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Abstract

One of the major goals in cosmology is explaining the acceleration of the expansion of
the universe. To do this, we examine a theory of modified gravity. We look at the

covariant Galileon Lagrangian class of models, and model the Effective Field Theory
functions for a choice of test parameters by using the tracking solution for the scalar
field on which the Galileon Lagragian is based. Next we examine the stability of the
theory for a range of values for the tracking parameter by checking for the positivity
of the kinetic term and by checking for which parameter sets the speed of sound of
the scalar field does not turn imaginary. These checks gave us reasonable parameter
spaces, but the exact values which our main reference [1] gives were not included in

the space, however, with error bars they are.
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Chapter 1
Introduction

General relativity was introduced by Albert Einstein in 1915, in his paper ’The foun-
dation of general relavity’, in which he describes a new way of looking at gravity and
the equation that would govern it, named after him: the Einstein equation. Initially,
Einstein believed his equation could not be solved analytically, but this was quickly
disproven by Karl Schwarzshield. He gave the solution to the Einstein equation in
the case of a spherically symmetric universe around a massive object. Soon, others
followed with exact solutions to the Einstein equation.

In 1922, Russian physicist Alexander Friedmann introduced the first non-static solu-
tions to Einsteins equation of general relativity. In his paper, he analyses three differ-
ent scenarios in which the universe either expands monotonically, which covers two
of the scenarios, or is periodic. His papers were initially ignored and Einstein deemed
his results to be without physical meaning [2]. In contrast, Einstein had assumed that
our universe had to be static, and thus was only looking for static solutions. In order
to preserve this static behaviour of the universe, Einstein had added the cosmologi-
cal constant λ to his equations, which could be used to compensate for any force that
would cause the universe to expand or contract. This was only a mathematical trick,
and not without consequences. Einsteins static solution was very unstable, and any
perturbation would cause the universe to start expanding or contracting. Even with
this in mind, Einstein held on to his belief for over eight years, until new evidence
appeared.

It was Edwin Hubble in 1929 who was able to give proof that our universe was, in
fact, expanding. He observed distant galaxies and found that they were moving away
from us. Upon reading this, Einstein erased the cosmological constant from his equa-
tion and called it ’his biggest blunder’.

Nevertheless, the need for cosmological constant arose again after it became clear that
the expansion of the universe has been accelerating, and it has been doing so since
about 5 or 6 billion years after the Big Bang. The Einstein equation however, predicts
that the expansion should slow down, since the force of gravity is supposed to take
over. Now the cosmological constant was used to explain this phenomenon, rather
than to keep the universe static. The physical interpretation is that it represents a mys-
terious force called dark energy, which is speeding up the expansion. Naturally, not
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8 Introduction

all physicists are satisfied with this explanation. No one knows what dark energy is
exactly and where it comes from, thus various groups have been searching for alter-
native theories, or theories that explain what dark energy is.

In this research, we will be looking at one the theories of modified gravity. These the-
ories, as the name implies, modify the theory of gravity in order to explain the accel-
erated expansion. In particular, we will be studying the theory of Covariant Galileon
Lagrangians. This theory introduces an extra field to the universe, which translates
into an extra degree of freedom, which could modify gravity in such a way that it
eliminates the need for dark energy. This cannot be done in any manner, thus we will
focus on constraining it such that it provides us with stable solutions. However, in
order understand what this means, we will need to look a bit more into what Einsteins
theory of general relativity actually consists of.

8

Version of July 12, 2018– Created July 12, 2018 - 15:33



Chapter 2
The theory of general relativity

2.1 Introduction to four-dimensional spacetime

Generally, physical calculations are done using Newtonian mechanics, in which grav-
ity is a force, very similar to for example electromagnetic force. However, the theory of
general relativity proposes that gravity is fundamentally different from other forces,
since it can be seen as a result of the curvature of spacetime.

The first step is viewing the universe as a four dimensional manifold, called the space-
time manifold. A manifold M is a space which is locally homeomorphic to a linear
space, and in our case our manifold will be locally homeomorphic to Rn. In exact
terms, associated with M we have charts {(Uα, φα)} in which Uα ⊂ M are open and
cover M, and φα : Uα → Rn are homeomorphisms. The collection of charts is called
an atlas.
The spacetime manifold is a differentiable manifold, which means that we have an ex-
tra requirement. Let (Uα, φα), (Uβ, φβ) be any two charts, and let us look at the images
of their intersection, so A = φα(Uα ∩Uβ) and B = φβ(Uα ∩Uβ). Then we can define
a transition map φαβ : A → B by setting φαβ = φβ ◦ φ−1

α

∣∣
A. For our manifold to be a

differential manifold, all transition maps need to be differentiable.

This structure is very useful, since even though the spacetime manifold is quite an
abstract space without properties like flatness, which is how we do think about the
world around us, we can define operations like differentiation on it using the tran-
sition maps. This allows us to do calculus as we’re used to on manifolds. We can’t
however always equate the manifold to Rn, since this only works on very small scales.
On larger scales, we want to be able to look at the curved structure of our manifold,
which is where the metric tensor comes in.

