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1 Introduction

1.1 Practical aspect

One of the most well-known equations that is used to model the spread of genetic traits and the propagation
of nerve pulses in a nerve axon, is the Nagumo-equation[14, 15], which is given by

∂u

∂t
= D

∂2u

∂x2
+ f(u), (1.1)

with D > 0 the diffusion constant and f(u) a non-linear term that typically looks like

f(u) = u(1− u)(u− a), (1.2)

where 0 < a < 1. A discretisation of (1.1) yields the equation

u̇n = D(un−1 − 2un + un+1) + f(un), n ∈ Z (1.3)

where n can be interpreted as a certain space variable, for instance on a lattice, and t ∈ R the usual time
variable. To find a traveling wave solution, we substitute the Ansatz un(t) = U(n+ ct) into (1.3) and obtain
the equation [19],

cU ′(z) = D(U(z − 1)− 2U(z) + U(z + 1)) + f(U(z)), z = n+ ct. (1.4)

Such equations are called functional differential equations of mixed type (MFDEs), which typically have a
shift in their arguments.
Note that in (1.3), when interpreting n as some space variable, the derivative u̇n depends only on the function
value of its two nearest neighbours (un−1 and un+1) and itself (un). Equations like (1.4), which has only a
finite range of interactions with its neighbours, have been studied by John Mallet-Paret in [1].

However, there are also models where one has to look at equations with a infinite range of interactions
[17, 20, 21, 22]. For example, in the paper of Schouten and Hupkes [16], they study the discrete infinite-
range FitzHugh-Nagumo equation

u̇j =
κ

h2

∞∑
k=1

e−k
2

[uj+k + uj−k − 2uj ] + f(uj)− wj ,

ẇj = [ρuj − γwj ],
(1.5)

where f is given by (1.2) and h, κ, ρ, γ > 0 are constants. Plugging in the traveling wave Ansatz uj(t) =
Uh(hj + cht) and wj(t) = Wh(hj + ct) and writing ξ = hj + ct gives the MFDE

chU̇h(ξ) =
κ

h2

∞∑
k=1

e−k
2

[Uh(ξ + kh) + Uh(ξ − kh)− 2Uh(ξ)] + f(Un(ξ))−Wh(ξ),

chẆh(ξ) = [ρUh(ξ)− γWh(ξ)].

(1.6)

Such equations are used to model the dynamics of large neuron networks [23, Equation (3.31)].

1.2 Theoretical aspect

1.2.1 Fredholm operator

Several of the main results of this thesis concern Fredholm operators and Fredholm index. Therefore, we
will give their definitions.

Definition 1.1. Let X,Y be two Banach spaces. A bounded linear operator T : X → Y is a Fredholm
Operator if the following holds:
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• The kernel K(T ) ⊂ X is finite dimensional;

• The range R(T ) ⊂ Y is closed;

• R(T ) has finite codimension in Y .

Recall that the codimension of a subspace Z ⊂ Y is defined as dim(Y/Z), namely the dimension of the
quotient group Y/Z. In case that Y is finite dimensional, we have that codim(Z) = dim(Y )− dim(Z).

The Fredholm index of a Fredholm operator T is defined as

ind(T ) = dimK(T )− codim(R(T )). (1.7)

The most simple examples of Fredholm operators are the matrices. Recall the following formula for matrices.

Dimension formula for matrices: For A : Rn → Rm a matrix, we have

dim ker(A) + rk(A) = n. (1.8)

This gives us a very easy way to calculate the Fredholm index of A, namely

ind(A) = dim ker(A)− codim(A)

= dim ker(A)− (m− rkA)

= dim ker(A)− (m− n+ dim ker(A))

= n−m.

(1.9)

We see that if A is invertible, then we must have ind(A) = 0, which means m = n and that is a well-known
result in Linear Algebra.
For matrices, we also have the Fredholm alternative theorem, which relates the range of a matrix to the
kernel of its adjoint.

Theorem 1.2 (Fredholm Alternative Theorem). Let A ∈ Mat(m× n,R) be a m× n real valued matrix and
b ∈ Rm. Then we have

Ax = b has a solution ⇔ ∀y ∈ ker(A>) : 〈y, b〉 = 0

where 〈, 〉 is the standard inner product on Rm.

One way to interpret this theorem is if we have a inhomogeneous equation Ax = b, we can check the
existence of a solution by checking the orthogonality of the inhomogeneous term b with the solutions of the
homogeneous adjoint equation. This allows us to avoid solving an inhomogeneous equation.
The same idea can also be applied to differential equations. For example, consider the linear first order
differential equation

ẋ = ax+ f, a > 0 f bounded and continuous on R. (1.10)

Suppose we are interested in the existence of an unique solution that is bounded on R, for each bounded and
continuous f . One way to investigate this is to solve the equation explicitly. Therefore, we first examine the
homogeneous equation

ẋ = ax (1.11)

which has the general solution

x(t) = Ceat. (1.12)

To solve the inhomogeneous equation, we use the method of variation of parameters and consider C as a
function of t

x(t) = C(t)eat. (1.13)
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Substituting this into the equation yields

C(t) =

∫ t

t0

f(s)e−asds+K. (1.14)

Hence, we obtain the solution to the inhomogeneous equation

x(t) = eat
(∫ t

t0

f(s)e−asds+K

)
. (1.15)

Note that
∫∞
t0
f(s)e−asds < ∞ due to the assumption that f is bounded on R. By choosing K =

−
∫∞
t0
f(s)e−asds, it can be shown that x(t) is the unique solution that is bounded on R, for each bounded

and continuous f .

We can also analyze this problem from an algebraic point of view by defining the differential operator

ΛLx(t) :=

(
d

dt
− a
)
x :=

dx

dt
(t)− ax(t). (1.16)

Then, equation (1.10) can be written as

ΛLx = f, (1.17)

which has the form Ax = b as in Theorem 1.2. In this way, questions about the existence and uniqueness of
the solutions of (1.10) are equivalent to asking whether ΛL is an isomorphism.
If ΛL satisfies similar Fredholm properties like in (Theorem 1.2) (which is true according to Theorem A in
Section 3), then we can solve the equation by considering the kernel of the adjoint operator, which is defined
as

(ΛL)∗ :=

(
− d

dt
− a
)

(1.18)

that has the adjoint property

〈ΛLx, y〉 = 〈x, (ΛL)∗y〉, x ∈ Lp, y ∈ Lq (1.19)

for 1 ≤ p, q ≤ ∞ and 〈f, g〉 =
∫∞
−∞ f(s)g(s)ds is the dot product. Note that the minus sign in (1.18) comes

from verifying (1.19) using integration by parts.
We observe that the kernel of the adjoint consists of the solutions of the homogeneous equation

x′ = −at, (1.20)

which are

x(t) = Ce−at (1.21)

for C ∈ R. Since we are looking for bounded solution on R, we must choose C = 0. Hence, according to the
Fredholm alternative theorem, this implies that the range of ΛL is equal to its codomain, which means that
ΛL is surjective. Similarly, we can show that the kernel of ΛL is also trivial. Hence, we see that ΛL is an
isomorphism, which agrees with our former conclusions.

It might seem very unnecessary to analyze (1.10) with this algebraic approach since we know how to solve
(1.10) explicitly. But when dealing with equations like (1.4) which are not standard ODE, the operator ΛL
can give us more insight about the solutions of such equations.
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1.2.2 Fredholm index and roots of characteristic equation

Let us now consider the next example of one-dimensional first order linear equation

ẋ = a(t)x+ f, f bounded and continuous on R, (1.22)

where

a(t) =

{
−1 if t ≥ 0

1 if t < 0.
(1.23)

Suppose we would like to calculate the Fredholm index of the ΛL operator for this system, which is

ΛL =
d

dt
− a(t). (1.24)

By definition, we have ind(ΛL) = ker(ΛL)− codim(R(ΛL)). We will first examine the kernel

ẋ(t) =

{
−x(t) if t ≥ 0

x(t) if t < 0.
(1.25)

It is well-known that the general solution is given by

x(t) =

{
Ce−t if t ≥ 0

Det if t < 0.
(1.26)

Since we are looking for bounded and continuous solution, we require that C = D. This shows that the
kernel has dimension one.
For codim(R(ΛL)), we can show that ΛL is surjective with the method of variation of parameters. Indeed,
for all K ∈ R, we have the bounded continuous solution

x(t) =

e
−t
(∫ t

0
f(s)esds+K

)
t ≥ 0

et
(
−
∫ 0

t
f(s)e−sds+K

)
t ≤ 0

(1.27)

for each f . Hence, we conclude that codim(R(ΛL)) = 0 and thus ind(ΛL) = 1.

We can also calculate the index through another approach. Since ΛL is a Fredholm operator and has
similar property as in (Theorem 1.2), we have that codim(R(ΛL)) = dim ker((ΛL)∗). This means that to
calculate the index, we only need to examine the kernels, which are solutions of a linear homogeneous system.

For a linear homogeneous equation x′(t) = Ax(t), we have x(t) = eλtv is a solution if and only if λ and v
are respectively the eigenvalue and eigenvector of A. Hence, finding a solution is equivalent to solving the
characteristic equation det(sI−A) = 0. For the kernel of ΛL, we have for t ≥ 0, the “positive” linear system
x′(t) = −x(t), which means we need to look at the characteristic equation

∆+(s) := s+ 1. (1.28)

While for t < 0, we have the “negative” linear system x′(t) = x(t) and

∆−(s) := s− 1. (1.29)

We see that we have one stable eigenvalue for t ≥ 0 and one unstable eigenvalue for t < 0. This means
that both systems have a one dimensional solution spaces(which we require to only contain bounded and
continuous solutions). Intuitively, we would like to “paste” these half-line solutions to create a solution on
R. But since we also require the solution to be continuous, this means that although we have two degree
of freedoms from the two system, we lose one degree of freedom by solving a system of equation for the
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parameter at t = 0. This gives us dim ker(ΛL) = 1.
For the kernel of the adjoint, we have

ẋ(t) =

{
x(t) if t ≥ 0

−x(t) if t < 0,
(1.30)

which clearly does not have non-trivial bounded solution. Hence, we again conclude that ind(ΛL) = 1.

Consider now the d-dimensional linear equation

ẋ(t) = A(t)x(t) (1.31)

where

A(t) =

{
A+ if t ≥ 0

A− if t < 0,
(1.32)

with A+ and A− constant matrices that only have real eigenvalues. Suppose A+ has m stable eigenvalues
and A− has n unstable eigenvalues. Then, for ker(ΛL) we have the following bounded solution

x(t) =

{
C1e

λ1tv1 + · · ·Cmeλmtvm t ≥ 0

D1e
λ1tw1 + · · ·Dne

λntwn t ≤ 0.
(1.33)

and just as above, we would like to create a solution on R by “pasting” them. But in order to assure the
continuity, we need to solve the d-dimensional system of equation

C1v1 + · · ·+ Cmvm = D1w1 + · · ·+Dnwn. (1.34)

If v1, · · · , vm, w1, · · · , ws is a basis for Rd for certain s ≤ n and s+m = d, then we can rewrite (1.34) to

C1v1 + · · ·+ Cmvm +D1w1 + · · ·+Dsws = Ds+1ws+1 + · · ·+Dnwn. (1.35)

We see that a solution to this equation requires d fixed parameters, which leaves us only m + n − d free
parameters to choose. Hence, we conclude

dim(ker(ΛL)) = m+ n− d. (1.36)

In case dim ker((ΛL)∗) = 0, we would have calculated the index by only considering the eigenvalues.

This intuition turns out to hold in a more general case. It is shown in [24, Theorem 2.1] that for linear
ODE x′(ξ) = A(ξ)x(ξ) such that limξ→±∞A(ξ) both exist, the index can be calculated by the formula

index = dimWu(A−)− dimWu(A+), (1.37)

where A± := limξ→±∞A(ξ) and dimWu(A) is the number of unstable eigenvalues (counting with multiplic-
ity) of a matrix A. Note that formula (1.37) is exactly (1.36) with dimWu(A−) = n and dimWu(A+) =
d −m. Formula (1.37) also shows that the calculation of the index is only a matter of finding the roots of
the characteristic equation, which allows us to avoid solving the differential equation itself. Furthermore,
it shows that the index depends only on the limiting matrices, which is not very surprising since only the
asymptotic behavior of a continuous solution determines its boundedness on R.

However, in case we consider an equation which has a shift in its argument, for example

ẋ(t) = x(t+ 1), (1.38)

then, the formula in (1.37) does not hold. This is typically because the characteristic equation, which is
defined as ∆(s) = s − es, has infinitely many zeros in the complex plane. As a consequence, one of the
dimension in (1.37) can be infinite.
Hence, we need a generalized version of (1.37). This is done by counting the number of eigenvalues that
crossed the imaginary axis during a certain continuous path (See Theorem B and C, Section 3).
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1.2.3 Exponential dichotomy

In ODE, we know that the initial value problem is well-posed. In other words, given a specific initial value
condition, one can find a unique solution that satisfy such condition. For MFDEs, we have a similar question.
Suppose we have a continuous function φ ∈ C([−1, 1];R) as a initial profile, can we extend such a φ to a
solution of (1.4) on the whole real lines or at least on the half-lines [0,∞) or (−∞, 0]. Unfortunately, this is
typically not the case. However, one can use exponential dichotomy to study the state space C([−1, 1];R),
which is a powerful tool to analyze such ill-posed initial value problems and to construct traveling pulse
solution to the discrete FitzHugh-Nagumo equations (see [18]). The idea is to split the initial profile φ into
two components φ1 and φ2 that each can be extended on the half-lines, instead of trying to find a solution
that extend φ itself. In other words, one has the splitting

C([−1, 1];R) = P ⊕Q (1.39)

where Q contains all initial conditions ψ ∈ C([−1, 1];R) for which a bounded continuous function x[ψ] :
[−1,∞) → R exists such that x(ξ) is a solution for ξ ≥ 0 and x(ξ) = ψ(ξ) for −1 ≤ ξ ≤ 1. Similarly, P
contains all initial conditions that can be extended on the negative half-lines [−∞, 0).
We say that the initial state space C([−1, 1];R) has a dichotomy if (1.39) holds. If in addition, we have the
estimates

‖x[ψ](ξ)‖ ≤ Ce−εξ‖ψ‖C([−1,1];R), (1.40)

for ψ ∈ Q and similar estimations for the space P , then we say that C([−1, 1];R) has an exponential
dichotomy. We shall see (Proposition 7.5) that in case the shifts for (2.1) are bounded, we have an exponential
dichotomy for a certain initial state space.
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2 Settings, definitions and main results

2.1 Settings

The system that we are going to study is given by

x′(ξ) =

∞∑
j=1

Aj(ξ)x(ξ + rj) + h(ξ) (2.1)

for which rj ∈ R are called the shifts. As a matter of notation. we require that

r1 = 0

rj 6= rk if j 6= k.
(2.2)

For the matrices Aj(ξ) : R→ Cd×d, we require that they are uniformly bounded and we define

‖Aj‖ := sup
ξ∈R
|Aj(ξ)|. (2.3)

Moreover, we require

∞∑
j=1

‖Aj‖el|rj | <∞ (2.4)

for a certain l > 0. Note that this is the same condition as proposed in [3].

For ξ ∈ R, we define the linear functional L(ξ) : L∞(R,Cd)→ Cd with

L(ξ)(φ) =

∞∑
j=1

Aj(ξ)φ(rj), φ ∈ L∞(R,Cd). (2.5)

Then we can write (2.1) as

x′(ξ) = L(ξ)xξ (2.6)

with xξ(θ) = x(ξ + θ).
Note that L is well-defined because from (2.4) we know that

∑∞
j=1 ‖Aj‖ ≤

∑∞
j=1 ‖Aj‖el|rj | <∞. Hence, we

have that

∞∑
j=1

‖Aj(ξ)φ(ξ + rj)‖ ≤
∞∑
j=1

‖Aj‖‖φ‖L∞ <∞. (2.7)

So indeed
∑∞
j=1Aj(ξ)φ(ξ + rj) converges.

In case the matrices don’t depend on ξ, we have the constant coefficient operator

L0φ =

∞∑
j=1

Aj,0φ(rj). (2.8)

Then (2.1) becomes

x′(ξ) = L0xξ + h(ξ) =

∞∑
j=1

Aj,0x(ξ + rj) + h(ξ) (2.9)

or in the homogenous case

x′(ξ) = L0xξ. (2.10)
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Associated to equation (2.6) we define the linear operator ΛL : W 1,p(R,Cd)→ Lp(R,Cd) by

(ΛLφ)(ξ) = φ′(ξ)− L(ξ)(φ(ξ)) = φ′(ξ)−
∞∑
j=1

Aj(ξ)φ(ξ + rj). (2.11)

The adjoint equation of (2.5) is the equation defined as

y′(ξ) = L∗(ξ)yξ, (2.12)

where

L∗(ξ)φ = −
∞∑
j=1

Aj(ξ − rj)∗ψ(ξ − rj) (2.13)

and Aj(ξ − rj)∗ denotes the adjoint of the matrix Aj(ξ − rj).
For the adjoint equation we define the adjoint operator Λ∗L of ΛL to be

(Λ∗Ly)(ξ) = −y′(ξ) + L∗(ξ)yξ = −y′(ξ)−
∞∑
j=1

Aj(ξ − rj)∗y(ξ − rj). (2.14)

That is, Λ∗L = −ΛL∗ . It is verified in [2, Proposition B.2] that the identity∫ ∞
−∞

y(ξ)(ΛLx)(ξ)dξ =

∫ ∞
−∞

(Λ∗Ly)(ξ)x(ξ)dξ (2.15)

holds for all x ∈W 1,p(R,Cd), y ∈W 1,q(R,Cd), where p−1 + q−1 = 1.

2.2 Sobolev spaces

Recall the spaces of Lp functions

Lp(R,Cd) = {f : f is measurable and ‖f‖p <∞}, (2.16)

where

‖f‖p =

(∫
R
|f |pdλ

) 1
p

(2.17)

for 1 ≤ p <∞ and λ is the Lebesgue measure. For p =∞, we have

‖f‖∞ = esssup|f |, (2.18)

where

esssup|f | = inf{a ∈ R : λ|f |−1((a,∞)) = 0}. (2.19)

Recall the equivalence relation f ∼ g ⇔ f = g, a.e.. This gives us the quotient space
Lp(R,Cd) := Lp(R,Cd)/ ∼ , for 1 ≤ p ≤ ∞. For simplicity, we shall write Lp for the space Lp(R,Cd).

For 1 ≤ p ≤ ∞, we denote the Sobolev space W 1,p as the set

W 1,p := {f ∈ Lp : f is absolutely continuous and f ′ ∈ Lp}. (2.20)

with the norm ‖.‖W 1,p defined as

‖f‖W 1,p := ‖f‖Lp + ‖f ′‖Lp . (2.21)

Furthermore, [4,Thm 8.8] yields that if f ∈W 1,p then also f ∈ L∞, and we have that

‖f‖L∞ ≤ C‖f‖W 1,p (2.22)

for some C > 0.
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2.3 Asymptotically hyperbolic system

For L0 as in (2.8), we define the characteristic equation ∆L0
: D ⊂ C→ Cd×d

∆L0
(s) = sI −

∞∑
j=1

Aj,0e
srj . (2.23)

We have the following remarks regarding the characteristic equation (2.23).

Remark 2.1.

(1) In case the shifts are zero, we obtain the familiar characteristic equation ∆L0
(s) = sI − A which is

defined in Linear Algebra.

(2) Condition (2.4) ensures that the sum
∑∞
j=1Aj,0e

srj converges absolutely for |Re(s)| < l. Hence, ∆L0
(s)

is well-defined inside this strip.

(3) It is proven in [2, Proposition 2.17] that s 7→ ∆L0
(s) is holomorphic in the region |Re(s)| < l.

