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Abstract

We consider a reaction-diffusion equation on the lattice in two space dimensions and
concentrate on the horizontal direction. We prove the stability of horizontal travelling
waves under large perturbations and thereby we work out a special case of the stability
result obtained in [1]. In order to prove stability we use the comparison principle and
construct sub- and supersolution.
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1. Introduction

Let the lattice Z2 be indexed by coordinates (i, j) ∈ Z2. In this thesis we consider the
following differential equation on the lattice

u̇i,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j + g(ui,j). (1.1)

The function g is assumed to be a nonlinear and multistable function. Throughout this
paper we assume g to be bistable and given by

g(u) = u(u− a)(1− u) (1.2)

for some detuning parameter 0 < a < 1.
We can think of (1.1) as the discrete analogue of the Nagumo PDE in two real dimensions

ut = ∆u+ g(u). (1.3)

We focus on the stability of travelling wave-like solutions for large perturbations. This
is an important step towards understanding the effects of obstacles. In this thesis we
closely follow [1] to work out stability results for the horizontal direction on the lattice.
The horizontal direction is a direction on the lattice causing complications resulting from
weaker resonance to disappear. Thereby we are able to make the conditions for the
existence, uniqueness and stability of entire asymptotic planar wave solutions found in [1]
more explicit. Furthermore, we show that decay of the residual is faster in the horizontal
direction.

1.1. Reaction-Diffusion Equations

The PDE (1.3) is a prototype of a reaction-diffusion equation, which is a semi-linear
parabolic partial differential equation.
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Figure 1.1.: Nonlinearity g with detuning parameter a = 3.5
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Figure 1.2.: Lattice with direction denoted by θ

The term ∆u is the diffusion term and g(u) is the reaction term, they both strive for
dominance on the plane. As we can see in Fig. 1.1, the reaction term g(u) causes peaks,
because it is bistable. The diffusion operator ∆u softens these peaks.
Reaction-diffusion equations are essential for modelling. They are used to describe sys-
tems, which are influenced by both a reaction and diffusion. We can think of diffusion as
the spreading out in space. Thus diffusion accounts for the second law of thermodynam-
ics, i.e. for the increase in entropy. Note that we get Fick’s second law, which is called
the heat equation on a multi-dimensional space, for g ≡ 0.
If g is not the zero function, the reaction term can account for any influence we can
describe with such a function g.
Chemical reactions are the most obvious and common application of reaction-diffusion
equations. Yet they can be used as a generic model for any pattern forming process we
can describe with (1.3). Therefore another widely used example is population dynamics,
in particular predator-prey models, but also population genetics models as seen in [10].
Reaction-diffusion equations on the discrete space with their two-dimensional prototype
given in (1.1) have only recently enjoyed great interest. This development is mostly due
to the tremendous progress when it comes to computer power in the previous decades.
Within this young research field it has already become clear that there is a huge added
benefit to studying reaction-diffusion equations on a multidimensional discrete space.
The most prominent reason is that assuming continuity is often a mere approximation
and we actually lose information about the structure. Furthermore, numerous processes
can only be modelled discretely.
On the lattice it matters from which direction we look at the lattice as illustrated in
Fig. A.1. In mathematical terms we lose isotropy and gain direction dependence. We
also lose translational invariance. These structural differences to the continuous finite-
dimensional space RN have consequences for the existence and stability of solutions. In
the sequel we will make these consequences explicit.
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Discrete models based on reaction-diffusion equations are of great applicational inter-
est. Apart from many biological and chemical applications mentioned above, we mention
pattern recognition, imaging (think of pixels as lattice points) or material science as high-
lighted in [9], an overview paper by Mallet-Paret and Shen. For completeness we note
that the studied LDE (1.1) is also the standard spatial discretization scheme for models
based on the PDE (1.3). As such they are essential to the field of numerical analysis as
pointed out in [1].

1.2. Existence and Uniqueness of Solutions

Consider the PDE (1.3) on the space R for u = u(x, t) : R2 → R

ut = uxx + g(u). (1.4)

We can fill in the nonlinearity g

g(u) = u(u− a)(1− u) (1.5)

and the PDE becomes
ut = uxx + u(u− a)(u− 1). (1.6)

The solutions 0, 1 are stable equilibria of g and the solution u = a is unstable as we can
see in Fig. 1.1. We immediately see that the constant functions u = 0, a and 1 solve
the PDE. We are interested in solutions taking values between 0 and 1. We can use the
travelling wave Ansatz already introduced by Kolmogorov, Petrovskii, and, Piskunov in
[4] in 1937

u(x, t) = Φ(x+ ct)

with travelling wave coordinate

ξ = ξ(t) = x+ ct,

which has to solve the wave profile equation

cΦ′(ξ) = Φ′′(ξ) + g(Φ(ξ), a). (1.7)

Note that the travelling wave Ansatz can be seen as a compromise balancing out the
reaction and the diffusion term [10]. In particular, we want the travelling wave to connect
the solutions 0 and 1. Therefore, the following limits also have to hold

lim
ξ→−∞

Φ(ξ) = 0 and lim
ξ→+∞

Φ(ξ) = 1. (1.8)

The ODE can be solved explicitly

Φ(ξ) =
1

2
+

1

2
tanh

(√
2

4
ξ

)
. (1.9)

The graph of the travelling wave Φ(ξ) is depicted in Fig. 1.3. In Fig. 1.4 and Fig. 1.5 we
also see the graphs of the first and second derivative of Φ(ξ)
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Figure 1.3.: The wave profile Φ
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Figure 1.4.: The first derivative Φ′ of the wave profile Φ
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Figure 1.5.: The second derivative Φ′′ of the wave profile Φ
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Figure 1.6.: c versus a in the continuous case

Φ′(ξ) =
1

4
√

2
sech2

(
1

2
√

2
ξ

)
> 0

Φ′′(ξ) = −1

8
tanh

(
1

2
√

2
ξ

)
sech2

(
1

2
√

2
ξ

)
. (1.10)

We write out an explicit formula for the wave speed c as a function of the detuning
parameter a

c(a) =
1√
2

(1− 2a)

as shown in Fig. 1.6.
Fife and McLeod have shown as early as 1977 that phase plane analysis can be used
to show existence of solutions of the Nagumo PDE (1.4) with arbitrary bistable non-
linearities. Furthermore, we can extend the analysis to higher finite dimensions N ≥ 2
by exploiting radial symmetry. To illustrate this, consider the two-dimensional PDE for
u = u(x, y, t) : R3 → R given by

ut = uxx + uyy + g(u). (1.11)

The travelling wave Ansatz in two dimensions for the direction (σh, σv) with σ2
h + σ2

v = 1
becomes

u(x, y, t) = Φ(σhx+ σvy + ct)

with travelling wave coordinate

ξ = ξ(t) = σhx+ σvy + ct.

But this means for fixed a we get the same wave profile equation as in the one-dimensional
case

Φt(ξ) = Φxx(ξ) + Φyy(ξ) + g(Φ(ξ))

cΦ′(ξ) = (σ2
h + σ2

v)Φ
′′(ξ) + g(Φ(ξ))

cΦ′(ξ) = Φ′′(ξ) + g(Φ(ξ)).
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Figure 1.7.: The one-dimensional discrete space with ui and its direct neighbours

We now want to look at the one-dimensional case on Z and project the first-dimensonal
Nagumo PDE (1.3) from R to Z. An illustrating sketch is given in Fig. 1.7. Before we
consider the discrete analogue of (1.4) we want to have an intuition the discrete analogue
of f ′′. Let f ∈ C2(R,R). The symmetric definition of the first derivative of f is given by

f ′(x) = lim
h→0

f ′(x+ h)− f ′(x− h)

2h
.

We manipulate the difference quotient for f ′′

f ′′(x) =
f ′(x+ h)− f ′(x− h)

2h

=
1

2h

(
f(x+ 2h)− f(x)

2h
− f(x)− f(x− 2h)

2h

)
=

1

4h2

(
f(x+ 2h)− f(x) + f(x− 2h)− f(x)

)
= [h′ = 2h]

1

h′2

(
f(x+ h′) + f(x− h′)− 2f(x)

)
Associate h′ with the step size of the lattice points, here assumed to be h′ = 1. Then we
see that can think of the second derivative on Z as the difference of the difference of two
neighbouring points. Thus the LDE on Z is given by

u′i = ui+1 + ui−1 − 2ui + g(ui).

The travelling wave Ansatz here becomes

ui(t) = Φ(i+ ct).

Analogously to the continuous case we will use the travelling wave constant

ξ = ξ(t) = i+ ct

such that the travelling wave equation takes the form

cΦ′(ξ) = Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + g(Φ(ξ)).

But here the nature of the equation changes with the wave speed. For c = 0, we have
a difference equation and a differential equation whenever c 6= 0. For c 6= 0 we in fact
get a differential equation of mixed type (MFDE). We can express c as function in a
numerically, this has been done for multiple dimensions in [17]. Let a∗ be the intersection
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of the graph of c versus a with the a−axis. If a∗ < 1
2

the wave fails to propagate for a
range of values for a, a phenomenon which is called pinning.
Lastly, consider (1.1), the discrete analogue of the Nagumo PDE on the lattice Z2

ui,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j + g(ui,j).

Let (σh, σv) denote the direction on the lattice from which we consider solutions. For
convenience we only consider directions normalized by the condition σ2

h +σ2
v = 1. We use

the travelling wave Ansatz given by

ui,j(t) = Φ(iσh + jσv + ct),

with travelling wave coordinate

ξ = ξ(t) = iσh + jσv + ct.

Phase plane analysis is not possible in the discrete case, which becomes apparent if we
look at the wave profile equation

cΦ′(ξ) = Φ(ξ + σh) + Φ(ξ − σh) + Φ(ξ + σv) + Φ(ξ − σv)− 4Φ(ξ) + g(Φ(ξ), a).

Not only does the equation become a difference equation for c = 0 like in the one-
dimensional case, but also is there directional dependence. Again c can be written as a
function of θ and a and the results can be determined numerically. This has been done
in [17].
Whether pinning occurs depends on the direction and on the nonlinearity g. In [14] it
has been shown that pinning occurs in all rational directions for g resembling a sawtooth.
More specifically, in [13] it has been shown that pinning occurs in the horizontal and
vertical direction if g is bistable and satisfies a monotonicity condition.
The existence and uniqueness of solutions of (1.1) with respect to nonzero values of c for
all directions (σh, σv) on the lattice has been shown in [9]. These results allow us to not
consider pinning here. Instead we focus on stability of travelling waves in this thesis with
detuning parameter a chosen such that they do not fail to propagate.

1.3. Stability of Waves

In the last section, we have seen that extending existence results for the PDE (1.3) to
higher dimensions is straightforward. In this section we consider the more difficult prob-
lem of stability. Starting with the one-dimensional continuous case, we have to refer
to Fife and McLeod’s landmark paper from 1977 once more. In [6], Fife and McLeod
consider an additively initially perturbed wave-like solution. Then they use squeezing
techniques to prove that these solutions uniformly converge to travelling wave solutions
in time with adjacent ranges. We can think of these wave solutions as a stacked com-
bination of wave fronts. This way they prove stability for the continuous case in one
dimension. Their approach can be used to solve FitzHugh-Nagumo PDE’s. Berestycki,
Hamel and Matano have established uniqueness of the entire solution based on [6].
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However, stability of travelling wave solutions of the PDE in two dimensions is more
difficult to show. The problem is that level sets of plane waves are now lines rather than
points. There are two major consequences. Firstly, phase shifts are harder to trigger
by local perturbations. Secondly, in the direction transversal to the propagation of the
waves one has deformations as well, which makes uniform convergence difficult to show
on the plane.
Stability for solutions of the PDE in the critical two-dimensional case has only been
shown in 1997 by [5]. The author Kapitula uses spectral methods, Green’s functions and
fixed-points arguments. The result can be extended to RN for N ≥ 2 by exploiting radial
symmetry.
In four or more dimensions, stability has been shown in 1992 by Xin in [7]. Xin decom-
poses the perturbations into normal and transversal components in L2(R) before using
spectral estimates of the heat kernel and iteration techniques to show decay of the per-
turbations.
In 2001 Bates and Chen have shown stability of travelling waves for the non-local Allen-
Cahn equation on RN with N ≥ 4 with spectral analysis in [11]. In 2014 Hoffman,
Hupkes, and Van Vleck in [3] have been able to extend these techniques for the LDE
(1.1) on the space ZN with N ≥ 2.
However, we want to deal with large perturbations, because obstacles cause large per-
turbations. Therefore, the method of choice is the comparison principle. Note that we
may apply the comparison principle, because the coefficients of all off-site terms of the
LDE are positive. Unlike spectral analysis techniques, the comparison principle requires
structure of the equation, but allows for estimates strong enough to deal with large per-
turbations.
Therefore, Hoffman, Hupkes, and Van Vleck have shown stability for solutions of the
LDE on Z2 in the same year in [1] using a different technique. In this way [1] can be seen
as a companion paper to [3] giving an alternative proof of stability in the unobstructed
case as a preparation for their obstacle results.
In this thesis we follow the paper [1], stability results for travelling waves on the lattice
are obtained by the comparison principle. We use a different and more direct technique
by exploiting the alignment of the horizontal direction along the lattice direction. In
particular, we use estimates found by Pal’tsev in his paper [12] from 1999 to obtain the
stability result we are after. We are constructing a subsolution and thereby a supersolu-
tion by symmetry. We prove the following formulation of the stability result obtained in
[1], which states that horizontal travelling waves ui,j(t) = Φ(i+ ct) satisfying (4.11) and
c 6= 0 are stable under large but localized perturbations.

Theorem 1.1. If U : [0,∞) → l∞(Z2,R) is a C1−smooth function satisfying (1.1) for
all t ≥ 0 and

|Ui,j(0)− Φ(i)| → 0 as |i|+ |j| → ∞, (1.12)

whereby 0 ≤ Ui,j(0) ≤ 1, then we have the uniform convergence

sup
(i,j)∈Z2

|Ui,j(t)− Φ(i+ ct)| → 0 for t→∞.
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Figure 1.8.: Compact obstacle K on the lattice

1.4. Solutions on the Obstructed Space

Consider the Nagumo PDE (1.3) on the space RN obstructed by some subset K such
that RN \K is compact. Furthermore, assume that the Neumann boundary condition

ν · ∇u = 0 on ∂K,

where ν denotes the outward normal holds. As recently as 2008 existence and uniqueness
of entire wave-like solutions of this problem for a star-shaped or directionally convex
obstacle K ⊂ RN has been shown in [2]. The authors Berestycki, Hamel, and Matano
also show stability of the entire wave-like solutions under use of the comparison principle.
We remove a set of points K from the lattice and denote the lattice obstructed by K as
Λ = Z2 \ K. In Fig. 1.8 we can see an example of the lattice obstructed by a compact
obstacle K. To consider the LDE (1.1) on Λ we have to adjust (1.1) slightly. On the one
hand, we have to define the Laplacian in terms of the four direct neighbors of ui,j on Λ.
On the other hand, we need boundary conditions on ∂Λ such that u ≡ 0, u ≡ a and u ≡ 1
are not only zeros of g, but also solutions of the LDE.
The paper by Berestycki, Hamel, and Matano has been generalized to the two-dimensional
discrete case by Hoffman, Hupkes, and Van Vleck in 2014. In [1] stability of entire
asymptotic planar wave solutions has been shown for the LDE obstructed by a bounded
and directionally convex obstacle K such that Z2 \K is connected. An entire asymptotic
planar wave solution ui,j must be defined for all times t ∈ R and satisfy the limit

lim
|t|→∞

sup
(i,j)∈Λ

|ui,j(t)− Φ(iσh + jσv + ct)| = 0.

Organization

In chapter 2 we investigate the stability of the PDE on R2 and look at the continuous
heat kernel. In chapter 3 we introduce the LDE on Z2. We consider the discrete heat
kernel and perform preliminary calculations. In chapter 4 we determine a subsolution by
sharp estimates of the residual and we prove the stability of the travelling wave solution.
Finally, we will prove stability of the travelling waves.
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2. Stability for the Nagumo PDE

In this chapter, we prepare the stability results we are after for the LDE on the lattice
by looking at the Nagumo PDE on R2. We give an outline of the subsolution Ansatz and
calculate its residual explicitly. Then we take a look at the heat kernel.