The goal cosmologists are working towards is finding an expression for this metric
which accurately describes our universe. We do this by finding the appropriate ac-
tion, minimizing it, and by doing so extracting the equations of motion of the metric.
This will be a set of second order differential equations which will give us the metric
by solving them. However, before we get there, we will need the necessary definitions
and tools.
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10 The theory of general relativity

2.2 The metric tensor

The structure of spacetime can be collected in the metric gµν, which is defined as a
symmetric (0, 2)-tensor, usually with a non-vanishing determinant. Simply said, the
metric gives you the distance between any two points on your manifold. Since it’s a
(2, 0)-tensor, we can write it like a matrix, such that in, for example two dimensions,
the distance between the points (x, y) and (x + dx, y + dy is given by:

(
dx dy

) (gxx gxy
gxy gyy

)(
dx
dy

)
= gxxdx2 + 2gxydx2dy2 + gyydy2. (2.1)

If we choose the identity matrix I for our metric, then the metric reduces to the inner
product on Euclidean space. This is not surprising, since the inner product is used to
calculate distances on Euclidean space, thus the metric tensor can be seen as a gener-
alisation of it.
If we expand our two-dimensional example to n dimensions, we will write a line ele-
ment of the manifold as:

ds2 = gµνdxµdxν. (2.2)

Again, in flat space, the metric is given by the identity matrix, thus we have:

ds2 = dx2
1 + ... + dx2

n. (2.3)

Fortunately, we recognize this as the Pythagorean theorem, and it is of course exactly
what we expected. It would have been cause for worry if calculating distances with
the metric gave a different result than calculating it in the regular way.
To give a less trivial example, we can also have a look at the metric of the 2−sphere.
The 2−sphere is given by S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. This is clearly a
curved surface, so the associated metric will be non-Euclidean. It is given by:

g =

(
1 0
0 sin2 θ

)
. (2.4)

In this expression we switched from Cartesian coordinates to spherical coordinates θ
and φ. The line element is easily found, and given by:

ds2 = dθ2 + sin2 θdφ2. (2.5)

To finish the example, let’s look at path between the points (θ, φ) = (0, π/2) which
is a point on the equator, and (π/2, π), which we arrive at by travelling across the
equator halfway round the sphere. We already know that the answer should be π,
and calculating it gives exactly that:

L =
∫ π

0
dθ, (2.6)

= π. (2.7)

10
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2.3 Covariant derivatives 11

2.3 Covariant derivatives

In order to do any meaningful calculations on the vectors on our spacetime manifold,
we will need the notion of a derivative. It may seem easiest to just use directional
derivatives as we know them, but it turns out that they are not suitable. We want our
derivative to be independent of basis, thus, as we change our basis, our derivative
should transform in the same way. Let µ, ν be vectors in the basis for our manifoldM
and µ′, ν′ be vectors from another basis, then the covariant derivative in the direction
µ′ of the vector Vν′ must obey the transformation law:

∇µ′Vν′ =
∂xµ

∂xµ′
∂xν′

∂xν
∇µVν. (2.8)

On flat space, we naturally want the covariant derivative to reduce to regular partial
derivatives, thus it makes sense to define the covariant derivative as a partial deriva-
tive plus some correction term that ensures that the transformation law is followed,
but vanishes when the manifold is flat. Inuitively, these correction terms correct for
the curvature of the manifold. They are called Christoffel symbols and are denoted by
Γ. The covariant derivative in terms of partial derivatives and Christoffel symbols is
given by:

∇µVν = ∂µVν + Γν
µλVλ. (2.9)

From this expression we see that Γ has to be a n× n matrix, with n being the dimension
of our manifold, so in spacetime it will be a 4× 4 matrix. Since the Christoffel symbols
account for the curvature, we will want to express them in terms of the metric. This
expression is given by:

Γλ
µν =

1
2

gλσ(∂µgνσ + ∂νgσµ − ∂σgµν). (2.10)

Here, gλσ is the inverse metric, which is defined by gλσgσµ = δλ
µ .

It’s not hard to see that the Christoffel symbols do indeed vanish when we choose g to
be the flat metric (see eq. 2.3), which makes sure that our covariant derivatives reduce
to partial derivatives in flat space.

2.4 The Riemann tensor

Thus far I’ve spoken quite a bit about curvature and that the spacetime manifold
curves in respond to matter, but we don’t have a good way of quantifying this cur-
vature yet. Before doing this, we are going to need the concept of parallel transport.
Let’s call our manifold M, and define a parametrized curve α : [a, b] → M, a, b ∈ R

and b > a. We want a notion of parallel transporting a vector from α(a) to α(b).
In flat space, we would just move our vector along the curve while keeping its com-
ponents constant. In curved space however, there is no one way of defining one basis
that can be used for vectors at any point of M, since we are working with a localized
coordinate system. This means that a vector on a point is expressed in the local basis of
the tangent space to M at that point. Thus, we define the notion of parallel transport
using the covariant derivative. We define the vector field V(t) = (α(t), V(t)) with
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12 The theory of general relativity

V(t) being the vector that is being transported on the point α(t). We speak of parallel
transport along α if ∇µVµ = 0. On flat space, where the covariant derivative reduces
to partial derivatives, this simply means d

dt V = 0, which is the same as simply saying
that the components do not depend on time, just as we expected.