(4) By (3), it follows that det(∆L0
(s)) is holomorphic in the region |Re(s)| < l, since it is a polynomial

expression of holomorphic functions.

(5) We have that λ is a root of the equation det(∆L0
(s)) = 0 if and only if x(ξ) = eλξv is a solution of

(2.10) from some vector v 6= 0. Hence, we also call λ an eigenvalue.

(6) The characteristic equation satisfies the asymptotic formula

∆L0
(s) = sI +O(1), |Im(s)| → ∞ (2.24)

uniformly in each vertical strip |Re(s)| ≤ k < l.

Definition 2.2. We call a system with constant coefficients hyperbolic if for all y ∈ R, we have

det(∆L0
(iy)) 6= 0. (2.25)

Lemma 2.3. Recall the constant coefficient operator L0 as in (2.8). Then, det(∆L0
(s)) has only finitely

many zeros in the region |Re(s)| < l.

Proof. For s 6= 0 we have that ∆L0
(s) = I − 1

s

∑∞
j=1Aj,0e

srj . From the asymptotic formula above it follows

that ‖ 1
s

∑∞
j=1Aj,0e

srj‖ < 1 when |Im s| ≥M for certain M > 0. Then ∆L0
(s) is invertible. So det(∆L0

(s))
has no zeros for |Im(s)| sufficiently large. Suppose now that in some compact region |Re(s)| ≤ l, |Im(s)| ≤M ,
that the holomorphic function det(∆L0

(s)) has infinitely many zeros, which means there is a sequence of
distinct zeros {λj}∞j=1. By the Bolzano-Weierstrass theorem this sequence has a convergent subsequence.
So the set {z ∈ C : det(∆L0(s)) = 0} has an accumulation point. So by the identity theorem for analytic
functions [5, Theorem III.3.2], we have that det(∆L0

(s)) is the zero function. By the asymptotic formula
above, this is clearly a contradiction.

Definition 2.4. A system L is called asymptotic hyperbolic to ±∞ if there is a hyperbolic constant coefficient
system L± with

L±(φ(ξ)) =

∞∑
j=1

Aj,±φ(ξ + rj) (2.26)

and an M±(ξ) such that

L(ξ)(φ(ξ)) = L±(φ(ξ)) +M±(ξ)(φ(ξ)) (2.27)

with

lim
ξ→±∞

‖M±(ξ)‖ = 0. (2.28)
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2.4 Main Results

Before we establish our main results, we will first state the following theorem that is proved by J.M.Bos [2,
Theorem 1.4], which is a generalization of [1, Theorem A].

Theorem A. (The Fredholm Alternative) Assume L as in (2.5) is asymptotically hyperbolic. Then for
each p with 1 ≤ p ≤ ∞, the operator ΛL from W 1,p to Lp is a Fredholm operator. The kernel KpL ⊂ W 1,p

of ΛL is independent of p, so we denote KpL = KL, and similarly KpL∗ = KpL∗ = KL∗ for the kernel of the
operator Λ∗L associated to the adjoint L∗. The range RpL ⊂ Lp of ΛL in Lp is given by

RpL = {h ∈ Lp|
∫ ∞
−∞

y(ξ)h(ξ)dξ = 0, for all y ∈ KL∗}. (2.29)

In particular

dimKL∗ = codimRpL, dimKL = codimRpL∗ , ind(ΛL) = −ind(Λ∗L), (2.30)

where ind denotes the Fredholm index.
Finally, when L = L0 is a hyperbolic constant coefficient operator, we have

codimRpL0
= 0, dimKL0

= 0, ind(ΛL0
) = 0. (2.31)

In particular, ΛL0
is an isomorphism.

Note that in the statement of Theorem A we have that KpL ⊂W 1,p ⊂ Lp, for each p, and similarly for KL∗ .
In particular, KL∗ ⊂ Lq, where 1

p + 1
q = 1. So by Hölder’s inequality, the integral in (2.29) exists.

With theorem A as our tool, we are able to establish the following two theorems which are generalizations
of [1, Theorem B] and [1, Theorem C].

Theorem B. (The Cocycle Property) Assume L is asymptotically hyperbolic. Then the Fredholm index
of ΛL depends only on the limiting operators L± , namely the limits of L(ξ) as ξ → ±∞. Denoting

ind(ΛL) = ι(L−, L+), (2.32)

we have that

ι(L1, L2) + ι(L2, L3) = ι(L1, L3) (2.33)

for any triplet (L1, L2, L3) of hyperbolic constant coefficient operators.

As mentioned earlier, in the case of an ODE x′(ξ) = A(ξ)x(ξ), the index can be calculated by the formula
[24, Theorem 2.1]

ι(L−, L+) = dimWu(L−)− dimWu(L+) (2.34)

which immediately implies the cocycle property stated above. However, in the general case with shifts,
formula (2.34) does not hold. This is typically because dimWu =∞ for either L+ or L−. Nevertheless, the
index can be calculated by the spectral flow formula, which generalizes (2.34).

Theorem C. (The Spectral Flow Property) Let Lρ0,η, for η > 0, −1 ≤ ρ ≤ 1, be a continuously
varying one parameter family of constant coefficient operators such that the corresponding matrices satiesfy∑∞
j=0 |A

ρ
j,0|eη|rj | < ∞ for all −1 ≤ ρ ≤ 1, and suppose the operators L± = L±1

0,η are hyperbolic. Suppose
further there are only finitely many values

{ρ1, ρ2, · · · , ρJ} ⊂ (−1, 1) (2.35)

of ρ for which Lρ0,η is not hyperbolic. Then

ι(L−, L+) = −cross(Lρ0,η) (2.36)

is the net number of eigenvalues of (2.10) which cross the imaginary axis from left to right as ρ increases
from −1 to +1.
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Here, we use the same definition of cross(Lρ) that is defined in [1] as follow: Let {λj,k}
Kj
k=1 denote those

eigenvalues of equation (2.10), with L0 = L
ρj
0 , on the imaginary axis, Re(λj,k) = 0. We list these eigenvalues

with repetitions, according to their multiplicity as roots of the characteristic equation. Let Mj be the sum
of their multiplicities. For ρ near ρj , with ±(ρ− ρj) > 0, this equation has exactly Mj eigenvalues (counting
multiplicity) near the imaginary axis due to Rouché’s Theorem (see Proposition 6.1 for more justification),

M
L±
j with Re(λ) < 0, and M

R±
j with Re(λ) > 0, where M

L±
j + M

R±
j = Mj . The net crossing number of

eigenvalues at ρ = ρj is therefore given by M
R+

j −MR−
j . As such, we define

cross(Lρ) =

J∑
j=1

(M
R+

j −MR−
j ). (2.37)

Note that in the case of ODE, the characteristic equation ∆(s, ρ) = s − A(ρ) has only finitely many zeros
during the entire continuous path that is parametrized with −1 ≤ ρ ≤ 1. Hence, we can calculate the cross
by only considering the difference in the number of unstable eigenvalues between the limit operators, which
are the endpoints of such continuous path. This gives exactly (2.34).

These two results are also given in the paper of Scheel and Faye [3]. But instead of using abstract compact
operator theorems as in [3], we will follow the outline in [1] by examining the Laplace transform of (2.1) and
obtain the above two results through explicit calculations. Furthermore, we will work out some of the claims
that were made in [1]. We shall also see that by considering the Laplace transform of (2.1), we are able to
prove similar exponential dichotomy result as in [10], which is stated below.

Proposition A. Let L be as defined in (2.8) with coefficients that satisfies condition (2.4) for a certain
η̃ > 0 and suppose that the shifts as in (2.2) are bounded and the closure of the set of shifts are countable.
Pick η ∈ R with |η| < η̃ such that the characteristic equation ∆L(s) as in (2.23) is invertible for all s ∈ C
with Re(s) = η. Then we have the splitting

C([rmin, rmax];Cd) = PL(η)⊕QL(η) (2.38)

where QL(η) is the set of right half-line solutions x : [rmin,∞)→ Cd such that x(ξ) satisfies equation (2.10)
and the bound |x(ξ)| ≤ Keηξ, for certain K > 0 and for all ξ ≥ 0. Similarly, PL(η) is the set of left half-line
solutions y : (−∞, rmax]→ Cd such that y(ξ) satisfies (2.10) and has the bound |x(ξ)| ≤ Keηξ for all ξ ≤ 0.

The proof of this proposition also follow the same idea as in [10, Proposition 5.6].
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3 Preliminaries

3.1 Roots of analytic functions

Theorem 3.1 (Rouché’s theorem). Suppose f, g : U → C are analytic functions on an open set U ⊂ C. If
D0 ⊂ U is bounded and has continuous boundary and if for each z ∈ ∂D0,

|f(z)− g(z)| < |f(z)|+ |g(z)|, (3.1)

holds, then the number of zeros of f in D0 equals the number of zeros of g in D0, counting the multiplicities.

Proof. See [6, Lemma 2.3.3].

3.2 Interchanging limits

We recall the following theorems that allow us to exchange integrals, sums and limits under certain conditions,
which will be used in many of the proofs in this thesis.

Theorem 3.2 (Tonelli-Fubini). Let (X,A1, µ1), (Y,A2, µ2) be sigma-finite measure spaces and
f : X × Y → [−∞,∞] be A1 ⊗A2-measurable. If one of the three conditions∫

X

∫
Y

|f(x, y)|d(µ1 ⊗ µ2) <∞,
∫
X

∫
Y

|f(x, y)|dµ2dµ1 <∞,
∫
X

∫
Y

|f(x, y)|dµ1dµ2 <∞ (3.2)

holds, then we have∫
X

∫
Y

f(x, y)d(µ1 ⊗ µ2) =

∫
X

∫
Y

f(x, y)dµ2dµ1 =

∫
Y

f(x, y)dµ1dµ2. (3.3)

Proof. See [12, Tonelli and Fubini Theorem].

Theorem 3.3 (Interchanging limits and sums). Let F (x) :=
∑∞
n=1 fn(x) with fn : [a, b]→ R be continuous

functions. If the sum converges uniformly on [a, b], then F is also continuous and

lim
x→c

F (x) =

∞∑
n=1

lim
x→c

fn(x). (3.4)

Proof. Pick an N ∈ N such that
∣∣∣∑∞n≥N+1 fn(x)

∣∣∣ < ε/3 for all x ∈ [a, b]. Choose a sufficiently small δ > 0

such that for |x− c| < δ, we have∣∣∣∣∣
∞∑
n=1

fn(x)−
∞∑
n=1

fn(c)

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
n=1

fn(x)− fn(c) +

∞∑
n=N+1

fn(x)− fn(c)

∣∣∣∣∣ ≤ 3 · ε/3 = ε. (3.5)

Remark 3.4. For limits like x → −∞ and x → ∞, we may also bring it inside the summation if the sum
converges uniformly on respectively (−∞, c] and [d,∞) for certain c, d ∈ R.

Theorem 3.5 (Termwise Differentiation). Suppose that fn : [a, b]→ R is C1 on [a, b] (at the endpoints of a
and b this means one-sided derivative) for n ≥ 1 and suppose furthermore that

(1)
∑∞
n=1 fn(x0) converges pointwise for all x0 ∈ [a, b].

(2)
∑∞
n=1 f

′
n(x) converges uniformly on [a, b].

Then, for the function F (x) :=
∑∞
n=1 fn(x), we have that

(3) F (x) is differentiable for x ∈ [a, b] with F ′(x) =
∑∞
n=1 f

′
n(x).
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(4) F (x) converges uniformly on [a, b].

Proof. See [13, Theorem 2].

Theorem 3.6 (Termwise differentiation for analytic functions). Let f1, f2, · · · : D → C, D ⊂ C open and
non-empty, be a sequence of analytic functions which converges locally uniformly. Then the limit function f
is analytic and the sequence of the derivatives (f ′n) converges locally uniformly to f ′.

Proof. See [5, Theorem III.1.3].

Lemma 3.7. Let

f0, f1, f2, · · · : D → C, D ⊂ C (3.6)

be a sequence of continuous functions which converges locally uniformly to f . Then for any piecewise smooth
curve α : [a, b]→ D, we have

lim
n→∞

∫
α

fn(ζ)dζ =

∫
α

f(ζ)dζ. (3.7)

Proof. See [5, Remark III.1.2].

Lemma 3.8 (Differentiation lemma). Let I be a non-degenerate (meaning, containing more than one point)
interval in R, and f : I × Ω→ R be a function with the properties

(a) ω 7→ f(x, ω) is µ-integrable for each x ∈ I;

(b) x 7→ f(x, ω) is differentiable on I for each ω ∈ Ω, the derivative at x being denoted by f ′(x, ω);

(c) there is a µ-integrable function h ≥ 0 on Ω such that

|f ′(x, ω)| ≤ h(ω) for all (x, ω) ∈ I × Ω. (3.8)

Then, the function defined on I by

ϕ(x) :=

∫
f(x, ω)µ(dω) (3.9)

is differentiable, for each x ∈ I the function ω 7→ f ′(x, ω) is µ-integrable, and

ϕ′(x) =

∫
f ′(x, ω)µ(dω) for every x ∈ I. (3.10)

Proof. See [12, Lemma 16.2].

3.3 Fourier Transform

We recall the formula for the Fourier Transform f̂ ∈ L2 (or sometimes denoted as F(f)) of a function f ∈ L2,
and the formula for the inverse transform ǧ of any g ∈ L2 (or sometimes denoted as F−1(f)), which is given
by

f̂(η) =

∫ ∞
−∞

e−iξηf(ξ)dξ, ǧ(ξ) =
1

2π

∫ ∞
−∞

eiξηg(η)dη. (3.11)

Following [1,page 8], if f or f̂ is not integrable, then we define the integrals in (3.11) differently. For f ∈ L2,
we define (3.11) as

f̂(η) = lim
Ω→∞

∫ Ω

−Ω

e−iξηf(ξ)dξ, (3.12)

which converges according to [1,page 8].

The Fourier transform can be also defined in the language of distributions. For f a tempered distribu-
tion, the Fourier Transformation F(f) of f is given by

(F(f), ζ) = (f,F(ζ)) (3.13)

[2, Definition 2.12]. The Fourier Transform is an isometric isomorphism on L2 [7, Chapter 5.64].
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3.4 Laplace transform and shifting the path of integration

For a function f : [0,∞)→ Cd that satisfies f(ξ) = O(e−aξ) as ξ →∞ (we used the big oh notation, which
means that eaξf(ξ) is bounded as ξ →∞), we define the Laplace transform f̃ of f (sometimes also denoted
as L(f)) to be

f̃(s) =

∫ ∞
0

e−sξf(ξ)dξ, (3.14)

for complex s satisfying Re(s) > −a. In fact, f̃ is holomorphic for such s. The inverse transform is given by

f(ξ) =
1

2πi
lim

Ω→∞

∫ k+iΩ

k−iΩ
esξ f̃(s)ds, (3.15)

for any k > −a, with ξ ≥ 0. The integral (3.15) is taken in the Fourier sense as explained above. This
Laplace transform is related to the Fourier transform as follows: let g ∈ L2 be given by g(ξ) = e−kξf(ξ) for
ξ ≥ 0, and g(ξ) = 0 for ξ < 0. Then ĝ(η) = f̃(k + iη). With this last relation, one can easily derive (3.15)
from the inverse Fourier transform.

For a meromorphic function g in a region of the complex plane, and λ ∈ C a pole of g in that region,
we recall the residue theorem [5, Theorem III.6.3.]

res(g, λ) =
1

2πi

∫
|s−λ|=ε

g(s)ds

with ε sufficiently small.

Following [1,page 8], for f(ξ) = O(e−aξ) as ξ → ∞ such that for some b ≥ a the Laplace transform f̃
is meremorphic in the closed half plane Re(s) ≥ −b and is holomorphic on the vertical line Re(s) = −b, then
we may shift the path of integration in (3.15) to the line Re(s) = −b and obtain

f(ξ) =
∑

res(eξ f̃ , λ) +
1

2πi
lim

Ω→∞

∫ −b+iΩ
−b−iΩ

esξ f̃(s)ds, (3.16)

where for ξ ∈ C, eξ : C→ C is defined as

eξ(s) = eξs. (3.17)

The sum in (3.16) is taken over all poles λ of f̃ in the strip −b < Im(s) ≤ −a. Furthermore, we need the
next three extra conditions in order to shift the path of integration

• f̃ has only finitely many poles in −b < Re(s) ≤ −a;

• f̃(s)→ 0 uniformly in the strip −b ≤ Re(s) ≤ k, as |Im(s)| → ∞;

• the function η 7→ f̃(−b+ iη) belongs to L2.
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4 Proof of Theorem B

To prove theorem B, we shall use a classical result about Fredholm operators, which states that the Fredholm
index is a locally constant function. This means that on a connected domain, the Fredholm index is a constant
function. As a consequence, we shall see that the Fredholm index stays constant if we vary the Fredholm
operators continuously.

Lemma 4.1. The set Fred(X,Y ) of Fredholm operators between Banach spaces X and Y is a open subset
of B(X,Y ), the set of bounded linear operators from X to Y . Furthermore, the function

ind : Fred(X,Y )→ Z

is locally constant.

The proof of this can be found in [9]. We will also use the following two results.

Lemma 4.2. Let f : X → Y be a locally constant function between two topological spaces X and Y . If X
is connected, then f is constant on X.

Proof. Let x0 ∈ X and c = f(x0). Consider the set A := {x ∈ X|f(x) = c}. By the definition of locally
constant, for each x ∈ X, there exists an open Ux ⊂ X such that x ∈ Ux and f(Ux) = f(x). Hence, we have

A ⊂
⋃
x∈A

Ux ⊂ A. (4.1)

Thus, A is open. We now consider B := X \A. Then we also have

B ⊂
⋃
x∈B

Ux ⊂ B. (4.2)

Hence A is also closed. By the definition of connectivity, we have that A = X or A = ∅. Since x0 ∈ A, we
have A = X. Thus f is constant on X.

Lemma 4.3. Let X,Y, Z be topological spaces and f : X → Y and g : Y → Z be such that g is locally
constant and f is continuous. Then g ◦ f is also locally constant.

Proof. Let x0 ∈ X, then f(x0) ∈ Y . Because g is locally constant, there exists a Uf(x0) ⊂ Y open that
contains f(x0) and such that g(Uf(x0)) = g(f(x0)). Since f is continuous, we have that Vx0

:= f−1(Uf(x0)) ⊂
X is open and contain x0. By definition we have g(f(Vx0

) = g(f(x0)). Hence g ◦ f is indeed also locally
constant.

Sketch of the proof of Theorem B. The proof for Theorem B is identically to [1, Theorem B]. Therefore,
we will only give a sketch of this proof and work out some of the claims in the proof. To prove that the
Fredholm index of ΛL depends only on the limiting operators L±. we construct the following (continuous)
homotopy

Lρ(ξ) = (1− ρ)L0(ξ) + ρL1(ξ) (4.3)

between two operators L0, L1 that have the same limit operators, Then Lρ is asymptotically hyperbolic,
since we have the limit

lim
ξ→∞

Lρ(ξ) = (1− ρ) lim
ξ→∞

L0(ξ) + ρ lim
ξ→∞

L1(ξ) = (1− ρ)L+ + ρL+ = L+ (4.4)

and the same holds for ξ → −∞.
Therefore, by theorem A, and the above Lemma’s, we have that ind(ΛL0) = ind(ΛL1). So indeed the index
depends only on the limiting operators.
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To prove the cocycle property (2.33), we will again construct a homotopy. Let L1, L2 and L3 as given
in the statement of the theorem. For 0 ≤ ρ ≤ 1, consider the system z′(ξ) = Lρ(ξ)zξ, given by

z′(ξ) = (1−H(ξ))L1,2zξ +H(ξ)R(ρ)L2,3R(−ρ)zξ (4.5)

in twice the number 2d of variables, where

z(ξ) =

(
x(ξ)
y(ξ)

)
, Lj,kzξ =

(
Ljxξ
Lkyξ

)
, R(ρ) =

(
cos(πρ2 )Id sin(πρ2 )Id
− sin(πρ2 )Id cos(πρ2 )Id

)
, (4.6)

with H is the Heaviside function, thus H(ξ) = 0 if ξ < 0 en H(ξ) = 1 if ξ ≥ 0, and Id is the d× d identity
matrix.
We will check that (4.5) is asymptotically hyperbolic for each ρ, which is only claimed in the proof of [1,
Theorem B].
For ξ → −∞, we have

lim
ξ→−∞

(1− α(ξ))L1,2 + α(ξ)R(ρ)L2,3R(−ρ) = L1,2. (4.7)

We will show that L1,2 is hyperbolic, which by definition means that det(sI2d −
∑∞
j=1Bje

srj ) 6= 0 for s ∈ C
with Re(s) 6= 0 and Bj the matrices corresponds to the operator L1,2. Note that we have the following
expression for Bj .