2.1. The Continuous Subsolution and its Residual

The two-dimensional Nagumo PDE takes the form

ut = ∆u+ g(u). (2.1)

We have seen in the introduction that the travelling wave Ansatz can be applied to (2.1).
This has been performed in [6] in order to show existence and uniqueness with phase plane
analysis. Therefore, we can now focus on stability following [2]. In order to show stability
the comparison principle is used. The discrete version is formulated in the appendix in
theorem A.12.
In [2] the subsolution takes the form

u−(x, y, t) = Φ(x+ ct− θ(y, t)− Z(t))− z(t) (2.2)

and the symmetric supersolution looks like

u+(x, y, t) = Φ(x+ ct+ θ(y, t) + Z(t)) + z(t),

where three external functions θ(y, t), z(t), and Z(t) are introduced. We begin by studying

z ∈ C1([0,∞),R)

and its integral

Z ∈ C1([0,∞),R), Z(t) = KZ

∫ t

0

z(s)ds

with KZ > 1 a constant.
Hereby Berestycki, Hamel, and Matano use results of [6], where initial perturbations are
controlled asymptotically with phase shifts. An additive initial perturbation can be de-
scribed by the decreasing function z. The increasing function Z describes the asymptotic
phaseshift. Their relation becomes clear by calculating the residual θ(y, t) = 0 directly.
As we have seen in the introduction, we may even restrict ourselves to the one-dimensional
subsolution u−(x, t) = θ(x+ ct− Z(t))− z(t).

J = u−t (x, t)−∆u−(x, t)− g(u−(x, t))

=
d

dt
(Φ(x+ ct− Z(t))− z(t))− ∂xx(Φ(x+ ct− Z(t))− z(t))− g(Φ(x+ ct− Z(t))− z(t))

= (c− Z ′(t))Φ′(x+ ct− Z(t))− z′(t)− Φ′′(x+ ct− Z(t))− g(Φ(x+ ct− Z(t))− z(t)).

12
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Figure 2.1.: Graph of the derivative g′ of the nonlinearity g with a = 1
2

The wave profile equation is satisfied, because we know that the travelling wave solution
Φ = Φ(x+ ct− Z(t)) solves the PDE

cΦ′ = Φ′′ + g(Φ).

Using the wave equation in the calculation of the residual gives

J = −Z ′(t)Φ′ − z′(t) + g(Φ)− g(Φ− z(t)).

In order for u− to be a proper subsolution we need the residual to be negative. Looking
at the residual, we notice that

g(Φ)− g(Φ− z(t)) ∼ g′(Φ)z(t)

by the mean value theorem. So the residual becomes

J = −Z ′(t)Φ′ − z′(t) + g′(Φ)z(t).

Remark that we have seen in (1.10) that Φ′ > 0. Furthermore, we assumed z to be
decreasing and Z to be increasing, so z′ < 0 and Z ′ > 0. We consider the derivative of g,
the parabola

g′(u) = −3u2 + 2(a+ 1)u− a, (2.3)

which is depicted in Fig. 2.1. In the region where g′ is positive, the term Z ′Φ must
dominate both z and z′. In the region close to 0 and 1 where g′ is negative, z must
dominate its own derivative z′. Therefore, we choose z to be a slowly decaying exponential
function. Let ε and ηz be positive constants and define

z(t) = εe−ηzt.

Then we find

Z(t) = KZ

∫ t

0

z(s)ds = εKZ

∫ t

0

e−ηzsds = εKZ

(
− 1

ηz
e−ηzt +

1

ηz

)
.
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Specifically,

Z∞ ∼
∫ ∞

0

z(t)dt =
ε

ηz
∼ z0

where Z∞ can be thought of as the asymptotic phase shift and z0 the size of the initial
perturbation. From now on, we take the transversal dependency θ(y, t) unequal to the
zero function.
In order to find a valid subsolution, we must prove negativity of the residual. For the
discrete case we will see this in chapter 3 and chapter 4. For the continuous case we
restrict ourselves to the calculation of the residual.

Lemma 2.1. The residual of the subsolution

J = u−t (t)−∆u−(t)− g(u−(t))

is given by

Jglobal = −z′(t)− Z ′(t)Φ′(ξ(t)) + g(Φ(ξ))− g(Φ(ξ)− z(t))

Jnl = −Φ′′(ξ(t))θy(y, t)
2

Jheat = −Φ′(ξ(t))(θt(y, t)− θyy(y, t)).

such that
J = Jglobal + Jnl + Jheat.

Proof. We calculate the residual directly by using the subsolution of the form (2.2) and
the travelling wave constant ξ(t) = x+ ct− θ(y, t)−Z(t). Differentiating the subsolution
in the residual gives

J = (c− θt(y, t)− Z ′(t))Φ′(ξ(t))− z′(t)

− ∂2

∂x2
(Φ(ξ(t))− z(t))− ∂2

∂y2
(Φ(ξ(t))− z(t))

− g(Φ(ξ(t))− z(t))

= cΦ′(ξ(t))− θt(y, t)Φ′(ξ(t))− Z ′(t)Φ′(ξ(t))− z′(t)

− ∂

∂x
(Φ′(ξ(t)))− ∂

∂y
(−θy(y, t)Φ′(ξ(t)))

− g(Φ(ξ(t))− z(t))

= cΦ′(ξ(t))− θt(y, t)Φ′(ξ(t))− Z ′(t)Φ′(ξ(t))− z′(t)
− Φ′′(ξ(t))− (−θyy(y, t)Φ′(ξ(t)) + θy(y, t)

2Φ′(ξ(t)))

− g(Φ(ξ(t))− z(t))

= cΦ′(ξ(t))− θt(y, t)Φ′(ξ(t))− Z ′(t)Φ′(ξ(t))− z′(t)
− Φ′′(ξ(t)) + θyy(y, t)Φ

′(ξ(t))− θy(y, t)2Φ′(ξ(t))

− g(Φ(ξ(t))− z(t)).

In order to further simplify the expression, we make use of the wave equation in ξ(t)

cΦ′(ξ(t)) = Φ′′(ξ(t)) + g(Φ(ξ(t))

14



to find

J = Φ′′(ξ(t)) + g(Φ(ξ(t))− θt(y, t)Φ′(ξ(t))− Z ′(t)Φ′(ξ(t))− z′(t)
− Φ′′(ξ(t)) + θyy(y, t)Φ

′(ξ(t))− θy(y, t)2Φ′(ξ(t)))

− g(Φ(ξ(t))− z(t))

= g(Φ(ξ(t))− θt(y, t)Φ′(ξ(t))− Z ′(t)Φ′(ξ(t))− z′(t)
+ θyy(y, t)Φ

′(ξ)− θy(y, t)2Φ′(ξ(t))− g(Φ(ξ(t))− z(t)).

Splitting the terms according to their quality gives the required result.

The difference in quality of the three terms Jglobal, Jnl, and Jheat is the reason for split-
ting the residual. In the proof of the validity of the subsolution they are considered
separately. We end this section with a closer look at the three terms of the residual found
in lemma 2.1.
The global residual Jglobal depends on the choice of the external functions z(t) and Z(t).
By carefully choosing z(t) and Z(t), i.e. the constants ε, ηz, and KZ , we keep Jglobal
negative.
The other two residuals depend on the derivatives of Φ. We have seen both in the in-
troduction in (1.10). The nonlinear residual Jnl carries a quadratic dependency of the
transversal function θ(y, t). Note in particular that Jnl comes with no obvious sign, be-
cause the sign of Φ′′ is unknown as we have seen in 1.10 and Fig. 1.5.
The heat residual Jheat depends on the residual of the continuous heat equation

θyy(y, t)− θt(y, t) = 0 (2.4)

in θ(y, t). Furthermore, we have seen that Φ′ is positive everywhere in Fig. 1.5. Therefore,
by determining the sign of (2.4), we can determine the sign of Jheat. This property is
exploited by dominating Jnl by Jheat.
In the next section, we take a closer look at the external function θ(y, t).

2.2. The Continuous Heat Kernel

The choice for the function θ(y, t) is based on the continuous heat kernel. Consider the
heat equation

ht(y, t) = hyy(y, t)

with formal initial condition
lim
t→0

h(y, t) = δ(y).

The heat equation is solved by the heat kernel, which is defined as

h(y, t) =
1√
4πt

e−
y2

4t , (2.5)

because a quick calculation with the product rule shows us that we get

1√
4πt

(
− 1

2t
+
y2

4t

)
e−

y2

4t

15
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Figure 2.2.: The graph of e
−y2
t for t = 1 (blue) to t = 4 (red)

on both sides of the heat equation (2.5). Now define v(y, t) = e−
y2

4t such that

h(y, t) =
1√
4πt

v(y, t).

The asymptotic behaviour of v(y, t) is straightforwardly determined as

v(y, t) ∼ e−
y2

4t , vt(y, t) ∼
y2

4t2
e−

y2

4t , vy(y, t) ∼ −
y

2t
e−

y2

4t , vyy(y, t) ∼
(
y2

4t2
− 1

2t

)
e−

y2

4t .

Now the transversal dependence θ(y, t), which has been introduced in [2] in order to
deal with long-term perturbations, is a modification of v(y, t) under use of the positive
constants β � 1, γ � 1, and 0 < α� 1, given by

θ(y, t) = βt−αv(y, γt).

Hereby β is chosen according to the imposed intial condition. Furthermore, α � 1

softens the decay and γ � 1 accelerates diffusion. In Fig. 2.2 we see the graph of e
−y2
t

as a function in y for different values of t to illustrate the effect of large values of t.
But we want to show the effects of γ and α more clearly by comparing θ(y, t) with the
heat kernel h(y, t).
Let us start with α. We isolate the factor t−α by considering

θ(0, t) = βt−α and h(0, t) =
1√
4πt

and compare

θ(0, t)

θ(0, 1)
=
βt−α

β
=

1

tα
to

h(0, t)

h(0, 1)
=
h(0, t)

h(0, 1)
=

√
4π√
4πt

=
1√
t
.

The constant α is chosen to be smaller than 1
2
. Therefore, the fact that t−α decays more

slowly than 1√
t

causes θ(y, t) to decay more slowly than the heat kernel h(y, t) does.

16



The effect of γ becomes apparent when we compare for which y the heat kernel h(y, t)
reaches half of its initial value h(0, t) to the equivalent for its modification θ(y, t). We do
not need much more than the definitions of h(y, t) and v(y, t) to calculate

h(y, t) =
1

2
h(0, t)

1√
4πt

v(y, t) =
1

2

1√
4πt

v(0, t)

e−
y2

4t =
1

2

−y
2

4t
= −ln2

y = ±2
√
ln2
√
t

and analogously

θ(y, t) =
1

2
θ(0, t)

βt−αv(y, γt) =
1

2
βt−αv(0, t)

e−
y2

4γt =
1

2

− y2

4γt
= −ln2

y = ±2
√
ln2
√
γt.

Thus θ(y, t) reaches half of its initial value for y dilated by a factor
√
γ compared to

h(y, t). At each point in time t the graph of the heat kernel h(y, t) is narrower with a
factor 1√

γ
than the graph of its modification θ(y, t). In other words the factor γ lets θ(y, t)

spread faster.

17



3. The Discrete Heat Kernel and its
Shape Profile

We turn to the LDE on the lattice. In this chapter, we want to prepare the construction
of the subsolution for the stability result by looking at the discrete heat kernel, which is
crucial for describing the transversal dependence as seen in section 2.2 for the continuous
case.

3.1. The Discrete Heat Kernel

Consider the discrete heat equation

d

dt
hj(t) = hj+1(t) + hj−1(t)− 2hj(t)

with initial conditions

hj(0) = 0 for j 6= 0 and h0(0) = 1.

In the following lemma, we calculate the fundamental solution of the discrete heat equa-
tion by using the continuous heat kernel from section 2.2. The fundamental solution of
the discrete heat equation is called the discrete heat kernel.

Lemma 3.1. The discrete heat equation is solved by the discrete heat kernel

hj(t) = e−2tIj(2t),

where Ij(t) is the modified Bessel function of the first kind as defined in A.10.

Proof. We make use of discrete Fourier transformation from definition A.11

(hj(t))j ∈ l2(R) ⇐⇒ ĥω(t) ∈ L2
per[−π, π]

to solve the discrete heat equation

h′j(t) = hj+1(t) + hj−1(t)− 2hj(t).

We set initial conditions, which can be shown to be consistent with our definition of hj(t)
under use of the properties of Ij(t) found in A.10. We find

h0(0) = e0I0(0) = 1

18



and it follows that
hk(0) = 0 for k 6= 0.

We apply continuous Fourier transformation

d

dt
(ĥω(t)) = (eiω + e−iω − 2)ĥω(t) = (2 cosω − 2)ĥω(t).

This is a simple ODE we can solve instantly

ĥω(t) = e2(cosω−1)tĥω(0) =
1

2π
e2(cosω−1)t.

Now we retransform with the help of discrete Fourier transformation from A.11. We make
use of the fact that the sine function is an odd function. Furthermore, we use that the
cosine function is an even function, which implies that e2t cos(ω) is also an even function

hj(t) =

∫ π

−π
eiωjĥω(t)dω

=

∫ π

−π
eiωj

1

2π
e2(cosω−1)tdω

=
e−2t

2π

∫ π

−π
eiωj+2t cos(ω)dω

=
e−2t

2π

∫ π

−π
(cos(ωj) + i sin(ωj))e2t cos(ω)dω

=
e−2t

π

∫ π

0

cos(ωj)e2t cos(ω)dω.

In order to simplify hj, we use the modified Bessel function of the first order for whole j

Ij(t) =
1

π

∫ π

0

et cosωcos(jω)dω.

Finally, we may write
hj(t) = e−2tIj(2t).

Of course, hj(t) solves the discrete heat equation by construction, i.e.

h′j(t) = hj+1(t) + hj−1(t)− 2hj(t).

We calculate the time derivative of hj(t) by the product and chain rule to be

h′j(t) = −2e−2tIj(2t) + 2e−2tI ′j(2t). (3.1)

Note that we have implicitly used a property of the modified Bessel function of the first
kind, which we get back by inserting (3.1) in the discrete heat equation

−2e−2tIj(2t) + 2e−2tI ′j(2t) = e−2tIj+1(2t) + e−2tIj−1(2t)− 2e−2tIj(2t) (3.2)

2I ′j(2t) = Ij+1(2t) + Ij−1(2t).
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Figure 3.1.: Graph of vj(t) for j = 1 (blue) to j = 5 (purple)

3.2. Properties of the Shape Profile

Let
vj(t) =

√
th(t), (3.3)

i.e. by lemma 3.1
vj(t) =

√
te−2tIj(2t).

We call vj the shape profile of the discrete heat kernel. We define vj(t) in anology to the
continuous heat kernel considered in (2.5). Its graph is shown in Fig. 3.1. In this section
we want to explore the behaviour and properties of vj(t), because ultimately we use it
to describe the transversal dependency θj(t) in our modified subsolution. We begin with
direct estimates of vj(t), respectively j

t
vj(t).

3.2.1. Upper and Lower Bounds of the Shape Profile

In definition A.10 we are given that the modified Bessel function is positive for whole j.
Thus it is obvious from the definition that vj(t) =

√
te−2tIj(2t) is positive, because each

one of its multiple factors is positive. We use the estimate from theorem A.9 to prove
the following lemma.

Lemma 3.2. For j = 0, t = 1 or 1 ≤ j ≤ t there is a constant 0 < C < 1 such that

vj(t) ≤ Ce−2t( j
2

4t2
) 1
8 .