Now that we have a notion of parallel transport, we can use it to quantify curvature.
The way we do this is by using the Riemann tensor. To give some intuition, imag-
ine a parallelogram defined by vectors Aµ and Bν on a flat surface, and any vector
Vσ in one of the corners. If we would move Vσ along this parallelogram, it would of
course remain unchanged. However, things get more complicated if we imagine our
parallelogram to be lying on a curved surface, and parallel transport Vσ around the
parallelogram, since after completing the loop, the vector will have changed direction.
Making our parallogram infinitely small, this change is given by:

δVρ = Rρ
σµνVσ AµBν,

in which Rρ
σµν is the Riemann tensor. It is given by:

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ. (2.11)

From this Riemann tensor we can construct the Ricci tensor and Ricci scalar, which will
ultimately appear in equations of motion of the metric. The Ricci tensor is obtained by
contracting the Riemann tensor in the following way:

Rµν = Rλ
µλν. (2.12)

It is worth noting that any other contraction of the Riemann tensor either vanishes or
is related to the Ricci tensor, thus making this the only independent contraction we
can make. Tracing the Ricci tensor gives the Ricci scalar:

R = gµνRµν. (2.13)

With the Ricci tensor and scalar in place, we have all the necessary tools to definine
the action from which the equations of motion will follow.

2.5 The Einstein-Hilbert action

An action S in the classical sense is a physical concept of the form:

S =
∫

L dt, (2.14)

in which L is a quantity called the Lagrangian. In classical mechanics, the Lagrangian
is given by L = T − V, with V being the potential energy and T being the kinetic
energy of a particle. Setting the variation δS to 0 gives us the equations of motion
which govern the path of a particle.
We are however, not interested in the equations of motion of a particle, but in the
equations which govern the metric gµν. For this we use a field-theoretical action:

S =
∫
L dx4, (2.15)

12
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2.5 The Einstein-Hilbert action 13

which integrates the Lagrangian density L over all of spacetime. Whereas the classical
action applies to discrete particles, this field-theoretical action is the analogue which
applies to fields or other continuous quantities. The harmonic oscillator has only one
dimension, thus solving the action gives us one equation of motion. For any vari-
able which you add, you will get an additional equation, so the number of equations
obtained by solving the action equals the number of free variables. This will be of im-
portance later in the research.

The action which describes our universe is called the Einstein-Hilbert action, and is
given by:

S =
∫ √

−g
[ 1

16πG
R + LM

]
dx4, (2.16)

in which LM is the matter Lagrangian, determined by the matter- and energy densities
of our universe, g = det gµν, and G is the gravitational constant.

Solving for δS = 0 gives us the Einstein equation [3], given by:

Rµν −
1
2

Rgµν = 8πGTµν. (2.17)

Here we introduce the tensor Tµν, which is called the stress-energy tensor, and de-
scribes the energy densities and energy flux in our universe. For example in a vacuum
universe, the matter Lagrangian and thus the stress-energy tensor vanish.
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Chapter 3
Covariant Galileon Lagrangians

Since the Einstein equation as is does not explain the accelerated expansion of the
universe, there are several ways to alter it. By adding different terms to the Einstein-
Hilbert action, we can change the way the metric behaves. However, we can’t do this
at complete random. In general, we want to preserve the independence of coordinates
of the Einstein-Hilbert action. This means that we do not want the coordinate system
that we choose to influence our final result. Therefore, we can’t add any terms depen-
dent on our spatial coordinates or our time coordinate.
We can however, choose to break one of these symmetries. We are going break our
time symmetry by introducing a new degree of freedom, namely the φ-field. We do
this by what is called 3+1 formalism, which decomposes the spacetime manifold into
spacelike hypersurfaces which vary with a time coordinate. By choosing a time coor-
dinate, we of course break our time independence, which gives us in return the extra
degree of freedom. Formally, we will do this as follows:

LetM be our spacetime manifold, then we speak of a foliation if there exists a smooth
scalar field φ :M→ R such that a hypersurface Σt in our foliation is given by:

Σt = {p ∈ M, φ(p) = t}. (3.1)

Intuitively, one could see the hypersurfaces as slices of the spacetime manifold at a
constant time, however, what constant time exactly means is dependent on our choice
of φ.

3.1 The background field and the tracker solution

At large scales, the universe is homogenous and isotropic, meaning that matter is dis-
tributed evenly over the whole universe. Moreover, the universe we will consider is
flat, which means that it is described by the Friedmann-Lemaı̂tre-Robertson-Walker
metric, given by:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (3.2)

in which a(t) is the scale factor which governs the spatial expansion of the universe.
While we can’t measure the scale factor, we can measure the Hubble parameter, given
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16 Covariant Galileon Lagrangians

by:

H =
ȧ(t)
a(t)

, (3.3)

in which ȧ(t) represents the time derivative of a(t). The present day Hubble factor,
H0, is estimated at 67.3 (km/s)/Mpc [7], which is the value we will subsequently use
in this research.
Since we are considering the universe at large scales only, we will also decompose the
scalar field into the background field and local perturbations such that φ = φ0 + δφ.
In the remaining part of this research, we are only interested in φ0.

It turns out that the initial conditions of the background field do not influence the time
evolution in the sense that all fields converge to the same solution [4]. This is called
the tracker solution and it is approached before the accelerated expansion which we
try to solve. Thus, it is reasonable to use it instead of trying to solve the field ourselves.
The tracker solution is characterised by:

H ϕ̇0 = ξH2
0 , (3.4)

in which ϕ is the dimensionless scalar field ϕ0 = φ0/m0, and m0 is the Planck mass.
For the evolution of H we will make use of the following function E = H

H0
given by:

E(a) =

√
1
2
(
Ωr0a−4 + Ωm0a−3 +

√
(Ωr0a−4 + Ωm0a−3)2 + 4Ωφ0

)
, (3.5)

[1], in which Ωr0 and Ωm0 are the cosmological parameters governing respectively
the background densities of radiation, and baryonic and cold dark matter, and Ωφ0 is
defined as Ωφ0 = 1−Ωr0 −Ωm0. Formally, the cosmological parameter for neutrino
density Ων0 should be included in E(a) as well but we set it to zero, since its influence
is neglegible in comparison to the other cosmological parameters. We will also set
Ωr0 = 10−4 for the remainder of the research. This is the value as measured by cosmic
background experiments, but the exact value is not very important. While radation
dominated in the early universe, it has become also negligible nowadays.