Bj =

(
A1
j 0

0 A2
j

)
, (4.8)

where Aij is the j-th matrix of system Li. Hence, we have

det(sI2d −
∞∑
j=1

Bje
srj ) = det

(
sId −

∑∞
j=1A

1
je
srj 0

0 sId −
∑∞
j=1A

2
je
srj

)
= det(∆L1(s)) · det(∆L2(s)),

(4.9)

since L1 and L2 are hyperbolic, this gives that L1,2 is indeed hyperbolic as well.
For the +∞ limit operator,

lim
ξ→∞

(1− α(ξ))L1,2 + α(ξ)R(ρ)L2,3R(−ρ) = R(ρ)L2,3R(−ρ). (4.10)

We want to show that K := R(ρ)L2,3R(−ρ) is hyperbolic for each ρ. Denote Cj for the matrices correspond-
ing to the system K. Then, we have the following expression for Cj

Cj =

(
R(ρ)A2

jR(−ρ) 0
0 R(ρ)A3

jR(−ρ)

)
. (4.11)

Hence we have

det(sI2d −
∞∑
j=1

Cje
srj ) = det

(
sId −

∑∞
j=1R(ρ)A2

jR(−ρ)esrj 0

0 sId −
∑∞
j=1R(ρ)A3

jR(−ρ)esrj

)

= det

sId −R(ρ)
(∑∞

j=1A
2
je
srj
)
R(−ρ) 0

0 sId −R(ρ)
(∑∞

j=1A
3
je
srj
)
R(−ρ)


= det

sId −R(ρ)

 ∞∑
j=1

A2
je
srj

R(−ρ)

 · det

sId −R(ρ)

 ∞∑
j=1

A3
je
srj

R(−ρ)


= det(∆L2

(s)) · det(∆L3
(s)),

(4.12)
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where the last equality follows from the fact that R(−ρ) = (R(ρ))−1 for each 0 ≤ ρ ≤ 1 (note that it has
the form of a rotation matrix) and that similar matrices have the same eigenvalues. Hence, we see that K
is indeed hyperbolic and thus (4.5) gives a homotopy of Fredholm operators.
The proof now continues identically as in [1, Theorem B].
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5 Asymptotic behavior of solutions

Before we proceed to the proof of Theorem C, we will first give a result about the asymptotic behavior
of solutions of the inhomogeneous constant coefficient system (2.9). This result will be useful for proving
Theorem C. It will also give us important tools to establish the results in upcoming sections regarding
exponential dichotomies.
We will first show that if λ is an eigenvalue of the homogeneous system (2.10) and if f is any Cd valued
function which is holomorphic in a neighbourhood of λ in C, then for ε > 0 sufficiently small, the function

x(ξ) = res(eξ∆
−1
L0
f, λ) =

1

2πi

∫
|s−λ|=ε

esξ∆L0
(s)−1f(s)ds (5.1)

is an eigensolution of (2.10) corresponding to λ. Here, eξ is as in (3.17) and with eigensolution we mean a
solution of the form eλξp(ξ) for p(ξ) a polynomial. We will first show that x defined as in (5.1) is a solution
for (2.10).
We have that

x′(ξ) =
1

2πi

∫
|s−λ|=ε

esξs∆L0
(s)−1f(s)ds, x(ξ + r) =

1

2πi

∫
|s−λ|=ε

esξesr∆L0
(s)−1f(s)ds. (5.2)

Note we can bring d
dξ into the integral due to the Leibniz rule. By direct substitution into (2.10), we have

on the right-hand side

∞∑
j=1

Aj,0x(ξ + rj) =
1

2πi

∞∑
j=1

Aj,0

∫
|s−λ|=ε

esξesrj∆L0(s)−1f(s)ds. (5.3)

Recall that ∆L0
(s) is an analytic function in a certain region (which contains λ). So the function h(s, ξ) :=

esξesrj∆L0(s)−1f(s) is an analytic function of s in a neighbourhood of λ except at the point s = λ. But
since we are integrating over the curve |s−λ| = ε, we may switch the summation and the integral above due
to Lemma 3.7. This yields

∞∑
j=1

Aj,0x(ξ + rj) =

∫
|s−λ|=ε

∞∑
j=1

Aj,0e
sξesrj∆L0

(s)−1f(s)ds

=

∫
|s−λ|=ε

(sI −∆L0(s))esξ∆L0(s)−1f(s)ds

=

∫
|s−λ|=ε

sesξ∆L0(s)−1f(s)ds−
∫
|s−λ|=ε

esξf(s)ds.

(5.4)

Note that the latter integral is zero because it is a integral of an analytic function over a closed curve. This
yields

∞∑
j=1

Aj,0x(ξ + rj) =

∫
|s−λ|=ε

sesξ∆L0
(s)−1f(s)ds = x′(ξ). (5.5)

Hence, x(ξ) indeed satisfies the homogeneous equation. Now we want to show that x(ξ) is an eigensolution,
i.e. that is of the form x(ξ) = eλξp(ξ) for some polynomial p. This is done by substituting the Taylor and
Laurent series of the functions

esξ = eλξ
∞∑
j=1

(s− λ)jξj

j!
, ∆L0

(s)−1f(s) =

∞∑
j=−M

Cj(s− λ)j . (5.6)
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Substituting these power series into x(ξ) gives

x(ξ) =
1

2πi

∫
|s−λ|=ε

eλξ ∞∑
j=0

(s− λ)jξj

j!

 ·
 ∞∑
j=−M

Cj(s− λ)j

 ds

= eλξ
1

2πi

∫
|s−λ|=ε

 ∞∑
j=0

(s− λ)jξj

j!

 ·
 ∞∑
j=−M

Cj(s− λ)j

 ds.

(5.7)

We have that the function s 7→
∑∞
j=0

(s−λ)jξj

j! ·
∑∞
j=−M Cj(s−λ)j is an analytic function in a neighbourhood

of λ with in λ a pole. So by the residue theorem, we obtain

x(ξ) = eλξres(h, λ). (5.8)

Note that the residue is equal to the coefficient of the (s− λ)−1 term, which is a polynomial in ξ.

We are now able to establish the following result, which is similar to [1, Proposition 6.1].

Proposition 5.1. Let x : R→ Cd be a solution of equation (2.9) for almost all ξ ∈ R, with some h : R→ Cd.
Let η > 0 be such that the system of (2.9) satisfies

∑∞
j=1 |Aj,0|eη|rj | < ∞. Assume for some real numbers

−η < a < b < η that

|x(ξ)| ≤ Ke−a|ξ|, ∀ ξ ∈ R, h(ξ) = O(e−bξ), ξ →∞. (5.9)

Then for every ε > 0, we have that

x(ξ) = z(ξ) +O(e−(b−ε)ξ), ξ →∞, (5.10)

where z is an eigensolution corresponding to the set of eigenvalues

Λ = {λ ∈ C| − b < Re λ ≤ −a,det(∆L0
(λ)) = 0}. (5.11)

The analogous result for ξ → −∞ also holds, for which the assumption is replaced by a > b and the statement
is replaced by x(ξ) = z(ξ) +O(e−(b+ε)ξ), ξ → −∞.

The proof for this proposition follows the same idea as in [1, Proposition 7.1], which can be summarized into
the following steps,

(1) We apply the Laplace transform to equation (2.1) and rewrite the transformed equation into the form

∆L0
(s)x̃(s) = ψ(s) + h̃(s), (5.12)

where

ψ(s) = x(0)−
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ. (5.13)

We shall see that equation (5.12) will give us an extension of x̃(s) to a meromorphic function.

(2) We will then apply the inverse Laplace transform to the function x̃(s), where we will shift the path
of integration to pick up the residues, which are eigensolutions according to (5.1). In other words, we
shall obtain x(ξ) = z(ξ) + w(ξ), where z(ξ) is the residue and w(ξ) the remaining term.

(3) Finally, we shall show that w(ξ) has the desired bound.

We shall go through these steps individually in the following sections.
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5.1 Step (1) of the proof

Let x be a solution that satisfies the conditions in the statement. We perform the Laplace transform of (2.1).
For |a| < Re(s) ≤ η, the left hand side yields:

L(x′) =

∫ ∞
0

e−sξx′(ξ)dξ = [e−sξx(ξ)]∞0 +

∫ ∞
0

se−sξx(ξ)dξ

= −x(0) + sx̃(s).

(5.14)

The right-hand side yields

L

 ∞∑
j=1

Aj,0x(ξ + rj) + h(ξ)

 =

∫ ∞
0

e−sξ
∞∑
j=1

Aj,0x(ξ + rj)dξ + h̃(s). (5.15)

Proposition 5.2. The Laplace transform of equation(2.1) can be written in the form

∆L0
(s)x̃(s) = ψ(s) + h̃(s) (5.16)

with

ψ(s) = x(0)−
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ. (5.17)

Proof. We will first show that the sum

I :=

∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ (5.18)

converges absolutely and uniformly for |Re(s)| ≤ η. This implies that ψ(s) is an analytic function for
|Re(s)| < η, since it is an infinite sum of analytic functions that converges uniformly (recall Theorem 3.6).
A first estimate yields

|I| ≤
∞∑
j=1

|Aj,0|

∣∣∣∣∣
∫ 0

−rj
e−sξx(ξ + rj)dξ

∣∣∣∣∣ =:

∞∑
j=1

|Aj,0|Ij . (5.19)

Note that if |Re(s)| ≤ η, we have Re(s) + a ≤ η + a and −Re(s) + a ≤ η + a. Furthermore, for rj ≥ 0, we
have that 0 ≤ ξ + rj ≤ rj . Hence, we can estimate

Ij ≤
∫ 0

−rj
e−Re(s)ξ|x(ξ + rj)|dξ ≤

∫ 0

−rj
e−Re(s)ξKe−a|ξ+rj |dξ

≤
∫ 0

−rj
e−Re(s)ξKe−a(ξ+rj)dξ

≤ Ke−arj
∫ 0

−rj
e−(Re(s)+a)ξdξ

≤ Ke−arj
∫ rj

0

e(Re(s)+a)ξdξ

≤ Ke−arj
∫ rj

0

e(η+a)ξdξ

≤ K

η + a
eη|rj |.

(5.20)
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In contrast, for rj < 0, we have rj ≤ ξ + rj ≤ 0. Hence, we can estimate

Ij ≤

∣∣∣∣∣
∫ |rj |

0

e−sξx(ξ + rj)dξ

∣∣∣∣∣ ≤
∫ |rj |

0

e−Re(s)ξ|x(ξ + rj)|dξ

≤
∫ |rj |

0

e−Re(s)ξKe−a|ξ+rj |dξ

≤
∫ |rj |

0

e−Re(s)ξKea(ξ+rj)dξ

≤ Kearj
∫ |rj |

0

e(−Re(s)+a)ξdξ

≤ Ke−a|rj |
∫ |rj |

0

e(η+a)ξdξ

≤ K

η + a
eη|rj |.

(5.21)

Note that |a| 6= η so we are not dividing by zero. We now make the following estimation

∞∑
j=1

|Aj,0|Ij ≤
∞∑
j=1

|Aj,0|
K

η + a
eη|rj | ≤ K

η + a

∞∑
j=1

|Aj,0|eη|rj | <∞. (5.22)

Thus, we see that this sum indeed converges absolutely and uniformly, if |Re(s)| ≤ η.
We return to our Laplace-transformed equation:

sx̃(s) = x(0) +

∫ ∞
0

e−sξ
∞∑
j=1

Aj,0x(ξ + rj)dξ −
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ

+

∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ + h̃(s),

(5.23)

which we can rewrite to

sx̃(s)−
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ −

∫ ∞
0

e−sξ
∞∑
j=1

Aj,0x(ξ + rj)dξ = ψ(s) + h̃(s). (5.24)

In order to write it in the form of (5.16), we would like to apply Fubini’s theorem to the expression∫∞
0
e−sξ

∑∞
j=1Aj,0x(ξ + rj)dξ. To do this we must show that this integral is bounded.∫ ∞

0

∞∑
j=1

∣∣e−sξAj,0x(ξ + rj)
∣∣ dξ ≤ ∫ ∞

0

e−Re(s)ξ
∞∑
j=1

|Aj,0||x(ξ + rj)|dξ

≤
∫ ∞

0

e−Re(s)ξ
∞∑
j=1

|Aj,0|Ke−a|ξ+rj |dξ

≤
∫ ∞

0

e−Re(s)ξ
∞∑
j=1

|Aj,0|Ke|a|(ξ+|rj |)dξ

≤
∫ ∞

0

e(−Re(s)+|a|)ξ
∞∑
j=1

|Aj,0|Ke|a||rj |dξ

≤
∞∑
j=1

|Aj,0|Keη|rj |
∫ ∞

0

e(−Re(s)+|a|)ξdξ

<∞.

(5.25)
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Thus, we may indeed apply Fubini and the left-hand side of the above expression becomes

ψ(s) + h̃(s) = sx̃(s)−
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ −

∫ ∞
0

e−sξ
∞∑
j=1

Aj,0x(ξ + rj)dξ

= sx̃(s)−
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ −

∞∑
j=1

Aj,0

∫ ∞
0

e−sξx(ξ + rj)dξ

= sx̃(s)−
∞∑
j=1

Aj,0

∫ rj

0

e−s(ξ−rj)x(ξ)dξ −
∞∑
j=1

Aj,0

∫ ∞
rj

e−s(ξ−rj)x(ξ)dξ

= ∆L0
(s)x̃(s).

(5.26)

This yields equation (5.16).

We note that (5.9) gives that x̃ and h̃ are holomorphic in the half planes Re(s) > −a and Re(s) > −b
respectively. Moreover, we have that ψ(s) is holomorphic if Re(s) ≤ η (see Proposition 5.2). Because
−b < η and −a < η, we can extend the analytic function x̃ uniquely to a meromorphic function in the region
−b < Re(s) ≤ −a with relation (5.12). In other words, we have the meromorphic function

ỹ(ξ) =

{
∆−1
L0

(s)(ψ(s) + h̃(s)) if − b ≤ Re(s) ≤ −a
x̃(s) if Re(s) > −a.

(5.27)

5.2 Step (2) of the proof

Since x satisfies the growth condition |x(ξ)| ≤ Ke−α|ξ| for all ξ ∈ R, we have for any k > −a, the inverse
Laplace transform

x(ξ) =
1

2πi
lim

Ω→∞

∫ k+iΩ

k−iΩ
esξx̃(s)ds (5.28)

for ξ ≥ 0 (recall Section 3.4).

We would like to shift the path of this integral to the line Re(s) = −b and obtain the residues. In or-
der to perform this shift, we need to show the following (recall Section 3.4).

(1) ỹ has only finitely many poles in the strip −b < Re(s) ≤ −a;

(2) ỹ(s)→ 0 uniformly in the strip −b ≤ Re(s) ≤ k, as |Im(s)| → ∞;

(3) the function k 7→ ỹ(−b+ ik) belongs to L2.

Since the only singularities of ỹ(ξ) in the strip −b < Re(s) ≤ −a are the roots of ∆L0(s), for which there
are only finitely many. Hence, (1) is indeed true.
We have that ψ and h̃ are uniformly bounded on the vertical strip −b+ ε ≤ Re(s) ≤ k for each k < η (note
that −η < −b + ε since b < η). This is obviously true for h̃. For ψ, this is also true by the estimation in
(5.22). Together with the fact ∆−1

L0
(s) = O(|s|−1), we have ỹ(s) = O(|s|−1), uniformly as |Im s| → ∞, on

each such strip. This verifies (2) and (3). Hence, we may shift the path of integration.

Assume that ε > 0 is small enough such that the strip −b < Re(s) ≤ −b + ε/2 does not contain any
eigenvalues and also that −b + ε/2 < k. Then, together with the above observations, we shift the path of
integration in (5.28) to the line Re(s) = −b+ ε/2 and obtain

x(ξ) = z(ξ) + w(ξ), z(ξ) =
∑
λ∈Λ

res(eξx̃, λ), w(ξ) =
1

2πi
lim

Ω→∞

∫ −b+ε/2+iΩ

−b+ε/2−iΩ
esξ ỹ(s)ds. (5.29)

Recall that in this way z is an eigensolution to (2.10).
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5.3 Step (3) of the proof

It remains to show that

w(ξ) = O(e−(b−ε)ξ), ξ →∞. (5.30)

We know that the function t 7→ ỹ(−b+ε/2+it) is in L2. Hence, we can take its Inverse Fourier Transformation.

L2 3 F−1(ỹ(−b+ ε/2 + iη))(ξ) =
1

2π
lim

Ω→∞

∫ Ω

−Ω

eiξη ỹ(−b+ ε/2 + iη)dη

=
1

2πi
lim

Ω→∞

∫ −b+ε/2+iΩ

−b+ε/2−iΩ
e(s+b−ε/2)ξ ỹ(s)ds

= e(b−ε/2)ξ 1

2πi
lim

Ω→∞

∫ −b+ε/2+iΩ

−b+ε/2−iΩ
esξ ỹ(s)ds

= e(b−ε/2)ξw(ξ).

(5.31)

Let u(ξ) = e(b−ε/2)ξw(ξ) and v(ξ) =

{
e−εξu(ξ) = e(b−ε)ξw(ξ) if ξ ≥ 0

eεξu(ξ) = ebξw(ξ) if ξ < 0.
By the above calculation, it follows

that u ∈ L2(R,Cd). Hence it follows that v ∈ L1(R,Cd). Because z satisfies the homogeneous equation,
we have that w, like x, satisfies the inhomogeneous equation. For ξ ≥ 0, we conclude that v satisfies the
equation

v′(ξ) = (b− ε)v(ξ) +
∑
j:rj≥0

e−(b−ε)rjAj,0v(ξ + rj) +
∑
j:rj<0

e−brjAj,0v(ξ + rj) + e(b−ε)ξh(ξ). (5.32)

We want to show that the right-hand side is integrable on [0,∞), which means we only need to show that∑
j:rj≥0 e

−(b−ε)rjAj,0v(ξ + rj) +
∑
j:rj<0 e

−brjAj,0v(ξ + rj) is integrable. Using Fatou’s lemma, we can
estimate ∫ ∞

0

∣∣∣∣∣∣
∑
j:rj≥0

e−(b−ε)rjAj,0v(ξ + rj) +
∑
j:rj<0

e−brjAj,0v(ξ + rj)

∣∣∣∣∣∣ dξ
≤
∫ ∞

0

∣∣∣∣∣∣
∑
j:rj≥0

e−(b−ε)rjAj,0v(ξ + rj)

∣∣∣∣∣∣ dξ +

∫ ∞
0

∣∣∣∣∣∣
∑
j:rj<0

e−brjAj,0v(ξ + rj)

∣∣∣∣∣∣ dξ
≤
∑
j:rj≥0

|Aj,0|e|−(b−ε)||rj |
∫ ∞

0

|v(ξ + rj)|dξ +
∑
j:rj<0

|Aj,0|e|b||rj |
∫ ∞

0

|v(ξ + rj)|dξ

≤ ‖v‖1
∑
j:rj≥0

|Aj,0|eη|rj | + ‖v‖1
∑
j:rj<0

|Aj,0|eη|rj |

≤ ‖v‖1
∞∑
j=1

|Aj,0|eη|rj |

<∞.

