT = (—1)297 14/ | we obtain the following identity
for any bit-string e’ € ]F;L

Vgi,e@e/,f _ (_1)6/‘(d69f)vgve»f. (68)

K
o (¥) -

€ F3'™ and py = py, o5 Let Cy be the set of g € F} that satisfy Gg = .

Let G be the matrix

and write x = (k, )
Notice that indeed C, = x,5,b and that for every g € C,, one can write C,, = g & Cy. Defining
(P2l = élgpx@% and fixing any 6 € C,, we calculate

(p)ir = QpaQy = 107 Lgec. Vo' = 17 Lgeco V7™
- (_I)QI(k@ZWdecong@“:( 102D QE QL = (—1)0 kD (pg) gy

(70)
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The above identity shows that it is sufficient to compute (pg)gi, which we therefore set out to
do. Write |Cy| = 29, where ¢ is the dimension of Cy and let {61,...,0,} be ¢ linearly independent
bit-strings which span Cy. For 0 < j < ¢, let CU) be the span of the strings 01,...,0; and
p) = le)' Y gect p(g,b), in which p(g,b) = Qi pg[[z]] Notice that p(@ = po and p(® = p(0,b).
We shall prove by induction that for all 0 < j < g, the following identity holds

(71)

(0D = Vool it (ke l) e UL,
. 0 otherwise.

The j = 0 case is trivial in view of the definition of V and the fact that C(O+ = F3. Now,
cUth =) y(CcH g 0;11), s0

. 1 . 'y
(P ) = 5(9(3))161(1 + (1)), (72)

Note that CUtDL = WL N {h;,1}+. Observe also that if (pU+V),; # 0, we must have that
kole CYL and (k@) 0;11 = 0mod 2, which precisely means that k@1 € CUTDL. In this case,
we see that (pU*1) = (p19))x;, which concludes the induction argument.

Now, using (70), we see that for every § € C,, we have (pg)r = (—1)F®)(pg)s. Also, every
string j € Cg can be written as a unique linear combination of rows of G, i.e. there exists a function

A with A\(j) - G = j for every j in Cg-. We can thus write, using G0 = ,

(pa )i = (=1)MFED= (). (73)

We are now ready to complete the proof. We know that if d(k,l) = w(k ®1) < d,, and k®l € Cy,
then we must have by definition of d,, that k @[ is a sum of rows of F' only. This however means

that A(k @ 1) - (k, s) is independent of k, which immediately establishes the claim. O

Remark 5.1. We conjecture that it is possible to generalize the argument above, if we assume
that the probability of a random linear combination of rows from K and F that contains at least
one row from K having weight smaller than d,, is exponentially small. We should then obtain
Tr Xp,i,s’,; =ty + Nk, where t, is independent of K and 1, s exponentially small. This result is

enough to complete the privacy proof in a similar manner as described below.

For any normalized attack by Eve-Bob on BB84MM), we can calculate the probability distribution
P(k,v) by considering the POVM which corresponds to the hypothetical scenario in which Alice
announces her key s after the protocol is completed. Since the key x is revealed only after the
complete protocol has finished and the measurement performed on the photons thus cannot depend

on it, this POVM can be seen to satisfy F; , = Hyc(v) o ® EJ. We thus calculate

P(x,v) = Tr F,p = P(r,y)Tr ES pye . (74)
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For ease of notation, we can reorder indices and write Hg = H’§ ® H?, where H§ is the state space
of all the photons in the set Sk on which the key is defined. We can also split p,, = pfyy ® ,ovE
correspondingly. We can then use Lemma A.1 to define EX = Tr H?Ef Pr,y» Which only depends on
v, and one can check

P(k,v) = P(k,y)Tr By pye . (75)

where the trace now runs over H’SC.

For any measurement operator X on H% and for any y € Y and x € FJ*, we define the ratio

Tr X p’,gy

rm#!(X) - TI‘ Xp;yc 9 (76)

with the convention that r, ,(X) = 1 whenever the expression above is undefined. It is easy to see
that r, ,(X) > 0 and

> rey(X) =2m (77)

KEFY
The following proposition shows that for any view v which satisfies the small sphere property,
the joint probabilities P(k,v) for all keys k are very similar and hence v does not leak a significant

amount of information about the key.