3.2 The covariant Galileon action

The covariant Galileon model uses the scalar field φ (the complete φ, not only the back-
ground part) to add extra terms to the Einstein-Hilbert action in the most complete
manner possible. It turns out there are only five ways to make compose a Lagrangian
density out of this scalar field. These five expressions are called the covariant Galileon

16
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3.2 The covariant Galileon action 17

Lagrangians. Defining M3 = m0H2
0 , the five Lagrangian densitities are given by [1]:

L1 = M3ϕ, (3.6)
L2 = ∇µ ϕ∇µ ϕ, (3.7)

L3 =
2

M3�ϕ∇µ ϕ∇µ ϕ, (3.8)

L4 =
1

M6∇µ ϕ∇µ ϕ
[
2(�ϕ)2 − 2(∇µ∇ν ϕ)(∇µ∇ν ϕ)− R∇µ ϕ∇µ ϕ/2

]
, (3.9)

L5 =
1

M9∇µ ϕ∇µ ϕ
[
(�ϕ)3 − 3(�ϕ)(∇µ∇ν ϕ)(∇µ∇ν ϕ)

+ 2(∇µ∇ν ϕ)(∇ν∇ρ ϕ)(∇ρ∇µ ϕ)− 6(∇µ ϕ)(∇µ∇ν ϕ)(∇ρ ϕ)Gνρ

]
. (3.10)

In this definition instead of the φ, again the rescaled field ϕ = φ/m0 is used.
The accompanying action is given by:

S =
∫

dx4√−g
[ R

16πG
− 1

2

5

∑
i=1

ciLi −LM
]
, (3.11)

in which ci ∈ R are coefficients to give a weight to each of the covariant Galileon La-
grangians.

The ci’s are however not all independent. Since L1 is not physically interesting, we
will set c1 = 0. Furthermore, the ci’s and φ are subject to scaling degeneracy. This
means that they are invariant under to following transformation for any B ∈ R:

ci → ci/Bi, for i = 2, 3, 4, 5, (3.12)
φ→ φB. (3.13)

[1]. Thus, we are allowed to fix one of the parameters, as long as we do not change
signs. Since c2 is constrained such that it will always be negative [1], we set c2 = −1.
From now on, we wil speak of the cubic model, or L3, when we choose c4 = c5 = 0,
the quartic model or L4 when we set c5 = 0 and the quintic model or L5 will refer to
the full model.

By solving the action we get two equations of motion, namely one for each field. The
equation of motion of the background scalar field φ0 gives us the following constraint
on the relation between ci and ξ:

c2ξ2 + 6c3ξ3 + 18c4ξ4 + 15c5ξ5 = 0. (3.14)

Choosing to use the FLRW-metric as in equation 3.2 means that the Friedmann equa-
tions are applicable to our model. Solving them for the tracker solution gives the
relation between the Galileon parameters c2 to c5 and the cosmic parameters, as given
by :

1−Ωr0 −Ωm0 =
1
6

c2ξ2 + 2c3ξ3 +
15
2

c4ξ4 + 7c5ξ5 (3.15)

[1]. Since Ωr0 is negligibly small compared to Ωm0 (approximately 10−4 and 0.3), we
will set it to zero.
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18 Covariant Galileon Lagrangians

These two equations allow us the remove some dependencies. In all cases we have
c2 = −1, as mentioned before, which reduces our free parameters by one. We will
now do some work which is prerequisite for working with the models and consider
the three cases L3, L4, and L5 seperately to see how we can most effectively reduce
their free parameters using equations 3.14 and 3.15.

In the L3 case, we have c4 = c5 = 0, so we are left with three parameters (Ωm0, ξ,
and c3) and two equations, which allows us to rewrite both ξ and c3 in terms of Ωm0.
This gives us:

c3 =
1

6
√

6(1−Ωm0)
, (3.16)

ξ =
√

6(1−Ωm0). (3.17)

In the L4 case, we only have c5 = 0, which leaves with the parameters Ωm0, ξ, c3, c4.
Now, we will use equation 3.14 to rewrite c3 in terms of the other parameters, and then
substitute that expression in equation 3.15 to express ξ in Ωm0 and c4. This gives us:

c3 =
1

6ξ
− 3ξc4, (3.18)

ξ =
1
6

√√
5
√
−432c4Ωm0 + 432c4 + 5− 5

c4
. (3.19)

In the L5 case, we will have to think carefully about what parameters to rewrite. Now
we use the full form of equation 3.15, which is a quintic polynomial and thus there
exists no standard solution. Thus, we choose to rewrite c5 using equation 3.14 and
express c4 in terms of ξ, c3, and Ωm0, in order to avoid solving the quintic polynomial.
This would also force us to choose between solutions, which would make it unneces-
sarily complicated. Thus we get:

c5 =
1

15ξ
(−18c4ξ2 − 6c3ξ + 1), (3.20)

c4 =
10Ωm0 − 8ξ3c3 + 3ξ2 − 10

9ξ4 . (3.21)

In conclusion, we will have only Ωm0 as free parameter for L3, Ωm0 and c4 as free
parameters for L4, and Ωm0, ξ, and c3 as free parameters for L5.