(5.33)

This shows that v′(ξ) is integrable on [0,∞). Therefore, we can write v(ξ) = v(0) +
∫ ξ

0
v′(s)ds, for ξ ≥ 0.

Hence, we conclude that v(ξ) is bounded as ξ →∞. This means that indeed w(ξ) = O(e−(b−ε)ξ).

For the analogous result for ξ → −∞, the proof is similar. The Laplace Transform is then carried out
from −∞ to 0, and instead of shifting the path of integral to the left, we shift it to the right for the ξ → −∞
case.
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6 Proof of Theorem C

The goal is to calculate the index ι(L−, L+) given two hyperbolic limit operators L− and L+. Suppose as in
the hypothesis of Theorem C, we have a continuous varying path of constant matrix coefficients σ(ρ), with
−1 ≤ ρ ≤ 1 such that (with a little abuse of notation) σ(−1) = L− and σ(1) = L+. Then, we can look at
the index of

ι(L−, Lρ), (6.1)

where Lρ is the system with σ(ρ) as coefficients. Since σ(ρ) is continuous and the Fredholm index stays
constant under continuous path, this means that ι(L,Lρ) = ι(L−, L−) = 0 as long as Lρ is hyperbolic, which
is the case when the corresponding ∆Lρ(s) has no eigenvalues on the imaginary axis, according to Theorem
A. This shows that during the path σ(ρ), a change of index happens only when the corresponding eigenvalues
cross the imaginary axis. Theorem C tells us exactly how the index changes during such a cross.

The idea of proving Theorem C is to approximate the family Lρ0 of operators in the statement with a
generic family. We will then show that the crossing number for the approximation is unchanged.

To formalize the ideas above, we start by introducing the following notations and definitions.
Throughout this whole section, we will keep the shifts rj fixed. For η > 0, we define the following vector
space over C

`1η(Cd×d) := {A = (A1,0, A2,0, · · · ) :

∞∑
j=1

|Aj,0|eη|rj | <∞, Aj,0 ∈ Cd×d}. (6.2)

It is easy to verify that this is a vector space. We choose the norm ‖A‖η =
∑∞
j=1 |Aj,0|eη|rj |. Note that if

η1 < η2, then `1η2
⊂ `1η1

. We denote paths in this set by

σ : [−1, 1]→ `1η(Cd×d)

between coefficients σ(±1) = A±. We say that such a path is continuous if it is continuous with respect to
the ‖A‖η norm. Note that if η1 < η2, then a continuous path in `1η2

is also continuous in `1η1
.

We will now show that cross(Lρ) as in (2.37) is well-defined.

Proposition 6.1. Let σ : [−1, 1] → `1η(Cd×d) be a continuous path of coefficients. Denote g(s, ρ) :=
sI−

∑∞
j=1Aj,0(ρ)esrj and h(s, ρ) := det(sI−

∑∞
j=1Aj,0(ρ)esrj ), where {Aj,0(ρ)}j≥1 = σ(ρ) and |Re(s)| < η.

Then for each ρ0 ∈ [−1, 1], there exists a δ > 0 and an ε > 0 such that for all ρ ∈ [−1, 1] with |ρ− ρ0| < δ,
we have that g(s, ρ) and g(s, ρ0) has the same number of zeros, counting with multiplicities, in the region
Rε := {s ∈ C : Re(s) < ε}.

To prove this proposition, we need the following lemmas as support.

Lemma 6.2. Let σ : [−1, 1] → `1η(Cd×d) be a continuous path of coefficients. Denote g(s, ρ) := sI −∑∞
j=1Aj,0(ρ)esrj where {Aj,0(ρ)}j≥1 = σ(ρ) and |Re(s)| < η. Then there exists an M > 0 such that if

|Im(s)| ≥ M , then g(s, ρ) is invertible for all ρ ∈ [−1, 1]. In other words, there are no eigenvalues for all
ρ ∈ [−1, 1], if |Im(s)| is large enough.

Proof. We have |
∑∞
j=1Aj,0(ρ)esrj | ≤ ‖A(ρ)‖η. Since [−1, 1] is compact and σ(ρ) together with the norm

function are continuous, we have that ‖A(ρ)‖η ≤ maxρ∈[−1,1] ‖A(ρ)‖η =: N . Now choose M such that
N/M < 1.

Lemma 6.3. Let σ : [−1, 1]→ `1η(Cd×d) be a continuous path of coefficients. Let D = {s ∈ C : |Re(s)| < η}.
Denote g(s, ρ) := sI−

∑∞
j=1Aj,0(ρ)esrj and h(s, ρ) := det(sI−

∑∞
j=1Aj,0(ρ)esrj ), where {Aj,0(ρ)}j≥1 = σ(ρ)

and s ∈ D. Then h(s, ρ) is analytic in s for all ρ ∈ [−1, 1], and h is uniformly continuous in ρ, which means
for all ρ0 ∈ [−1, 1], there exists a δ > 0 such that for all ρ with |ρ− ρ0| < δ, we have |h(s, ρ)− h(s, ρ0)| < ε,
for all s ∈ D.
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Proof. Since h(s, ρ) = det(g(s, ρ)), we have that h(s, ρ) satisfies the above statements if g(s, ρ) does, since
the determinant is polynomial.
The analyticity follows from Remark 2.1 and the uniform continuity follows from the assumption that σ is
continuous in ρ with respect to the ‖A(ρ)‖η norm.

Proof of Proposition 6.1. Since h(s, ρ0) has only finitely many zeros, we take ε1 > 0 such that there are no
roots on the vertical line |Re(s)| = ε1. Furthermore, from Lemma 6.2, there is an M > 0 such that h(s, ρ)
has no roots for all ρ ∈ [−1, 1], if |Im(s)| ≥ M . Let ∂R := {s ∈ C : |Re(s)| = ε1, |Im(s)| = M}. Then
ε̃ := mins∈∂R |h(s, ρ)| > 0 since there are no roots on ∂R. Lemma 6.3 now gives us a δ > 0 such that for all
ρ ∈ [−1, 1] such that |ρ − ρ0| < δ, we have |h(s, ρ) − h(s, ρ0)| < ε̃ ≤ |h(s, ρ0)| on R̃. Hence, we may apply
Rouché’s theorem and conclude that h(s, ρ) and h(s, ρ0) have the same number of zeros inside the region
bounded by ∂R. The last statement follows by choosing Rε = Rε1 .

For any continuous path σ, we define

NH(σ) = {ρ ∈ [−1, 1] |equation (2.10), with coefficients at A = σ(ρ), is not hyperbolic}. (6.3)

Thus σ satisfies the conditions of Theorem C if and only if NH(σ) ⊂ (−1, 1) is a finite set.

For |γ| < η, it will be useful to introduce the shift operator

Sγ : `1η(Cd×d)→ `1η−|γ|(C
d×d), (6.4)

(A1,0, A2,0, · · · ) 7→ (A1,0 + γI, e−γr2A2,0, e
−γr3A3,0, · · · ). (6.5)

This transformation Sγ arises from the change of variables y(ξ) = eγξx(ξ) in equation (2.10). It is clear that
this is well-defined and one can easily check that

∆SγL0
(s) = ∆L0

(s− γ). (6.6)

That is, the operator Sγ shifts all eigenvalues to the right by an amount γ.
For convenience, we define the function

sign(x) =


1 x > 0

0 x = 0

−1 x < 0.

(6.7)

In order to follow the proof of [1, Proof of Theorem C], we will introduce the following definitions of classes
of constant coefficients.

Definition 6.4. We say the constant coefficient equation (2.10), with (2.8) (or simply the coefficients
themselves) satisfies Property G0 if there exists at most one η̃ ∈ R such that λ = iη̃ is an eigenvalue, and
if moreover, this is a simple root of the characteristic equation det ∆L0

(s) = 0.

Remark 6.5. Note that the coefficients Aj,0 can be complex matrices, which means the in general eigenvalues
does not have to occur in complex conjugate pairs.

Definition 6.6. Let σ ∈ C1([−1, 1], `1η(Cd×d) be a smooth one parameter family of coefficients for (2.8). We
say the corresponding family of equations (2.10) (or simply the coefficients themselves) satisfies Property
G1 if

(i) for each ρ ∈ [−1, 1], equation (2.10) with coefficients at A = σ(ρ) satisfies Property G0,

(ii) at ρ = ±1 equation (2.10) is hyperbolic,

(iii) all eigenvalues λ = λ(ρ) of equation (2.10) on the imaginary axis Re(λ(ρ0)) = 0, for some ρ = ρ0 ∈
(−1, 1), cross the axis transversely with ρ, that is Re λ′(ρ0) 6= 0.

Remark 6.7. Note that for the above definition we implicitly assumed that Re(λ) is a differentiable function.
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We also note that a family of constant coefficient equations satisfying Property G1 also satisfies the hypotheses
of Theorem C. This is mainly due to the following result.

Lemma 6.8. Let f : [a, b]→ R be differentiable. Suppose there is no x ∈ [a, b] such that
f(x) = f ′(x) = 0. Then f has only finitely many zeros.

Proof. Suppose f has infinitely many zeros. Then we have a distinct sequence of zeros of f , namely {xn}∞n=1 ⊂
[a, b]. By the Bolzano-Weierstrass theorem, there exists a convergent subsequence. Hence, we may assume
without loss that the sequence {xn}∞n=1 converges. Let x := limn→∞ xn, then x ∈ [a, b] since [a, b] is closed.
Because f is continuous, we have f(x) = 0. Then we have

f ′(x) = lim
n→∞

f(xn)− f(x)

|xn − x|
= lim
n→∞

0

|xn − x|
= 0, (6.8)

which is a contradiction.

Let λj(ρ) denote the eigenvalue as in (iii) above for which Re λj(ρj) = 0, with ρj ∈ NH(σ). We shall also
denote

Re λ′j(ρj) = µj 6= 0, (6.9)

and we note that

cross(Lρ) =

J∑
j=1

sign(Re λ′j(ρj)). (6.10)

The following result shows that paths satisfying Property G1, and joining given coefficients A±, are dense
among all continuous paths joining these endpoints.

Proposition 6.9. Let σ ∈ C([−1, 1], `1η(Cd×d)) be such that the corresponding parameter family of differ-
ential equations (2.10), with (2.8), satisfies the hypotheses of Theorem C. Then given ε > 0, there exists
σ̃([−1, 1], `1l (Cd×d)) for certain l > 0, such that

(i) σ̃(±1) = σ(±1)

(ii) |σ(ρ)− σ̃(ρ)| < ε for all ρ ∈ [−1, 1]

(iii) the family of differential equations (2.10), with (2.8), satisfies Property G1.

In order to prove this, we will first refer to a result which shows that continuous path σ : [−1, 1]→ `1η(Cd×d)
can be approximated by a path σ̂ that satisfies property G0. The proof of this can be found in [3, Chapter
4].

Proposition 6.10. Fix any two points A± ∈ `1η(Cd×d), and assume for some 1 < j < k that rj/rk is
irrational. Then there is a residual (and thus dense) subset Y ⊂ X of the space of curves

X = {σ ∈ C1([−1, 1], `1η(Cd×d))|σ(±1) = A±}

joining these points, such that for any σ ∈ Y , and for any ρ ∈ (−1, 1), σ(ρ) satisfies property G0.

Remark 6.11. The condition that rj/rk has to be irrational is not a restriction, since we can always
introduce an additional shift r with a zero coefficient matrix Ar = 0.

Proof of Proposition 6.9. By Proposition 6.10, we may assume without loss that σ in the statement of
Proposition 6.9 satisfies Property G0. Note that σ may not have a finite NH(σ) as defined in (6.3) after
applying Proposition 6.10. It is enough to perturb σ to a nearby σ̃ with the same endpoints, such that all
eigenvalues cross the imaginary axis transversely with ρ.

Claim: There exists an ε1 > 0 such that for all eigenvalues λ of equation (2.10) satisfying |Re λ| < ε1,
for any A = σ(ρ), are simple. Moreover, the eigenvalues in this region are locally parametrized by a smooth
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function (at least C1) on some maximal open interval I ⊂ (−1, 1) for which |Re λ(ρ)| < ε1. Finally, there
are only finitely many of such parametrizations.

Proof of the claim: Let NH(σ) be as defined in (6.3). Then NH(σ) is closed, because for each ρ ∈ NH(σ)c,
we have that σ(ρ) is hyperbolic. Let g(s, ρ̃) = det(∆Lρ0

(s)). By Proposition 6.1, there is an open neigh-
bourhood of ρ such that σ(ρ) is still hyperbolic. Clearly we also have NH(σ) ⊂ (−1, 1) is bounded, hence it
is compact. Note that the set NH(σ) is a union of closed intervals and/or singletons, since the eigenvalues
varies continuously and some eigenvalues might remain on the imaginary axis for certain time (see Figure 1).

-1 1
[ ] [ ] x x [ ]

Figure 1: An example of possible configuration for the set NH(σ). It consists of closed intervals and singletons,
depending on whether the eigenvalue remains on the imaginary axis.

For each ρ∗ ∈ NH(σ), we have that due to property G0, there is only one λρ∗ that lies on the imaginary
axis and is simple. Applying the implicit function theorem to the function det(∆Lρ0

(s)) yields an open

neighbourhood of λρ∗ , such that λρ∗ can be parametrized uniquely and smoothly (at least C1) on an open
interval around ρ∗ and λρ∗ remains simple. In case ρ∗ lies in an interval J of NH(σ), we may extend this
parametrization to be on an open interval such that the boundaries of J are also covered, since we have a
unique smooth parametrization for each ρ ∈ NH(σ) and an interval is connected (see Figure 2).

( ) 
Re(s)

Im(s)

ρ
1

( )[ ]
ρ ρ
2 3

λ(ρ)

J
( )

Figure 2: For each ρ in such an interval J of the set NH(σ), we can find a open neighbourhood of ρ to locally
parametrize the simple eigenvalue on the imaginary axis. By “gluing” these parametrizations together
(which we may do since the conditions of the implicit function theorem guarantee the overlap between the
parametrizations), we obtain a parametrization with a domain that covers J .

Moreover, J is compact, thus we have due to Proposition 6.1 a minimal ε3 such that the only eigenvalue inside
the strip {s ∈ C||Re(s)| < ε3} is the eigenvalue that lies on the imaginary axis, for all ρ ∈ J . This shows that
for each such interval J there exists an ε4 such that inside the strip {s ∈ C||Re(s)| < ε4} the eigenvalue can
be smoothly parametrized on a maximal open interval U (that covers J) for which |Re λ(ρ)| < ε4 (meaning
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that outside this maximal interval, the eigenvalue has real part greater or equal to ε4). Since we can find
such an U for each intervals and singletons of NH(σ). We have due to the compactness of NH(σ) finitely
many of such coverings which we denote as

⋃n
j=1 Uj . This yields a minimal ε̃1 for all ρ ∈ NH(σ), such that

all eigenvalues inside the strip {s ∈ C||Re(s)| < ε̃1} can be parametrized on a maximal open interval for
which |Re λ(ρ)| < ε̃1 (see Figure 3).

Re(s)

Im(s)

ε

Figure 3: An example of the trajectories of the eigenvalues. As explained above, we can find an ε > 0 such
that the strip {s ∈ C : |Re(s)| < ε} “isolates” all other eigenvalues from the one simple eigenvalue inside
the strip that we can parametrize with the implicit function theorem. This parametrization is defined on a
maximal open interval for which the eigenvalue remains inside the strip.

Let W = (−1, 1) \
⋃n
j=1 Uj . Let ε̃2 = infρ∈W {|Re(λ)| : λ is an eigenvalue of σ(ρ)}. Suppose ε̃2 = 0, then

there exists a sequence {ρn}∞n=1 such that there is a corresponding {λn}∞n=1 such that |Re(λn)| → 0 as
n → ∞. With Bolzano-Weierstrass theorem we may assume without loss of generality that ρn converges
to a certain ρ̃ ∈ [−1, 1]. Note that ρ̃ /∈ NH(σ). Therefore, it follows from Proposition 6.1 that there exists
a δ > 0 such that for all ρ with |ρ − ρ̃| < δ, that g(s, ρ) has no roots near the imaginary axis, which is a
contradiction to the assumption that Re(λn)→ 0 as n→∞. Hence ε̃2 > 0. We now take ε1 = min{ε̃1, ε̃2},
and the claim now follows. Note that due to the hyperbolicity at ±1, there exists an ε2 such that are no
eigenvalues in the strip |Re(z)| < ε1, for ρ ∈ [−1,−1 + ε2] ∪ [1− ε2, 1].

The proof now proceeds the same as in [1, Proof of Proposition 8.1].

Remark 6.12. If ε is small enough then one has

cross(Lρ0) = cross(L̃ρ0). (6.11)

This is simply a consequence of the fact that as the eigenvalues are roots of a holomorphic function, in any
bounded region they vary continuously as a set in the Hausdorff topology (this follows from the Rouché’s
theorem).

We will need the following lemma, which is stated in [1, Lemma 8.2].

Lemma 6.13. Let f(s, ρ) and f̂(s, ρ), for (s, ρ) ∈ C × R, be two d × d matrix valued functions which are
holomorphic in s in a neighbourhood of λ0 ∈ C, and which also are C1 in ρ in a neighbourhood of ρ0 ∈ R.
Denote g(s, ρ) = det f(s, ρ) and ĝ(s, ρ) = det f̂(s, ρ). Assume that

f(s, ρ0) = f̂(s, ρ0) (6.12)

identically in a neighbourhood of s = λ0, and that

g(λ0, ρ0) = 0, D1g(s, ρ0)|s=λ0
6= 0, (6.13)
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where Dk denotes the derivative of a function with respect to its k-th argument.
Denote by s = λ(ρ) and s = λ̂(ρ) the unique solutions of g(s, ρ) = 0 and ĝ(s, ρ) = 0 near s = λ0, for ρ near
ρ0(note the uniqueness follows from the implicit function theorem). Assume that

Re λ′(ρ0) = Reλ̂′ = µ 6= 0, (6.14)

that is, the two roots λ(ρ) and λ̂(ρ) cross the imaginary axis transversely with the same horizontal speed and
direction. For 0 ≤ β ≤ 1 set

f(s, ρ, β) = (1− β)f(s, ρ) + βf̂(s, ρ), g(s, ρ, β) = det f(s, ρ, β) (6.15)

and let s = λ(ρ, β) denote the unique solution of g(s, ρ, β) = 0 near s = λ0, for ρ near ρ0 and all β ∈ [0, 1].
Then for (ρ, β) near {ρ0} × [0, 1], we have that

Re λ(ρ, β) = Re λ0 if and only if ρ = ρ0. (6.16)

The following result [1, Proposition 8.3] shows that, without loss, we may assume the eigenvalues cross the
imaginary axis by means of a rigid shift of the spectrum.

Proposition 6.14. Let σ ∈ C1([−1, 1], (`1η(Cd×d)) be a one parameter family of coefficients for (2.10)

satisfying Property G1. Then there exists another such σ̃ ∈ C1([−1, 1], (`1l (Cd×d)) for certain l > 0, joining
the same endpoints σ̃(±1) = σ(±1), and also satisfying Property G1, such that NH(σ̃) = NH(σ), with NH(σ)
defined in (6.3). Moreover, at each ρj ∈ NH(σ), we have µj = µ̃j, with µ̃j corresponding to the family
σ̃. Thus the eigenvalues of the two families σ and σ̃ cross the imaginary axis at the same values of ρ, and
moving in the same direction, left or right.
In addition, the family σ̃ has the form

σ̃(ρ) = Sµj(ρ−ρj)σ̃(ρj) (6.17)

for ρ in a neighbourhood of each ρj. That is, for the family σ̃ the eigenvalues cross the imaginary axis by a
shift of the entire spectrum to the left (µj < 0) or to the right (µj > 0) for ρ near ρj.

