## Madrid - July 9th 2014

Travelling Waves for Fully Discretized Bistable Reaction-Diffusion Problems



## Hermen Jan Hupkes

Leiden University

(Joint work with Erik van Vleck - U. Kansas)

## **Reaction-Diffusion System**



- **Continuous** spatial variable:  $x \in \mathbb{R}$ .
- **Continuous** temporal variable:  $t \in \mathbb{R}$ .
- $0 \le u(x,t) \le 1$
- Prototype for **Pattern formation**.

# **Reaction Term**



- Think of G(u) as a potential.
- Ignoring spatial variations, u moves through potential landscape.



**Diffusion Term** 



• Diffusion: flattens wrinkles.



# **Travelling Waves**



• Building blocks for more complex patterns.

### Nonlinearity

For concreteness, will use quartic potential; i.e.

$$-G'(u) = -G'(u; a) = g_{\rm cub}(u; a) = u(1-u)(u-a)$$



### **Travelling wave: PDE**

Nagumo PDE with  $g_{cub}(\cdot; a)$ :

$$\partial_t u = \partial_{xx} u + u(1-u)(u-a).$$

Starting step [Fife, McLeod]: travelling waves.

Travelling wave  $u(x,t) = \Phi(x+ct)$  satisfies:

$$c\Phi'(\xi) = \Phi''(\xi) + \Phi(\xi) (1 - \Phi(\xi)) (\Phi(\xi) - a).$$

Interested in pulse solutions connecting 0 to 1, i.e.

$$\lim_{\xi \to -\infty} \Phi(\xi) = 0, \qquad \lim_{\xi \to +\infty} \Phi(\xi) = 1.$$

# **Signal Propagation: PDE**

Recall travelling wave ODE

$$c\Phi'(\xi) \qquad = \quad \Phi''(\xi) + \Phi(\xi) \big( a - \Phi(\xi) \big) \big( \Phi(\xi) - 1 \big).$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

Explicit solutions available:

$$\Phi(\xi) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{1}{4}\sqrt{2}\,\xi\right), \\ c(a) = \frac{1}{\sqrt{2}}(1-2a).$$

$$C$$

$$c = \frac{1}{2}\sqrt{2}$$

$$a = \frac{1}{2}$$

## **Continuous space**



# **Step 1 - Spatial Discretization**

• Translational symmetry broken



- Gaps in discrete space: barriers
- Fundamental difference between Moving Waves and Standing Waves

### **Reaction-Diffusion System**



- **Discrete** spatial variable:  $j \in \mathbb{Z}$ .
- **Continuous** temporal variable:  $t \in \mathbb{R}$ .
- $0 \le u_j(t) \le 1$

### **Diffusion Term**



• Diffusion: flattens variations between neighbours.



## **Travelling Waves**

Again: Basic pattern: travelling waves connecting u = 0 to u = 1.



Different times see different **discrete samples** of **smooth** underlying profile.

Consider the Nagumo LDE

$$\frac{d}{dt}u_j(t) = [u_{j+1}(t) + u_{j-1}(t) - 2u_j(t)] + g_{\rm cub}(u_j(t);a), \qquad j \in \mathbb{Z}.$$

Travelling wave profile  $u_j(t) = \Phi(j + ct)$  must satisfy:

$$c\Phi'(\xi) = \Phi(\xi+1) + \Phi(\xi-1) - 2\Phi(\xi) + g_{cub}(\Phi(\xi);a)$$

$$\lim_{\xi \to -\infty} \Phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \Phi(\xi) = 1.$$

- Notice that wave speed c enters in singular fashion.
- When  $c \neq 0$ , this is a functional differential equation of mixed type (MFDE).
- When c = 0, this is a difference equation.

### **Propagation Failure**

Recall travelling wave MFDE:

$$c\Phi'(\xi) = [\Phi(\xi+1) + \Phi(\xi-1) - 2\Phi(\xi)] + g_{\rm cub}(\Phi(\xi);a)$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

When c = 0, can restrict to  $\xi \in \mathbb{Z}$ : recurrence relation!