Proof. Theorem A.9 gives us the estimate from above

Ij(2t) ≤
1√
2π

(4t2 + j2)−
1
4 e

√
4t2+j2+j(ln( 2t

j+
√

4t2+j2
))
e

1

2
√

4t2+j2

and thus

vj(t) ≤
1√
2π

√
t(4t2 + j2)−

1
4 e
−2t+
√

4t2+j2+j(ln( 2t

j+
√

4t2+j2
))
e

1

2
√

4t2+j2 .
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We can estimate the factor 1√
2π

√
t(4t2 + j2)−

1
4 directly

1√
2π

√
t(4t2 + j2)−

1
4 =

1√
2π

√
t(4t2)−

1
4

(
1 +

j2

4t2

)− 1
4

=
1

2
√
π

(
1 +

j2

4t2

)− 1
4

≤ 1

2
√
π
. (3.4)

Furthermore, we estimate

e
1

2
√

4t2+j2 ≤ e
1
4t ≤ e

1
4 , (3.5)

because the exponent is maximal for j = 0 and t = 1.
For convenience we define

C =
1

2
√
π
e

1
4 ≈ 0.22 (3.6)

and remark that 0 < C < 1 as required.
In order to estimate the remaining factor

e
−2t+
√

4t2+j2+j(ln( 2t

j+
√

4t2+j2
))
, (3.7)

we consider its exponent

− 2t+
√

4t2 + j2 + j

(
ln

(
2t

j +
√

4t2 + j2

))
(3.8)

= −2t+ 2t

√
1 +

j2

4t2
− j
(
ln

(
j

2t
+

√
1 +

j2

4t2

))
(3.9)

= 2t

(
− 1 +

√
1 +

j2

4t2
− j

2t
ln

(
j

2t
+

√
1 +

j2

4t2

))
. (3.10)

We use lemma A.2 for x = j2

4t2
to simplify

−1 +

√
1 +

j2

4t2
≤ −1 + 1 +

1

2

j2

4t2
=

1

2

j2

4t2
.

We use that the logarithm is an increasing function and lemma A.5 for x = j
2t
≤ 1 to

estimate

− j

2t
ln

(
j

2t
+

√
1 +

j2

4t2

)
≤ − j

2t
ln

(
j

2t
+ 1 +

3

8

j2

4t2

)
.

Now we want to get rid off the logarithm by using lemma A.6 with x = j
2t

+ 3
8
j2

4t2

− j

2t
ln

(
j

2t
+ 1 +

3

8

j2

4t2

)
≤ − j

2t

(
j

2t
+

3

8

j2

4t2
− 1

2

(
j

2t
+

3

8

j2

4t2

)2)
.
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Inserting the estimates above into (3.10) gives

2t

(
− 1 +

√
1 +

j2

4t2
− j

2t
ln

(
j

2t
+

√
1 +

j2

4t2

))
≤ 2t

(
1

2

j2

4t2
− j

2t

(
j

2t
+

3

8

j2

4t2
− 1

2

(
j

2t
+

3

8

j2

4t2

)2))
= 2t

(
j2

4t2

(
− 1

2
− 3

8

j

2t
+

1

2

j

2t

(
1 +

9

64

j2

4t2
+

3

4

j

2t

)))
.

The estimate of the worst case scenario of the term

−1

2
− 3

8

j

2t
+

1

2

j

2t

(
1 +

9

64

j2

4t2
+

3

4

j

2t

)
proves to be sufficient here. The negative term is maximal for j

t
= 0, i.e.

−1

2
− 3

8

j

2t
≤ −1

2
.

While the positive term is maximal for j
t

= 1, i.e.

1

4

(
1 +

9

256
+

3

8

)
=

361

1024
.

Therefore, we estimate (3.10) from above by

2t

(
j2

4t2

(
− 1

2
+

361

1024

))
= −2t

(
j2

4t2

)
151

1024
≤ −2t

(
j2

4t2

)
1

8
.

Now we have established an estimate of (3.7). Together with (3.5) and (3.4) we find

vj(t) ≤
1√
2π

√
t(4t2 + j2)−

1
4 e
−2t+
√

4t2+j2+j(ln( 2t

j+
√

4t2+j2
))
e

1

2
√

4t2+j2

≤ Ce−2t( j
2

4t2
) 1
8 ,

which proves the claim.

There are two direct consequences of the lemma we need for the estimate of the residual
in section 4.3.

Corollary 3.3. For 0 ≤ j ≤ t we find

0 < vj(t) ≤ 1.

Proof. We have seen in lemma 3.2 that

vj(t) ≤ Ce−2t( j
2

4t2
) 1
8

with C positive and smaller than 1. The exponential factor has a negative exponent since
t ≥ 1 and ( j

2

4t2
)1

8
> 0. But then

e−2t( j
2

4t2
) 1
8 ≤ e0 = 1

holds and the result follows.
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Corollary 3.4. For 1 ≤ t
3
4 ≤ j ≤ t we find

0 < vj(t) ≤ Ce−
√
t

16 .

Proof. In lemma 3.2 we have seen that

vj(t) ≤ Ce−2t( j
2

4t2
) 1
8 .

Now for t
3
4 ≤ j ≤ t we can use that the exponential function is increasing, to find

2t

(
t
3
2

4t2

)
=

√
t

2
≤ 2t

(
j2

4t2

)
≤ t

2

e−
t
2 ≤ e−2t( j

2

4t2
) ≤ e−

√
t

2 .

Summarizing with lemma 3.2 we have

vj(t) ≤ Ce−2t( j
2

4t2
) 1
8 ≤ Ce−

√
t

2
1
8 = Ce−

√
t

16

as required.

We have already seen that vj(t) is positive, now we need to improve the lower bound
of vj(t).

Lemma 3.5. There is a constant 0 < C ′ < 1 such that for j = 0, t = 1 or 1 ≤ j ≤
√
t

vj(t) ≥ C ′e
−( 1

4
+ 1

8
√
t
+ 1

64t
)
.

Proof. We use the estimate from below for the Bessel function found in theorem A.9

Ij(2t) ≥
1√
2π

(4t2 + j2)−
1
4 e

√
4t2+j2+j(ln( 2t

j+
√

4t2+j2
))
e
− 1

2
√

4t2+j2 .

and thus

vj(t) ≥
1√
2π

√
t(4t2 + j2)−

1
4 e
−2t+
√

4t2+j2+j(ln( 2t

j+
√

4t2+j2
))
e
− 1

2
√

4t2+j2 .

We can estimate the factor 1√
2π

√
t(4t2 + j2)−

1
4 directly by using the maximum j =

√
t

and the minimum t = 1

1√
2π

√
t(4t2 + j2)−

1
4 =

1√
2π

√
t(4t2)−

1
4

(
1 +

j2

4t2

)− 1
4

=
1

2
√
π

(
1 +

j2

4t2

)− 1
4

≥ 1

2
√
π

(
1 +

√
t
2

4t2

)− 1
4

=
1

2
√
π

(
1 +

1

4t

)− 1
4

≥ 1

2
√
π

(
4

5

) 1
4

.
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Furthermore we estimate

e
− 1

2
√

4t2+j2 ≥ e−
1
4 , (3.11)

because the minus sign enables us to just reverse the estimate (3.5) as seen in lemma 3.2.
For convenience we define

C ′ =
1

2
√
π

(
4

5

) 1
4

e−
1
4 ≈ 0.21 (3.12)

and remark that 0 < C ′ < 1 as required.
The remaining factor

e
−2t+
√

4t2+j2+j(ln( 2t

j+
√

4t2+j2
))

can be estimated from above by considering its exponent

− 2t+
√

4t2 + j2 + j

(
ln

(
2t

j +
√

4t2 + j2

))
(3.13)

= 2t

(
− 1 +

√
1 +

j2

4t2
− j

2t

(
ln

(
j

2t
+

√
1 +

j2

4t2

))
.

We use lemma A.1 for x = j
2t

to simplify the first term

−1 +

√
1 +

j2

4t2
≥ 1

2

j2

4t2
− 1

8

j4

16t4
.

We use the fact that the logarithm is an increasing function and lemma A.2 for x = j
2t

to estimate the second term

− j

2t
ln

(
j

2t
+

√
1 +

j2

4t2

)
≥ − j

2t
ln

(
1 +

j

2t
+

1

2

j2

4t2

)
.

In a last step, we apply lemma A.4 for x = j
2t

to find

− j

2t
ln

(
1 +

j

2t
+

1

2

j2

4t2

)
≥ − j

2t

(
j

2t
+

1

2

j2

4t2

)
.
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Summarizing the estimates we find for the exponent (3.13)

2t

(
1 +

√
1 +

j2

4t2
− j

2t

(
ln

(
j

2t
+

√
1 +

j2

4t2

))
≥ 2t

(
1

2

j2

4t2
− 1

8

j4

16t4
− j

2t

(
j

2t
+

1

2

j2

4t2

))
= 2t

j2

4t2

(
− 1

2
− 1

2

j

2
t− 1

8

j2

4t2

)
= −t j

2

4t2

(
1 +

j

2t
+

1

4

j2

4t2

)
≥ −t

√
t
2

4t2

(
1 +

√
t

2t
+

1

4

√
t
2

4t2

)
= −1

4

(
1 +

1

2
√
t

+
1

16t

)
≥ −

(
1

4
+

1

8
√
t

+
1

64t

)
,

where we have used that j ≤
√
t. Together with (3.6), the required lower bound becomes

vj(t) ≥ C ′e
−( 1

4
+ 1

8
√
t
+ 1

64t
)
.

Lemma 3.6. For 2 ≤ t ≤ j we find the following upper bound of j
t
vj(t)

j

t
vj(t) ≤

1√
2
e

1
4 e−

t
4 ≤ 1√

2
e

1
4 ≈ 0.55.

Proof. For convenience we rename 1 ≤ j
t

= x. We may apply theorem A.9 since we set
t ≥ 2 and find

xvj(t) ≤ x
√
t

1√
2π

1
√

2t(1 + x2)
1
4

e4t
√

1+x2e−2t(1+
√

1+x2−xln(x+
√

1+x2).

Again we begin with the non-exponential factor:

√
tx(4t2 + j2)−

1
4 =
√
tx(4t2)−

1
4 (1 +

j2

4t2
)−

1
4

=
x

√
2(1 + x2)

1
4

≤ x√
2
.

We also estimate e
1

2
√

4t2+j2 right away, which is bounded by e
1
4 as shown in (3.5). We

consider the exponent of the remaining factor and denote

g(x) =
√

1 + x2 − 1− xln(x+
√

1 + x2).
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We want to find a κ > 0 such that

g(x) ≤ −κxln(x). (3.14)

Under use of lemma A.3 we can write

g(x) ≤ x+
1

2x
− 1− xln(x+

√
1 + x2).

We can use that
√
x2 + 1 ≥ x to write

g(x) ≤ x+
1

2x
− 1− xln(x+

√
1 + x2)

≤ x+
1

2x
− 1− xln(2x)

≤ x+
1

2x
− 1− xln2− xln(x).

We want to find a B = −κ+ 1 < 1 such that for all x ≥ 1

x+
1

2x
− 1− xln2 ≤ Bxln(x),

because then we can determine the κ in (3.14).
First we fill in x = 1 and we obtain a trivially true statement for every choice of B

1 +
1

2
− 1− ln2 ≤ 0.

For B = 1 the functions on both sides of the inequality are depicted in Fig. 3.2. Now we
take the derivative on both sides of the inequality

1− 1

2x2
− ln2 ≤ B(1 + ln(x)).

We can estimate the left hand side from above by

1− 1

2x2
− ln2 ≤ 1− ln2

and we can estimate the right hand side from below by

B(1 + ln(x)) ≥ B.

It follows that we can choose

B = 1− ln2 ≈ 0.31.

Therefore
κ = 1−B = ln2 ≈ 0.69.
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Figure 3.2.: The graphs of xlnx and x+ 1
2x
− 1− xln2

Combining the results we find

xvj(t) ≤
x

√
2(1 + x)

1
4

e
1

2t
√

4+x2 e2tg(x)

≤ e
1
4
x√
2
e−2tκxln(x).

It remains to prove that

−2tκxln(x) ≤ −1

4
t

i.e.

κxlnx ≥ 1

8
.

But for x ≥ 1, xln(x) is a nonneqative function and clearly, 1
8
< κ ≈ 0.69. It follows that

e−2tκxln(x) ≤ e−
1
4
t ≤ 1

and the lemma is proven.

3.2.2. Relative Bounds of the Shape Profile

In this subsection we want to obtain bounds of v′j(t) and the differences |vj±1(t)− vj(t)|
in vj(t), where we use the expression vj±1 to denote that we can fill in either vj+1 or vj−1.
In the discrete case we can exploit properties of the Bessel functions to get estimates for
the asymptotic behaviour of v′j(t). A direct calculation of the derivative of vj(t) gives

v′j(t) =
1

2
√
t
e−2tIj(2t)− 2

√
tIj(2t) + 2

√
te−2tI ′j(2t) (3.15)

=
1

2t
vj(t)− 2vj(t) +

2aj(2t)

2t
vj(t)

=

(
1

2t
− 2 +

aj(2t)

t

)
vj(t),
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Figure 3.3.: Graph of v′j(t) for j = 1 (blue) to j = 5 (purple) on [0, 1]

2 4 6 8 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3.4.: Graph of v′j(t) for j = 1 (blue) to j = 5 (purple) on [0, 10]

where we have used the expression

aj(2t) =
2tI ′j(2t)
Ij(2t)

as defined in [12]. In Fig. 3.3 and Fig. 3.4 we can see the graph of v′j(t) in small zoom
and in large zoom.

Remark 3.7. With theorem A.8 we can find an accurate estimate of v′j(t). In order to get
a better intuition for the asymptotic behaviour of v′j(t) first, we take a rough estimate

aj(2t) ∼
√

4t2 + j2 taken from theorem A.8 in our calculation of v′j(t).

v′j(t) ∼ vj(t)

(
1

2t
− 2 +

√
4t2 + j2

t

)
= vj(t)

(
1

2t
− 2 + 2

√
1 +

j2

4t2

)
For small | j

t
| ≤ 1 we use the first order Taylor approximation on the square root term to

see that

v′j(t) ∼ vj(t)

(
1

2t
− 2 + 2

(
1 +

1

2

j2

4t2

))
∼ j2

4t2
vj(t).
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For large | j
t
| ≥ 1 we apply lemma A.2 for x = j2

4t2
. The lemma provides an accurate

estimate for large x. Furthermore, we use that the terms 2t
j
≤ 1 and 1

2t
are neglible for

large t ≤ j to see

v′j(t) ∼ vj(t)

(
1

2t
− 2 + 2

(
j

2t
+

t

4j

))
∼ j

t
vj(t).

We want to take a closer look at vj(t) now. Starting out from the property of the
Bessel function given in A.10

2I ′j(2t) = Ij+1(2t) + Ij−1(2t)

and the recursion relation found in A.10 the Bessel functions satisfy

I ′j(2t) = Ij+1(2t) +
j

2t
Ij(2t). (3.16)

We can write

I ′j(2t) = Ij−1(2t)− j

2t
Ij(2t). (3.17)

Adding up (3.16) and (3.17) and multiplying with
√
te−2t gives

vj+1(t) + vj−1(t) = 2e−2t
√
tI ′j(2t).

Under use of the expression aj(2t) =
2tI′j(2t)
Ij(2t) , we find

vj+1(t) + vj−1(t) = 2e−2t
√
t
aj(2t)Ij(2t)

2t
=
aj(2t)

t
vj(t).

Finally, using the expression for v′j(t) we found in (3.15) we can rewrite as

vj+1(t) + vj−1(t) = v′j(t)−
1

2t
vj(t) + 2vj(t),

which reflects that vj(t) does not solve the heat equation exactly. With the Bessel function
recursion relation found in A.10 we can rewrite aj(t) as

aj(t) = j + t
Ij+1(t)

Ij(t)

and use this to write the difference vj+1 − vj as a multiple of vj

vj+1(t)− vj(t) =
√
te−2t(Ij+1(2t)− Ij(2t))

=
√
te−2t

(
aj(2t)

2t
− j

2t
− 1

)
Ij(2t)

=

(
aj(2t)

2t
− j

2t
− 1

)
vj(t).
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Analogously we find

vj−1(t)− vj(t) =
√
te−2t(Ij−1(2t)− Ij(2t))

=
√
te−2t

(
aj(2t)

2t
+

j

2t
− 1

)
Ij(2t)

=

(
aj(2t)

2t
+

j

2t
− 1

)
vj(t).

We formulate a corollary of theorem A.8 for a better estimate of the expressions in vj.

Corollary 3.8. For j ≥ 0 and t ≥ 2 we find

aj(t) =
√
t2 + j2 − t2

2(t2 + j2)
+ bj(t)

where bj(t) denotes the error satisfying

|bj(t)| ≤
t2

2(t2 + j2)
3
2

. (3.18)

Proof. We apply theorem A.8. In order for the bound (3.18) to hold, we need j ≥ 0 that
t > 0 and √

j2 + t2 ≥
√

7 + 2

3
≈ 1.55.

Therefore, the expression for aj(t) and its error bj(t) is valid for j ≥ 0 and t ≥ 2.