Proposition 5.9. Consider the BB84MM protocol in which a quasiperfect source with parameters
(Bgp» Yqp) 1s used and suppose that the conditions in Assumption 4.1 hold. Consider any normalized
attack by Eve-Bob on BB84MM and let P be the associated probability distribution. Let €,, be such
that %dw = (ﬁ&p + %qu + €w)n and note that €, > €. Consider any view v in L., and write
IIy = Hy(2,€). Then

P(k,v) = Ty + N v, (78)

in which m, is a constant independent of x and 7, is bounded according to

New < 27 P(0) (rw(ﬂ’f) T rﬁ,v(ﬁoEfﬁo))h(n, o), (79)

[NIE

where h(n,€) = 2g(n,€)7 + g(n, e)?.

Proof. Note that due to the fact that the rows of K and F are linearly independent and each value
of g[Sk] is equally probable, P(k,y) = 2"™P(y) and ZHE]FE,L p),gy = 2'”,05. This gives us

P(k,v) = 27mP(y)TrELCp§y. (80)
Write ﬁo for 1 — ﬁo. Using the identity

X

(A+ A)X(A+A)=AXA+AX(A+ 1A)+ (A+14)XA
= AXA+AX(I-1A)+(I—-1A)XA=AXA+AX + XA - AXA,
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we obtain
QmﬁP(/ﬁ,v) = TrE’CHOp’C HO

+ TrEFIopf, + Tr EFpf TI (82)
Tr Efﬁopf,yﬁo

Proposition 5.8 implies that Tr Effﬁop’,gyﬁo is independent of k, so we define

T

27 P(y)Tr EXTIopS T,

~ ~ ~ ~ 83
Mo = 2 TP(y) (Tr Efﬂopgy + Tr Effp’,fyyl—[o —Tr El’fﬂopf’yﬂo) (83)

We now make the decomposition EX = 37, |¢{CU>< &I Noting that the first two terms of 7,

are complex conjugates, we obtain

Mol < 27 P ) (252, [(0F, TonS, l6,)

T Tr E{fﬁopwﬁo>. (84)

Since pﬁy is a nonnegative hermitian matrix, we may employ the Cauchy-Schwartz inequality to

write
~ 1 1
(S Topk 05,0 = (@8, Mol ) (65, ) HIek,) -
S < fv‘HOpE7yHO|¢fU>%< fv|p’f§7y ¢;(’:1)>%'
Another application of Cauchy-Schwartz yields
S [(efllon, o] < (Sateflonk, Holoff) ! (o ok, 1ef)
1 (86)
= (TI‘E)CHQ/)IC HO) (TrEfpgy)g,
and thus
[Mewl < 2_mP(y)(TrE’CH0p§yHO) ((TrE’CHOpEyHOP —|—2(TrE’CpK,y)%)
= 27mP(y) (rw(HOE’CHOmE’CHOp’;HO)
(rﬁy(HoE Tlg)* Tr EXTIopKTIE + 27y, (BX)H (Tr EXp )%) (87)
1
3

< 27" max{r, y(E’C) rmU(HOEl’fﬁo)}(P(y)Tr ELCHprHO)
((P(y)TrEKHOp Ho) +2(P(y)TrEfp;f)%).

We now use the identity P(y)Tr E,’fpg = Tr F,p = P(v) together with the fact that v € L, to
obtain the bound

< 2 (o) 4 realoBET)) (VT OPCDR (VA IP@)E +2P0E)

= 277 P() (1 (BF) + 1y (o EXNTI0) ) (29(n, )% + g(n, %),

which concludes the proof.
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We now have all the ingredients which are necessary to complete the privacy proof.