With  $p_j = \Phi(j)$  and  $r_j = \Phi(j+1)$ , we find

$$p_{j+1} = r_j$$
  
 $r_{j+1} = -p_j + 2r_j - r_j(r_j - a)(1 - r_j).$ 

Saddles (0,0) and (1,1).



$$p_{j+1} = r_j$$
  

$$r_{j+1} = -p_j + 2r_j - r_j(r_j - a)(1 - r_j).$$

Two branches coincide and annihilate at  $a = a_*$ .



# **Propagation**

Typical wave speed c versus a plot for discrete reaction-diffusion systems:



Wave speed c depends **uniquely** on a.

In case  $a_* < \frac{1}{2}$ , then we say that LDE suffers from propagation failure. Propagation failure common for LDEs [Keener, Mallet-Paret, Hoffman, ...].

#### **Discrete space**



## **Discrete Nagumo LDE - Propagation failure**



### **Step Two - Temporal Discretization**

Apply Backward-Euler time discretization with time-step  $\Delta t$ :

$$\frac{1}{\Delta t} \left[ u_j(t) - u_j(t - \Delta t) \right] = \left[ \Delta_{\mathbb{Z}} u(t) \right]_j - G'(u_j(t)).$$

- Temporal variable t now in  $(\Delta t)\mathbb{Z}$  (discrete).
- Spatial variable  $j \in \mathbb{Z}$  still discrete.

Travelling wave Ansatz  $u_j(t) = \Phi(j + ct)$  now yields

$$c[\mathcal{D}_{1,M}\Phi](\zeta) = \Phi(\zeta+1) + \Phi(\zeta-1) - 2\Phi(\zeta) - G'(\Phi(\zeta))$$

in which  $M = (c\Delta t)^{-1}$  and

$$[\mathcal{D}_{1,M}\Phi](\zeta) = M[\Phi(\zeta) - \Phi(\zeta - M^{-1})]$$

Domain of  $\zeta$  depends on M. Dense in  $\mathbb{R}$  if M irrational; otherwise periodic.

### **BDF** Methods

- Backward-Euler discretization is the order k = 1 BDF (Backward Differentiation Formula) method.
- These methods are L-stable (slightly worse than A-stable); much better than forward Euler.
- Methods available up to order k = 6.

With BDF order k discretization, wave must solve:

$$c[\mathcal{D}_{k,M}\Phi](\zeta) = \Phi(\zeta+1) + \Phi(\zeta-1) - 2\Phi(\zeta) - G'(\Phi(\zeta)).$$

Example for k = 2:

$$[\mathcal{D}_{2,M}\Phi](\zeta) = \frac{3}{2}M\Big[\Phi(\zeta) - \frac{4}{3}\Phi(\zeta - M^{-1}) + \frac{1}{3}\Phi(\zeta - 2M^{-1})\Big]$$

For smooth functions  $\phi$ :

$$\left[\mathcal{D}_{k,M}\phi - \phi'\right](\zeta) = O(M^{-k} \left\|\phi^{(k+1)}\right\|_{\infty}).$$

### **Backward-Euler: restatement**

For backward-Euler one can look for solutions to

$$\tilde{c}\Phi'(\xi) = \frac{1}{\Delta t} [\Phi(\xi - c\Delta t) - \Phi(\xi)] + \Phi(\xi + 1) + \Phi(\xi - 1) - 2\Phi(\xi) - G'(\Phi(\xi); a)$$

with  $\widetilde{c} = 0$ .

All shifted terms have **positive** coefficients. Allows framework of Mallet-Paret for **spatial discretization** to be applied for **fixed** c and  $\Delta t$ .

This gives unique  $\tilde{c} = \tilde{c}(c, a)$ .

**Thm.** [H., Van Vleck based on Mallet-Paret] Fix  $\Delta t$ . For all c sufficiently small, there is at least one a for which  $\tilde{c}(c, a) = 0$ .

Numerical insights Generically,  $\tilde{c}(c, a) = 0$  for range of a [propagation failure]. Wave speed c is no longer a unique function of a. [Critical intervals  $[a_{-}(c), a_{+}(c)]$  overlap for different values of c]

### Backward-Euler: non-uniqueness of wave speed

Regions in (c, a) space where solutions exist.