Thus we can write

v′j(t) =

(
1

2t
− 2 +

aj(2t)

t

)
vj(t)

=

(
1

2t
− 2 +

√
4t2 + j2 − 4t2

2(4t2+j2)
+ bj(2t)

t

)
vj(t)

=

(
1

2t
− 2 + 2

√
1 +

j2

4t2
− 1

2t(1 + j2

4t2
)

)
vj(t) +

bj(2t)

t
vj(t)

as well as

vj−1(t)− vj(t) =

(
aj(2t)

2t
+

j

2t
− 1

)
vj(t) (3.19)

=

(√
4t2 + j2

2t
− 4t2

4t(4t2 + j2)
+
bj(2t)

2t
+

j

2t
− 1

)
vj(t)

=

(√
1 +

j2

4t2
− 1

4t(1 + j2

4t2
)

+
j

2t
− 1

)
vj(t) +

bj(2t)

2t
vj(t),
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and

vj+1(t)− vj(t) =

(
aj(2t)

2t
− j

2t
− 1

)
vj(t) (3.20)

=

(√
4t2 + j2

2t
− 4t2

4t(4t2 + j2)
+
bj(2t)

2t
− j

2t
− 1

)
vj(t)

=

(√
1 +

j2

4t2
− 1

4t(1 + j2

4t2
)
− j

2t
− 1

)
vj(t) +

bj(2t)

2t
vj(t).

We have seperated the exact terms from the errors. These expressions become useful when
we estimate the heat residual and the nonlinear residual. First, we want to estimate the
time derivative v′j of vj in terms of vj. We see that

v′j(t) =

(
1

2t
− 2 +

aj(2t)

t

)
vj(t) (3.21)

is positive if the term
1

2t
− 2 +

aj(2t)

t
(3.22)

is positive, which we want to estimate from below. We have to distinguish four cases,
j = 0 or j = 1, j ≤ t and finally j ≥ t. We treat the cases j = 0 and j = 1 separately,
because for such small j we have to estimate with a negative coefficient of vj(t).

Lemma 3.9. For j = 0 and t ≥ 2 we have

v′0(t) ≥ − 1

4t2
v0(t). (3.23)

Proof. We easily calculate (3.22) for j = 0

1

2t
− 2 +

a0(2t)

t
=

1

2t
− 2 +

√
4t2

t
− 4t2

2t(4t2)
+
b0(2t)

t
=
b0(2t)

t
.

In particular, we note that v′0(t) is only positive for a positive error. By the error estimate
(3.18), we know that ∣∣∣∣b0(2t)

t

∣∣∣∣ ≤ 1

4t2
.

Lemma 3.10. For j = 1 and t ≥ 2 we find

v′1(t) ≥ − 1

64

1

t4
v1(t). (3.24)
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Proof. We calculate the term (3.22)

1

2t
− 2 +

√
4t2 + 1

t
− 2t

4t2 + 1
+
b1(2t)

t
≥ 1

2t
− 2 + 2

√
1 +

1

4t2
− 1

2t(1 + 1
4t2

)
− 2t

(4t2 + 1)
3
2

,

≥
(

1

4

1

t2
− 1

64

1

t4

)
+

(
1

2t
− 1

2t(1 + 1
4t2

)

)
− 1

4t2(1 + 1
4t2

)
3
2

≥ 1

4t2
− 1

64t4
+

1

2t
− 1

2t
− 1

4t2

= − 1

64t4
,

where we have used lemma A.1 for x = 1
4t2

on the dominant term −2 + 2
√

1 + 1
4t2
.

Lemma 3.11. For 2 ≤ j ≤ t we have

v′j(t) ≥
11

64

j2

t2
vj(t). (3.25)

Proof. We calculate

v′j(t) =

(
1

2t
− 2 +

aj(2t)

t

)
vj(t)

≥
(

1

2t
− 2 +

√
4t2 + j2

t
− 2t

4t2 + j2
− 2t

(4t2 + j2)
3
2

)
vj(t)

≥
(

1

2t
+

1

4

j2

t2
− 1

64

j4

t4
− 2t

4t2 + j2
− 2t

(4t2 + j2)
3
2

)
vj(t)

=

((
1

4

j2

t2
− 1

64

j4

t4

)
+

(
1

2t
− 1

2t(1 + j2

4t2
)

)
− 1

4t2(1 + j2

t2
)
3
2

)
vj(t).

In the first line we have inserted the lower bound of the error. In the second line we

have estimated the dominant term −2 +

√
4t2+j2

t
= −2 + 2

√
1 + j2

4t2
with lemma A.1 for

x = 1
4t2

. The fact that 0 ≤ j2

t2
≤ 1 allows for the estimate(

1

4

j2

t2
− 1

64

j4

t4

)
≥
(

1

4

j2

t2
− 1

64

j2

t2

)
=

15

16

j2

4t2
. (3.26)

In order to prove the lemma we only need to show that the remaining terms are larger
than − 4

16
j2

4t2
i.e.

1

2t
− 1

2t(1 + j2

4t2
)
− 1

4t2(1 + j2

t2
)
3
2

≥ − 4

16

j2

4t2
.
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We directly calculate

1

2t
− 1

2t(1 + j2

4t2
)
− 1

4t2(1 + j2

t2
)
3
2

(3.27)

=
j2

4t2

2t(1 + j2

4t2
)
− 1

4t2(1 + j2

t2
)
3
2

=

j2

4t2
2t
√

1 + j2

4t2
− 1

4t2
(

1 + j2

4t2

) 3
2

=
j2

4t2

( 1
2t

√
1 + j2

4t2
− 1

j2

(1 + j2

4t2
)
3
2

)
.

We estimate the numerator from below

1

2t

√
1 +

j2

4t2
− 1

j2
≥ 1

2t
− 1

j2
≥ − 1

j2
≥ −1

4
,

where we have used that 1
j2

is maximal for j = 2 since we only consider j ≥ 2. We
estimate the denominator from above

1

(1 + j2

4t2
)
3
2

≤ 1.

In conclusion, we can estimate the line (3.27) from below by

j2

4t2

( 1
2t

√
1 + j2

4t2
− 1

j2

(1 + j2

4t2
)
3
2

)
≥ − j2

16t2
. (3.28)

Inserting (3.26) and (3.28) into our estimate of the derivative we get

v′j(t) =

(
15

16

j2

4t2
− 1

4

j2

4t2

)
vj(t)

=
11

16

j2

4t2
vj(t).

Lemma 3.12. Now we let 3 ≤ t ≤ j and find

v′j(t) ≥
1

5

j

t
vj(t). (3.29)
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Proof. We calculate (3.15) to be

v′j(t) =

(
1

2t
− 2 +

aj(2t)

t

)
vj(t)

≥
(

1

2t
− 2 +

√
4t2 + l2

t
− 2t

4t2 + l2
− 2t

(4t2 + l2)
3
2

)
vj(t)

=

((
− 2 + 2

√
1 +

j2

4t2

)
+

(
1

2t
− 2t

4t2 + j2

)
− 1

4t2(1 + j2

t2
)
3
2

)
vj(t).

In the first step we have again inserted the lower bound of the error. In the second step we

have ordered the terms according to dominance. The most dominant term −2+2
√

1 + j2

4t2

can be estimated by A.1 for x = j2

4t2
. Furthermore, we use that j ≥ t

2t

4t2 + j2
≤ 2t

5t2
=

2

5t

and for the error
1

4t2(1 + j2

t2
)
3
2

≤ 1

4t2
.

Summarizing we obtain the expression

v′j(t) =

(
1

2t
− 2 +

aj(2t)

t

)
vj(t)

≥
((
− 2 +

√
4 +

j2

t2

)
+

(
1

2t
− 2t

4t2 + j2

)
− 1

4t2(1 + j2

t2
)
3
2

)
vj(t)

≥
(

1

5

j

t
+

1

2t
− 2

5t
− 1

4t2

)
vj(t)

=

(
1

5

j

t
+

4t− 10

40t2

)
vj(t)

≥ 1

5

j

t
vj(t),

where we have used that for t ≥ 3

4t− 10

40t2
≥ 0.

Now we want to estimate the following expression, using (3.19) and (3.20)

vj±1(t)− vj(t) =

(
aj(2t)

2t
∓ j

2t
− 1

)
vj(t). (3.30)

We again distinguish between the cases j = 0, j = 1, j ≤ t and j ≥ t.
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Lemma 3.13. For j = 0 and t ≥ 2 we have

|v±1(t)− v0(t)| ≤
(

1

4t
+

1

8t2

)
v0(t). (3.31)

Proof. We calculate the difference directly. In the first step we use the error estimate
(3.18) and in the second step we use the triangle inequality

|v±1(t)− v0(t)| =
∣∣∣∣(a0(2t)

2t
∓ 0

2t
− 1

)
v0(t)

∣∣∣∣
≤
∣∣∣∣
√

4t2

2t
− 4t2

4t(4t2)
+
b0(2t)

2t
− 1

∣∣∣∣v0(t)

≤
∣∣∣∣− 1

4t
+
b0(2t)

2t

∣∣∣∣v0(t)

≤
(∣∣∣∣− 1

4t

∣∣∣∣+

∣∣∣∣b0(2t)

2t

∣∣∣∣)v0(t)

≤
(

1

4t
+

1

8t2

)
v0(t).

Note that the largest bound of |v±1(t)− v0(t)| is attained in t = 1 with absolute value
3
8

and the larger the time the sharper the bound.

Lemma 3.14. For j = 1, t = 2 or 2 ≤ j ≤ t we have

|vj±1(t)− vj(t)| ≤
j

t
vj(t). (3.32)

Proof. As in the previous proof we calculate (3.30) directly and use the error estimate
(3.18) first and then the triangle inequality. In a next step we use lemma A.1 on the most

dominant term
√

1 + j2

4t2
− 1 for x = j2

4t2
. Finally, we use that j2

t2
≤ j

t
≤ 1 and j2 ≥ j ≥ 2
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to simplify

|vl±1(t)− vj(t)| =
∣∣∣∣(aj(2t)2t

∓ j

2t
− 1

)
vj(t)

∣∣∣∣
≤
∣∣∣∣(
√

4t2 + j2

2t
− 4t2

4t(4t2 + j2)
+

1

2t

(
4t2

2(4t2 + j2)
3
2

)
∓ j

2t
− 1

)∣∣∣∣vj(t)
≤
(∣∣∣∣
√

1 +
j2

4t2
− 1

∣∣∣∣+

∣∣∣∣− t

4t2 + j2

∣∣∣∣+

∣∣∣∣∓ j

2t

∣∣∣∣+

∣∣∣∣ t

(4t2 + j2)
3
2

∣∣∣∣)vj(t)
≤
(

1

2

j2

4t2
+

1

4t(1 + j2

t2
)

+
j

2t
+

1

8t2(1 + j2

4t2
)
3
2

)
vj(t)

≤
(

1

8

j2

t2
+

1

4t
+

j

2t
+

1

8t2

)
vj(t)

≤
(

1

8

j2

t2
+

j

4t
+

j

2t
+

1

8

j2

t2

)
vj(t)

≤
(

3

4

j

t
+

1

4

j2

t2

)
vj(t)

≤ j

t
vj(t).

Lemma 3.15. For 2 ≤ t ≤ j we have

|vj±1(t)− vj(t)| ≤
13

8

j

t
vj(t). (3.33)

Proof. We estimate (3.30) directly. As in the previous two proofs we start by using the

error and the triangle inequality respectively. However, for the dominant term
√

1 + j2

4t2
−
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1 we use lemma A.7 for x = j
2t

to obtain∣∣∣∣vj±1(t)− vj(t)
∣∣∣∣ =

∣∣∣∣(aj(2t)2t
∓ j

2t
− 1

)
vj(t)

∣∣∣∣
≤
∣∣∣∣
√

4t2 + j2

2t
− 4t2

4t(4t2 + j2)
+

1

2t

(
4t2

2(4t2 + j2)
3
2

)
∓ j

2t
− 1

∣∣∣∣vj(t)
=

∣∣∣∣(
√

1 +
j2

4t2
− 1

)
+

(
− 2t

4t2 + j2
∓ j

2t

)
+

t

(4t2 + j2)
3
2

∣∣∣∣vj(t)
≤
(
j

2t
+

∣∣∣∣− 2t

4t2 + j2

∣∣∣∣+

∣∣∣∣∓ j

2t

∣∣∣∣+
1

8t2(1 + j2

4t2
)
3
2

)
vj(t)

≤
(
j

t
+

1

2t(1 + j2

4t2
)

+
1

8t2

)
vj(t)

≤
(
j

t
+

1

2t
+

1

8t

)
vj(t)

≤
(
j

t
+

j

2t
+

j

8t

)
vj(t)

≤ 13

8

j

t
vj(t).
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4. Stability of the Nagumo LDE

We want to apply the comparison principle for the discrete case and look at the subsolu-
tion with a travelling wave Ansatz

u−i,j(t) = Φ(i+ ct− θj(t)− Z(t))− z(t) = Φ(ξi,j(t))− z(t),

where we define for convenience

ξi,j(t) = i+ ct− θj(t)− Z(t). (4.1)

Furthermore, we use the external functions z and Z as in the continuous case. We are
able to make these external functions explicit in section 4.4.

4.1. Horizontal Travelling Waves on the Lattice

In the discrete case we have to focus on the solution in one direction, because of the
direction dependency on the lattice. We call the direction

(cosθ, sinθ) = (σh, σv)

rational, if tan θ ∈ Q. We can rewrite the travelling wave Ansatz as

ui,j(t) = Φ((cos θ, sin θ) ∗ (i, j) + ct) = Φ(ξ)

such that Φ(−∞) = 0 and Φ(+∞) = 1. The travelling wave equation becomes

cΦ′(ξ) = Φ(ξ + cos θ) + Φ(ξ − cos θ) + Φ(ξ + sin θ) + Φ(ξ − sin θ)− 4Φ(ξ) + g(Φ(ξ)).

We perform a coordinate transformation

n = +iσh + jσv parallel to lattice

l = −iσv + jσh transversal to lattice

such that we can rewrite the Laplace operator in terms of the four direct neighbors of
unl. The neighbor set is defined as

N (n, l) = {(n+ σh, l + σv), (n+ σv, l − σh), (n− σh, l − σv), (n− σv, l + σh)}.

The Laplace operator becomes

[∆u]nl = Σ(n′,l′)∈N (n,l)[un′l′ − unl].
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In this thesis we focus on the horizontal direction

(σh, σv) = (1, 0).

Then θ = 0 and the coordinate transformation becomes

(n, l) = (i, j).

In the horizontal case we do not have to perform a coordinate transformation and we can
use (i, j). In the horizontal case we can abbreviate the discrete Laplace operator as

∆+ui,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j, (4.2)

where the plus sign refers to the four neighbours around ui,j. In this thesis we also narrow
down the problem by fixing a detuning parameter a such that there is no pinning involved.
the The wave speed c > 0 is also fixed from now on, because c = c(a, θ) as we have seen
in the introduction.

4.2. Transversal Dependency

In order to describe the transversal dependency we take

θ ∈ C1([0,∞), l2(Z,R))

in analogy to the continuous case. We remark that (θj(t))j∈Z ∈ l2(R) depends on j, i.e.
the transversal direction on the lattice, for fixed t.
We are ready to specify θj(t) under use of constants named in the same way as in the
continuous case discussed in section 2.1. We define θj(t) under the use of vj(t) from (3.3)
as

θj(t) = βt−α
√
tγe−2γtIj(2γt) = βt−αvj(γt),

where β, γ � 1 and 0 < α� 1 are constants. Ultimately, we want to express 0 < α� 1
as a function of γ and γ as a function of β. The constant β in turn, depends on the
initial condition as we will see in section 4.4. For completeness, we note that the relative
expressions for vj(t) we have found in section 3.2 become

d

dt
vj(γt) = γv′j(γt) =

(
1

2t
− 2γ +

aj(2γt)

t

)
vj(γt)

and

vj+1(γt) + vj−1(γt) =
aj(2γt)

γt
vj(γt).

We know the asymptotic behaviour of θj(t) from our preliminary calculations in sec-
tion 3.1.

Lemma 4.1. We have the following limit for θj

lim
t→∞

θj(t) = 0. (4.3)
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Proof. By definition of the modified θj we get

lim
t→∞

θj(t) = lim
t→∞

βt−αvj(γt) = β lim
t→∞

t−αvj(γt). (4.4)

We choose α � 1, so limt→∞ t
−α = 0 and it suffices to show that vj(t) is bounded as

t→∞. We want to use the estimates we have found in section 3.2.
If j

t
≤ 1 we can use corollary 3.3 stating that |vj(t)| is bounded from above by 1 and the

limit follows.
If j

t
≥ 1 we can use lemma 3.6 stating that |vj(t)| = t

j
j
t
|vj(t)| is bounded from above by

t
j

1√
2
e−

1
4 ≤ t

j
≤ 1 and the limit follows as well.