Proof of Theorem 5.3. Define €, and Iy as in the statement of Proposition 5.9. Fix a view v € L,

and a real number ¢ > 1. For convenience, define

e = Trew(TTg EXTIY) 4 1 o (EX). (89)
Note that
Pw) = Z P(k,v) =2"m, + Z Mhs,vs (90)
KEFT KEFL"
and thus recalling (77)
P) =27 £ 3 [l 27" P@)h(0,€) (Y anu) = 2P(0)h(n,c). (91)
REFY REFP

From this we obtain the bound

|P(k|v) = 5| = ‘Pﬁv

2 P()] < gy (1P(r,0) = 7ol + |m0 = 2 P(v)]) 02)
< 2imh(n7 €)(arp +2).

Recalling that ) eFm Ok = 2m+1 we see that the set K, = {k € F' | a,, < 2¢} has at least

2m(1 — E) elements. Thus defining the set Z = F5* x |J {v} x K, €V, we see that for all

VELe,,
(r,v) €T,
1 1
P 10) = 5| < 5 20+ 2)h(n,0) (93)
Now, since Alice chooses her key uniform randomly when the test P is not passed, we have
H(k|v)= ZPFE’UIOgQ (k| v) >mP(P Z P(k,v)logy P(k | v), (94)
(k,w)ET

where the inequality was obtained by noting that log,p < 0 for all 0 < p <1 and that Z C P x Fg*.
Writing P(k | v) = 50 (1 + &x,0) = 0, where &40 < (2q + 2)h(n, €), noting that for any z > —1 we
have C(1 + x)logy(1+z) < C(1+ x)% and using P(Z) < 1, we see

(2g + 2)h(n, e

D) = m(P(P)+ P(p) - B2,

H(k |v) > mP(P) — Z P(K;,v)(—m—&—

In2 In2
(k,w)ET
(95)
Using (93) it is easy to see that
P(I) =Y., P(0) Xyex, P(r]v) = P(Le,)(1 = 5)(1 = (2q + 2)h(n,e)). (96)

From the above identity, we conclude

H(k|v)

m( P)+(1- 1 (1~ (2 +2)h(n, ))(P(P)—P(szew)))_w

> In2
> m— % (mt ) (20 + Dh(n,e) ~mP(PNLe,).

(97)
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Now choose ¢ = It is easy to see that there exists a function N(e) which depends

\/ 2(m+£)h(n,e) :
only on ¢, such that ¢ > 1 for all n > N(¢). Thus, for all n > N(¢), we have

H(k | v) >m—er(n,e,m), (98)
in which
1 1
e1(n,m,e) =2(m+ F)h(n,e) + 2\/2(m + F)mh(n €) +mP(PNLe,). (99)

Corollary 5.7 now implies that €7 satisfies the condition (17), which completes the proof.

A Technical Issues

In this appendix, we present some technical lemma’s which were used. The first lemma concerns the

reduction of a trace to a smaller Hilbert space.

Lemma A.1. Consider two finite dimensional Hilbert spaces H*, HE and the product Hilbert space
H = HA @ HB. Consider two density matrices p?* and p® over H* and HP respectively and let
p = pA ® pB. Then for any measurement operator F acting on H, there exists a measurement

operator F;B on HA which depends only on p®, such that
TryFp=TryaFlspt. (100)
In addition, for any set {Fy}qcq of measurement operators on H such that
> F, =1y, (101)
qeq
we have that 3 co Fy 5 = 1ya.

Proof. Let n4 and np denote the dimension of H* respectively HZ. For any four—tuple of integers

(ta,ja, i, jp) such that 1 <i4,j4 <na4 and 1 <ip,jp < np, define e, j, iz jp = ® el

7/A JA iB,JB’

where efh ja is the ng X n4 matrix which has a 1 at position (ia,74) and zeroes elsewhere and eZb s
is defined similarly. Any square matrix X on H can be decomposed as
X= ) Xgiel (102)
(ia,jayiB,is)
Thus defining
s = Z eﬁh“ Z ng’ngrHBei ]Bp , (103)

TAJA iB,JB
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we see that indeed TryXp = Tr HAX;B p?. The fact that X;B is a nonnegative operator can be

seen by taking p? = |a)(«a| for any normalized state |a) in H* and noting that
(@ X! s]a) = Trya X)s|a)(al = TryX|a)(a| @ p® > 0. (104)

The last claim in the lemma can be verified by noting that (X + Y);B = X;}B +Y;B and 12)3 =144,
since Try5p? = 1. O

The following result gives a bound on the success rate of any quantum measurement which must
distinguish between two quantum states. In addition, it shows that performing collective measure-
ments on random sequences of these two states does not improve the success rate on individual

positions.