Proof. The proof is identical to [1, Proposition 8.3]. However, we will add some details to the proof. Let
ε > 0 be small enough that [ρj − ε, ρj + ε] ⊂ (−1, 1) are disjoint intervals for ρj ∈ NH(σ), and such that also
for all j, |µj(ρ− ρj)| < η for |ρ− ρj | < ε. Let l = maxj∈J{|µj |ε}. Define σ̂ : [−1, 1]→ `1l (Cd×d) by

σ̂(ρ) = Sµj(ρ−ρj)σ(ρj), |ρ− ρj | ≤ ε (6.18)

with σ̂(ρ) arbitrary for other values of ρ. Letting Lρ0 and L̂ρ0 denote the operators associated to σ and σ̂

respectively, we set Lρ,β0 = (1− β)Lρ0 + βL̂ρ0 and consider

∆Lρ,β0
(s) = (1− β)∆Lρ0

(s) + β∆L̂ρ0
(s) (6.19)

for 0 ≤ β ≤ 1.

Claim: The function f(s, ρ) = ∆Lρ0
(s) and f̂(s, ρ) = ∆L̂0

ρ(s) are C1 in a neighbourhood of ρj , for all
j.

Proof of the claim. We know that σ̂(ρ) = Sµj(ρ−ρj)σ(ρ), we have that ∆Lρ0
(s) = ∆Lρ0

(s − µj(ρ − ρj)) and

µj(ρ− ρj) is clearly C1 near ρj . So we only need to show that ∆Lρ0
(s) is C1 in a neighbourhood of ρj .

From the assumption that σ is continuous with respect to the ‖A‖η norm, it is immediate that f(s, ρ) is
continuous near ρj . In fact, f(s, ρ) is uniformly continuous in ρ for all s ∈ C with |Re(s)| < η, which means
that there exists a δ > 0 such that for all ρ with |ρ− ρ0| < δ, we have |f(s, ρ)− f(s, ρ0)| < ε, for all s with
|Re(s)| < η.
We also assumed that σ is differentiable in ρ with respect to the ‖A‖η norm. Denote σ′(ρ) = (A′1(ρ), A′2(ρ), · · · ).
Then we have that ∂

∂ρf(s, ρ) = ∂
∂ρ

(
sI −

∑∞
j=1Aj(ρ)esrj

)
. However, since σ is C1 with respect to the ‖A‖η
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norm, it easily follows that ∂
∂ρ

(
sI −

∑∞
j=1Aj(ρ)esrj

)
= −

∑∞
j=1A

′
j(ρ)esrj . The only thing we need to verify

is that σ′(ρ) ∈ `1η. This follows from the triangle inequality:

‖σ′(ρ)‖η ≤ ‖
σ(ρ+ h)− σ(ρ)

h
− σ′(ρ)‖η + ‖σ(ρ+ h)− σ(ρ)

h
‖η <∞

for h close to 0.

The proof now proceeds the same as in [1, Proposition 8.3]

Remark 6.15. Clearly, cross(Lρ0) = cross(L̃ρ0) for the operators Lρ0 and L̃ρ0 associated to σ and σ̃.

Before we proceed to the next proposition, we will first need the following lemma regarding solutions of
certain type of non-hyperbolic system.

Lemma 6.16. Let L0 be given as in (2.8). If L0 has only one simple eigenvalue iη̂ on the imaginary axis
(i.e. det(∆L0

)(iη̂) = 0). Then we have that KL ⊂ W 1,p, for 1 ≤ p ≤ ∞, where KL is the kernel of ΛL.
Furthermore, for x ∈ KL we have x(ξ) = eiη̃ξv, for a kernel element v ∈ Cd associated to ∆L0

(iη̂).

Proof. The proof for KL ⊂ W 1,p, for 1 ≤ p ≤ ∞ is already done in [2, Proposition B.1]. Also, according to
the proof in [2, Theorem 3.7], for x ∈W 1,p a solution of (2.10), we have that the Fourier transform of (2.10)
is given by

iηx̂(η) =

 ∞∑
j=1

Aj,0e
iηrj

 x̂(η). (6.20)

Hence ∆L0(iη)x̂(η) = 0. Because we know that only for η = η̂, we have that det(∆L0(iη̂)) = 0, we have that
x̂(η) = 0 if η 6= η̃. And for η = η̂, we have that x̂(η̂) ∈ ker(∆L0

(iη̂)). But since we know that iη̂ is a simple
eigenvalue and thus has algebraic multiplicity equal to 1, we know that dim ker(∆L0

(iη̂)) = 1. Hence we
know that x̂(η̂) = λv for some eigenvector v ∈ Cd. Hence we have that x̂(η) = λvδ(η − η̂). Now taking the
inverse-Fourier transform of x̂:

(F−1x̂, ζ) = (x̂,F−1(ζ)) =

∫ ∞
−∞

λvδ(η − η̃)F−1(ζ)(η)dη

= λvF−1(η̃)

=
λv

2π

∫ ∞
−∞

eixη̃ζ(x)dx

= (
λv

2π
eixη̃, ζ(x))

(6.21)

So indeed we see that x(ξ) = eiη̃ξv with a kernel vector v ∈ Cd.

Proposition 6.17. Suppose that s = ir, with r ∈ R, is a simple eigenvalue of equation (2.10), and suppose
there are no other eigenvalues with Re(λ) = 0. Then for γ ∈ R with |γ| > 0 sufficiently small, we have that

ι(S−γL0, SγL0) = −sign γ. (6.22)

Proof. The proof of this proposition is identical to [1, Proposition 8.4], where a change of variable is used
to calculate the index. However, instead of using [1, Proposition 7.1] in that proof, we use Proposition 5.1,
which is a similar result but stated in our setting with infinite shifts. During this proof, Lemma 6.16 is also
used.

Proof of Theorem C. With all the results stated above as tools, the proof for theorem C is identical to
[1, Proof of Theorem C].
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7 Exponential dichotomy

Recall from Proposition 5.1, we obtained the following equivalent expression for the Laplace transform of
equation (2.1)

∆L0(s)x̃(s) = x(0)−
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξx(ξ + rj)dξ, (7.1)

if h = 0 and the solution x(ξ) has certain exponential behavior.
By considering a strip in the complex plane where ∆L0

(s) is invertible (let us say for the strip Re(s) = b for
certain b ∈ R), we were able to perform the inverse Laplace transform and obtain a solution

w(ξ) =
1

2πi
lim

Ω→∞

∫ b+iΩ

b−iΩ
eξs∆−1

L0
(s)

x(0)−
∞∑
j=1

Aj,0

∫ 0

−rj
e−sξ

′
x(ξ + rj)dξ

′

 (7.2)

on the half-line ξ ∈ [0,∞), that also has certain exponential behavior.
This does not seem very surprising, since we started with a function that already is a solution and has certain
exponential property. However, it does raise a question of whether w(ξ) can still be a solution on the half
line [0,∞), if we were to replace x by some arbitrary continuous function φ.

Assume that the shifts are bounded, i.e. there exist rmin ≤ 0 ≤ rmax with rmin ≤ rj ≤ rmax for all
j ≥ 1. Inspired by the above observation, for a continuous function φ ∈ C([rmin, rmax];Cd) and v ∈ Cd, we
introduce the following expression

TL;η[φ, v](ξ) =
1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs∆L(s)−1

v − ∞∑
j=1

Aj

∫ rj

0

e−s(σ−rj)φ(σ)dσ

 ds, (7.3)

where η ∈ R is such that ∆L(s) is invertible. We shall see that this is well-defined (also if φ is not continuous
at ξ = 0) and it provides a powerful tool to split each function φ into components that can be extended to
half-line solutions for the homogeneous differential equation. In other words, we will show that the initial
state space C([rmin, rmax];Cd) has an exponential dichotomy.

In this section, we closely follow the outline of [10, §5], which describes a similar result in the setting
where the variable x in (2.1, with h = 0) takes values in a Banach space with finitely many shifts. For
convenience, we introduce the set

R = {0} ∪ {−rj}∞j=1. (7.4)

Throughout this section, we shall always assume that our system is autonomous. Hence, we simply write L
instead of L0. We will also fix the shifts and use η̃ to denote the positive number such that (2.4) is satisfied.
Furthermore, we shall assume that the closure R is countable. We also assume without loss of generality
that R = R, since we can always add extra shifts by adding zero matrices.

In order to formulate results regarding the TL;η-function, we introduce the following same notations as
in [10, §5].
For any η ∈ R and any interval I ⊂ R, we introduce the function space

BCη(I,Cd) = {x ∈ C(I,Cd) : ‖x‖η := sup
ξ∈I

e−ηξ|x(ξ)| <∞}. (7.5)

In other words, for x ∈ BCη(I,Cd), we have that x is continuous on I and satisfies |x(ξ)| ≤ Keηξ for some
constant K > 0.

We will also define the following two families

BC	η (Cd) = BCη((−∞, rmax);Cd),

BC⊕η (Cd) = BCη(rmin,∞);Cd),
(7.6)
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together with the solutions spaces

PL(η) = {x ∈ BC	η (Cd) : x′(ξ) = Levξx, for all ξ ≤ 0},
QL(η) = {x ∈ BC⊕η (Cd) : y′(ξ) = Levξy, for all ξ ≥ 0},

(7.7)

where we have defined the function

[evξx](σ) = x(ξ + σ) for all rmin ≤ σ ≤ rmax. (7.8)

The initial segments of these solutions are contained in the spaces

PL(η) = {φ ∈ C([rmin, rmax];Cd) : φ = ev0x for some x ∈ PL(η)},
QL(η) = {φ ∈ C([rmin, rmax];Cd) : φ = ev0y for some y ∈ QL(η)}.

(7.9)

In order to allow solutions of (2.10) to have a jump discontinuity at ξ = 0, we introduce the notations

BC−η (Cd) = BCη((−∞, 0];Cd),

BC+
η (Cd) = BCη([0,∞);Cd),

(7.10)

together with the families of functions spaces

B̂C
⊕
η (Cd) = C([rmin, 0];Cd)×BC+

η (Cd),

B̂C
	
η (Cd) = BC−η (Cd)× C([0, rmax];Cd).

(7.11)

For ŷ = (y1, y2) ∈ B̂C
⊕

, we write for ξ 6= 0 that ŷ(ξ) = y11[rmin,0) + y21(0,∞). We write ŷ(0+) := limξ↓0 ŷ(ξ)

and ŷ(0−) := limξ↑0 ŷ(ξ) to resolve the ambiguity at ξ = 0. For any 0 ≤ ξ ≤ −rmin and ŷ ∈ B̂C
⊕
η , we

introduce the notation

êvξ ŷ = (φl, φr) ∈ C([rmin,−ξ];Cd)× C([−ξ, rmax];Cd) (7.12)

where

φl((σ)) =

{
ŷ(ξ + σ) rmin ≤ σ < −ξ
ŷ(0−) σ = −ξ,

φr(σ) =

{
ŷ(ξ + σ) −ξ < σ ≤ rmax

ŷ(0−) σ = −ξ.

(7.13)

We then write

L̂+êvξ ŷ =
∑
rj=−ξ

Ajφ
r(rj) +

∑
rj>−ξ

Ajφ
r(rj) +

∑
rj<−ξ

Ajφ
l(rj). (7.14)

The plus sign hence stands for the fact that every reference to ŷ(0) is interpreted as ŷ(0+).

For x̂ ∈ B̂C
	
η and −rmax ≤ ξ ≤ 0, we again write êvξx̂ = (φl, φr) with (φl, φr) defined as in (7.13), with ŷ

replaced by x̂. We then write

L̂−êvξx̂ =
∑
rj=−ξ

Ajφ
l(rj) +

∑
rj>−ξ

Ajφ
r(rj) +

∑
rj<−ξ

Ajφ
l(rj). (7.15)

Note that any discontinuities in the functions ξ 7→ L̂+êvξ ŷ and ξ 7→ L̂−êvξx̂ only occur when ξ ∈ R. Hence

for ξ /∈ R, we simply use the notation L̂ since there is no cause for confusion.

We are now ready to introduce the solution spaces

P̂L(η) = {x̂ ∈ B̂C
	
η (Cd) : x̂′(ξ) = L̂êvξx̂, for all ξ ∈ (−∞, 0) \ R},

Q̂L(η) = {ŷ ∈ B̂C
⊕
η (Cd) : ŷ′(ξ) = L̂êvξ ŷ, for all ξ ∈ (0,∞) \ R},

(7.16)
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together with the associated initial segment spaces

P̂L(η) = {φ̂ ∈ C([rmin, 0];Cd)× C([0, rmax];Cd) : φ̂ = êv0x̂ for some x̂ ∈ P̂L(η)},

Q̂L(η) = {φ̂ ∈ C([rmin, 0];Cd)× C([0, rmax];Cd) : φ̂ = êv0ŷ for some ŷ ∈ Q̂L(η)}.
(7.17)

We are now ready to state the following main results regarding the expression TL;η, which are all similar to
the results as in [10, §5].

Proposition 7.1. Let L be as defined in (2.8) with coefficients that satisfy condition (2.4) for a certain
η̃ > 0. Pick η ∈ R with |η| < η̃ such that the characteristic function ∆L(s) is invertible for all s ∈ C with
Re(s) = η.

Then for any φ̂ ∈ C([rmin, 0];Cd) × C([0, rmax];Cd) and any v ∈ Cd, the symbol TL;η[φ̂, v](ξ) introduced in
(7.3) is well-defined for ξ 6= 0. In addition, we have

TL;η[φ̂, v] ∈ BC−η (Cd), for ξ < 0, (7.18)

TL;η[φ̂, v] ∈ BC+
η (Cd), for ξ > 0. (7.19)

The limit at zero exists both side and the jump of discontinuity is given by

TL;η[φ̂, v](0+)− TL;η[φ̂, v](0−) = v. (7.20)

Moreover, there exists a constant K > 0 that does not depend on φ̂ and v such that

‖TL;η[φ̂, v]‖BC−η (Cd) + ‖TL;η[φ̂, v]‖BC+
η (Cd) ≤ K[‖φ̂‖∞ + |v|], (7.21)

where ‖φ̂‖∞ denotes the supremum norm.

The map TL;η can be used to relate functions in P̂L(η) and Q̂L(η) back to their initial segments. The
following result is a consequence of Proposition 5.1.

Proposition 7.2. Let L be as defined in (2.8) with coefficients that satisfy condition (2.4) for a certain
η̃ > 0. Pick η ∈ R with |η| < η̃ such that ∆L(s) is invertible for all s ∈ C with Re(s) = η.

Then for any q̂ ∈ Q̂L(η) we have

q̂(ξ) = TL;η[êv0q̂, q̂(0
+)](ξ) (7.22)

for all ξ > 0, while for any p̂ ∈ P̂L(η) we have

p̂(ξ) = −TL;η[êv0p̂, p̂(0
−)](ξ) (7.23)

for all ξ < 0.

Proof. The proof is identical to [10, proof of Proposition 5.3], where almost-everywhere pointwise convergence
of the inverse Laplace transform is used. A shift of integration of path is also used in that proof, which is
justified similarly as in the proof for Proposition 5.1.

Let η be such that ∆L(s) is invertible for Re(s) = η. As in [10, Equation (5.11)], we introduce the two
operators

EQ̂L(η) : C([rmin, 0];Cd)× C([0, rmax];Cd)→ B̂C
⊕
η (Cd), (7.24)

EP̂L(η) : C([rmin, 0];Cd)× C([0, rmax];Cd)→ B̂C
	
η (Cd) (7.25)

with

[EQ̂L(η)φ̂](ξ) =

{
TL;η[φ̂, φ̂(0+)](ξ) ξ > 0 and ξ = 0+

φ̂(ξ) + TL;η[φ̂, φ̂(0+)](ξ) rmin ≤ ξ < 0 and ξ = 0−,
(7.26)
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together with

[EP̂L(η)φ̂](ξ) =

{
−TL;η[φ̂, φ̂(0+)](ξ) ξ < 0 and ξ = 0−

φ̂(ξ)− TL;η[φ̂, φ̂(0+)](ξ) 0 < ξ ≤ rmax and ξ = 0+,
(7.27)

which leads us to the following direct consequence of Proposition 7.2.

Corollary 7.3. Consider the setting of Proposition 7.2. Then for any φ̂ ∈ P̂L(η) we have

φ̂ = êv0EP̂L(η)φ̂, (7.28)

while for any φ̂ ∈ Q̂L(η) we have

φ̂ = êv0EQ̂L(η)φ̂. (7.29)

The next result shows that for a general φ̂, its image under the operators EQ̂L(η) and EP̂L(η) are solutions

on the half-lines. Furthermore, it shows that these solutions are exponentially bounded.

Proposition 7.4. Let L be as defined in (2.8) with coefficients that satisfy condition (2.4) for a certain
η̃ > 0. Pick η ∈ R with |η| < η̃ such that ∆L(s) is invertible for all s ∈ C with Re(s) = η.

Then for any φ̂ ∈ C([rmin, 0];Cd)× C([0, rmax];Cd), we have the inclusions

EQ̂L(η)φ̂ ∈ Q̂L(η),

EP̂L(η)φ̂ ∈ P̂L(η).
(7.30)

In addition, there exists constants K > 0 and ε > 0 that do not depend on φ̂ such that the estimates∣∣∣[EQ̂L(η)φ̂](ξ)
∣∣∣ ≤ Ke(η−ε)ξ[|φ̂(0+)|+ ‖φ̂‖∞] (7.31)

hold for all ξ > 0, while the estimates∣∣∣[EP̂L(η)φ̂](ξ)
∣∣∣ ≤ Ke(η+ε)ξ[|φ̂(0+)|+ ‖φ̂‖∞] (7.32)

hold for all ξ < 0.

Note that if φ ∈ C([rmin, rmax];Cd), we will then obtain continuity at ξ = 0 for the operators [EP̂L(η)φ̂](ξ)

and [EQ̂L(η)φ̂](ξ) due to identity (7.20). Hence we have the restrictions

EP̂L(η)(C([rmin, rmax];Cd)) ⊂ BC	η (Cd), EQ̂L(η)(C([rmin, rmax];Cd)) ⊂ BC⊕η (Cd). (7.33)

This shows that the operators EP̂L(η) and EQ̂L(η) can be interpreted as the projections operators that give

us the desired exponential splitting of the state space C([rmin, rmax];Cd).

Proposition 7.5. Let L be as defined in (2.8) with coefficients that satisfy condition (2.4) for a certain
η̃ > 0. Pick η ∈ R with |η| < η̃ such that ∆L(s) is invertible for all s ∈ C with Re(s) = η. Then the spaces
PL(η) and QL(η) are both closed and we have the splitting

C([rmin, rmax];Cd) = PL(η)⊕QL(η) (7.34)

which can be made explicit by writing

φ = ev0EP̂L(η)φ+ ev0EQ̂L(η)φ (7.35)

for any φ ∈ C([rmin, rmax];Cd).
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7.1 Decomposition of TL;η
To obtain the above results, we need a more detailed understanding of the TL;η function. This is done by
splitting the function TL;η into different components by isolating the slowest decaying portion of ∆−1

L (s) and
study them individually. In other words, we introduce the expression

RL;α(s) = ∆L(s)−1 − 1

s− α
I − Les· − αI

(s− α)2
(7.36)

with α ∈ R and α 6= Re(s). We recall that Les· =
∑∞
j=1Aje

srj

Lemma 7.6. Let L be as defined in (2.8) with coefficients that satisfy condition (2.4) for a certain η̃ > 0.
Pick η ∈ R with |η| < η̃ such that ∆L(s) is invertible for all s ∈ C with Re(s) = η.
Then for α 6= η and |α| < η̃, there exists constants ε > 0 and K > 0 so that

|RL;α(s)| ≤ K

|s|3
(7.37)

for all s ∈ C with |Re(s)− η| < ε.