4.3. Estimate of the Residual

We have gained enough understanding to consider the residual of the LDE in two space
dimensions. We have to prove one preliminary lemma, before we can calculate the discrete
residual analogously to the continuous residual calculated in lemma 2.1.

Lemma 4.2. For every β there is a γ∗ such that for all γ ≥ γ∗ we find the following
estimate for all j ∈ Z and t ≥ 2

|θj±1(t)− θj(t)| ≤ 1.

Proof. First let us write out the difference

|θj±1(t)− θj(t)| = βt−α|vj±1(γt)− vj(γt)|
≤ β|vj±1(γt)− vj(γt)|,

where we have used that the factor t−α is of no concern, because we choose 0 < α� 1 so
t−α < 1. Let j = 0. Then we estimate the difference from above with lemma 3.13 to be

|θ±1(t)− θ0(t)| ≤ β|v±1(γt)− v0(γt)|

≤ β

(
1

4γt
+

1

8γ2t2

)
v0(γt).

Clearly, the sum 1
4γt

+ 1
8γ2t2

≤ 1
4γ∗t

+ 1
8γ2∗t

2 ≤ 1 for γ ≥ γ∗. Using this and choosing γ∗ = β
we can prove the lemma for j = 0 right away. The difference becomes

|θ±1(t)− θ0(t)| ≤ β

(
1

4γt
+

1

8γt2

)
v0(γt)

≤ β

(
1

4γ∗t
+

1

8γ∗t2

)
v0(γt)

=

(
1

4t
+

1

8γ∗t2

)
v0(γt)

≤ v0(γt) ≤ 1,
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where we have used corollary 3.3 in the last step.
Now let j ≥ 1. In lemma 3.14 and lemma 3.15 we have found estimates for the differences

|vj±1(t)− vj(t)| ≤ K
j

t
vj(t)

with K = 1 for j = 1, t = 2 or 2 ≤ j ≤ t and K = 13
8

for 2 ≤ t ≤ j. However, the
constant β � 1 keeps us from directly using these estimates. Instead we have to choose
γ∗ = γ∗(β) carefully and large enough to give an estimate of the difference in θj(t). For
convenience we write γt = t̃. We want to prove the following claim.
For every ε > 0 there is a time T = T (ε) such that

j

t̃
vj(t̃) ≤ ε ∀t̃ ≥ T. (4.5)

We have to discern between three cases according to the relation between j and t̃.
First we consider 1 ≤ j ≤ t̃

3
4 . We estimate vj(t̃) by 1 as we may by corollary 3.3 and find

j

t̃
vj(t̃) ≤

j

t̃
≤ t̃

3
4

t̃
=

1

t̃
1
4

.

So if we choose ε = 1

T
1
4

, we have shown (4.5) for 0 ≤ j ≤ t̃
3
4 .

Secondly, we consider t̃
3
4 ≤ j ≤ t̃. We apply corollary 3.4 and find

0 <
j

t̃
vj(t̃) ≤

j

t̃
Ce−

√
t̃

16 .

We have seen in (3.6) that C is a positive constant smaller than 1. Furthermore, we use
that j

t̃
≤ 1 in this case. Thus

j

t̃
vj(t̃) ≤ Ce−

√
t̃

16

and we choose ε = Ce−
√
T

16 in order to prove (4.5).
Thirdly, we consider γ ≤ t̃ ≤ j. We apply lemma 3.6 for t̃ to get

j

t̃
vj(t̃) ≤

1√
2
e

1
4 e−

t̃
4 .

So (4.5) follows for ε = 1√
2
e

1
4 e−

1
4
T .

Thus for every ε = 1
βK

> 0 there is a γ∗ such that for all t̃ ≥ T

|θj±1(t)− θj(t)| = βt−α|vj±1(t̃)− vj(t̃)|
≤ β|vj±1(t̃)− vj(t̃)|

≤ βK
j

t̃
vj(t̃)

≤ βKε = 1.
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In fact take T (ε) = γ∗. Then for 1 ≤ j ≤ t̃
3
4 , K = 1 and the equation

1

βK
=

1

T
1
4

has solution γ∗ = (β)−
1
4 .

For t̃
3
4 ≤ j ≤ t̃, K = 1 as well and solving

1

βK
= Ce−

√
T

16

gives γ∗ = (16ln(βC))2.
Finally, for γ ≤ t̃ ≤ j K = 13

8
we solve

1

βK
=

1√
2
e

1
4 e−

1
4
T

has solution γ∗ = 4ln( 8β

13
√

2
) + 1.

Now the statement holds for all γ ≥ γ∗(β) and we have proven the lemma.

Proposition 4.3. The residual of the subsolution for the horizontal direction

J = u−
′

i,j(t)−∆+u−i,j(t)− g(u−i,j(t))

is given by

Jglobal = −z′(t)− Z ′(t)Φ′(ξi,j(t)) + g(Φ(ξi,j(t)))− g(Φ(ξi,j(t))− z(t)) (4.6)

Jnl = −1

2
Φ′′(ξi,j(t)+ν+

i,j(t))(θj(t)−θj+1(t))2− 1

2
Φ′′(ξi,j(t)+ν−i,j(t))(θj(t)−θj−1(t))2 (4.7)

Jheat = Φ′(ξi,j(t))(θj+1(t) + θj−1(t)− 2θj(t)− θ′j(t)). (4.8)

such that
J = Jglobal + Jnl + Jheat.

For every β we can find a γ∗ such that for γ ≥ γ∗, t ≥ 2 and (i, j) ∈ Z2 we can find a
ν+
i,j(t) and ν−i,j(t) such that

|ν+
i,j(t)|, |ν−i,j(t)| ≤ 1.

Proof. We make use of the travelling wave constant given in (4.1). We begin by calculating
the first derivative of the subsolution

u−i,j
′(t) = (c− θ′j(t)− Z ′(t))Φ′(ξi,j(t))− z′(t). (4.9)
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Inserting (4.9) into the residual gives

J = u−i,j
′(t)− [∆+u−(t)]ij − g(u−i,j(t))

= (c− θ′j(t)− Z ′(t))Φ′(i+ ct− θj(t)− Z(t))− z′(t)
− ui+1,j(t)− ui−1,j(t)− ui,j+1(t)− ui,j−1(t)

+ 4ui,j(t)− g(ui,j(t))

= (c− θ′j(t)− Z ′(t))Φ′(i+ ct− θj(t)− Z(t))− z′(t)
− Φ(ξi+1,j(t))− Φ(ξi−1,j(t)) + 2z(t)− Φ(ξi,j+1(t))− Φ(ξi,j−1(t)) + 2z(t)

+ 4Φ(ξi,j(t))− 4z(t)− g(Φ(ξi,j(t)− z(t))

= (c− θ′j(t)− Z ′(t))Φ′(ξi,j(t))− z′(t)
− Φ(ξi+1,j(t))− Φ(ξi−1,j(t))− Φ(ξi,j+1(t))− Φ(ξi,j−1(t)) + 4Φ(ξi,j(t))

− g(Φ(ξi,j(t)− z(t))

In order to simplify further, we look at the wave profile equation in the two-dimensional
discrete case

cΦ′(ξ) = Φ(ξ + cos θ) + Φ(ξ − cos θ) + Φ(ξ + sin θ) + Φ(ξ − sin θ)− 4Φ(ξ) + g(Φ(ξ)).

For the horizontal direction we have seen in section 4.1 that θ = 0. Thus the wave profile
equation becomes

cΦ′(ξ) = Φ(ξ+1)+Φ(ξ−1)+2Φ(ξ)−4Φ(ξ)+g(Φ(ξ)) = −2Φ(ξ)+Φ(ξ+1)+Φ(ξ−1)+g(Φ(ξ)).

The local form is

cΦ′(ξi,j) = −2Φ(ξi,j) + Φ(ξi,j + 1) + Φ(ξi,j − 1) + g(Φ(ξi,j)).

By looking at the definition of the travelling wave constant we see that

cΦ′(ξi,j) = −2Φ(ξi,j) + Φ(ξi+1,j) + Φ(ξi−1,j) + g(Φ(ξi,j)).

Inserting this into the expression above for the local residual gives

J = −2Φ(ξi,j) + Φ(ξi+1,j(t)) + Φ(ξi−1,j(t)) + g(Φ(ξi,j))− (θ′j(t) + Z ′(t))Φ′(ξi,j(t))− z′(t)
− Φ(ξi+1,j(t))− Φ(ξi−1,j(t))− Φ(ξi,j+1(t))− Φ(ξi,j−1(t))) + 4Φ(ξi,j(t))− g(Φ(ξi,j(t)− z(t))

= 2Φ(ξi,j)− Φ(ξi,j+1(t))− Φ(ξi,j−1(t))

− (θ′j(t) + Z ′(t))Φ′(ξi,j(t))− z′(t)
+ g(Φ(ξ))− g(Φ(ξi,j(t)− z(t)).

In order to get an even better rest term we focus on the term

2Φ(ξi,j(t))−Φ(ξi,j+1(t))−Φ(ξi,j−1(t)) = (Φ(ξi,j(t))−Φ(ξi,j+1(t)))+(Φ(ξi,j(t))−Φ(ξi−1,j(t))).
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We apply the main value theorem on both terms. The first time we apply the theorem
we use the auxiliary constants ν1, ν

′
1 ∈ (0, 1)

2Φ(ξi,j(t))− Φ(ξi±1j(t)) = (Φ(i+ ct− θj(t)− Z(t))− 2Φ(i+ ct− θj+1(t)− Z(t)))

+ (Φ(i+ ct− θj(t)− Z(t))− Φ(i+ ct− θj−1(t)− Z(t)))

= −Φ′(ξi,j + ν1(θj − θj+1))(θj − θj+1)

− Φ′(ξi,j + ν ′1(θj − θj−1))(θj − θj−1).

Now we want to use the main value theorem again to simplify further. We can do so by
adding a remainder term and by using the auxiliary constants ν2, ν

′
2 ∈ (0, 1)

− Φ′(ξi,j + ν1(θj − θj+1))(θj − θj+1)

+ Φ(ξi,j)(θj − θj+1)− Φ(ξi,j)(θj − θj+1)

− Φ′(ξi,j + ν ′1(θj − θj−1))(θj − θj−1)

+ Φ(ξi,j)(θj − θj−1)− Φ(ξi,j)(θj − θj−1)

= −1

2
Φ′′(ξi,j + ν2(θj − θj+1))(θj − θj+1)2

− 1

2
Φ′′(ξi,j + ν ′2(θj − θj−1))(θj − θj−1)2

+ (θj+1 − θj)Φ′(ξi,j(t)) + (θj−1 − θj)Φ′(ξi,j(t)).

We put ν2(θj(t) − θj+1(t)) = ν+
i,j(t) and ν ′2(θj(t) − θj−1(t)) = ν−i,j(t). For the absolute

estimate by 1 observe that ν2 ∈ (0, 1) and use lemma 4.2. The lemma gives that for every
β in the definition of θj there must be a γ∗ = γ∗(β) such that

|ν+
i,j(t)| = |ν2(θj(t)− θj+1(t))| = ν2 ≤ 1

for γ ≥ γ∗. The analogue holds for ν−i,j(t). Finally, we order the residual just as in the
continuous case (2.1) according to their quality to obtain the required result.

We want to estimate the three parts of the residual seperately. Our aim is to make sure
that the residual is negative for our modified subsolution. The supersolution case proves
to be completely analogous afterwards and we will apply the comparison principle. The
global residual

Jglobal = −z′(t)− Z ′(t)Φ′(ξ(t)) + g(Φ(ξ))− g(Φ(ξ)− z(t)) (4.10)

can be kept negative by choosing z(t) and Z(t) carefully as we will do in section 4.4. The
other two parts of the residual are more difficult to estimate. We will have to exploit
what we already know about the behaviour of the wave profile Φ. The wave profile Ansatz
assumes that there is a wave Φ ∈ C1 for every wave speed c > 0 such that Φ is bounded,
the wave profile equation is satisfied, and the temporal limits

lim
ξ(t)→−∞

Φ(ξ(t)) = 0 and lim
ξ(t)→+∞

Φ(ξ(t)) = 1 (4.11)

44



hold. In the proof of proposition 4.3 we have seen that the wave profile equation in ξi,j
for our discrete and horizontal case becomes

cΦ′(ξi,j) = −2Φ(ξi,j) + Φ(ξi+1,j) + Φ(ξi−1,j) + g(Φ(ξi,j)). (4.12)

The wave profile Φ is unique up to shifts and takes values between 0 and 1. We have
assumed that Φ is differentiable, so let us differentiate (4.12)

cΦ′′(ξi,j) = −2Φ′(ξi,j) + Φ′(ξi+1,j) + Φ′(ξi−1,j) + Φ′(ξi,j)g
′(Φ(ξi,j)). (4.13)

Now by the smoothness of g we may conclude that Φ is twice differentiable. But the
property of Φ we are really interested in for the estimate of the residual is the convergence
rate of Φ for t→ ±∞.
Consider 4.13 for ξ = ξij near −∞. By the limit assumptions on the wave we know that
Φ(−∞) = 0 so we get

cΦ′′(ξ) = −2Φ′(ξ) + Φ′(ξ + 1) + Φ′(ξ − 1) + Φ′(ξ)g′(0).

We want to solve the ODE by using the Ansatz Φ′(ξ) = ezξ, the ODE becomes

czezξ = −2ezξ + ez(ξ+1) + ez(ξ−1) + g′(0)ezξ

cz = −2 + ez + e−z + g′(0)

cz = −2 + 2cosh(z) + g′(0)

We can follow the same steps for 4.13 with ξ near +∞, where Φ(+∞) = 1. Then we have
found the limiting spatial characteristic functions denoted by

∆+(z) = cz − 2cosh(z) + 2− g′(0) (4.14)

∆−(z) = cz − 2cosh(z) + 2− g′(1). (4.15)

We have seen the derivative of g in (2.3), we find g′(0) = −a and g′(1) = −1 + a. In
the rest of this section we work out lemma 3.3 to corollary 3.6 from [1] for the horizontal
direction. The following proposition shows that the roots of ∆±(z) = 0 are the spatial
exponents of the asymptotic rates of convergence of Φ.

Proposition 4.4. There are positive constants η+ and η− such that

cη+ = 2cosh(η+)− 2 + g′(0)

cη− = 2cosh(η−)− 2 + g′(1),

which implies that ∆+(−η+) = 0 and ∆−(η−) = 0.
In addition, we have uniqueness in the following sense. Whenever ∆+(η) = 0 or ∆−(η) =
0 for some η ≥ 0, we have η = η+ or η = η−.

Proof. The first two derivatives of ∆± are straightforwardly determined to be

∆±′(z) = c− 2sinh(z)

∆±′′(z) = −2cosh(z).
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Therefore, ∆±′′(z) < 0 for every real z and ∆− and ∆+ are strictly concave functions.
Furthermore, we use that the hyperbolic cosine diverges faster than linearly to ∞ to
calculate the limit

lim
z→∞

∆+(z) = lim
z→∞

(cz − 2cosh(z) + 2− g′(0)) = −∞.

Since ∆+ and ∆− only differ by a constant, the same limit holds for ∆−. By the symmetry
of cosh(z) we also have ∆± → −∞ for z → −∞.
In conclusion ∆+ and ∆− are both concave functions diverging to −∞ in both directions
of the z−axis. Both functions attain positive values in 0

∆+(0) = 2− g′(0) = 2− a > 0 and ∆−(0) = 2− g′(1) = 2− (−1 + a) = 3− a > 0.

It follows that they intersect the z−axis only twice. Therefore, ∆+ and ∆− must have
positive roots η+ respectively η−.