### **Singular perturbation**

For orders  $2, 3, \ldots 6$ , this monotonic structure is not available.

Goal here is to fix a and look at  $cT \rightarrow 0$ , writing

$$\Phi(\zeta) = \Phi_*(\zeta) + v(\zeta), \qquad c = c_* + c'$$

where  $(c_*, \Phi_*)$  is the wave for the **spatially discrete** problem.

However the bifurcation is singular, in the sense that one must solve

$$\mathcal{L}_{k,M}v = O(v^2 + M^{-1} + c'),$$

with

$$[\mathcal{L}_{k,M}v](\zeta) = -c_*\mathcal{D}_{k,M}v + v(\zeta+1) + v(\zeta-1) - 2v(\zeta) + g'(\Phi_*(\zeta))v(\zeta).$$

We only know that

$$[\mathcal{L}_*v](\xi) = -c_*v'(\xi) + v(\xi+1) + v(\xi-1) - 2v(\xi) + g'(\Phi_*(\xi))v(\xi).$$

is Fredholm with index zero as  $H^1 \to L^2$  map, with  $\operatorname{Ker} \mathcal{L}_* = \{\Phi_*\}$ . Can we lift?

# **Spectral convergence**

- Comparison between  $\mathcal{L}_{k,M}$  and  $\mathcal{L}_*$  can be studied based by adapting 'spectral convergence' technique [Bates, Chen, Chmaj].
- Compares **resolvents** of linear operators  $\mathcal{A}$  and  $\mathcal{A}_M$  assuming that  $\sigma(\mathcal{A}_M) \to \sigma(\mathcal{A})$  as  $M \to \infty$  on compact subsets of  $\mathbb{C}$ .
- Step A: use weak convergence to pass to a weak limit.
- Step B: recover 'missing' information by exploiting equation.

# **Step A: Weak Convergence**

Need to build an  $H^1$ -function from sequence  $v(\zeta) \qquad \qquad M^{-1} \qquad \qquad 1$ 

Here  $M = \frac{3}{2}$  so  $\zeta \in \frac{1}{3}\mathbb{Z}$ .

Cannot directly do interpolation in a **controlled** fashion.

## **Step A: Weak Convergence**



After splitting; can interpolate. Size of derivative controlled by  $\mathcal{D}_{k,M}v$ .

# **Step B: Missing information**

- Bounded sequence of  $H^1$  functions converge (after subsequence) weakly in  $H^1$ and **strongly** on  $L^2([a, b])$ .
- Weak limit V satisfies limiting problem  $\mathcal{L}_*V = 0$ .
- Task: rule out V = 0.
- Here exploit **bistable** nature of equation plus monotonic structure of discrete Laplacian
- Can show that  $\mathcal{D}_{k,M}v$  can not get too big as  $M \to \infty$
- This gives lower bound on  $L^2([a,b])$  norm of limit V.

### The result

Looking for travelling wave (c, v) of form

$$\Phi(\zeta) = \Phi_*(\vartheta + \zeta) + v(\zeta)$$

to system

$$c\mathcal{D}_{k,M}\Phi = \Phi(\zeta+1) + \Phi(\zeta-1) - 2\Phi(\zeta) + g_{\text{cub}}(\Phi(\zeta);a)$$

**Thm.** [H., Van Vleck] Fix integer  $q_* > 1$ . There exists  $M_* \gg 1$  so that for all  $M \ge M_*$  and  $M = \frac{p}{q}$  with  $q \le q_*$  there are unique solutions  $c_M(a, \vartheta)$  and  $v_M(a, \vartheta)$ .

- $\Delta t$  can be recovered via  $M^{-1} = c\Delta t$
- Speed  $c_M(a, \vartheta) = c_* + O(M^{-1})$
- Periodicity  $c_M(a, \vartheta + M^{-1}) = c_M(a, \vartheta)$ .
- Monotonicity  $\partial_a c_M(a, \vartheta) < 0$ .

We have **non-uniqueness** of wave speed c as a function of a and a as a function of c provided we can show that  $\partial_{\vartheta}c_M(a,\vartheta) \neq 0$ . But this is  $O(e^{M^{-1}})$ .