Proof. The proof uses geometric series and is identical to [10, Lemma 5.7].

To exploit the decompositions of (7.36), we define the following expressions:

M1
α[v] =

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs
[

1

s− α
+
Les· − α
(s− α)2

]
v,

R1
α[v](ξ) =

1

2πi

∫ η+i∞

η−i∞
eξsRL;α(s)vds

(7.38)

together with

M2
α[φ̂](ξ) =

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs
[

1

s− α
+
Les· − α
(s− α)2

] ∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

 ds,

R2
α[φ̂](ξ) =

1

2πi

∫ η+i∞

η−i∞
eξsRL;α(s)

 ∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

 ds.

(7.39)

Note that we have dropped the limit with respect to Ω in the expressions for R1
α and R2

α, because Lemma 7.6
shows that the integrands are integrable.

The expressions (7.38) and (7.39) give us the following decompositions of TL;η

TL;η[φ̂, v](ξ) =M1
α[v](ξ) +M2

α[φ̂](ξ) +R1
α[v](ξ) +R2

α[φ̂](ξ). (7.40)

For convenience, we recall the Heaviside function

H(ξ) =


1 ξ > 0
1
2 ξ = 0

0 ξ < 0.

(7.41)

To shorten the notations, we will sometimes denote ψ[φ̂](s) :=
∑∞
j=1Aj

∫ rj
0
e−s(σ−rj)φ̂(σ)dσ, inspired by

(5.13).

Our next goal is to gain a more explicit expressions for the terms in (7.40). This is mainly done by computing
the following integrals.
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Lemma 7.7. For any α > η and ξ ∈ R, we have

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

s− α
ds = −eαsH(−ξ) (7.42)

and

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

(s− α)2
ds = −ξeαsH(−ξ). (7.43)

Proof. see [10, Lemma 5.8].

For ξ 6= 0, the above integrals can be calculated using the Jordan’s lemma and the residue theorem. For
ξ > 0, this explicit calculation can be found in [11]. During the calculation in [11], it shows that for ξ > 0
and CΩ := η + Ωeit for π

2 ≤ t ≤
3π
2 , we can estimate the error term∣∣∣∣∫

CΩ

eξs
1

s− α
ds

∣∣∣∣ ≤ ε(Ω)πeηξ

ξ
[1− e−ξΩ] (7.44)

where ε(Ω) → 0 if Ω → ∞. This comes from the fact that 1
|s| → 0, for |s| → ∞. For ξ < 0, we take

DΩ := η + Ωeit for −π2 ≤ t ≤
π
2 and follow the same estimation as in [11]. We then obtain∣∣∣∣∫

DΩ

eξs
1

s− α
ds

∣∣∣∣ ≤ ε(Ω)

∫ π
2

−π2
|eξ(η+Ω cos(θ)+iΩ sin(θ))| · |Ωieiθ|dθ

≤ ε(Ω)Ωeηξ
∫ π

2

−π2
eξΩ cos(θ)dθ

≤ 2ε(Ω)Ωeηξ
∫ π

2

0

eξΩ sin(θ)dθ

≤ 2ε(Ω)Ωeηξ
∫ π

2

0

eξΩ
2
π θdθ

≤ ε(Ω)πeηξ

|ξ|
[1− e−|ξ|Ω].

(7.45)

Hence, for ξ 6= 0, we see that the error is bounded by the function E(ξ,Ω) := ε(Ω)πeηξ

|ξ| (1 − e−Ω|ξ|), where

the function ξ 7→ 1
|ξ| (1 − e

−Ω|ξ|) is a bounded function for all ξ ∈ R and all Ω ≥ 0. This means we can

make the estimation |E(ξ,Ω)| = E(ξ,Ω) ≤ ε(Ω)πeηξM , where M is the constant that bounds the function
ξ 7→ 1

|ξ| (1− e
−Ω|ξ|). We now make the following conclusions.

Remark 7.8.

(1). For any fixed η ∈ R, the error term satisfies the limit E(ξ,Ω) → 0, as Ω → ∞, uniformly for every
compact sets of ξ.

(2). If η = 0, then E(ξ,Ω)→ 0, as Ω→∞, uniformly for all ξ ∈ R.

(3). If η > 0, then, for any c ∈ R, E(ξ,Ω)→ 0, as Ω→∞, uniformly for all ξ ∈ (−∞, c).

(4). If η < 0, then, for any a ∈ R, E(ξ,Ω)→ 0, as Ω→∞, uniformly for all ξ ∈ (a,∞).

(5). For η 6= 0, it does not hold that E(ξ,Ω)→ 0, as Ω→∞, uniformly for all ξ ∈ R.

We shall see that (5) is the reason that we make the boundedness assumption for the shifts.
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7.1.1 Characterization of the term M1
α.

With Lemma 7.7 in hand, we can determine the following explicit expression for M1
α[v] and obtain charac-

terizations similar to [10, Lemma 5.9].

Proposition 7.9. ForM1
α as defined in (7.39) with α > η such that |α| < η̃, we have the explicit expression

M1
α[v] =

−eαξH(−ξ)−
∞∑
j=1

Aje
α(ξ+rj)(ξ + rj)H(−(ξ + rj)) + αξeαξH(−ξ)

 v. (7.46)

Proof. In order to obtain the above expression using Lemma 7.7, it only remains to show that we may apply
Fubini to the following expression

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

(s− α)2

∞∑
j=1

Aje
srjvds. (7.47)

Observe that ∫ η+i∞

η−i∞

∣∣∣∣∣∣eξs 1

(s− α)2

∞∑
j=1

Aje
srjv

∣∣∣∣∣∣ ds ≤
∫ η+i∞

η−i∞
|esξ| 1

|s− α|2

∣∣∣∣∣∣
∞∑
j=1

Aje
srjv

∣∣∣∣∣∣ ds
≤
∫ η+i∞

η−i∞
eηξ

1

|s− α|2
∞∑
j=1

|Aj |eη̃|rj ||v|ds

<∞.

(7.48)

Hence, we have that the integrand in (7.47) is L1 and thus we may drop the limit with respect to Ω sign.
Furthermore, we have shown that we may apply Fubini.

Lemma 7.10. For any α > η such that |α| < η̃ and sufficiently small ε > 0, we have the function

Cd 3 v 7→ M1
α[v](ξ) ∈ BC−η+ε(Cd) ∩BC+

η−ε(Cd) (7.49)

is well-defined and bounded. For each fixed v, we have the jump discontinuity

M1
α[v](0+)−M1

α[v](0−) = v. (7.50)

Proof. Identity (7.49) is is clear for terms like eαξH(−ξ) and αξeαξH(−ξ). We will mainly examine the
summation term, for ξ ≤ 0

e−(η+ε)ξ

∣∣∣∣∣∣
∞∑
j=1

Aj(ξ + rj)e
α(ξ+rj)H(−(ξ + rj))

∣∣∣∣∣∣ ≤
∞∑
j=1

|Aj |e(α−(η+ε))ξ|ξ|eαrj |H(ξ + rj)|

+

∞∑
j=1

|Aj |e(α−(η+ε))ξ|rj |eαrj |H(ξ + rj)|.

(7.51)

This is bounded for all ξ ≤ 0, for ε > 0 sufficiently small. For ξ ≥ 0, we have that H(−(ξ + rj)) = 0 for
ξ ≥M with certain M > 0, since the shifts are bounded. Thus, the bounds in (7.49) indeed hold.

Note that the series
∑∞
j=1Aje

α(ξ+rj)(ξ + rj)H(−(ξ + rj)) is (locally) normal convergent in ξ. Hence, we
have

lim
ξ↑0
M1

α[v](ξ) = lim
ξ↑0

−eαξH(−ξ)−
∞∑
j=1

Aje
α(ξ+rj)(ξ + rj)H(−(ξ + rj)) + αξeαξH(−ξ)

 v
= lim

ξ↑0
−eαξH(−ξ)v −

∞∑
j=1

lim
ξ↑0

Aje
α(ξ+rj)(ξ + rj)H(−(ξ + rj))v + lim

ξ↑0
αξeαξH(−ξ)v

= −v −
∞∑

j:rj 6=0

Aje
αrj (rj)H(−(rj))v,

(7.52)
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while

lim
ξ↓0
M1

α[v](ξ) = lim
ξ↓0

−eαξH(−ξ)−
∞∑
j=1

Aje
α(ξ+rj)(ξ + rj)H(−(ξ + rj)) + αξeαξH(−ξ)

 v
= lim

ξ↓0
−eαξH(−ξ)v −

∞∑
j=1

lim
ξ↓0

Aje
α(ξ+rj)(ξ + rj)H(−(ξ + rj))v + lim

ξ↓0
αξeαξH(−ξ)v

= −
∞∑

j:rj 6=0

Aje
αrj (rj)H(−(rj))v.

(7.53)

Thus, we obtain identity (7.50).

We will show that M1
α also has a continuous derivative for ξ ∈ R \ R.

Proposition 7.11. M1
α[v] is continuously differentiable on R\R and we may apply term-wise differentiation

and obtain

M1
α[v]′(ξ) = αM1

α[v](ξ)−
∞∑
j=1

Aje
α(ξ+rj)H(−(ξ + rj))v + αeαξH(−ξ)v. (7.54)

Proof. We make the following computations. For ξ ∈ R \ {0}, we have

d

dξ
[−eαξH(−ξ)] = −αeαξH(−ξ) (7.55)

and

d

dξ
[αξeαξH(−ξ)] = αeαξH(−ξ) + α2ξeαξH(−ξ). (7.56)

We would like to compute M′α[v](ξ) by term wise differentiation, i.e., we want to show that

d

dξ

 ∞∑
j=1

Aje
α(ξ+rj)(ξ + rj)H(−(ξ + rj))


=

∞∑
j=1

[
d

dξ
Aje

α(ξ+rj)(ξ + rj)H(−(ξ + rj))

]

=

∞∑
j=1

Aj

[
αeα(ξ+rj)(ξ + rj)H(−(ξ + rj))− eα(ξ+rj)H(−(ξ + rj))

]
.

(7.57)

In order to do this, we need that the derivative terms
∑
n f
′
n(ξ) (thus the last sum of (7.57)) are locally C1

in ξ ∈ R \ R and converge locally uniformly in ξ ∈ R \ R . The C1-condition is clearly true, for the locally
uniform convergence, we can estimate

∞∑
j=1

|Aj |
∣∣∣αeα(ξ+rj)(ξ + rj)H(−(ξ + rj))− eα(ξ+rj)H(−(ξ + rj))

∣∣∣
≤
∞∑
j=1

|Aj |
∣∣∣αeα(ξ+rj)(ξ + rj)

∣∣∣+ |Aj |
∣∣∣eα(ξ+rj)

∣∣∣
≤
∞∑
j=1

|Aj ||α|eα(ξ+rj)|ξ|+
∞∑
j=1

|Aj ||α|eα(ξ+rj)|rj |+
∞∑
j=1

|Aj |eα(ξ+rj)

≤ |α||ξ|eαξ
∞∑
j=1

|Aj |eαrj + |α|eαξ max{|rmin|, rmax}
∞∑
j=1

|Aj |eαrj + eαξ
∞∑
j=1

|Aj |eαrj

≤
(
|α||ξ|eαξ + |α|eαξ max{|rmin|, rmax}+ eαξ

) ∞∑
j=1

|Aj |eαrj .

(7.58)
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From the above expression we see that the sum indeed converges locally uniformly for every compact sets
of ξ. Hence, we may perform term wise differentiation. With some algebraic manipulation, identity (7.54)
follows.

Lemma 7.12. For M1
α[v]′ as defined in (7.54) , we have for all j ≥ 1 the discontinuity

M1
α[v]′(−r+

j )−M1
α[v]′(−r−j ) = Ajv. (7.59)

Proof. We note that for rk 6= 0, the jump only comes from the summation term of (7.46). Hence, we exploit

lim
ξ↓−rk

−
∞∑
j=1

Aje
α(ξ+rj)H(−(ξ + rj))v

=

∞∑
j=1

lim
ξ↓−rk

−Ajeα(ξ+rj)H(−(ξ + rj))v

=
∑

j:rj<rk

−Ajeα(−rk+rj)v −
∑

j:rj>rk

lim
ξ↓−rk

Ak[eα(ξ+rk)H(−(ξ + rk))]v

= −
∑

j:rj<rk

Aje
α(−rk+rj)v,

(7.60)

while

lim
ξ↑−rk

−
∞∑
j=1

Aje
α(ξ+rj)H(−(ξ + rj))v

=

∞∑
j=1

lim
ξ↑−rk

−Ajeα(ξ+rj)H(−(ξ + rj))v

=
∑

j:rj<rk

−Ajeα(−rk+rj)v −
∑

j:rj>rk

lim
ξ↑−rk

Ak[eα(ξ+rk)H(−(ξ + rk))]v

= −
∑

j:rj<rk

Aje
α(−rk+rj)v −Akv,

(7.61)

which gives us identity (7.59).

At last, we will substitute the expressionM1
α[v] into the differential equation (2.10). To shorten the notation,

we introduce

HM1
α

[v](ξ) =M1
α[v]′(ξ)− L̂êvξM1

α[v]. (7.62)

By direct computation, we then have

HM1
α

[v](ξ) =

∞∑
k=1

Ak

∞∑
j=1

Aje
α(ξ+rk+rj)(ξ + rk + rj)H(−(ξ + rk + rj))v

− 2α

∞∑
j=1

Aj(ξ + rj)e
α(ξ+rj)H(−(ξ + rj))v + α2ξeαξH(−ξ)

(7.63)

for all ξ ∈ R \R. Note that all sums in (7.63) converges due to condition (2.4), which is assumed to hold for
certain η̃ and by assumption we also have |η| < η̃.
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7.1.2 Characterization of the term M2
α.

We will now study the term M2
α, for which we will first state a result regarding the following two terms.

For any α ∈ R \ {η}, any φ̂ ∈ L2([rmin, rmax];Cd) and any θ ∈ [rmin, rmax], we define the two expressions

J (1)
α,θ [φ̂](ξ) =

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

s− α
esθ
∫ 0

θ

e−sσφ̂(σ)dσds,

J (2)
α,θ [φ̂](ξ) =

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

(s− α)2
esθ
∫ 0

θ

e−sσφ̂(σ)dσds.

(7.64)

Note that both expressions are zero if θ = 0. Then, we have the following characterizations of the expressions
in (7.64), which is [10, Lemma 5.10].

Lemma 7.13. Suppose that rmin ≤ 0 ≤ rmax and pick α > η and θ ∈ [rmin, rmax] \ {0}. Then for all
sufficiently small ε > 0, the maps

L2([rmin, rmax];Cd) 3 φ̂ 7→ J (1)
α,θ [φ̂] ∈ BCη(R;Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd),

L2([rmin, rmax];Cd) 3 φ̂ 7→ J (2)
α,θ [φ̂] ∈ BCη(R;Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd),

L2([rmin, rmax];Cd) 3 φ̂ 7→ J (2)
α,θ [φ̂]′ ∈ BCη(R;Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd)

(7.65)

are well-defined and bounded. Upon fixing φ̂ ∈ C([rmin, 0];Cd)×C([0, rmax];Cd), we have the explicit identities

J (1)
α,θ [φ̂](ξ) = −eα(ξ+θ)

∫ 0

θ

H(σ − ξ − θ)e−ασφ̂(σ)dσ

= −eα(ξ+θ)

∫ max{0,ξ+θ}

max{θ,ξ+θ}
e−ασφ̂(σ)dσ

(7.66)

together with

J (2)
α,θ [φ̂](ξ) = −eα(ξ+θ)

∫ 0

θ

(ξ + θ − σ)H(σ − ξ − θ)e−ασφ̂(σ)dσ

= −eα(ξ+θ)

∫ max{0,ξ+θ}

max{θ,ξ+θ}
(ξ + θ − σ)e−ασφ̂(σ)dσ,

(7.67)

which both hold for any ξ ∈ R.
In addition, for any ξ /∈ {0,−θ}, we have

J (1)
α,θ [φ̂]′(ξ) = αJ (1)

α,θ [φ̂](ξ)− sign(θ)φ̂(ξ + θ)1min{−θ,0}<ξ<max{−θ,0}, (7.68)

while for any ξ ∈ R, we have

J (2)
α,θ [φ̂]′(ξ) = αJ (2)

α,θ [φ̂](ξ) + J (1)
α,θ [φ̂](ξ). (7.69)

In particular, if θ < 0, then we have

J (1)
α,θ [φ̂]′ ∈ BCη((−∞, 0];Cd) ∩ C([0,−θ];Cd) ∩BCη([−θ,∞);Cd) (7.70)

with jumps

J (1)
α,θ [φ̂]′(0+)− J (1)

α,θ [φ̂]′(0−) = φ̂(θ),

J (1)
α,θ [φ̂]′(−θ+)− J (1)

α,θ [φ̂]′(−θ−) = −φ̂(0−).
(7.71)

On the other hand, if θ > 0, then we have

J (1)
α,θ [φ̂]′ ∈ BCη((−∞,−θ];Cd) ∩ C([−θ, 0];Cd) ∩BCη([0,∞);Cd) (7.72)
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with jumps

J (1)
α,θ [φ̂]′(0+)− J (1)

α,θ [φ̂]′(0−) = φ̂(θ),

J (1)
α,θ [φ̂]′(−θ+)− J (1)

α,θ [φ̂]′(−θ−) = −φ̂(0+).
(7.73)

With Lemma 7.13 as tools, we will now determine an explicit expression for M2
α. Recall that by definition,

we have

M2
α[φ̂](ξ) =

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs
[

1

s− α
+
Les· − α
(s− α)2

] ∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

 ds. (7.74)

Lemma 7.14. For any α > η with |α| < η̃. We have the explicit expression

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

s− α

 ∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

 ds

=
1

2πi

∞∑
j=1

Aj lim
Ω→∞

∫ 0

rj

φ̂(σ)

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
dsdσ

=

∞∑
j=1

AjJ (1)
α,rj [φ̂](ξ)

(7.75)

for all ξ ∈ R.

Proof. Fix ξ ∈ R. We observe that

∞∑
j=1

∫ η+iΩ

η−iΩ

∣∣∣∣∣eξs 1

s− α
Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣ ds =

∞∑
j=1

∫ η+iΩ

η−iΩ
eηξ

1

|s− α|
|Aj |

∣∣∣∣∣
∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣ ds.
(7.76)

Note that φ̂ ∈ C([rmin, 0],Cd)× C([0, rmax],Cd), so it is bounded. If η = 0, this gives

∞∑
j=1

∫ η+iΩ

η−iΩ
eηξ

1

|s− α|
|Aj |

∣∣∣∣∣
∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣ ds ≤
∞∑
j=1

∫ iΩ

−iΩ

1

|s− α|
|Aj |‖φ̂‖∞|rj |

≤
∞∑
j=1

|Aj |‖φ̂‖∞eη̃|rj |
∫ iΩ

−iΩ

1

|s− α|
ds <∞.

(7.77)

If η 6= 0, we have

∞∑
j=1

∫ η+iΩ

η−iΩ
eηξ

1

|s− α|
|Aj |

∣∣∣∣∣
∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣ ds
≤
∞∑
j=1

∫ η+iΩ

η−iΩ
eηξ

1

|s− α|
|Aj |‖φ̂‖∞sign(rj)

[
1

η
eηrj − 1

η

]
ds

≤
∞∑
j=1

|Aj |‖φ̂‖∞sign(rj)

[
1

η
eηrj − 1

η

] ∫ η+iΩ

η−iΩ
eηξ

1

|s− α|
ds <∞.

