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Reaction-Diffusion System

• Continuous spatial variable: x ∈ R.

• Continuous temporal variable: t ∈ R.

• 0 ≤ u(x, t) ≤ 1

• Prototype for Pattern formation.
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Reaction Term

• Think of G(u) as a potential.
• Ignoring spatial variations, u moves through potential landscape.
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Diffusion Term

• Diffusion: flattens wrinkles.
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Travelling Waves

Basic pattern: travelling waves connecting u = 0 to u = 1.

• Building blocks for more complex patterns.
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Nonlinearity

For concreteness, will use quartic potential; i.e.

−G′(u) = −G′(u; a) = gcub(u; a) = u(1− u)(u− a)
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Travelling wave: PDE

Nagumo PDE with gcub(·; a):

∂tu = ∂xxu+ u(1− u)(u− a).

Starting step [Fife, McLeod]: travelling waves.

Travelling wave u(x, t) = Φ(x+ ct) satisfies:

cΦ′(ξ) = Φ′′(ξ) + Φ(ξ)
(
1− Φ(ξ)

)(
Φ(ξ)− a

)
.

Interested in pulse solutions connecting 0 to 1, i.e.

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1.
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Signal Propagation: PDE

Recall travelling wave ODE

cΦ′(ξ) = Φ′′(ξ) + Φ(ξ)
(
a− Φ(ξ)

)(
Φ(ξ)− 1

)
.

limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

Explicit solutions available:

Φ(ξ) = 1
2 + 1

2 tanh
(

1
4

√
2 ξ
)
,

c(a) = 1√
2
(1− 2a).
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Continuous space

9



Step 1 - Spatial Discretization

• Translational symmetry broken

• Gaps in discrete space: barriers

• Fundamental difference between Moving Waves and Standing Waves
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Reaction-Diffusion System

• Discrete spatial variable: j ∈ Z.

• Continuous temporal variable: t ∈ R.

• 0 ≤ uj(t) ≤ 1
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Diffusion Term

• Diffusion: flattens variations between neighbours.

[∆Zu(t)]j = uj+1(t) + uj−1(t)− 2uj(t)
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Travelling Waves

Again: Basic pattern: travelling waves connecting u = 0 to u = 1.

Different times see different discrete samples of smooth underlying profile.
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Signal Propagation: LDE

Consider the Nagumo LDE

d
dtuj(t) = [uj+1(t) + uj−1(t)− 2uj(t)] + gcub(uj(t); a), j ∈ Z.

Travelling wave profile uj(t) = Φ(j + ct) must satisfy:

cΦ′(ξ) = Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + gcub

(
Φ(ξ); a

)
limξ→−∞Φ(ξ) = 0,

limξ→+∞Φ(ξ) = 1.

• Notice that wave speed c enters in singular fashion.

• When c 6= 0, this is a functional differential equation of mixed type (MFDE).

• When c = 0, this is a difference equation.
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Propagation Failure

Recall travelling wave MFDE:

cΦ′(ξ) = [Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)] + gcub

(
Φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

When c = 0, can restrict to ξ ∈ Z: recurrence relation!

With pj = Φ(j) and rj = Φ(j + 1), we find

pj+1 = rj
rj+1 = −pj + 2rj − rj(rj − a)(1− rj).

Saddles (0, 0) and (1, 1).
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Propagation Failure

pj+1 = rj
rj+1 = −pj + 2rj − rj(rj − a)(1− rj).

For a = 1
2, site-centered (orange) and bond-centered (black) solutions. Generically:
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Propagation Failure

pj+1 = rj
rj+1 = −pj + 2rj − rj(rj − a)(1− rj).

Two branches coincide and annihilate at a = a∗.
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Propagation

Typical wave speed c versus a plot for discrete reaction-diffusion systems:

Wave speed c depends uniquely on a.

In case a∗ <
1
2, then we say that LDE suffers from propagation failure.

Propagation failure common for LDEs [Keener, Mallet-Paret, Hoffman, ...].
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Discrete space

19



Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0→ 1.
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Step Two - Temporal Discretization

Apply Backward-Euler time discretization with time-step ∆t:

1
∆t
[
uj(t)− uj(t−∆t)

]
= [∆Zu(t)]j −G′(uj(t)).

• Temporal variable t now in (∆t)Z (discrete).

• Spatial variable j ∈ Z still discrete.

Travelling wave Ansatz uj(t) = Φ(j + ct) now yields

c[D1,MΦ](ζ) = Φ(ζ + 1) + Φ(ζ − 1)− 2Φ(ζ)−G′
(
Φ(ζ)

)
in which M = (c∆t)−1 and

[D1,MΦ](ζ) = M [Φ(ζ)− Φ(ζ −M−1)]

Domain of ζ depends on M . Dense in R if M irrational; otherwise periodic.
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BDF Methods

• Backward-Euler discretization is the order k = 1 BDF (Backward
Differentiation Formula) method.
• These methods are L-stable (slightly worse than A-stable); much better than

forward Euler.
• Methods available up to order k = 6.