3.3 Deriving the EFT functions

The covariant Galileon Lagrangians as we just gave them, are however not written in
the language that is useful to us. Generally, we want to work with what is called the
complete EFT action, in which EFT stands for Effective Field Theory. This complete
action contains terms of every quantity that is independent of our spatial coordinates,
but can be dependent on time. Thus it is, as the name implies, the most complete

18
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3.3 Deriving the EFT functions 19

action we can think of. The complete EFT action is given by:

SEFT =
∫

d4x
√
−g
[M0

2
(1 + Ω)R + Λ− cδg00 +

M4
2

2
(δg00)2 −

M̄3
1

2
δg00δK

− M̄2
2

2
(δK)2 −

M̄2
3

2
δKµ

ν δKν
µ + m̂2δNδR+ m2

2(gµν + nµnν∂µg00∂νg00)

+ λ1(δR)2 + λ2δRµ
ν δRν

µ +
m̄5

2
δRδK + λ3δRhµν∇µ∂νg00

+ λ4hµν∂µg00∇2∂νg00 + λ5hµν∇µR∇νR+ λ6hµν∇µRij∇νRij

+ λ7hµν∂µg00∇4∂νg00 + λ8hµν∇2R∇µ∂νg00
]
. (3.22)

The coefficients are called the EFT functions and they are only time dependent. Our
first goal will be to express these for the case of the covariant Galileon Lagrangians.
This will allow us to calculate the stability of a model, which is expressed in these EFT
functions. In the covariant Galileon model, the only EFT function which will not van-
ish are M2

4, M̄3
1, M̄2

2, M̄2
3, M̂2, Ω, c, and Λ, of which Λ is not important to our research

since it does not affect stability. We will calculate the others for the three cases with
free coefficients: L3, L4, and L5. For each of these cases, we will make use of the map-
ping for a general Galileon Lagrangian [5], which will allow us to explicitly give the
EFT functions in terms of the first and higher derivatives of the background field φ (we
will drop the subscript 0 from now on to lighten notation), the tracker solution E and
the tracker parameter ξ, the constants c3, c4, and c5 associated with each Lagrangian
and the present day Hubble constant H0.

For plotting, it is useful to rescale the EFT functions such that they are dimensionless,
which we will be done as follows:

γ1 = M4
2/(m2

0H2
0), (3.23)

γ2 = M̄3
1/(m2

0H0), (3.24)

γ3 = M̄2
2/m2

0, (3.25)

γ4 = M̄2
3/m2

0, (3.26)

γ5 = M̂2/m2
0. (3.27)

In the next sections we will give Ω, c, and the γ functions for L3, L4, and L5. For some
functions we have chosen to rewrite them explictly terms of the tracker solution E and
the tracking parameter ξ, while for others (mainly those with longer expressions) we
have kept them in terms of φ̇ and its derivatives. The expressions for these are found
by combining equations 3.4 and 3.5. This gives:

ϕ̇ =
ξH0

E(a)
, (3.28)

ϕ̈ =
−aH2

0ξE′(a)
E(a)

, (3.29)

...
ϕ = −aH3

0ξ
[
E′(a)− a(E′(a))2

E(a)
+ aE′′(a)

]
, (3.30)

in which E′(a) denotes the a-derivative of E(a).
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3.3.1 Cubic Lagrangian: L3

A general cubic Galileon Lagrangian (so not necessarily covariant) can be written in
the form:

L3 = G3(φ, X)�φ, (3.31)

in which X = ∇µφ∇µφ is the kinetic term. Note that since the background scalar
field is only time-dependent, we have∇µφ∇µφ = φ̇2. Comparing with the expression
for the covariant cubic Lagrangian in equation 3.8 gives us G3(φ, X) = 1

2 c3
2

M3 X. The
non-zero EFT functions are given by:

M4
2(t) = G3X

φ̇2

2
(φ̈ + 3Hφ̇), (3.32)

M̄3
1(t) = −2G3Xφ̇3, (3.33)

c(t) = φ̇2G3X(3Hφ̇− φ̈), (3.34)
Ω = 1, (3.35)

in which G3X denotes the X-derivative of G3. Thus, we have G3X = 1
2 c3

2
M3 . Plugging

in our expressions for G3, G3X, and φ, and rescaling gives:

γ1 =
1
2

c3
ξ3

E2(a)
[
− a

E(a)
d
da

E(a) + 3
]
, (3.36)

γ2 = −1
2

c3
4ξ3

E3(a)
. (3.37)

Of course Ω remains unchanged, and for c we get:

c(t) =
c3m2

0
H0

(3H0Eϕ̇3 − ϕ̇2 ϕ̈). (3.38)

3.3.2 Quartic Lagrangian: L4

A general quartic Galileon Lagrangian is written in the form:

L4 = G4(φ, X)R− 2G4X(φ, X)((�φ)2 −∇µ∇νφ∇µ∇νφ), (3.39)

which gives us G4 = −1
2 c4

1
M6 X2, G4X = −1

2 c4
1

M6 X, and G4XX = −1
2 c4

1
M6 by compar-

ing with equation 3.9. The non-zero EFT functions are given by:

M4
2(t) = G4X(−2Ḣφ̇2 − Hφ̇φ̈− φ̈2) + G4XX(18H2φ̇2 + 2φ̇2 + 4Hφ̈φ̇3), (3.40)

M̄3
1(t) = G4X(4φ̇φ̈ + 8Hφ̇2)− 16HG4XXφ̇4, (3.41)

M̄2
2(t) = 4G4Xφ̇2, (3.42)

M̄2
3(t) = −4G4Xφ̇2, (3.43)

M̂2(t) = 2G4Xφ̇2, (3.44)

c(t) = G4X(2φ̈2
0 + 2φ̇0

...
φ0 + 4Ḣφ̇2

0 + 2Hφ̇0φ̈0 − 6H2φ̇2
0)

+ G4XX(12H2φ̇4
0 − 8Hφ̇3

0φ̈0 − 4φ̇2
0φ̈2

0), (3.45)

Ω(t) =
1

m2
0

G4 − 1. (3.46)

20
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3.3 Deriving the EFT functions 21

Plugging in our expressions and rescaling gives:

γ1 = −1
2

c4
ξ4

E2(a)
[
19− 3a

E(a)
d
da

E(a)− a2

E2(a)
[ d

da
E(a)

]2], (3.47)

γ2 =
1
2

c4
ξ4

E3(a)
[
4

d
da

E(a) + 24
]
, (3.48)

γ3 = −1
2

c4
4ξ4

E4(a)
, (3.49)

γ4 =
1
2

c4
4ξ4

E4(a)
, (3.50)

γ5 = −1
2

c4
2ξ4

E4(a)
, (3.51)

for the γ functions, and Ω en c are given by:

c(t) = − c4

m2
0H4

0
(−2ϕ̇2 ϕ̈2 + 2ϕ̇3...

ϕ + 4Ḣ ϕ̇4 − 6H ϕ̇3 ϕ̈ + 6H2 ϕ̇4), (3.52)

Ω(t) = − c4

H4
0

ϕ̇4 − 1. (3.53)

3.3.3 Quintic Lagrangian: L5

A general quintic Galileon Lagrangian is written in the form:

L5 = G5(φ, X)Gµν∇µ∇νφ +
1
2

G5X(φ, X)
[
(�φ)3 − 3�φ∇µ∇νφ∇µ∇νφ

+ 2∇µ∇νφ∇µ∇σφ∇σ∇νφ
]
, (3.54)

in which Gµν is the Einstein tensor defined as Gµν = Rµν − 1
2 gµνR.

Comparing with equation 3.10 gives us G5 = −3
4 c5X2 1

M9 . This time, we will not ex-
plicitly give the EFT functions in terms of ξ, c5, and E, as we did before, but we express
it in the dimensionless scalar field ϕ, H0, E, and c5. It is possible to substitute our ex-
pressions for ϕ and its derivatives into these functions, but they get very long and it
does not add any insight.
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The non-zero EFT functions for L5 are given by:

M4
2(t) = −

1
2

H2G5Xφ̇3 +
1
4

m2
0Ω̇ +

1
2

Hm2
0(1 + Ω)

− 3
4

Hm2
0Ω̇ + 6G5XX H3φ̇5 − 3

2
H3G5Xφ̇3, (3.55)

M̄3
1(t) = −m2

0Ω̇− 4H2φ̇5G5XX + 6H2φ̇3G5X, (3.56)

M̄2
2(t) = −

1
2

G5Xφ̇2φ̈ +
1
2

HG5Xφ̇3, (3.57)

M̄2
3(t) =

1
2

G5Xφ̇2φ̈− 1
2

HG5Xφ̇3, (3.58)

M̂2(t) = −G5Xφ̇2φ̈ + HG5Xφ̇3, (3.59)

Ω(t) =
2

m2
0

G5Xφ̈φ̇2 − 1, (3.60)

c(t) =
1
2

˙̄F +
3
2

Hm2
0Ω̇− 3H3φ̇3G5X + 2H3φ̇5G5XX. (3.61)

For c(t) we have used F̄ to shorten our expression, it is given by:

F̄ = 2H2G5Xφ̇3 −m2
0Ω̇− 2Hm2

0(1−Ω). (3.62)

Using our expression for G5 and rescaling gives us:

γ1 =
3c5

5H5
0

[ E2

H0
ϕ̇5 +

1
H3

0
ϕ̇3(4ϕ̈2 + ϕ̇

...
ϕ) +

2E
H2

0
ϕ̇4 ϕ̈− 12E3 ϕ̇5 +

3E3

2
ϕ̇5], (3.63)

γ2 = −3c5

H7
0
(4ϕ̇3 ϕ̈2 + ϕ̇4...

ϕ) +
E2c5

H5
0

ϕ̇5, (3.64)

γ3 =
3c5

H5
0

[ ϕ̇4 ϕ̇

H0
− Eϕ̇5], (3.65)

γ4 = −3c5

H5
0

[ ϕ̇4 ϕ̇

H0
− Eϕ̇5], (3.66)

γ5 =
6c5

H5
0

[ ϕ̇4 ϕ̇

H0
− Eϕ̇5], (3.67)

and for Ω and c we get:

Ω(t) =
3

H06 c5φ̇4φ̈− 1, (3.68)

c(t) = − 3
4H6

0
c5 ϕ̇4(4HH0 ϕ̇ + 2H2 ϕ̈)− 1

2
Ω̇

− Ḣ(1 + Ω) + HΩ̇− (
9H3

H6
0
+

9
4H6

0
)c5 ϕ̇5. (3.69)

As a side note, although it may not seem obvious from this formulation, these EFT
functions don’t actually depend on H0. The H0’s in the denominator will cancel out
with the H0’s which we get from the explicit expressions for the derivatives of φ.