Proposition 4.5. There are constants C ≥ 1, κ > 0, and α± > 0 such that for every
ξ ≤ 0

|Φ(ξ)− α−e−η−|ξ|| ≤ Ce(−η−+κ)|ξ| (4.16)

|Φ′(ξ)− η−α−e−η−|ξ|| ≤ Ce(−η−+κ)|ξ| (4.17)

|Φ′′(ξ)− (η−)2α−e
−η−|ξ|| ≤ Ce(−η−+κ)|ξ| (4.18)

and for every ξ ≥ 0

|(1− Φ(ξ))− α+e
−η+|ξ|| ≤ Ce(−η++κ)|ξ| (4.19)

|Φ′(ξ)− η+α+e
−η+|ξ|| ≤ Ce(−η++κ)|ξ| (4.20)

|Φ′′(ξ)− (η+)2α+e
−η+|ξ|| ≤ Ce(−η++κ)|ξ|. (4.21)

Proof. The proof is a consequence of theorem 2.2 in [18].

Corollary 4.6. There exists a constant C ≥ 1 such that for all ξ ∈ R and |M | ≤ 1

|Φ′′(ξ +M)| ≤ CΦ′(ξ).

Proof. The result follows from proposition 4.5 together with the fact that Φ′ > 0. The
latter is also a consequence of proposition 4.5.

We deduce from proposition 4.5 that the graphs of Φ,Φ′ and Φ′′ for the LDE are
similar to the corresponding wave profiles of the PDE we have seen in Fig. 1.3, Fig. 1.4
and Fig. 1.5. But then, we also have the same problem as in the continuous case explained
in the end of section 2.1, we do not know the sign of Φ′′. This implies that we do not
know the sign of the nonlinear residual Jnl seen in (4.7) and we have to dominate it
absolutely somehow. Luckily, we are able to use Jheat for this task in the discrete case
as well, because we do know that Φ′ > 0. Thus we begin by focussing on estimating the
heat residual of θj(t) in

Jheat = −Φ′(ξi,j(t))(θ
′
j(t)− θj+1(t)− θj−1(t) + 2θj(t)).

46



4.4. Explicit Subsolution and Supersolution

In this section we determine γ in terms of β such that the sum of the heat residual and
the nonlinear residual is negative. Hereby we want Jheat found in (4.8) to dominate Jnl
given in (4.7). Finally, we also prove negativity of the global residual and complete our
search for an explicit subsolution by determining all three external functions z(t), Z(t),
and θj(t). The supersolution only differs in sign and is therefore completely analogous.
In the last part of section 4.3 we already observed that the sign of Jheat depends on the
residual of the discrete heat equation in θj(t) since Φ′ > 0. In order to find an estimate of
the residual of the discrete heat kernel we use the expression linking v′j(γt) and vj±1(γt)

vj±1(γt) = v′j(γt)−
1

2γt
vj(γt) + 2vj(γt)

to find

θ′j(t)− θj±1(t) + 2θj(t) =
d

dt
(βt−αvj(γt))− βt−αvj±1(γt) + 2βt−αvj(γt)

= βt−α
(
− α

t
vj(γt) + γv′j(γt)− vj±1(γt) + 2vj(γt)

)
= βt−α

(
− α

t
vj(γt) + γv′j(γt)− v′j(γt) + v′j(γt)− vj±1(γt) + 2vj(γt)

)
= βt−α

(
− α

t
vj(γt) + (γ − 1)v′j(γt) + v′j(γt)

− v′j(γt) +
1

2γt
vj(γt)− 2vj(γt) + 2vj(γt)

)
= βt−α

(
− α

t
vj(γt) + (γ − 1)v′j(γt) +

1

2γt
vj(γt)

)
= βt−αvj(γt)

(
1− 2αγ

2γt

)
+ βt−α(γ − 1)v′j(γt). (4.22)

We insert expression (4.22) into the heat residual

Jheat = −Φ′(ξi,j)(θ
′
j(t)− θj±1(t) + 2θj(t)) (4.23)

= −Φ′(ξi,j)βt
−α(vj(γt)

(
1− 2αγ

2γt

)
+ (γ − 1)v′j(γt)).

Now for the heat residual to be negative we need

1− 2αγ

2γt
vj(γt) + (γ − 1)v′j(γt) > 0.

The first term is positive if 1 > 2αγ such that α = δ
γ

with 0 < δ < 1
2
. From now on we

choose

α =
1

4γ
.
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The heat residual (4.22) becomes

Jheat = −Φ′(ξi,j(t))βt
− 1

4γ (vj(γt)

(
1

4γt

)
+ (γ − 1)v′j(γt)). (4.24)

The second term
(γ − 1)v′j(γt)

is more intricate. Luckily, we can use the estimates of v′j(t) found in section 3.2.
In order to estimate the nonlinear residual 4.7 we need estimates of θj±1(t)−θj(t). There-
fore, we want to use the direct estimates of vj±1−vj in terms of vj we found in section 3.2,
which we can quadrate. We show negativity of the sum of the heat residual and the non-
linear residual in each of the four cases j = 0, j = 1, j ≤ t, and j ≥ t under use of the
prepatory work done in 3.2.

Proposition 4.7. For j = 0 and t ≥ 3 we find Jheat + Jnl is negative for

γ ≥ 9Cβ

16
.

Proof. We apply lemma 3.9 for modified γt

v′0(γt) =

(
1

2t
− 2γ +

a0(2γt)

t

)
v0(γt)

=
1

4γ2t2
v0(γt)

As γ � 1 we may assume |γ − 1| ≤ 2γ, so

|(γ − 1)v′0(γt)| ≤ |2γv′0(γt)| ≤ 1

2γt2
v0(γt). (4.25)

We use (4.25) to estimate the residual of the discrete heat equation for j = 0 as expressed
in (4.22)

θ′0(t)− θ0±1 + 2θ0(t) = βt−αv0(γt)

(
1− 2αγ

2γt

)
+ βt−α(γ − 1)v′0(γt)

≤ βt−αv0(γt)

(
1

4γt
− 1

2γt2

)
.

The heat residual (4.24) becomes

Jheat = −Φ′(ξi,j)βt
−α(v0(γt)

(
1

4γt

)
+ (γ − 1)v′0(γt)) (4.26)

≤ −Φ′(ξi,j)βt
−αv0(γt)

(
1

4γt
− 1

2γt2

)
.
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The last term needs to be positive for (4.8) to be negative. But

1

4γt
− 1

2γt2
> 0

1

2γt

(
1

2
− 1

t

)
> 0

is true for t ≥ 3. The nonlinear residual (4.7) from proposition 4.3 becomes under use of
lemma 3.13, and the corollary 4.6 and corollary 3.3

Jnl = −1

2
Φ′′(ξi,j(t) + ν+

i,j(t))(θ0 − θ+1)2 (4.27)

− 1

2
Φ′′(ξi,j(t) + ν+

i,j(t))(θ0 − θ−1)2

≤ CΦ′(ξi,j)β
2t−2α(v±1(γt)− v0(γt))2

≤ CΦ′(ξi,j)β
2t−α(v±1(γt)− v0)2

≤ CΦ′(ξi,j)β
2t−αv2

0(γt)

(
1

4γt
+

1

8γ2t2

)2

≤ CΦ′(ξi,j)β
2t−αv0(γt)

(
1

4γt
+

1

8γ2t2

)2

.

Now we add (4.26) and (4.27)

Jheat + Jnl ≤ −Φ′(ξi,j)βt
−αv0(γt)

(
1

4γt
− 1

2γt2
− Cβ

(
1

4γt
+

1

8γ2t2

)2)
.

In order for the sum to be negative we need

1

4γt
− 1

2γt2
− Cβ

(
1

4γt
+

1

8γ2t2

)2

> 0

We multiply both sides of the inequality by 16γ2t2 to get

4γt− 8γ − Cβ
(

1 +
1

2γt

)2

> 0.

We estimate the left hand side of the inequality from below using that t ≥ 3

4γt− 8γ − Cβ
(

1 +
1

2γt

)2

≥ 12γ − 8γ − Cβ
(

1 +
1

2γ

)2

.

Now for

12γ − 8γ − Cβ
(

1 +
1

2γ

)2

> 0

to hold we must have γ > Cβ
4

(
1 + 1

2γ

)2

. Noting that 1
2γ

< 1
2

we choose γ ≥ 9Cβ
16

to

guarantee negativity.
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Proposition 4.8. For j = 1 and t ≥ 2 the sum Jheat + Jnl is negative for

γ ≥ 4βC +
1

8
.

Proof. We use the analogue of (4.25) for j = 1 and lemma ?? to find

|(γ − 1)v′1(γt)| ≤ 2γ

64γ4t4
vj(γt) =

1

32γ3t4
vj(γt). (4.28)

Under use of (4.28) the heat residual becomes

Jheat = −Φ′(ξi,j)βt
−α(v1(γt)

(
1

4γt

)
+ (γ − 1)v′1(γt)) (4.29)

≤ −Φ′(ξi,j)βt
−αv1(γt)

(
1

4γt
− 1

32γ3t4

)
.

The nonlinear residual becomes under use of corollary 4.6, lemma 3.14 and corollary 3.3

Jnl = −1

2
Φ′′(ξi,j(t) + ν+

i,j(t))(θ1 − θ2)2 (4.30)

− 1

2
Φ′′(ξi,j(t) + ν+

i,j(t))(θ1 − θ0)2

≤ CΦ′(ξi,j)β
2t−2α(v1±1(γt)− v1(γt))2

≤ CΦ′(ξi,j)β
2t−α(v1±1(γt)− v1)2

≤ CΦ′(ξi,j)β
2t−αv2

1(γt)

(
1

γt

)2

≤ CΦ′(ξi,j)β
2t−αv1(γt)

1

γ2t2
.

The sum of (4.29) and (4.30) is

Jheat + Jnl ≤ −Φ′(ξi,j)βt
−αv1(γt)

(
1

4γt
− 1

32γ3t4
− Cβ 1

γ2t2

)
,

which is negative if
1

4γt
− 1

32γ3t4
− Cβ 1

γ2t2
> 0.

We multiply both sides of the inequality by 4γ2t2

γt− 1

8t2γ
− 4Cβ > 0.

Again we estimate the lefthand side from below by using t ≥ 2 as in the previous propo-
sition

γt− 1

8t2γ
− 4Cβ ≥ γ − 1

8γ
− 4Cβ.

The inequality γ− 1
8γ
−4Cβ > 0 in turn motivates our choice of γ ≥ 1

8
+4Cβ to guarantee

negativity, because γ � 1.
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Figure 4.1.: Graph of the factor

(
1
2t
− 2 + 2

√
1 + 1

4t2
− 1

2t(1+ 1
4t2

)
− 2t

(4t2+1)
3
2

)
linking v1(t)

and v′1(t) for maximal error

Remark 4.9. For t = 1 the derivative v′1(t) is positive

1

2
− 2 +

√
5− 2

5
+ b1(2) ≥ −19

15
+
√

5− 2

5
√

5
≈ 0.16

and for t = 2 as well

1

4
− 2 +

√
17

2
− 4

17
+ b1(4) ≥ 1

4
− 2 +

√
17

2
− 4

17
− 4

17
√

17
≈ 0.02.

In Fig.4.1 we can see the graph of 1
2t
−2+2

√
1 + 1

4t2
− 1

2t(1+ 1
4t2

)
− 2t

(4t2+1)
3
2
. In fact we observe

that the condition for the derivative v′1(t) does not actually get negative for maximal error
but very close to 0 the larger t becomes. Note therefore, that the bound for v′1(t) we use in
the previous proposition is not sharp, but good enough to ensure negativity of Jheat +Jnl
for j = 1.

Proposition 4.10. For 2 ≤ j ≤ t the sum Jheat + Jnl is negative for

γ ≥ 10βC + 1.

Proof. We fill in the estimate of vj(γt) we found in lemma 3.11 for Jheat

Jheat = −Φ′(ξi,j)βt
−α(vj(γt)

(
1

4γt

)
+ v′j(γt)(γ − 1)

)
≤ −Φ′(ξi,j)βt

−αvj(γt)

(
1

4γt
+
γ − 1

10

j2

γ2t2

)
.

Likewise we insert the estimate of vj±1(γt)−vj(γt) from lemma 3.14 and use that vj(γt) ≤
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1 from corollary 3.3 in Jnl

Jnl = −1

2
Φ′′(ξi,j + ν+

i,j(t))β
2t−2α(vj+1(γt)− vj(γt))2

− 1

2
Φ′′(ξi,j + ν−i,j(t))β

2t−2α(vj−1(γt)− vj(γt))2

≤ −1

2
Φ′′(ξi,j + ν+

i,j(t))β
2t−2αvj(γt)

2 j2

γ2t2

− 1

2
Φ′′(ξi,j + ν−i,j(t))β

2t−2αvj(γt)
2 j2

γ2t2

≤ −1

2
Φ′′(ξi,j + ν+

i,j(t))β
2t−2αvj(γt)

j2

γ2t2

− 1

2
Φ′′(ξi,j + ν−i,j(t))β

2t−2αvj(γt)
j2

γ2t2
.

≤ CΦ′(ξi,j)β
2t−2αvj(γt)

j2

γ2t2
.

Again wee have used the wave profile estimate from corollary 4.6 in the last line. Now
we can add the two parts of the residual

Jheat + Jnl ≤ −Φ′(ξi,j)βt
−αvj(γt)

(
1

4γt
+
γ − 1

10

j2

γ2t2

)
− 1

2
Φ′′(ξi,j + ν+

i,j(t))β
2t−2αvj(γt)

j2

γ2t2

− 1

2
Φ′′(ξi,j + ν−i,j(t))β

2t−2αvj(γt)
j2

γ2t2

≤ −Φ′(ξi,j)βt
−αvj(γt)

(
1

4γt
+
γ − 1

10

j2

γ2t2
− Cβt−α j2

γ2t2

)
≤ −Φ′(ξi,j)βt

−αvj(γt)

(
1

4γt
+

j2

γ2t2

(
γ − 1

10
− βC

))
,

where we have also used that t−α < 1 since α � 1 in the last line. It remains to show
that

j2

γ2t2

(
γ − 1

10
− βC

)
≥ 0.

Therefore, we have to find a γ such that

γ − 1

10
− βC ≥ 0,

motivating the choice γ ≥ 10βC + 1.

Proposition 4.11. For 3 ≤ t ≤ j we find Jheat + Jnl is negative for

γ ≥ 10βC + 1.
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Proof. We follow the same steps as in the previous proposition. We fill in the estimate
of v′j(γt) we found in lemma 3.12 in Jheat

Jheat = −Φ′(ξi,j)βt
−α(vj(γt)

(
1

4γt

)
+ v′j(γt)(γ − 1)

)
≤ −Φ′(ξi,j)βt

−αvj(γt)

(
1

4γt
+
γ − 1

5

j

γt

)
.

Likewise we insert the estimate of |vj±1(γt)− vj(γt)| from lemma 3.15 and use lemma 3.6
in Jnl. Again we use that t−α < 1 and C from corollary 4.6 to

Jnl = −1

2
Φ′′(ξi,j + ν+

i,j(t))β
2t−2α(vj+1(γt)− vj(γt))2

− 1

2
Φ′′(ξi,j + ν−i,j(t))β

2t−2α(vj−1(γt)− vj(γt))2

≤ −1

2
Φ′′(ξi,j + ν+

i,j(t))β
2t−2α

(
13

8

j

γt
vj(γt)

)2

− 1

2
Φ′′(ξi,j + ν−i,j(t))β

2t−2α

(
13

8

j

γt
vj(γt)

)2

.

≤ CΦ′(ξi,j)βt
−α
(
βt−α

169

64

1√
2
e−

1
4
j

γt
vj(γt)

)
.

Now we can add the two parts of the residual

Jheat + Jnl ≤ −Φ′(ξi,j)βt
−αvj(γt)

(
1

4γt
+
γ − 1

5

j

γt

)
− 1

2
Φ′′(ξi,j + ν+

i,j(t))βt
−αvj(γt)

j

γt

(
β

1√
2
e−

1
4

169

64

)
− 1

2
Φ′′(ξi,j + ν−i,j(t))βt

−αvj(γt)
j

γt

(
β

1√
2
e−

1
4

169

64

)
≤ −Φ′(ξi,j)βt

−αvj(γt)

(
1

4γt
+

(
j

γt

(
γ − 1

5
− β 1√

2
e−

1
4C

169

64

))
.

Therefore the residual is negative if

γ − 1

5
+ β

1√
2
e−

1
4C

169

64
≥ 0,

which gives

γ ≥ 5βC
1√
2
e−

1
4

169

64
+ 1.

We choose γ ≥ 10βC as we may, since 1√
2
e−

1
4 ≈ 0.55 and 169

64
≈ 3.58.