(7.78)

Hence, we may apply Fubini and obtain∫ η+iΩ

η−iΩ
eξs

1

s− α

 ∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

 =

∞∑
j=1

∫ η+iΩ

η−iΩ
eξs

1

s− α
Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ. (7.79)
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Hence we have

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

s− α

 ∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

 ds

=
1

2πi
lim

Ω→∞

∞∑
j=1

∫ η+iΩ

η−iΩ
eξs

1

s− α
Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσds.

(7.80)

By applying Fubini to the summands, we have that

1

2πi
lim

Ω→∞

∞∑
j=1

∫ η+iΩ

η−iΩ
eξs

1

s− α
Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσds

=
1

2πi
lim

Ω→∞

∞∑
j=1

Aj

∫ 0

rj

φ̂(σ)

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
dsdσ.

(7.81)

We will now show that

1

2πi
lim

Ω→∞

∞∑
j=1

Aj

∫ 0

rj

φ̂(σ)

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
dsdσ

=
1

2πi

∞∑
j=1

Aj lim
Ω→∞

∫ 0

rj

φ̂(σ)

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
dsdσ.

(7.82)

As mentioned in Remark 7.8, we have that the limit in (7.42) holds uniformly for every compact sets of ξ.
Because our shifts are bounded, we have that |ξ − σ + rj | ≤ M for all j and all σ ∈ [rmin, rmax]. Hence, we
can find an N ∈ R such that for all Ω ≥ N ,∣∣∣∣∣∣

∞∑
j=1

Aj

∫ 0

rj

φ̂(σ)

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
dsdσ −

∞∑
j=1

Aj

∫ 0

rj

φ̂(σ) lim
Ω→∞

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
dsdσ

∣∣∣∣∣∣
≤
∞∑
j=1

|Aj |

∣∣∣∣∣
∫ 0

rj

φ̂(σ)

(∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
ds− lim

Ω→∞

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
ds

)
dσ

∣∣∣∣∣
≤
∞∑
j=1

|Aj |
∫ 0

rj

|φ̂(σ)|

∣∣∣∣∣
∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
ds− lim

Ω→∞

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
ds

∣∣∣∣∣ dσ
≤
∞∑
j=1

|Aj |
∫ rmax

rmin

‖φ̂‖∞

∣∣∣∣∣
∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
ds− lim

Ω→∞

∫ η+iΩ

η−iΩ
es(ξ−σ+rj)

1

s− α
ds

∣∣∣∣∣ dσ
≤ ε

∞∑
j=1

|Aj |‖φ̂‖∞(rmax − rmin).

(7.83)

Thus, we see that (7.82) is justified. Applying Fubini again to the summands yields (7.75).

Lemma 7.15. For any α > η with |α| < η̃. We have the explicit expression

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

Les·

(s− α)2

∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ =

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α,rj [φ̂](ξ + rk) (7.84)

for all ξ ∈ R.
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Proof. Fix ξ ∈ R. By definition, we have

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

Les·

(s− α)2

∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

=
1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

(s− α)2

∞∑
k=1

Ake
srk

∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ.

(7.85)

We estimate ∫ η+i∞

η−i∞
|eξs| 1

|s− α|2

∣∣∣∣∣
∞∑
k=1

Ake
srk

∣∣∣∣∣
∣∣∣∣∣∣
∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣∣ ds
≤ eηξ

∫ η+i∞

η−i∞

1

|s− α|2
∞∑
k=1

|Ak|eηrk
∞∑
j=1

|Aj |

∣∣∣∣∣
∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣ ds.
(7.86)

Since the sum
∑∞
k=1 |Aj |eηrk converges, we can bring it outside the integral to obtain

eηξ
∫ η+i∞

η−i∞

1

|s− α|2
∞∑
k=1

|Ak|eηrk
∞∑
j=1

|Aj |

∣∣∣∣∣
∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣ ds
≤
∞∑
k=1

|Ak|eη(ξ+rk)

∫ η+i∞

η−i∞

1

|s− α|2
∞∑
j=1

|Aj |

∣∣∣∣∣
∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣ ds
≤
∞∑
k=1

|Ak|eη(ξ+rk)

∫ η+i∞

η−i∞

1

|s− α|2
∞∑
j=1

|Aj |sign(rj)

[
1

η
eηrj − 1

η

]
ds

≤
∞∑
k=1

|Ak|eη(ξ+rk)
∞∑
j=1

|Aj |sign(rj)

[
1

η
eηrj − 1

η

] ∫ η+i∞

η−i∞

1

|s− α|2
ds

<∞.

(7.87)

Hence, we see that the integrand of (7.85) is in L1, which allows us to drop the limit sign with respect to Ω.
This yields

1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξs

1

(s− α)2

∞∑
k=1

Ake
srk

∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσds

=
1

2πi

∫ η+i∞

η−i∞
eξs

1

(s− α)2

∞∑
k=1

Ake
srk

∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσds.

(7.88)

Furthermore, it follows from the estimates in (7.86) and (7.87), that we may apply Fubini to switch the sums
and the integral. Hence, we obtain

1

2πi

∫ η+i∞

η−i∞
eξs

1

(s− α)2

∞∑
k=1

Ake
srk

∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσds

=

∞∑
k=1

Ak

∞∑
j=1

Aj
1

2πi

∫ η+i∞

η−i∞
es(ξ+rk) 1

(s− α)2

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσds

=

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α,rj [φ̂](ξ + rk).

(7.89)
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Proposition 7.16. For any α > η with |α| < η̃. We have the explicit expression

M2
α[φ̂](ξ) =

∞∑
j=1

AjJ (1)
α,rj [φ̂](ξ) +

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α,rj [φ̂](ξ + rk)− α

∞∑
j=1

AjJ (2)
α,rj [φ̂](ξ). (7.90)

for all ξ ∈ R.

Proof. Fix ξ ∈ R. This follows from Lemma 7.14 and Lemma 7.15.

Remark 7.17. For the proof of Proposition 7.16, we were able to bring the limit inside at (7.82) because
our shifts are bounded (see Remark 7.8). However, for unbounded shifts we may not. Hence, more work has
to be done if we wish to generalize our results to unbounded shifts.

We also obtain the next similar result regarding M2
α as in [10, Lemma 5.11].

Lemma 7.18. For α > η with |α| < η̃ and for any sufficiently small ε > 0, we have

M2
α[φ̂] ∈ BCη(R,Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd) (7.91)

for any φ̂ ∈ L2([rmin, rmax];Cd).

Proof. We first estimate the terms

e−(η±δ)ξ

∣∣∣∣∣∣
∞∑
j=1

AjJ (1)
α,rj [φ̂](ξ)

∣∣∣∣∣∣ ≤
∞∑
j=1

|Aj |e(α−(η±δ))ξeαrj

∣∣∣∣∣
∫ max{0,ξ+rj}

max{rj ,ξ+rj}
e−ασφ̂(σ)dσ

∣∣∣∣∣ . (7.92)

It is clear that (7.92) is bounded on a compact interval of ξ. Moreover, due to the boundedness of the shifts,
we have that the integral on the right-hand side becomes zero for ξ sufficiently large. Also, for ξ sufficiently

close to −∞, we have that the integral becomes |
∫ 0

rj
e−ασφ̂(σ)dσ|, which is a bounded term that does not

depends on ξ. Because α > η by assumption, we have that α− (η± δ) > 0 for δ ≥ 0 sufficiently small. Hence

we conclude that the first term of M
(2)
α satisfies the bounds in (7.91).

We proceed to estimate the term

e−(η±δ)ξ

∣∣∣∣∣∣
∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α,rj [φ̂](ξ + rk)

∣∣∣∣∣∣
≤
∞∑
k=1

|Ak|
∞∑
j=1

|Aj |e(α−(η±δ))ξeα(rk+rj)

∣∣∣∣∣
∫ max{0,ξ+rk+rj}

max{rj ,ξ+rk+rj}
e−ασ(ξ + rk + rj − σ)φ̂(σ)dσ

∣∣∣∣∣ .
(7.93)

Again, we see that the integral on the right-hand side is zero for ξ sufficiently large, and for ξ sufficiently
close to −∞, the integral becomes∣∣∣∣∣

∫ 0

rj

e−ασ(ξ + rk + rj − σ)φ̂(σ)dσ

∣∣∣∣∣
≤ ‖φ̂‖∞

[
|ξ + rk + rj |

|α|
+

1

α2
+
|ξ + rk|e−αrj

|α|
+
e−αrj

α2

]
.

(7.94)

We see that the exponential term does not depends on ξ, which means that the term e(α−(η±δ))ξ is conserved.
Because α − (η ± δ) > 0, we have that e(α−(η±δ))ξ|ξ| is bounded for ξ ≤ 0. Terms that are independent of

ξ also stay bounded together with the sum. Hence, we conclude that the second term of M
(2)
α satisfies the

bounds in (7.91). Since the third term of M
(2)
α can be estimated similarly as the second term, we conclude

that the bounds in (7.91) are justified.
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We will now determine the derivative of M2
α. We need the following lemmas.

Lemma 7.19. The sum

∞∑
j=1

AjJ (1)
α,rj [φ̂]′(ξ) (7.95)

with J (1)
α,rj [φ̂]′(ξ) as defined in (7.68), converges locally uniformly in ξ, for all ξ ∈ R \ R.

Proof. We first estimate∣∣∣∣∣∣
∞∑
j=1

AjJ (1)
α,rj [φ̂]′(ξ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=1

AjαJ (1)
α,rj [φ̂](ξ)−Ajsign(rj)φ̂(ξ + rj)1min{−rj ,0}<ξ<max{−rj ,0}

∣∣∣∣∣∣
≤
∞∑
j=1

|Aj ||αJ (1)
α,rj [φ̂](ξ)|+

∞∑
j=1

|Aj ||φ̂(ξ + rj)|1min{−rj ,0}<ξ<max{−rj ,0}

≤
∞∑
j=1

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ max{0,ξ+rj}

max{rj ,ξ+rj}
e−ασφ̂(σ)dσ

∣∣∣∣∣+

∞∑
j=1

|Aj |‖φ̂‖∞.

(7.96)

Since
∑∞
j=1 |Aj |‖φ̂‖∞ is just a constant, we only need to look at

∞∑
j=1

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ max{0,ξ+rj}

max{rj ,ξ+rj}
e−ασφ̂(σ)dσ

∣∣∣∣∣ . (7.97)

For ξ ≥ 0, we get

∞∑
j=1

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ max{0,ξ+rj}

max{rj ,ξ+rj}
e−ασφ̂(σ)dσ

∣∣∣∣∣
=

∑
j:rj≥−ξ

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ ξ+rj

ξ+rj

e−ασφ̂(σ)dσ

∣∣∣∣∣+

∞∑
j:rj<−ξ

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ 0

ξ+rj

e−ασφ̂(σ)dσ

∣∣∣∣∣
≤

∑
j:rj<−ξ

|Aj ||α|‖φ̂‖∞eα(ξ+rj)

[
− 1

α
e−ασ

]0

ξ+rj

≤
∞∑

j:rj<−ξ

|Aj ||α|‖φ̂‖∞eα(ξ+rj)

[
− 1

α
+

1

α
e−α(ξ+rj)

]
≤

∑
j:rj<−ξ

|Aj |‖φ̂‖∞eα(ξ+rj)
[
1 + e−α(ξ+rj)

]
≤
∞∑
j=1

|Aj |‖φ̂‖∞eα(ξ+rj)
[
1 + e−α(ξ+rj)

]
≤
∞∑
j=1

|Aj |‖φ̂‖∞ + eαξ
∞∑
j=1

|Aj |‖φ̂‖∞eη̃|rj | <∞.

(7.98)
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For ξ < 0, we have

∞∑
j=1

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ max{0,ξ+rj}

max{rj ,ξ+rj}
e−ασφ̂(σ)dσ

∣∣∣∣∣
=

∑
j:rj<−ξ

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ 0

rj

e−ασφ̂(σ)dσ

∣∣∣∣∣+
∑

j:rj≥−ξ

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ ξ+rj

rj

e−ασφ̂(σ)dσ

∣∣∣∣∣
=

∑
j:rj<−ξ

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ 0

rj

e−ασφ̂(σ)dσ

∣∣∣∣∣+
∑

j:rj≥−ξ

|Aj ||α|eα(ξ+rj)

∣∣∣∣∣
∫ rj

ξ+rj

e−ασφ̂(σ)dσ

∣∣∣∣∣
≤

∑
j:rj<−ξ

|Aj ||α|‖φ̂‖∞eα(ξ+rj) ·

(
−sign(rj)

[
− 1

α
e−ασ

]0

rj

)
+

∑
j:rj≥−ξ

|Aj ||α|eα(ξ+rj)‖φ̂‖∞
[
− 1

α
e−ασ

]rj
ξ+rj

≤
∞∑

j:rj<−ξ

|Aj ||α|‖φ̂‖∞eα(ξ+rj)

[
1

|α|
+

1

|α|
e−αrj

]
+

∑
j:rj≥−ξ

|Aj ||α|eα(ξ+rj)‖φ̂‖∞
[

1

|α|
e−αrj +

1

|α|
e−α(ξ+rj)

]
≤

∑
j:rj<−ξ

|Aj |‖φ̂‖∞eα(ξ+rj)
[
1 + e−αrj

]
+

∑
j:rj≥−ξ

|Aj |eα(ξ+rj)‖φ̂‖∞
[
e−αrj + e−α(ξ+rj)

]
≤
∞∑
j=1

|Aj |‖φ̂‖∞eα(ξ+rj)
[
1 + e−αrj

]
+

∞∑
j=1

|Aj |eα(ξ+rj)‖φ̂‖∞
[
e−αrj + e−α(ξ+rj)

]
≤ ‖φ̂‖∞eαξ

∞∑
j=1

|Aj |eη̃|rj | + 2‖φ̂‖∞eαξ
∞∑
j=1

|Aj |+ ‖φ̂‖∞
∞∑
j=1

|Aj |.

(7.99)

Hence, we conclude that
∑∞
j=1AjJ

(1)
α,rj [φ̂]′(ξ) converges locally uniformly in ξ.

Lemma 7.20. The sum

∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||J (2)
α;rj [φ̂]′(ξ + rk)| (7.100)

and the sum

∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||J (1)
α;rj [φ̂](ξ + rk)| (7.101)

with J (1)
α,rj [φ̂]′(ξ) as defined in (7.68) and J (2)

α,rj [φ̂]′(ξ) as defined in (7.69), converge both locally uniformly in
ξ, for all ξ ∈ R \ R.

Proof. We have

∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||J (2)
α;rj [φ̂]′(ξ + rk)|

≤
∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||αJ (2)
α;rj [φ̂](ξ + rk) + J (1)

α;rj [φ̂](ξ + rk)|

≤
∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||αJ (2)
α;rj [φ̂](ξ + rk)|+ |Aj ||J (1)

α;rj [φ̂](ξ + rk)|.

(7.102)
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We examine the term

∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||αJ (2)
α;rj [φ̂](ξ + rk)|

=

∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||α|eα(ξ+rk+rj)

∣∣∣∣∣
∫ max{0,ξ+rk+rj}

max{rj ,ξ+rk+rj}
(ξ + rk + rj − σ)e−ασφ̂(σ)dσ

∣∣∣∣∣
=:

∞∑
k=1

|Ak|
∞∑
j=1

|Aj |eα(ξ+rk+rj)Ij,k(ξ).

(7.103)

We examine the four different outcomes of the above integral, if ξ + rk + rj ≥ 0 and ξ + rk + rj ≥ rj , then

Ij,k(ξ) =

∣∣∣∣∣
∫ ξ+rk+rj

ξ+rk+rj

(ξ + rk + rj − σ)e−ασφ̂(σ)dσ

∣∣∣∣∣ = 0. (7.104)

if ξ + rk + rj ≤ 0 and ξ + rk + rj ≥ rj , then

Ij,k(ξ) =

∣∣∣∣∣
∫ 0

ξ+rk+rj

(ξ + rk + rj − σ)e−ασφ̂(σ)dσ

∣∣∣∣∣
≤ ‖φ̂‖∞

∫ 0

ξ+rk+rj

−(ξ + rk + rj − σ)e−ασdσ

≤ ‖φ̂‖∞
[
−e
−ασ(α(σ − (ξ + rk + rj)) + 1)

α2

]0

ξ+rk+rj

≤ ‖φ̂‖∞
[
|ξ + rk + rj |

|α|
+

1

α2
+
e−α(ξ+rk+rj)

α2

]
.

(7.105)

Note that

∞∑
k=1

|Ak|
∞∑
j=1

|Aj |‖φ̂‖∞eα(ξ+rk+rj)

[
|ξ + rk + rj |+

1

|α|
+
e−α(ξ+rk+rj)

|α|

]

≤
∞∑
k=1

|Ak|
∞∑
j=1

|Aj |‖φ̂‖∞eα(ξ+rk+rj)|ξ + rk + rj |+
∞∑
k=1

|Ak|
∞∑
j=1

|Aj |‖φ̂‖∞eα(ξ+rk+rj)
1

|α|

+

∞∑
k=1

|Ak|
∞∑
j=1

|Aj |‖φ̂‖∞
1

|α|

≤ ‖φ̂‖∞

(|ξ|eαξ +
1

|α|
)

∞∑
k=1

|Ak|
∞∑
j=1

|Aj |+M(eαξ +
1

|α|
)

( ∞∑
k=1

|Ak|eη̃|rk|
) ∞∑

j=1

|Aj |eη̃|rj |
 ,

(7.106)

which converges locally uniformly in ξ. Note that we used the estimation that for all x ≥ 0, we have
x ≤M(ε)eεx for some constant M(ε) > 0 and ε > 0 such that |α|+ ε ≤ η̃.
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If ξ + rk + rj ≥ 0 and ξ + rk + rj ≤ rj , then

Ij,k(ξ) =

∣∣∣∣∣
∫ ξ+rk+rj

rj

(ξ + rk + rj − σ)e−ασφ̂(σ)dσ

∣∣∣∣∣
≤ ‖φ̂‖∞

∫ ξ+rk+rj

rj

|ξ + rk + rj − σ|e−ασdσ

≤ ‖φ̂‖∞
∫ ξ+rk+rj

rj

(ξ + rk + rj − σ)e−ασdσ

≤ ‖φ̂‖∞
[
e−ασ(α(σ − (ξ + rk + rj)) + 1)

α2

]ξ+rk+rj

rj

≤ ‖φ̂‖∞
[
e−α(ξ+rk+rj)

α2
+
|ξ + rk|e−αrj

|α|
+
e−αrj

α2

]
.

(7.107)

It can be shown, with the same estimation technique as in (7.106), that

∞∑
k=1

|Ak|
∞∑
j=1

|Aj |‖φ̂‖∞eα(ξ+rk+rj)

[
e−α(ξ+rk+rj)

α2
+
|ξ + rk|e−αrj

|α|
+
e−αrj

α2

]
(7.108)

converges locally uniformly in ξ.
At last, if ξ + rk + rj ≤ 0 and ξ + rk + rj ≤ rj , we have

Ij,k(ξ) =

∣∣∣∣∣
∫ 0

rj

(ξ + rk + rj − σ)e−ασφ̂(σ)dσ

∣∣∣∣∣ . (7.109)

For rj ≤ 0, we have ξ + rk ≤ 0. Thus,∣∣∣∣∣
∫ 0

rj

(ξ + rk + rj − σ)e−ασφ̂(σ)dσ

∣∣∣∣∣
≤ ‖φ̂‖∞

∫ 0

rj

|ξ + rk + rj − σ|e−ασdσ

≤ ‖φ̂‖∞
∫ 0

rj

−(ξ + rk + rj − σ)e−ασdσ

≤ ‖φ̂‖∞
[
e−ασ(α(σ − (ξ + rk + rj)) + 1)

α2

]0

rj

≤ ‖φ̂‖∞
[

(ξ + rk + rj)

α
− 1

α2
− (ξ + rk)e−αrj

α
+
e−αrj

α2

]
≤ ‖φ̂‖∞

[
|ξ + rk + rj |

|α|
+

1

α2
+
|ξ + rk|e−αrj

|α|
+
e−αrj

α2

]
.