Having these EFT functions allows us to now move on to the stability conditions,
which rely on these functions to compute the stability of a solution.

22
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3.4 Stability conditions 23

3.4 Stability conditions

Before we give the conditions which determine the stability of a solution, it is useful
to have an idea of what stability means in this context. We will be looking at two types
of stabilities, namely the absence of ghosts and the absence of gradient instabilities.

Ghosts are quanta with either a negative energy or a negative norm [6]. The type
of ghost we will be looking at is a negative kinetic term, which is the term in the La-
grangian with temporal derivatives. In classical mechanics, the kinetic term is given
by T = m

2 v2, with m the mass of a particle and v = ẋ the velocity. With this in mind,
it’s not hard to see why we want to avoid a negative kinetic energy, since this would
mean that there could exist interactions which cost zero energy, thus breaking the law
of conservation of energy.

In a similar way to how ghosts are terms with a wrong sign temporal derivative, gradi-
ent instabilities are terms with a wrong sign spatial derivative [6]. To give an example,
solving the harmonic oscillator with a negative spring constant (the equations of mo-
tion would be F = kx, with k > 0), gives us the solutions x = e

√
k/mt and x = e−

√
k/mt.

Naturally, we want the solutions to the harmonic oscillator to be periodic, but the solu-
tions with a negative spring constant are instead exponentially growing or decreasing.
These are not physical solutions, so we refer to them as gradient instabilities.

For the theory of covariant Galileon Lagrangians, the stability conditions are given
by:

K > 0, (3.70)

c2
s > 0, (3.71)

in which

K =
A(4c(t)2A + 3(m2

0Ω′(t) + M̄3
1(t))

2 + 8M4
2 A)

2H(t)A + m2
0Ω′(t) + M̄3

1(t))
2

, (3.72)

and

c2
s =

[
4A2[2c(t) + m2

02H(t)Ω′(t)−m2
0Ω′′(t) + H(t)(2H(t)A + M̄3

1(t)

+ Ω′′(t)4m2
0A2)− 2M̄2

3(t)H′(t)− 2H(t)M̄2
3′(t) + M̄3

1′(t)
]

+ 4A(2m2
0Ω′(t)− 2M̄2

3(t))C− 2m2
0BC2]/[

A
[
4c(t)A + 3(m2

0Ω′(t) + M̄3
1(t))

2 + 8M4
2(t)A

]]
. (3.73)

Here we have used some abbreviations:

A = m2
0(Ω(t) + 1)− M̄2

3(t), (3.74)
B = Ω(t) + 1, (3.75)

C = 2H(t)A + m2
0Ω′(t) + M̄3

1(t), (3.76)

for better readibility.
K is the kinetic term of our theory, thus when K < 0, we would speak of a ghost.
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The other instability, c2
s < 0, is a gradient instability which expresses that the speed of

sound of the scalar field must be real.

We first want to rewrite these functions in a nicer form, which means that we want to
factor out the Planck mass m0 as much as possible, for which we will need to express
these quantities in terms of our γ-functions, instead of the unscaled EFT functions.
For this we introduce the scaled version of c(t), which we will call c̃(t) = c(t)

m2
0

. We will

similarly introduce the expressions Ã = A
m2

0
, and C̃ = C

m2
0
, which gives:

Ã = Ω(t) + 1−
M̄2

3(t)
m2

0

= Ω(t) + 1− γ4(t), (3.77)

C̃ = 2H(t)
A

m2
0
+ Ω′(t) +

M̄3
1(t)

m2
0

= 2H(t)Ã + Ω′(t) + H0γ2(t). (3.78)

Substituting these functions give us:

K = m2
0

Ã(c̃(t)Ã + 3(Ω′(t) + γ2(t)H0)
2 + 8H2

0γ1(t)Ã)

(2H(t)Ã + Ω′(t) + H0γ2(t))2
(3.79)

c2
s =

[
4Ã2[2c̃(t)− 2H(t)Ω′(t)−Ω′′(t) + H(t)(2H(t)Ã + H0γ2(t)

+ Ω′′(t)4Ã2)− 2γ4(t)H′(t)− 2H(t)γ4′(t) + H0γ2′(t)
]

+ 4Ã(2Ω′(t)− 2γ4(t))C̃− 2BC̃2]/[
Ã
[
4c̃(t)Ã + 3(Ω′(t) + H0γ2(t))2 + 8H2

0γ1(t)Ã
]]

. (3.80)

24
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Chapter 4
Results

4.1 The EFT functions

For the first part of the results we have plotted the EFT functions γ1 to γ5 with test
values for the cosmic parameter Ωm and the free parameters of the covariant Galileon
model. We have set Ωm0 = 0.315 [7], from which we can calculate Ωφ0 = 1−Ωm0 =
0.685. Remember that L3 is only dependent on the value of Ωm0, so choosing it already
allows us to plot the L3 EFT functions, as in figure 4.1.