Each of the four propositions give us a choice for γ such that the respective residual is
negative. By taking the maximum of the four results for γ

max
γ
{ 9

16
βC, 4βC +

1

8
, 10βC + 1, 10βC + 1} = 10βC + 1,
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we can establish global negativity of the residual in the subsolution case. Note that we
have implicitly used lemma 4.2 for our definition of the nonlinear residual from proposition
4.3. Therefore, we also have to ensure that γ ≥ γ∗ with γ∗ the respective threshold value
found in lemma 4.2. The explicit subsolution becomes

u−i,j(t) = Φ(i+ ct− θj(t)− Z(t))− z(t)

with transversal dependence

θj(t) = βt−
1
4γ
√
γte−2γtIj(2γt).

For completeness we formulate the analogous supersolution

u+
i,j(t) = Φ(i+ ct+ θj(t) + Z(t)) + z(t).

We have completely determined the constants now as we will see in the next section how
β depends on the initial condition and C depends on the travelling wave Φ associated
with the wave speed c > 0.
It remains to precisely determine the external functions z and Z and ensure negativity
of Jglobal, because then the residual J = Jnl + Jheat + Jglobal is ensured to be negative and
the subsolution is a valid subsolution.
Reconsider Jglobal from 4.6. In section 2.1 we have seen the calculation of the residual in
the continuous case for θj ≡ 0. We have seen that z is exponentially decaying and Z is its
integral multiplied by a constant. We make the same choices for the external functions
up to a shift by 3

z(t) = εzhom(t) = εe−ηz(t−3), z′(t) = −εηze−ηz(t−3)

such that Z(t) becomes

Z(t) = KZ

∫ t−3

0

z(s)ds = KZε

(
− 1

ηz
e−ηz(t−3) +

1

ηz

)
, Z ′(t) = KZεe

−ηz(t−3) = KZz(t).

The shift by 3 is related to lemma 3.15, where we had to consider 3 ≤ t ≤ j for the
estimate. For our stability result given in theorem 1.1, we have to shift the starting time
of the subsolution to t = 3 due to lemma 3.15. In the proof we want to use that z(0) = ε,
therefore we need to shift z as well. Shifting the starting point is not a problem here,
because we are interested in large perturbations. The global residual Jglobal deserves its
name, for it lacks dependency on local coordinates. In particular, Jglobal is independent
of θj(t), which implies that Jglobal is independent of the initial condition β determining γ
and α. Therefore, we drop the local coordinates in the travelling wave constant and write
ξij = ξ in the following lemma.

Lemma 4.12. For ηz > 0 and ε > 0 both sufficiently small and KZ sufficiently large, the
global residual expression

Jglobal = −z′(t)− Z ′(t)Φ′(ξ) + g(Φ(ξ))− g(Φ(ξ)− z(t))

is negative for our choices of z and Z for all ξ ∈ R and t ≥ 3.
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Proof. The function z(t) = εe−ηz(t−3) is positive everywhere and we use that Z ′(t) =
KZz(t). The mean value theorem applied to the smooth function g on the interval [Φ(ξ)−
z(t),Φ(ξ)] gives that there must be a µ ∈ (0, 1) such that

g(Φ(ξ)− g(Φ(ξ)− z(t)) = g′(Φ(ξ) + µz(t)))(Φ(ξ)− (Φ(ξ)− z(t))

= g′(Φ(ξ) + µz(t)))z(t).

The global residual becomes

Jglobal = −z′(t)−KZz(t)Φ′(ξ) + z(t)g′(Φ(ξ) + µz(t))).

We follow the proof of lemma 5.29 from [1]. In order to keep the residual Jglobal negative,
it suffices to show that we can choose KZ > 1 and 0 < ηz < 1 such that for all ξ ∈ R

−z′(t)−KZz(t)Φ′(ξ) + g′(Φ(ξ) + µz(t))z(t) ≤ 0.

Using the derivative z′(t) = −ηzz(t) we can rewrite the last inequality as

ηzz(t)−KZz(t)Φ′(ξ) + g′(Φ(ξ + µz(t))z(t) ≤ 0

ηz −KZΦ′(ξ) + g′(Φ(ξ) + µz(t)) ≤ 0

−KZΦ′(ξ) + g′(Φ(ξ) + µz(t)) ≤ −ηz. (4.31)

In section 2.2 we have seen the bounded derivative of g

g′(u) = −3u2 + 2(a+ 1)u− a,
which is depicted in Fig. 2.1. It is negative for u close to 0 and 1 and positive in the
middle part. In order to formalize the regions seperated by the sign of g′, choose α > 0
and ηz > 0 such that y ≥ 1− α implies g′(y) ≤ −ηz and y ≤ α also implies g′(y) ≤ −ηz
Furthermore, we use that we have seen that Φ′ > 0 everywhere in the proof of proposition
4.5 so −KZΦ′(ξ) < 0. We remark that |z| ≤ ε follows directly from the definition of z(t).
We pick L large enough and ε small enough such that

For ξ ≥ +L and |z| ≤ ε : Φ(ξ + z) ≥ 1− α
For ξ ≤ −L and |z| ≤ ε : Φ(ξ + z) ≤ α.

In the first case, |ξ| ≥ L and |z(t)| ≤ ε for all t ∈ R. Hence we may conclude

g′(Φ(ξ) + µz(t)) ≤ −ηz ≤ −ηz +KZΦ′(ξ)

and (4.31) follows.
We turn to the second case. The function Φ′ is positive, so there is a κ > 0 such that

Φ′(ξ + z) > κ

for |ξ| ≤ L and |z(t)| ≤ ε for all t ∈ R. Now choose KZ > 0 large enough to ensure

κKZ ≥ ηz + ‖g‖∞.
We may conclude (4.31)

−KZΦ′(ξ) + g′(Φ(ξ) + µz) ≤ −ηz − ‖g‖∞ + g′(Φ(ξ) + µz) ≤ −ηz.
Thus (4.31) follows for all ξ ∈ R and t ≥ 3 and the lemma is proven.

In particular, we may conclude that the residual of the subsolution is negative and
u−i,j(t) is a valid subsolution for t ≥ 3.
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4.5. Stability of the Horizontal Travelling Wave

We want to prove stability of the solutions of 4.2 and prove theorem 1.1 under use of
the preparation from chapter 3 and the previous sections of chapter 4. In lemma 3.15 we
took t ≥ 3 for the estimate, that is why we have to partially shift the subsolution and
define

w−i,j(t) = Φ(i+ ct− θj(t+ 3)− Z(t+ 3))− z(t+ 3)

to be able to start at t = 0. Note that w−i,j is a valid subsolution, because u−i,j is and the
computations of the previous subsections also hold for the wave profile Φ shifted by −3c.

Proof of Theorem 1.1. Let δ > 0. We want to show that

lim inf
t→∞

inf
(i,j)∈Z2

(Ui,j(t)− Φ(i+ ct)) ≥ −δ. (4.32)

We take ε > 0 from z(0) = ε such that

εKZ
1

ηz
‖Φ′‖∞ ≤ δ.

We know that Φ′ is bounded from proposition 4.5. From the initial condition 1.12, we
know that there exists a finite set S depending on ε such that on Z2 \ S

|Ui,j(0)− Φ(i)| ≤ ε.

We want to prove the following claim

w−i,j(0) ≤ Ui,j(0) (4.33)

for all choices (i, j) ∈ Z2.
First, we prove (4.33) on Z2 \ S. We note that with our choice of Z and z

w−i,j(0) = Φ(i− θj(3)− Z(3))− z(3) = Φ(i− θj(3))− ε.

We can use that θj is a positive function and Φ is an increasing function as seen in
proposition 4.5 to conclude

w−i,j(0) = Φ(i− θj(3))− ε ≤ Φ(i)− ε ≤ Ui,j.

Secondly, we prove (4.33) on S. Let L denote the maximal diameter of the set S. Then
|i|, |j| ≤ L. Choose Ωphase in such a way that

Φ(i− Ωphase)− ε ≤ Ui,j(0).

In addition, choose γmin such that

L ≤
√

3γmin.

By lemma 3.5 there is a 0 < C ′ < 1 such that

vj(t) ≥ C
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for all 0 ≤ j ≤
√
t. But then for all |j| ≤ L and γ ≥ γmin we have

θj(3) = β3−
1
4γ vj(3γ) ≥ β

3
C ′.

Now we pick β so that β
3
C = Ωphase. This is the link between the imposed initial condition

and the modifying constant β in θj(t). Furthermore, ensure that γ ≥ 10βC + 1 as seen
in the previous section and in the light of lemma 4.2 ensure that γ ≥ {γ∗(β), γmin}. It
follows that

w−i,j(0) = Φ(i− θj(3))− ε ≤ Φ(i− Ωphase)− ε ≤ Ui,j(0).

In conclusion, we have w−i,j(0) ≤ Ui,j(0) on the whole lattice. By the comparison principle
given in theorem A.12 with w−i,j the subsolution and Ui,j the supersolution, we know that

w−i,j(t) ≤ Ui,j(t)

holds on the whole lattice. We calculate the limit

lim
t→∞

sup
(i,j)∈Z2

(w−i,j(t)− Φ(i+ ct− Z(t))

= lim
t→∞

sup
(i,j)∈Z2

(Φ(i+ c(t+ 3)− θj(t+ 3)− Z(t+ 3))− z(t+ 3)− Φ(i+ ct− Z(t))

We apply the mean value theorem on Φ. There must be a µ ∈ (0, 1) such that

= lim
t→∞

sup
(i,j)∈Z2

(Z(t+ 3)− Z(t) + θj(t+ 3))Φ′(i+ ct+ µ(Z(t+ 3)− Z(t) + θj(t+ 3)))

= lim
t→∞

sup
(i,j)∈Z2

(Z(t+ 3)− Z(t) + θj(t+ 3))‖Φ′‖∞ − z(t+ 3))

= ‖Φ′‖∞ lim
t→∞

sup
(i,j)∈Z2

θj(t+ 3) + ‖Φ′‖∞ lim
t→∞

(Z(t+ 3)− Z(t))− ε lim
t→∞

e−ηzt)

= 0,

where we have used the definition of Z, ηz > 0, the boundedness of ‖Φ′‖∞ shown in
proposition 4.5 and the limit of θj(t) as shown in lemma 4.1. Furthermore, we calculate

|Φ(i+ ct)− Φ(i+ ct− Z(t))|
≤ ‖Φ′‖∞|Z(t)|

≤ ‖Φ′‖∞
∣∣∣∣KZε

(
1

ηz
e−ηzt+

1
ηz

)∣∣∣∣
≤ ‖Φ′‖∞

KZ

ηz
ε ≤ δ.
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Now we use these limits to show (4.32)

lim inf
t→∞

inf
(i,j)∈Z2

(Ui,j(t)− Φ(i+ ct))

≥ lim inf
t→∞

inf
(i,j)∈Z2

(w−i,j(t)− Φ(i+ ct))

= lim inf
t→∞

inf
(i,j)∈Z2

(w−i,j(t)− Φ(i+ ct− Z(t)) + Φ(i+ ct− Z(t))− Φ(i+ ct))

= lim inf
t→∞

inf
(i,j)∈Z2

(w−i,j(t)− Φ(i+ ct− Z(t))) + lim inf
t→∞

inf
(i,j)∈Z2

(Φ(i+ ct− Z(t))− Φ(i+ ct))

= lim
t→∞

inf
(i,j)∈Z2

(w−i,j(t)− Φ(i+ ct− Z(t))) + lim inf
t→∞

inf
(i,j)∈Z2

(Φ(i+ ct− Z(t))− Φ(i+ ct))

≥ lim
t→∞

sup
(i,j)∈Z2

(w−i,j(t)− Φ(i+ ct− Z(t)))− δ = −δ.

Now
lim sup
t→∞

sup
(i,j)∈Z2

(Ui,j(t)− Φ(i+ ct)) ≤ δ

follows by symmetry under use of the shifted supersolution w+
i,j(t) = u+

i,j(t + 3). We can
use the same set S to find Ωphase and Ω to let

w+
i,j(0) ≥ Ui,j(0)

hold on the whole lattice. The function Ui,j is a subsolution w.r.t. w+
i,j(t), so we can

apply the comparison principle again to get

w+
i,j(t) ≥ Ui,j(t)

for t ≥ 0 on the whole lattice. The calculations get the same result, because the sign
changes do not affect the calculation. Therefore we can calculate the limit as

lim sup
t→∞

sup
(i,j)∈Z2

(Ui,j(t)− Φ(i+ ct))

≤ lim sup
t→∞

sup
(i,j)∈Z2

(w+
i,j(t)− Φ(i+ ct))

= lim sup
t→∞

sup
(i,j)∈Z2

(w+
i,j(t)− Φ(i+ ct+ Z(t)) + Φ(i+ ct+ Z(t))− Φ(i+ ct))

= lim
t→∞

sup
(i,j)∈Z2

(w+
i,j(t)− Φ(i+ ct+ Z(t))) + lim sup

t→∞
sup

(i,j)∈Z2

(Φ(i+ ct+ Z(t))− Φ(i+ ct))

≤ δ.

Now we can take the absolute value of the difference Ui,j(t)− Φ(i+ ct) implying

lim sup
t→∞

sup
(i,j)∈Z2

|Ui,j(t)− Φ(i+ ct)| ≤ δ

for the supersolution and

lim inf
t→∞

sup
(i,j)∈Z2

|Ui,j(t)− Φ(i+ ct)| ≤ δ
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for the subsolution. Both limits together imply that

lim
t→∞

sup
(i,j)∈Z2

|Ui,j(t)− Φ(i+ ct)| ≤ δ.

Finally, we can let δ → 0 and the theorem is proven.
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A. Appendix

The first part of the appendix contains lemmas for the estimates. We frequently need
smaller estimates for functions of j

t
in the calculations. Therefore we prove the following

preliminary lemmas first.

Lemma A.1. For x ≥ 0 the following inequality holds

√
1 + x2 ≥ 1 +

x2

2
− x4

8
. (A.1)

Proof. The function
√

1 + x2 is positive everywhere. Therefore, it suffices to prove the
lemma for the positive part of 1 + x2

2
− x4

8
. The latter function is positive on the interval

[−
√

2(1 +
√

3),
√

2(1 +
√

3)], as

1 +
x2

2
− x4

8
= 0

has solutions x = ±
√

2(1 +
√

3) and the function is 1 for x = 0.

The proof is completed if the quadrate of the claim holds, i.e.

1 + x2 ≥
(

1 +
x2

2
− x4

8

)2

= 1 + x2 − x6

8
+
x8

64
.

The inequality clearly holds, because

−x
6

8
+
x8

64
≤ 0 ⇐⇒ x2 ≤ 8

clearly holds for x ∈ [−
√

2(1 +
√

3),
√

2(1 +
√

3)], since
√

2(1 +
√

3) ≈ 5.46.

Lemma A.2. For x ≥ −1 we have the following inequality

√
1 + x ≤ 1 +

1

2
x.

Proof. The functions
√

1 + x and 1 + 1
2
x intersect only in 0. We take the derivative on

both sides of the inequality
1

2
√

1 + x
≤ 1

2
.

Since 1√
1+x
≤ 1 we see that the last inequality is true, so the function on the left hand

side always stays below the one on the right.
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Lemma A.3. For x > 0 we have the following inequality

√
1 + x2 ≤ x+

1

2x
. (A.2)

Proof. The functions on both sides of the inequality are positive for positive x. Therefore
the claim is proven if the quadrated inequality holds. Upon quadatrating both sides we
get

1 + x2 ≤
(
x+

1

2x

)2

= x2 + 1 +
1

4x2
,

which holds, because for positive x

0 ≤ 1

4x2
.

Lemma A.4. For x ∈ R we have the following inequality

ln(1 + x+
1

2
x2) ≤ x+

1

2
x2.

Proof. The functions ln(1 + x + 1
2
x2) and x + 1

2
x2 intersect only in 0 and −2. We take

the derivative on both sides of the inequality

1 + x

1 + x+ 1
2
x2
≤ 1 + x. (A.3)

Clearly, 1
1+x+ 1

2
x2
≤ 1 for real x. Therefore (A.3) is true, so the function on the left hand

side always stays below the one on the right.

Lemma A.5. For −4
3
≤ x ≤ 4

3
we have the following inequality

√
1 + x2 ≥ 1 +

3

8
x2.