(7.110)
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For rj ≥ 0, we have ∣∣∣∣∣
∫ 0

rj

(ξ + rk + rj − σ)e−ασφ̂(σ)dσ

∣∣∣∣∣
≤ ‖φ̂‖∞

∫ rj

0

|ξ + rk + rj − σ|e−ασdσ

≤ ‖φ̂‖∞
∫ rj

0

−(ξ + rk + rj − σ)e−ασdσ

≤ ‖φ̂‖∞
∫ 0

rj

(ξ + rk + rj − σ)e−ασdσ

≤ ‖φ̂‖∞
[
|ξ + rk + rj |

|α|
+

1

α2
+
|ξ + rk|e−αrj

|α|
+
e−αrj

α2

]
.

(7.111)

It can be shown, with the same estimation technique as in (7.106), that

∞∑
k=1

|Ak|
∞∑
j=1

|Aj |‖φ̂‖∞eα(ξ+rk+rj)

[
|ξ + rk + rj |

|α|
+

1

α2
+
|ξ + rk|e−αrj

|α|
+
e−αrj

α2

]
(7.112)

converges locally uniformly in ξ. Hence, with identities (7.106)-(7.112), we conclude that (7.103) converges
locally uniformly in ξ.

With a similar estimation technique as for (7.97), it can be shown that the term

∞∑
k=1

|Ak|
∞∑
j=1

|Aj ||J (1)
α;rj [φ̂](ξ + rk)| (7.113)

converges locally uniformly in ξ.

Proposition 7.21. M2
α[φ̂] is continuously differentiable on R\R and we may apply term-wise differentiation

and obtain

M2
α[φ̂]′(ξ) =

∞∑
j=1

Aj

[
αJ (1)

α,rj [φ̂](ξ)− sign(rj)φ̂(ξ + rj)1min{−rj ,0}<ξ<max{−rj ,0}

]
+

∞∑
k=1

Ak

∞∑
j=1

Aj(αJ (2)
α;rj [φ̂](ξ + rk) + J (1)

α;rj [φ̂](ξ + rk))

− α
∞∑
j=1

Aj(αJ (2)
α;rj [φ̂](ξ) + J (1)

α;rj [φ̂](ξ))

= αM2
α[φ̂](ξ)−

∞∑
j=1

Ajsign(rj)φ̂(ξ + rj)1min{−rj ,0}<ξ<max{−rj ,0}

+

∞∑
k=1

Ak

∞∑
j=1

AjJ (1)
α;rj [φ̂](ξ + rk)− α

∞∑
j=1

AjJ (1)
α;rj [φ̂](ξ).

(7.114)

In particular, for ξ ∈ (−∞, 0) \ R, we have

M2
α[φ̂]′(ξ) = αM2

α[φ̂](ξ)−
∑
rj>0

Aj φ̂(ξ + rj)1−rj<ξ<0

+

∞∑
k=1

Ak

∞∑
j=1

AjJ (1)
α;rj [φ̂](ξ + rk)− α

∞∑
j=1

AjJ (1)
α;rj [φ̂](ξ)

(7.115)
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and for ξ ∈ (0,∞) \ R, we obtain

M2
α[φ̂]′(ξ) = αM2

α[φ̂](ξ) +
∑
rj<0

Aj φ̂(ξ + rj)10<ξ<−rj

+

∞∑
k=1

Ak

∞∑
j=1

AjJ (1)
α;rj [φ̂](ξ + rk)− α

∞∑
j=1

AjJ (1)
α;rj [φ̂](ξ).

(7.116)

Proof. In order to compute M2
α[φ̂]′(ξ) for ξ ∈ R \ R by using identities (7.68) and (7.69), we need to show

that we may perform term wise differentiation. Because the derivatives in (7.68) and (7.69) are clearly
continuous for ξ ∈ R \ R, we need to only show that the sums of the derivatives converge locally uniformly
in ξ ∈ R \ R. This follows from Lemma 7.19 and Lemma 7.20. Hence, we conclude that we may perform
term wise differentiation and obtain identity (7.114).
The remaining identities follow from direct computations.

Lemma 7.22. Fix φ̂ ∈ C([rmin, 0];Cd)× C([0, rmax];Cd). For rj < 0 the function M2
α[φ̂]′ has the jump

M2
α[φ̂]′(−r+

j )−M2
α[φ̂]′(−r−j ) = −Aj φ̂(0−), (7.117)

while for rj > 0 we have

M2
α[φ̂]′(−r+

j )−M2
α[φ̂]′(−r−j ) = −Aj φ̂(0+). (7.118)

In addition, the discontinuity at ξ = 0 is given by

M2
α[φ̂]′(0+)−M2

α[φ̂]′(0−) =
∑
rj<0

Aj φ̂(rj) +
∑
rj>0

Aj φ̂(rj). (7.119)

Proof. Identities (7.115), (7.116) and (7.121) follow from (7.114). Identities (7.117), (7.118) and (7.119) follow
from (7.71), (7.73) and the fact that we may calculate the limits term-wise due the uniform convergence of
the sums.

We introduce the expression

HM2
α

[φ̂](ξ) =M2
α[φ̂]′(ξ)− LevξM2

α[φ̂] (7.120)

for ξ ∈ R \ R, Substituting M1
α[v] into the differential equation (2.10) yields

HM2
α

[φ̂](ξ) = −
∞∑
l=1

Al

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk + rl) + 2α

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk)

− α2
∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ)−

∞∑
j=1

Ajsign(rj)φ̂(ξ + rj)1min{−rj ,0}<ξ<max{−rj ,0},

(7.121)

for all such ξ.

7.1.3 Characterization of the remaining terms R1
α and R2

α.

We will now inspect the remaining terms of TL;η. After checking some smoothness conditions, we obtain the
following similar results as in [10, Lemma 5.12].

Proposition 7.23. Let L be as defined in (2.8) with coefficients that satisfy condition (2.4) for a certain
η̃ > 0. Pick η ∈ R with |η| < η̃ such that ∆L(s) is invertible for all s ∈ C with Re(s) = η. Pick α > η with
|α| < η̃, then for any sufficiently small ε > 0, the map

Cd 3 v 7→ R1
α[v] ∈ BCη(R,Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd), (7.122)
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Cd 3 v 7→ R1
α[v]′ ∈ BCη(R,Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd), (7.123)

where

R1
L;α[v]′(ξ) =

1

2πi

∫ η+i∞

η−i∞
seξsRL;α(s)vds (7.124)

together with the maps

Cd 3 v 7→ R2
α[φ̂] ∈ BCη(R,Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd), (7.125)

Cd 3 v 7→ R2
α[φ̂]′ ∈ BCη(R,Cd) ∩BC−η+ε(Cd) ∩BC+

η−ε(Cd), (7.126)

where

R2
L;α[v]′(ξ) =

1

2πi

∫ η+i∞

η−i∞
seξsRL;α(s)

∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσds (7.127)

are well-defined and bounded.
Upon fixing φ̂ ∈ C([rmin, 0];Cd)× C([0, rmax];Cd) and v ∈ Cd, we define

HR1
α

[v](ξ) = R1
α[v]′(ξ)− LevξR1

α[v],

HR2
α

[v](ξ) = R2
α[φ̂]′(ξ)− LevξR2

α[φ̂],
(7.128)

for any ξ ∈ R, we have the identity

HR1
α

[v](ξ) = −
∞∑
k=1

Ak

∞∑
j=1

Aj(ξ + rk + rj)e
(ξ+rk+rj)αH(−(ξ + rk + rj))v

+ 2α

( ∞∑
k=1

Ak(ξ + rk)eα(ξ+rk)H(−(ξ + rk))

)
v − α2ξeαξH(−ξ)v

(7.129)

together with

HR2
α

[v](ξ) =

∞∑
k=1

Ak

∞∑
l=1

Al

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk + rl)− 2α

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk)

+ α2
∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ)

(7.130)

for all ξ ∈ R.

Proof. We first make the estimate∣∣∣∣∣∣
∞∑
j=1

Aj

∫ 0

rj

e−s(σ−rj)φ̂(σ)dσ

∣∣∣∣∣∣ ≤
∞∑
j=1

|Aj |eηrj
∣∣∣∣∣
∫ 0

rj

e−sσφ̂(σ)dσ

∣∣∣∣∣
≤
∞∑
j=1

|Aj |eRe(s)rj

∫ rmax

rmin

eRe(s)σ|φ̂(σ)|dσ

≤ K‖φ‖L∞([rmin,rmax],Cd),

(7.131)

which holds uniformly for |Re(s)− η| < ε with certain ε > 0.
Furthermore, according to Lemma 7.6, we have a uniform bound for ‖RL;α(s)‖ and we see that |s|‖RL;α(s)‖
is in L1(η+ iR) and L1(η± ε+ iR). This shows that identities (7.124) and (7.127) are simply a consequence
of Lemma 3.8.
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The proof for identities (7.122), (7.123), (7.125) and (7.126) is identical to [10, proof of Lemma 5.12], which
is done by shifting the integration path from Re(s) = η to Re(s) = η± ε. The above estimations shows that
we may indeed perform the shifting.

To obtain identity (7.129), we compute

R1
α[v]′(ξ)− LevξR1

α[v]

=
1

2πi

∫ η+i∞

η−i∞
seξsRL;α(s)vds−

∞∑
k=1

Ak
1

2πi

∫ η+i∞

η−i∞
e(ξ+rk)sRL;α(s)vds.

(7.132)

It is clear that we may apply Fubini and obtain

1

2πi

∫ η+i∞

η−i∞
seξsRL;α(s)vds−

∞∑
k=1

Ak
1

2πi

∫ η+i∞

η−i∞
e(ξ+rk)sRL;α(s)vds

=
1

2πi

∫ η+i∞

η−i∞

(
s−

∞∑
k=1

Ake
srk

)
eξsRL;α(s)vds

=
1

2πi

∫ η+i∞

η−i∞
eξs∆L(s)RL;α(s)vds.

(7.133)

As in [10, proof of Lemma 5.12], we have

∆L(s)RL;α(s) = I − s− Les·

s− α
− (s− Les·)(ses· − α)

(s− α)2

=
(Les· − α)2

(s− α)2
.

(7.134)

Hence, we obtain

R1
α[v]′(ξ)− LevξR1

α[v] =
1

2πi

∫ η+i∞

η−i∞
eξs

(Les· − α)2

(s− α)2
vds

=
1

2πi

∫ η+i∞

η−i∞
eξs
(

(Les·)2

(s− α)2
− 2α

Les·

(s− α)2
+

α2

(s− α)2

)
vds.

(7.135)

We inspect these terms separately. By applying Fubini, we have

1

2πi

∫ η+i∞

η−i∞
eξs

(Les·)2

(s− α)2
vds =

∞∑
k=1

Ak

∞∑
j=1

Aj
1

2πi

∫ η+i∞

η−i∞
e(ξ+rk+rj)s

1

(s− α)2
vds

= −
∞∑
k=1

Ak

∞∑
j=1

Aj(ξ + rk + rj)e
(ξ+rk+rj)αH(−(ξ + rk + rj))v.

(7.136)

For the remaining terms, it can be computed that

− 2α
1

2πi

∫ η+i∞

η−i∞
eξs

Les·

(s− α)2
vds+ α2 1

2πi

∫ η+i∞

η−i∞
eξs

1

(s− α)2
vds

= 2α

( ∞∑
k=1

Ak(ξ + rk)eα(ξ+rk)H(−(ξ + rk))v

)
− α2ξeαξH(−ξ)v.

(7.137)

Hence, we have

R1
α[v]′(ξ)− LevξR1

α[v] = −
∞∑
k=1

Ak

∞∑
j=1

Aj(ξ + rk + rj)e
(ξ+rk+rj)αH(−(ξ + rk + rj))v

+ 2α

( ∞∑
k=1

Ak(ξ + rk)eα(ξ+rk)H(−(ξ + rk))

)
v − α2ξeαξH(−ξ)v.

(7.138)
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For identity (7.130), we examine

R2
α[φ̂]′(ξ)− LevξR2

α[φ̂] =
1

2πi

∫ η+i∞

η−i∞
eξs
(

(Les·)2

(s− α)2
− 2α

Les·

(s− α)2
+

α2

(s− α)2

)
ψ[φ̂](s)ds. (7.139)

For the first term we have

1

2πi

∫ η+i∞

η−i∞
eξs

(Les·)2

(s− α)2
ψ[φ̂](s)ds =

∞∑
k=1

Ak

∞∑
l=1

Al
1

2πi

∫ η+i∞

η−i∞
e(ξ+rk+rl)s

1

(s− α)2
ψ[φ̂](s)ds

=

∞∑
k=1

Ak

∞∑
l=1

Al

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk + rl).

(7.140)

For the second term we have

−2α
1

2πi

∫ η+i∞

η−i∞
eξs

Les·

(s− α)2
ψ[φ̂](s)ds = −2α

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk). (7.141)

The third term is

α2 1

2πi

∫ η+i∞

η−i∞
eξs

1

(s− α)2
ψ[φ̂](s)ds = α2

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ). (7.142)

Thus, we have

R2
α[φ̂]′(ξ)− LevξR2

α[φ̂] =

∞∑
k=1

Ak

∞∑
l=1

Al

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk + rl)

− 2α

∞∑
k=1

Ak

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ + rk) + α2

∞∑
j=1

AjJ (2)
α;rj [φ̂](ξ)

(7.143)

for all ξ ∈ R.

7.2 Characterizations of TL;η
We have now studied all of the terms of TL;η, which leads us to the following similar conclusions as in [10,
Proposition 5.13]

Proposition 7.24. Let L be as defined in (2.8) with coefficients that satisfy condition (2.4) for a certain

η̃ > 0. Then for any sufficiently small ε > 0, we have for any φ̂ ∈ C([rmin, 0];Cd) × C([0, rmax];Cd) and
v ∈ Cd, the inclusion

TL;η[φ̂, v] ∈ BC−η+ε(Cd) ∩BC+
η−ε(Cd). (7.144)

Upon fixing φ̂ ∈ C([rmin, 0];Cd)× C([0, rmax],Cd) and v ∈ Cd, we have the jump discontinuity

TL;η[φ̂, v](0+)− TL;η[φ̂, v](0−) = v. (7.145)

In addition, TL;η[φ̂, v] is continuously differentiable on R \ R. For rj < 0, the derivative has the jump

TL;η[φ̂, v]′(−r+
j )− TL;η[φ̂, v]′(−r−j ) = Ajv −Aj φ̂(0−), (7.146)

while for rj > 0, we have

TL;η[φ̂, v]′(−r+
j )− TL;η[φ̂, v]′(−r−j ) = Ajv −Aj φ̂(0+). (7.147)

55



On the other hand, we have

TL;η[φ̂, v]′(0+)− TL;η[φ̂, v]′(0−) =
∑
rj<0

Aj φ̂(rj) +
∑
rj>0

Aj φ̂(rj). (7.148)

Furthermore, we have for ξ ∈ (−∞, 0) \ R,

HTL;η
[φ̂, v](ξ) := TL;η[φ̂, v]′(ξ)− LevξTL;η[φ̂, v] = −

∑
rj>0

Aj φ̂(ξ + rj)1−rj<ξ<0, (7.149)

while for ξ ∈ (0,∞) \ R, we have

HTL;η
[φ̂, v](ξ) =

∑
rj<0

Aj φ̂(ξ + rj)10<ξ<−rj . (7.150)

We note that LevξTL;η[φ̂, v] =
∑∞
j=1AjTL;η[φ̂, v](ξ + rj) is well-defined due to identity (7.144). Namely,

identity (7.144) implies that TL;η[φ̂, v] ∈ BCη(R,Cd). Hence

∞∑
j=1

|Aj ||TL;η[φ̂, v](ξ + rj)| ≤ Keξ
∞∑
j=1

|Aj |eηrj <∞, (7.151)

with K > 0 that does not depends on ξ. Thus, we see that the convergence is also locally uniform in ξ.

7.3 Proof of exponential dichotomy

With these characterizations of the TL;η functions, we can easily prove the results that were stated earlier
in this chapter.

Proof of Proposition 7.1. This follows immediately from Proposition 7.24.

Proof of Proposition 7.4. This is identical to [10, Proof of Proposition 5.5].

Proof of Proposition 7.5. The proof is identical to [10, proof of Proposition 5.6], but we will justify the fol-
lowing claim that was made in the proof.

Claim: We have the characterizations

PL(η) = {φ ∈ C([rmin, rmax];Cd) : φ = ev0EP̂L(η)φ}

QL(η) = {φ ∈ C([rmin, rmax];Cd) : φ = ev0EQ̂L(η)φ},
(7.152)

which immediately implies that PL(η) and QL(η) are closed.

Proof of the claim: From Corollary 7.3, it indeed follows that for φ ∈ PL(η), and ψ ∈ QL(η), we
have φ = ev0EP̂L(η)φ} and ψ = ev0EQ̂L(η)ψ. By definitions, we still need to show that EP̂L(η)φ ∈ PL(η) and

EQ̂L(η)ψ ∈ QL(η). Given identity (7.33) and Proposition 7.4, it only remains to show that for ξ ∈ [0,∞)∩R,

we have EQ̂L(η)ψ
′(ξ)−LevξEQ̂L(η)ψ = 0, and for ξ ∈ (−∞, 0]∩R, we have EP̂L(η)φ

′(ξ)−LevξEP̂L(η)φ = 0.

This is done as follows.
For φ ∈ C([rmin, rmax];Cd), we have that T ′L;η[φ, φ(0)](ξ) is continuous on R \ 0 due to identities (7.146) and
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(7.147). As a consequence, we have for ξ ∈ R ∩ (0,∞),

[EQ̂L(η)φ]′(ξ)−
∞∑
j=1

Aj [EQ̂L(η)φ](ξ + rj)

= T ′L;η[φ, φ(0)](ξ)−
∞∑
j=1

Aj [EQ̂L(η)φ](ξ + rj)

= lim
ξ′→ξ

T ′L;η[φ, φ(0)](ξ′)−
∞∑
j=1

Aj lim
ξ′→ξ

[EQ̂L(η)φ](ξ′ + rj)

= lim
ξ′→ξ

T ′L;η[φ, φ(0)](ξ′)− lim
ξ′→ξ

∞∑
j=1

Aj [EQ̂L(η)φ](ξ′ + rj)

= lim
ξ′→ξ

T ′L;η[φ, φ(0)](ξ′)−
∞∑
j=1

Aj [EQ̂L(η)φ](ξ′ + rj)


= lim
ξ′→ξ

0 = 0

(7.153)

by identity (7.30) and the fact that R is countable. Note that we may bring the limit outside the sum due
to the locally uniform convergence of

∑∞
j=1 |Aj ||TL;η[φ, v](ξ + rj) that was noted before. Similarly, we have

for ξ ∈ R ∩ (−∞, 0), that

[EP̂L(η)φ]′(ξ)−
∞∑
j=1

Aj [EP̂L(η)φ](ξ + rj) = 0. (7.154)

Identities (7.153) and (7.154) also holds for ξ = 0 by replacing the limits with the 0+ and 0− limits.

To show that PL(η) are QL(η) are closed, we recall the bounds (7.21), (7.31) and (7.32), which shows
that

EP̂L(η)(C([rmin, rmax];Cd))→ BC	η (Cd), EQ̂L(η)(C([rmin, rmax];Cd))→ BC⊕η (Cd) (7.155)

are bounded linear operators and therefore continuous. Hence, for a convergent sequences φn → φ, we have
that

φ = lim
n→∞

φn = lim
n→∞

ev0[EP̂L(η)φn] = ev0 lim
n→∞

[EP̂L(η)φn] = ev0[EP̂L(η) lim
n→∞

φn] = ev0[EP̂L(η)φ]. (7.156)

Similarly, we have ev0[EQ̂L(η)φ] = φ. Note that ev0 is just the restriction operator, which is also continuous.
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