Theorem A.2. Consider two pairs of density matrices (p°,pl), for a = 0,1. Denote by S, the
set of eigenvalues X of the matriz pQ — pl and define the quantity A = max,—g 1 ZAESa |A|l. Fiz an

integer N and a string @ € FY . Let a source emit a sequence of N states, given by a string § € FY,

gli]
ali]

equal probabilities to occur, i.e. P(g[i] =0) = P(g[i] =1) = 1. Consider an arbitrary measurement

where at position i the state p’; 3 was emitted. Suppose that at each position both possible states have
on the system which gives guesses h for g on m < N different positions. Then the probability that
the m guesses are all correct is bounded by

1

1o\m
Piuccess < (5 + ZA) : (105)

Proof. We assume that @ = 0. With the addition of some bookkeeping arguments the proof given
below can be seen to hold for all strings @. Writing H for the Hilbert space over which the quantum
states are defined, we model the emission of the source as a state in H¢ @ H°. Here HC is the
classical space consisting of bit-strings in FY and H® = H®V is the state space for the emitted
quantum states. Without loss of generality, we shall assume that the m positions for which the
guess h is supplied are the first m positions. Correspondingly, we write ¢’ € F3* for the first m bits
of g. The measurement determining the guess h and the subsequent announcement of ¢’ can be
described by the POVM

{(h,g"), 15 © F}, (106)

since the measurement on the quantum states is independent of the announcement g’. The proba-

bility of success thus reads, using Lemma 5.5,

Paccess = 2=m Z Tr Fg’ﬂj, (107)
gl EFEYZ
where

KN—m

py =2""N X pgrig @ (1 + p2) (108)
k=1
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Splitting H® = H®™ @ H*** and using Lemma A.1 to perform the trace over H**s*, we obtain

Piuccess = Tr Ty, in which the trace runs over H®™ and T}, is given by
T =2"""3 Fjpj. (109)
g/ e]F’éTl

Consider the linear space WV spanned by words over the alphabet {F°, F' p° p'}. For every word
W = WiWs . . . Wam, we define the normalized word N (w), which reorders symbols w; such that each

F° stands to the left of each p®, but that otherwise leaves the ordering invariant. For example,
N(FOp Fp%) = FOF ptp°. (110)
For every normalized codeword of the form
pril o priml el el (111)

we define the corresponding matrix M(w) = F} p,,. These operators can be extended to the relevant
linear subspace of W by simply linearizing. We recursively define elements in YW by Wy = @) and

1 1
Wy = (F°p 4+ Fp ) Wimy = ((FO + F)3 (00 4+ p") + (F° = 50" = o)) Wima. (1)

It is not hard to see T}, = 27™M (/\/(Wm)) Write W,,, = (Ao + A1)™, where we have introduced
Ag = (FO+ F1)i(p°+ p') and A; = (FO — F1)1(p° — p'). For any v € FJ*, we define the element
Ay = AyjojAupy) - - - Aym)- We shall compute Tr M(A,). Without loss of generality, we shall assume
that v = (0,...0,1,...1) with d(v,0) = s. Using Lemma A.l to perform the trace over the first

m — s positions, we are left with

TeM(A) = 3 e(w)2~*Te P10 — o), (113)
weF]
where F!| = Zremes(FT'w)' em_s and where e(w) = (—1)d(w’0) is a +1 valued function.
) CT

Pass to a basis for which p® — p' is diagonal and let F” be F!” in this basis. Note that we have
. " = 1,,0: and that each F’” is a measurement operator, which means that all the diagonal
weFs ~w H w

elements d;; of ZweJFg e(w)F!" have norm |d;;| < 1. In particular, this means
|Tr M(A,)] < 27°A%. (114)

We can thus compute, summing Tr M(A,) over all v,

A
Tr T <277 (14 5)", (115)

which proves the claim.
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The following two results are standard bounds on the tails of binomial distributions.