Proof. We calculate the intersections of the functions
√

1 + x2 and 1 + 3
8
x2

√
1 + x2 = 1 +

3

8
x2

1 + x2 = 1 +
3

4
x2 +

9

64
x4

9

64
x4 − 1

4
x2 = 0

x = ∓4

3
and x = 0.

Due to symmetry it suffices to check the inequality for a positive value smaller than 4
3
.

For x = 1
2

we indeed find that the inequality holds as
√

5
2
≈ 1.12 and

√
5

2
≥ 35

32
≈ 1.09.
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Lemma A.6. For x ≥ 0 we have the following inequality

ln(1 + x) ≥ x− 1

2
x2.

Proof. The functions ln(1 + x) and x − 1
2
x2 intersect only in 0. Therefore it suffices to

show the inequality for any positive value of x. For convenience we take x = 1 and find
that indeed

1

2
≤ ln(2).

Lemma A.7. For x ≥ 0 we have the following inequality

√
1 + x2 ≤ 1 + x.

Proof. We only consider nonnegative values of x, therefore it suffices to show the squared
inequality

1 + x2 ≤ 1 + 2x+ x2,

which is trivially true for x ≥ 0.

In the second part we show formulations of two theorems taken from [12].

Theorem A.8. The following two-sided bounds hold for the function aj(t) =
tI′j(t)
Ij(t)

− t2

2(t2 + j2)
3
2

< aj(t)−
√
t2 + j2 +

t2

2(t2 + j2)
<

t2

2(t2 + j2)
3
2

,

where the upper bound holds for all t > 0 and j ≥ 0 and the lower bound holds on the set

{(t, j) : t > 0, j ≥ 1

2
}
⋃
{(t, j) : t > 0, j ≥ 0,

√
j2 + t2 ≥

√
7 + 2

3
}.

Theorem A.9. The following two-sided bound hold for the modified Bessel functions
Ij(t)

e
− 1

2
√
t2+j2 ≤ Ij(t)

√
2π(t2 + j2)

1
4 e
−(
√
t2+j2+jln( t

j+
√
t2+j2

)) ≤ e
1

2
√
t2+j2 ,

where the upper bound holds for all t > 0 and j ≥ 0 and the lower bound holds on the set

{(t, j) : t > 0, j ≥ 1

2
}
⋃
{(t, j) : t > 0, j ≥ 0,

√
j2 + t2 ≥

√
7 + 2

3
}.

We also need the definition of the modified Bessel function and some of its properties
taken from [15].
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Definition A.10. The modified Bessel function of the first kind is given by

Ij(t) =
1

π

∫ π

0

et cos(ω) cos(jω)dω − sin(jπ)

π

∫ ∞
0

e−t cosh(t)−jtdt.

For whole j we note that the factor sin(jπ)
π

is zero, so the expression becomes

Ij(t) =
1

π

∫ π

0

et cos(ω) cos(jω)dω.

In this thesis we make use of the following properties of the modified Bessel function of
the first kind

2I ′j(t) = Ij+1(t) + Ij−1(t).

0 < Ij < Ij+1.

Furthermore, we need to define discrete Fourier transformation taken from [16].

Definition A.11. The discrete Fourier transformation is given by

(θj(t))j ∈ l2(R) ⇐⇒ θ̂ω(t) ∈ L2
per[−π, π]

and takes the form

θj(t) =

∫ π

−π
eiωj θ̂ω(t)dω.

Lastly, we need the comparison principle as seen in [1] (proposition 3.1). We formulate
the comparison principle on the lattice in the absence of an obstacle first.

Theorem A.12. If u− is a subsolution, i.e.

u̇−ij(t) ≤ ∆+u−i,j(t) + g(u−i,j(t))

and u+
i,j is a supersolution i.e.

u̇+
ij(t) ≥ ∆+u+

i,j(t) + g(u+
i,j(t)),

and
u−i,j(0) ≤ u+

i,j(0)

holds on the whole lattice, then

u−i,j(t) ≤ u+
i,j(t) for all t ≥ 0

also holds on the whole lattice.

The comparison principle in the presence of an obstacle becomes
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Theorem A.13. Remove any obstacle K ⊂ Z2 from the lattice. Take a pair of functions
u, v ∈ C1([0,∞), l∞(Λ,R) that satisfy the initial inequality

ui,j(0) ≥ vij(0).

Suppose furthermore that for any value of t ≥ 0 and all (i, j) ∈ Λ at least one of the
following properties is satisfied.
(a) The differental inequalities

u̇ij(t) ≥ ∆Λui,j(t) + g(ui,j(t)) and v̇ij(t) ≤ ∆Λv
+
ij(t) + g(v+

ij(t))

hold for t or
(b) we have the inequality ui,j(t) ≥ vij(t).
then we in fact have

u−(t) ≤ u+(t) for all t ≥ 0

for all t ≥ 0 on the whole of Λ.
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Populaire Samenvatting

Wij willen de volgende partiële differentiaalvergelijking op het rooster bekijken

ut = ∆u+ u(u− a)(1− u), (A.4)

waarbij we de constante 0 < a < 1 vastleggen. Laat g(u) = u(u − a)(1 − u). De
vergelijking (A.4) op een continue en eindig dimensionale ruimte is een voorbeeld van
een reactie-diffusie-vergelijking. Hierbij zorgt de term ∆u voor de diffusie, dat wil zeggen
voor de verspreiding in de ruimte. De term g(u) modelleert een reactie. Wij kunnen ook
andere functies in u kiezen, belangrijk is dat er nulpunten zijn, hier zijn dat u = 0, u = a
en u = 1, die evenwichten zijn van (A.4). De benoeming reactie-diffusie-vergelijking
geeft al weg, dat er legio toepassingen zijn. In feite is (A.4) zelfs het prototype voor de
modellering van bijvoorbeeld scheikundige reacties, populatiemodellen of modellen voor
de verspreiding van ziektes.
Maar niet elke ruimte waarop processen moeten worden gesimuleerd, heeft een continue
structuur. Denk bijvoorbeeld aan kristallen of pixels op een scherm. Daarom willen wij
(A.4) graag vertalen naar de discrete ruimte en dan naar oplossingen kijken. Uiteindelijk
zijn we in deze scriptie gëınteresseerd in de stabiliteit van oplossingen van het discrete
analoog van (A.4) op het rooster Z2. Eerst moeten wij een goede definitie zien te vinden.
Het rooster Z2 is te zien in Fig. A.1. In tegenstelling tot de continue ruimte R2 maakt het
uit vanuit welke richting wij naar het rooster kijken. Wij gaan zien dat dit consequenties
voor de existentie en stabiliteit van oplossingen heeft. Laat u een functie zijn op het
rooster. Dan is u goed gedefinieerd als wij aan elk roosterpunt (i, j) voor elk tijdstip t
een reële waarde toewijzen, dit geeft ui,j(t) ∈ R oftewel

u : Z2 × R→ R.

Omdat wij de tijd dus wel continu laten verlopen, is de vertaling van de tijdsafgeleide
ut in (A.4) geen probleem. Maar voor de vertaling van de diffusieterm ∆u moeten wij
een definitie voor de discrete tweede afgeleide vinden. Wij herinneren ons aan de formele
definitie van de eerste afgeleide van een gladde functie f : R→ R

f ′(x) =
f(x+ h)− f(x)

h
als h→ 0.

Wij bekijken dus twee waarden f(x) en f(x+h) gedeeld door hun afstand h en laten dan
de afstand naar 0 gaan.
Wij willen de afgeleide van u ook op het rooster associëren met de afstanden tussen ui,j
en zijn buren. De afstand tussen twee roosterpunten is 1. De tweede afgeleide wordt een
som van verschillen van verschillen van ui,j met zijn vier buurpunten

(ui+1,j−ui,j)−(ui,j−ui−1,j)+(ui,j+1−ui,j)−(ui,j−ui,j−1) = ui+1,j+ui−1,j+ui,j+1+ui,j−1−4ui,j.
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Figure A.1.: Lattice with direction denoted by θ
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Figure A.2.: The wave profile Φ
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Wij hebben het discrete analoog [∆+u]i,j van ∆u gevonden en daarmee het analoog van
(A.4), de zogenoemde lattice differential equation (LDE)

u̇i,j = [∆+u]i,j + g(ui,j). (A.5)

Merk in het bijzonder op dat de definitie afhangt van de coördinaten (i, j), want dit heeft
consequenties voor onze berekeningen en voor het karakter van oplossingen.
Om (A.5) te bestuderen, willen we zoveel mogelijk informatie over (A.4) gebruiken, want
dit is een geval die wij goed begrijpen. Wij passen de Ansatz van een lopende golf toe
op (A.4) op R2 :

u(x, y, t) = Φ(σhx+ σvy + ct).

Hierbij is c > 0 de snelheid van de golf en (σh, σv) een richting op het vlak met σ2
h+σ2

v = 1.
Wij bekijken (A.4) in Φ = Φ(σhx+ σvy + ct)

cΦ′ = (σ2
h + σ2

v)Φ
′′ + g(Φ) = Φ′′ + g(Φ).

Merk op dat de richting (σh, σv) uit de vergelijking is verdwenen. Dit is een gewone
differentiaalvergelijking, die we expliciet kunnen oplossen, voor ξ = σhx+ σvy + ct

Φ(ξ) =
1

2
+

1

2
tanh

(
1

2
√

2
ξ

)
. (A.6)

Dit geeft reeds existentie en uniciteit van lopende golven. De grafiek van Φ zien we in
Fig. 1.3.
Daarom willen wij de Ansatz van een lopende golf ook voor (A.5) gebruiken. Op Z2

wordt dit
ui,j(t) = Φ(σhi+ σvj + ct)

en (A.5) met σhi+ σvj + ct = ξij wordt

cΦ′(ξi,j) = Φ(ξi+1,j) + Φ(ξi−1,j) + Φ(ξi,j+1) + Φ(ξi,j−1)− 4Φ(ξi,j) + g(Φ(ξi,j)).

Dit is een ander type vergelijking, omdat er naast een tijdsafgeleide ook lokale verschillen
in zitten. Daarnaast raken wij de richtingsafhankelijkheid niet kwijt. Dit maakt exis-
tentie en uniciteit van oplossingen voor (A.5) voor alle richtingen (σh, σv) moeilijker te
bewijzen, maar dit is wel al gedaan.
Daarom kunnen we ons concentreren op de stabiliteit van de lopende golven onder grote
lokale verstoringen. Specifieker willen wij het volgende bewijzen. Elke oplossing van
(A.5) tussen 0 en 1, wiens beginwaarde voor ver weg gelegen roosterpunten op t = 0 naar
die van Φ op t = 0 convergeert, convergeert op den duur op het hele rooster naar Φ.
Wij maken hiervoor gebruik van het vergelijkingsprincipe. Wij noemen u−i,j een ondero-
plossing en u+

i,j een bovenoplossing als

u̇−ij(t) ≤ [∆+u]−i,j(t) + g(u−i,j(t)) en u̇+
ij(t) ≥ [∆+u]+i,j(t) + g(u+

i,j(t)).

Het vergelijkingsprincipe zegt dat als u−i,j onder u+
i,j blijft op tijdstip t = 0 dan geldt

dit ook voor alle tijdstippen t. Hiervoor moeten we dus wel een onderoplossing en een
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bovenoplossing vinden. Gelukkig kunnen wij hen alleen in teken laten verschillen en het
is voldoende om één van die twee te vinden. Wij concentreren ons op het vinden van een
onderoplossing, die zo groot mogelijke verstoringen op kan vangen.
Wij leggen de richting op het rooster vast en concentreren ons op de horizontale richting
(σh, σv) = (1, 0). We geven de hoofdstelling van deze scriptie, de stelling over de stabiliteit
van golven nog een keer formeel voor (1, 0).

Theorem A.14. Als U : [0,∞)→ l∞(Z2,R) een differentieerbare oplossing is van (A.5)
voor alle t ≥ 0 en

|Ui,j(0)− Φ(i)| → 0 as |i|+ |j| → ∞,

waarbij 0 ≤ Ui,j(0) ≤ 1, dan hebben wij de uniforme convergentie

sup
(i,j)∈Z2

|Ui,j(t)− Φ(i+ ct)| → 0 for t→∞.

De resonantie met het rooster in de horizontale richting is samen met de verticale
richting het sterkst, dit betekent dat wij met de hoogst mogelijke frequentie roosterpunten
tegenkomen in deze richting. Bovendien vallen veel complicaties weg met σv = 0. Het
voordeel is dat wij sterke en directe afschattingen kunnen maken voor de constructie van
de onderoplossing. We willen dus een u−ij vinden zodat de restterm van (A.5)

J = u̇−ij(t)− [∆+u]−i,j(t)− g(u−i,j(t))

negatief is. Om dit te bewerkstelligen kijken wij opnieuw naar (A.4), waar wij stabiliteit
van de lopende golf met de continue versie van het vergelijkingsprincipe kunnen aantonen.
De continue onderoplossing is een modificatie van de lopende golf gegeven door

u−(x, y, t) = Φ(x+ ct− θ(y, t)− Z(t))− z(t),

waarbij wij de functies θ(y, t), z(t) en Z(t) moeten bepalen. Het blijkt dat het nuttig is
om de restterm op te splitsen in drie delen, die wij vervolgens apart gaan bekijken

Jglobal = −z′(t)− Z ′(t)Φ′(ξ(t)) + g(Φ(ξ))− g(Φ(ξ)− z(t)),

Jnl = −Φ′′(ξ(t))θy(y, t)
2,

Jheat = −Φ′(ξ(t))(θyy(y, t)− θt(y, t)).

Het globale gedeelte hangt alleen af van z(t) en Z(t), daarom kunnen wij Jglobal negatief
houden door z(t) en Z(t) goed te bepalen. Voor de andere twee gedeeltes willen wij
gebruik maken van wat we al weten van Φ uit (A.6). We kunnen de afgeleides Φ′ en Φ′′

rechtstreeks gaan bepalen en het blijkt dat Φ′ positief is, maar, dat Φ′′ geen globaal teken
heeft. Daarom willen wij de term

θyy(y, t)− θt(y, t)

zo positief mogelijk praten om de absolute waarde van het niet-lineaire gedeelte van de
restterm Jnl te kunnen domineren met Jheat.
Daarom is het zaak om goed naar de restterm van de warmtevergelijking in θ(y, t) te
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kijken. Nadat wij θ(y, t) goed hebben bepaald, is de onderoplossing gevonden.
Wij maken gebruik van het continue geval om de discrete onderoplossing

u−i,j(t) = Φ(i+ ct− θj(t)− Z(t))− z(t)

te vinden. Merk op dat de functie θj(t) ook hier als enige een transversale afhankelijkheid
heeft, in het continue geval is dat de y−as en in het discrete geval de j−coördinaat. Met
een beetje meer moeite en voorbereiding vinden wij analoge resttermen. Hier geven wij
alleen de twee meest interessante delen van de restterm

Jnl = −1

2
Φ′′(ξi,j(t) + ν+

i,j(t))(θj − θj+1)2 − 1

2
Φ′′(ξi,j(t) + ν−i,j(t))(θj − θj−1)2

Jheat = Φ′(ξi,j(t))(θj+1(t) + θj−1(t)− 2θj(t)− θ′j(t)).

Wij kunnen bewijzen dat de discrete lopende golf Φ = Φ(ξij(t)) hetzelfde gedrag vertoont
als de analoge continue lopende golf. Daarom willen wij hetzelfde principe gebruiken als
hierboven en de term

θj+1(t) + θj−1(t)− 2θj(t)− θ′j(t)

zo positief mogelijk praten om uiteindelijk Jnl met Jheat te domineren. Maar de oplossing
van de discrete warmtevergelijking is niet zo makkelijk te modificeren als die van de
continue warmtevergelijking. Wij krijgen te maken met de gemodificeerde Besselfuncties
van de eerste orde en moeten afschattingen vinden voor zowel de afgeleide θ′j(t) als van
de verschillen θj±1(t)− θj(t) voor de oplossing van de discrete warmtevergelijking.
Een groot deel van deze scriptie is gewijd aan het vinden van deze afschattingen. Telkens
moeten wij de afschattingen in vier aparte gevallen, afhankelijk van de verhouding tussen
tijd t en de transversale richting in de ruimte j, bekijken. Daarna bewijzen wij θj(t)
zo kunnen modificeren, dat de restterm negatief wordt. Daarmee is de onderoplossing
gevonden en kunnen wij het bewijs van de hoofdstelling voor de stabiliteit van de lopende
golven Φ voltooien.
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