With BDF order k discretization, wave must solve:

c[Dk,MΦ](ζ) = Φ(ζ + 1) + Φ(ζ − 1)− 2Φ(ζ)−G′
(
Φ(ζ)

)
.

Example for k = 2:

[D2,MΦ](ζ) =
3
2
M
[
Φ(ζ)− 4

3
Φ(ζ −M−1) +

1
3

Φ(ζ − 2M−1)
]

For smooth functions φ:

[Dk,Mφ− φ′](ζ) = O(M−k
∥∥∥φ(k+1)

∥∥∥
∞

).
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Backward-Euler: restatement

For backward-Euler one can look for solutions to

c̃Φ′(ξ) =
1

∆t
[Φ(ξ − c∆t)− Φ(ξ)

]
+ Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)−G′

(
Φ(ξ); a

)
with c̃ = 0.

All shifted terms have positive coefficients. Allows framework of Mallet-Paret for
spatial discretization to be applied for fixed c and ∆t.

This gives unique c̃ = c̃(c, a).

Thm. [H., Van Vleck based on Mallet-Paret] Fix ∆t. For all c sufficiently small,
there is at least one a for which c̃(c, a) = 0.

Numerical insights Generically, c̃(c, a) = 0 for range of a [propagation failure].
Wave speed c is no longer a unique function of a. [Critical intervals [a−(c), a+(c)]
overlap for different values of c]
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Backward-Euler: non-uniqueness of wave speed

Regions in (c, a) space where solutions exist.
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Singular perturbation

For orders 2, 3, . . . 6, this monotonic structure is not available.

Goal here is to fix a and look at cT → 0, writing

Φ(ζ) = Φ∗(ζ) + v(ζ), c = c∗ + c′

where (c∗,Φ∗) is the wave for the spatially discrete problem.

However the bifurcation is singular, in the sense that one must solve

Lk,Mv = O(v2 +M−1 + c′),

with

[Lk,Mv](ζ) = −c∗Dk,Mv + v(ζ + 1) + v(ζ − 1)− 2v(ζ) + g′(Φ∗(ζ))v(ζ).

We only know that

[L∗v](ξ) = −c∗v′(ξ) + v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′(Φ∗(ξ))v(ξ).

is Fredholm with index zero as H1 → L2 map, with KerL∗ = {Φ∗}. Can we lift?
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Spectral convergence

• Comparison between Lk,M and L∗ can be studied based by adapting ’spectral
convergence’ technique [Bates, Chen, Chmaj].

• Compares resolvents of linear operators A and AM assuming that
σ(AM)→ σ(A) as M →∞ on compact subsets of C.

• Step A: use weak convergence to pass to a weak limit.

• Step B: recover ’missing’ information by exploiting equation.
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Step A: Weak Convergence

Need to build an H1-function from sequence

Here M = 3
2 so ζ ∈ 1

3Z.

Cannot directly do interpolation in a controlled fashion.
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Step A: Weak Convergence

After splitting; can interpolate. Size of derivative controlled by Dk,Mv.
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Step B: Missing information

• Bounded sequence of H1 functions converge (after subsequence) weakly in H1

and strongly on L2([a, b]).

• Weak limit V satisfies limiting problem L∗V = 0.

• Task: rule out V = 0.

• Here exploit bistable nature of equation plus monotonic structure of discrete
Laplacian

• Can show that Dk,Mv can not get too big as M →∞

• This gives lower bound on L2([a, b]) norm of limit V .
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The result

Looking for travelling wave (c, v) of form

Φ(ζ) = Φ∗(ϑ+ ζ) + v(ζ)

to system

cDk,MΦ = Φ(ζ + 1) + Φ(ζ − 1)− 2Φ(ζ) + gcub

(
Φ(ζ); a

)
Thm. [H., Van Vleck] Fix integer q∗ > 1. There exists M∗ � 1 so that for all
M ≥M∗ and M = p

q with q ≤ q∗ there are unique solutions cM(a, ϑ) and

vM(a, ϑ).

• ∆t can be recovered via M−1 = c∆t
• Speed cM(a, ϑ) = c∗ +O(M−1)
• Periodicity cM(a, ϑ+M−1) = cM(a, ϑ).
• Monotonicity ∂acM(a, ϑ) < 0.

We have non-uniqueness of wave speed c as a function of a and a as a

function of c provided we can show that ∂ϑcM(a, ϑ) 6= 0. But this is O(eM
−1

).
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