Figure 4.1: The non-zero EFT functions for L3 as given in equation 3.36 and equation 3.37.
The x-axis is in terms of the scale factor a(t), the y-axis is dimensionless, and we have chosen
Ωm0 = 0.315.

For L4, we have an additional parameter, namely c4. In figure 4.2, we have set it to
c4 = 0.001.
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26 Results

Figure 4.2: The non-zero EFT functions for L4 as given in equations 3.47 to equation 3.66. The
x-axis is in terms of the scale factor a(t), and the y-axis is dimensionless. The parameters we’ve
chose are Ωm0 = 0.315 and c4 = 0.001.

For L5, we need to choose values for c3 and for ξ. We have chosen them to be
c3 = 0.1 and ξ = 2. This gives plot as shown in figure 4.3.

Figure 4.3: The non-zero EFT functions for L5 as given in equations 3.63 to equation 3.67. The
x-axis is in terms of the scale factor a(t), and the y-axis is dimensionless. The parameters we’ve
chosen are Ωm0 = 0.315, c3 = 0.1 and ξ = 2.

Next, we have varied the first two EFT functions γ1 and γ2 for the complete case

26
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4.1 The EFT functions 27

for ξ ∈ (0, 5] to get an idea of how they are dependent on ξ. We have choses this
parameter to vary since it seemed to be the one with the biggest impact. γ1 is shown
in 4.4 and γ2 in 4.5

Figure 4.4: The behaviour of γ1 in the complete case under variation of ξ ∈ (0, 5], with the
other parameters set on Ωm0 = 0.315 and c3 = 0.1. The x-axis is in the terms of the scale factor
a(t) and the y-axis is dimensionless. Darker colour coincides with a higher value of ξ.

Figure 4.5: The behaviour of γ2 in the complete case under variation of ξ ∈ (0, 5], with the
other parameters set on Ωm0 = 0.315 and c3 = 0.1. The x-axis is in the terms of the scale factor
a(t) and the y-axis is dimensionless. Darker colour coincides with a higher value of ξ.
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4.2 Stable solutions

As mentioned earlier, we calculated the sets of parameters for which the solutions are
stable only for the full model, namely L5. The free parameters of the γ functions are
in this case Ωm0, c3, and ξ. In figures 4.6, 4.7, and 4.8 are the results of the condition
K > 0 at different values for the cosmic parameters Ωm0 the combinations of c3 and ξ
for which the solution is stable. We’ve chosen to vary Ωm0 around the experimentally
obtained value of Ωm0 = 0.315 with ±0.17, which is ten times the interval given in
[7]. The intervals for c3 and ξ are given by c3 ∈ [0, 0.14] and ξ ∈ [0, 5], which are the
intervals that gave the best insight in the behaviour.

Figure 4.6: The values of c3 and ξ for which the stability conditionK > 0 is met at Ωm0 = 0.145.

28
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4.2 Stable solutions 29

Figure 4.7: The values of c3 and ξ for which the stability conditionK > 0 is met at Ωm0 = 0.315.

Figure 4.8: The values of c3 and ξ for which the stability conditionK > 0 is met at Ωm0 = 0.485.

Next, we did the same thing for the condition c2
s > 0, which can be seen in plots

4.9, 4.10 and 4.11. We have used the same parameter space as for the condition K > 0.
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Figure 4.9: The values of c3 and ξ for which the stability condition c2
s > 0 is met at Ωm0 = 0.145.

Figure 4.10: The values of c3 and ξ for which the stability condition c2
s > 0 is met at Ωm0 =

0.315.

30
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4.2 Stable solutions 31

Figure 4.11: The values of c3 and ξ for which the stability condition c2
s > 0 is met at Ωm0 =

0.485.
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Chapter 5
Discussion

The things which stand out in the first part of the results are the strange shape of γ2
in the L5 case in figure 4.3 and how different values of ξ have γ1 change signs, also in
the L5 case, as seen in figure 4.4. While it seems like γ2 scales with ξ, and is heavily
dependent on it as well, as seen figure 4.5, γ2 does not only change magnitudes quite
strongly but also has a sign change. Strangely, the it starts negative (as seen in bright
red), then it moves to be positive, where it reaches a maximum before becoming neg-
ative again. It might interesting to see if there is some oscillating behaviour for even
larger values of ξ.

Next we look the second part of the results. By comparing the values for c3 and ξ
for which the stability conditions are met with the values for ξ and c3 found by [1],
we can draw several conclusion. The values given in Table II of [1] in the Base Quintic
case are ξ = 4.3+0.52

−1.58 and c3 = 0.132+0.019
0.004 . In figures 4.7 and 4.9, which are at the most

likely value of Ωm0, these points are not included, but with their error bars they are.
It is also worth noting that the lower error bar of ξ is much larger than the upper one,
which coincides with our plots given more stable points for lower values of ξ.

Furthermore, it seems that the condition K gives a series of points at the bottom of
the graphs for which the value of ξ gives a stable configuration for any value of c3. It
is at this point not clear whether this is a curiosity of the functions (note that for ξ = 0
we have singularity for c5, so for ξ approaching zero c5 will get arbitrarily large), or if
it also has a physical explanation. However, since the other condition, c2

s > 0, does not
give any stable points in this area, it’s safe to assume we should only take the larger
values of ξ into account.

Further research would include not only evaluating the stability of the solutions, but
also going into how well the solutions agree with observations. The main goal is to
explain the accelerated expansion of the universe, and this research hasn’t answered
that question yet.
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