Lemma A.3. Let p, r and t be positive numbers such that 0 < r < p < p-+t < 1. Letn, and
n, be two positive integers and define the set V. = {(ir,ip) € Ng X Ng | i, + 14, > (p+t)n}, where

n=n, +ny. Then
> (T'Lp) <7r>Pi"<1 =) (L < e (116)
(iripyev NP/
Proof. For simplicity, we define ¢ =1—p, s=1—r, k = [(p+ t)n] and write
S = P ) pie (1 — pyre—iegin (1 — pyne—in, 117
= (T)()pra-prea s (1)
(ir,ip)EV

Then for any = > 1, one has

S S Soer ()L pyroiainrin(1 = pymingie
< 2o<ip<ng 20<iy <n, (TZL:) (ir)p'r (L= p)rr=ierir (1 — )i (118)

Ze(q+ pr)™e (s + ra)™ < e (g + pr)™e (s + ra)™ <~ (g + pa)”,

where we have used s + rz < ¢ + px in the last inequality. Fixing z = Zg fg > 1, we obtain
P \p+t, 4 \qg—t]"
S < [ Py 4 } . 119
< (G2 () (119
Define the function
P \ptt, q gt
t)=1In [ — —_— } 120
g(t) =l | (=) (=) (120)

It is easy to see that g is C* on [0, q], so we may employ Taylor’s formula to get

¢
9(t) = g(0) +1g'(0) + / 9" (u)(t — u)du. (121)
0
Notice that g(0) = ¢’(0) = 0 and ¢ (u) = —m < —4 for any u € [0, q]. Therefore g(t) < —2t>
from which the statement follows. O

Corollary A.4. Let p, r and t be positive numbers such that 0 < r —t <r < p < 1. Let n, and
n, be two positive integers and define the set V.= {(ir,ip) € Ng X Ng | i +1ip < (r —t)n}, where
n =mn, +ny,. Then
> (7,,) <T'Lr)pi”(1 =Py (L < e (122)
4 ip ) \ir
(iryip)EV

Proof. This follows immediately from Lemma A.3 by making the substitutionsr - 1—7r,p—1—p

and recalling that (7) = (,,",)- O
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This next result is a classic result which follows directly from the shape of the logarithm.

Lemma A.5 (Jensen). Consider real numbers ay, ... am, andby, ... b, and suppose that 0 < a; <1,
b; >0 and >\ a; =1. Then

Z a; 10g2 b, < 10g2 Z aibi. (123)
i=1 i=1

Lemma A.6. Let u > 0 be a strictly positive real number. Let y be a random variable taking values
in a set Y with probability distribution P and let {a,},cy be a set of || real nonnegative numbers

such that > ay < p. Let g be a strictly positive number and define the subset X C Y by

yey
X={yeVlay <pugP(y). (124)
Then P(X) >1— 1.
q
Proof. Assume to the contrary that P(Y\ X) > . Then
ay>= > ay>pg Y P(y) =pgP(Y\X) > p, (125)
yey YEV\X YyEV\X
which is a contradiction. O

B Error Correcting Codes

Consider two integers which satisfy 1 < k < n and let G be a k X n binary matrix with linearly
independent rows. Define the set S(G) = {w € F} | w = vG for some v € F5}, which is a linear
subspace of 'y of dimension k. Letting dg = mingeg(¢) d(g,0) be the the minimum weight of strings
in S(G), we say that the set S(G) is a (n, k) linear code with minimum distance dg. For any such
matrix G the map Encg : F5 — F% which sends v — vG is an inclusion from F into F} and can
be used to encode messages in F5 into strings in the larger space F4. The intuitive idea of an error
correcting code is to use the redundancy in this encoding to protect any encoded string from bitflips
in a small number of positions. This is usually done by means of minimal distance decoding, that
is, for any string s € F%, one defines Decg(s) € F5 to be a string s,., that minimizes d(soryG, s).
Let t be any positive integer satisfying 2t + 1 < dg and let e € F5 be an arbitrary string with
weight d(e,0) = t. Since d(Enc(sorg), Enc(sy.y)) = d((Sorg © 84,9)G,0) > dg > 2t + 1 whenever
Sorg 7 sgw we see that we must have Decg(Enc(sorg) ® €) = Sorg for any message sorg € Fk. We
thus see that the decoding scheme functions correctly whenever the number of bitflips which have

occurred on the encoded string does not exceed ¢4, = de2_1J and we correspondingly say that the

code §(G) is an error correcting code which can correct tpyax errors.
It can be shown that there exists a binary (n — k) x n matrix H for which Hg = 0 if and only
if g € S(G). This matrix is called the parity check matrix of the code S(G). For a given = € F7,
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we call s = Hz the syndrome of z. Notice that whenever two strings x, 2’ share the same syndrome
s, we have H(zx ©2') = Hx © Hr' = s © s = 0 and hence z © 2/ € S(G). We can exploit this
fact by defining another decode function Dec, : Fy — F3 which computes Decf, (y) = « for any «
which satisfies Hx = s and d(y,x) = min{d(y,z’) | Hz' = s}. Using the same arguments as above,
it can be seen that for any error string e with d(e,0) < tax, we have DecZ®(z @ e) = x. This
fact was used to prove that Alice and Bob share the same secret key at the end of the protocol if
ds(g,h) < (6p + €e)n.

The next basic results give some minimal bounds on the efficiency of error correcting codes and

were used to establish the worst-case asymptotic rate of key generation (18).

Lemma B.1 (Gilbert-Varshamov). For any strictly positive integers n,r,t which satisfy

2t
r+1 n
9+l > ;:o (k> (126)

there exists a linear (n,n — ) code which can correct t errors.

Proof. We will construct a n — r x n generator matrix G of a code that has minimum distance
d > 2t + 1 and can hence correct ¢ errors. Set v; to be an arbitrary vector from F3 which has
weight 2t 4+ 1 and iteratively choose vectors v; such that for every ¢ the set {vy,...,v;} is linearly
independent and all the nonzero vectors in span({vy,...,v;}) have a weight of at least 2t + 1. For
any ¢, this is possible if there are still vectors in F3 outside the spheres of radius 2¢ around the
2i=1 codewords in span({vi,...v;}). Since each sphere of radius 2¢ contains Y- (*) points, (126)
implies that we can construct vq,...,v,_, in this way. The claim immediately follows if we let

V1,y...,VUn_r be the rows of G. O]
Lemma B.2 ([12, Corollary 9]). For any 0 < u < % and for any integer n, we have

Lun] n
D <l<:) < 2R, (127)

k=0

where Ha(p) is the binary entropy function Ha(p) = —(plnp+ (1 — p) In(1 — p)).

Combining the previous two lemma’s gives us the following asymptotic expression of the Gilbert-

Varshamov bound.

Corollary B.3. Fiz 0 < § < i. Then for every n there exists an (n,n — 1) error correcting code

that can correct |dn] errors for some r which satisfies

< Hy(20). (128)

3=



Lemma B.4. Fix three positive integers r, n and dyi, and consider an arbitrary r X n binary matriz
F with linearly independent rows. Let F be the set containing the r rows of the matriz F. Suppose
that 2n—r—m+l > Z?;”S"*l (). Then there exists a set W containing m vectors in Fy such that the
set W U F is linearly independent and for every v in the set span(W U F) \ span(F), the inequality
d(v) > dpin holds for the weight d(v) = d(v,0).

Proof. Let S be the set of vectors v in FYY which have weight d(v) < dpin. Then |S| = Z?;”é"*l ().
We inductively define a sequence of sets W; for 0 < ¢ < m with the property that W, contains
i distinct vectors from FJ, the set W; U F is linearly independent and d(v) > dpn for every
v € span(W; U F) \ span(F). Let Wy = () which can easily be seen to satisfy the above properties.
For any 0 < i < m, let W; = span(W; U F). Since there are 2"~ "~% > 2n=r=m+l > |G| distinct
cosets of W, in F, there is at least one such coset which has empty intersection with S. Let w; 1 be

a representative of such a coset and define Wi = {w;11} UW;. It is easy to see that if W; satisfies

the properties mentioned above, then this also holds for W;; and the set W,,, can thus indeed be

defined. This completes the proof. O
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