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Reaction-Diffusion System

o = Au — G' (u)
Rate ofT T T
change Diffusion Reaction

Mixes points Single point

e Continuous spatial variable: =z € R.
e Continuous temporal variable: ¢ € R.
o 0 <u(z,t)<1

e Prototype for Pattern formation.



Reaction Term

atu — — G,<u>
A

Diffusion ~ Reaction
Single point

Rate of

change
Mixes points

e Think of G(u) as a potential.
e |gnoring spatial variations, u moves through potential landscape.
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Diffusion Term

@tu:Au—E/‘%{

Rate ofT T

change Diffusion Reaction
Single point

Mixes points

e Diffusion: flattens wrinkles.




Travelling Waves

Basic pattern: travelling waves connecting u = 0 to u = 1.

Fixed time: ¢ = ()

Profile

Profile (shifted)
0leee— T

e Building blocks for more complex patterns.



Nonlinearity

For concreteness, will use quartic potential; i.e.

—G'(u) = —G'(u;a) = geup(u;a) = u(l —u)(u — a)
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Travelling wave: PDE

Nagumo PDE with geun(+;a):

O = Ozt + u(l — u)(u — a).
Starting step [Fife, MclLeod]: travelling waves.
Travelling wave u(x,t) = ®(x + ct) satisfies:

c®'(§) = 2"(&)+2(&)(1—2(§))(2(§) —a).

Interested in pulse solutions connecting 0 to 1, i.e.

lim ®(&) =0, lim ®(&) = 1.

§——o0 ¢ +o0



Signal Propagation: PDE

Recall travelling wave ODE

c®'(¢) =

liHl§—>—oo Qb(f) —
lime 4 og P(§) =

Explicit solutions available:

®(¢) = 1<+ itanh(3v29),
cla) = %(1—2&).




Continuous space

Speedg( one wins! ) Zerowins!

VAN / /\/

(In)balance
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Step 1 - Spatial Discretization

e Translational symmetry broken

R 6 )

e Gaps in discrete space: barriers

e Fundamental difference between Moving Waves and Standing Waves
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Reaction-Diffusion System

u;(t) = [Azu(t)]; — G (“j({))-

Rate ofT T React;
change Diffusion eaction

_ _ Single grid site
Mixes neighbours I 9

U_g(t) Uu_3(t) U_2(t) U_1(t) Uo(t) w1(t) ua(t) us(t) u4(?)

e Discrete spatial variable: j € Z.
e Continuous temporal variable: ¢ € R.

OOSUj(t)<1
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Diffusion Term

u;(t) = [Az u(lt)]; — M

Rate ofT T R .
change Diffusion eaclion
_ _ Single grid site
Mixes neighbours

e Diffusion: flattens variations between neighbours.

—e— [Azu(t)]; = wj1(t) + uj—1(t) — 2u;(¢)
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Travelling Waves

Again: Basic pattern: travelling waves connecting u =0 to u = 1.

t:1¢

Profile

Speed

Profile

t =0
®© © ¢ 0 06 06 0 0 o0 o

Different times see different discrete samples of smooth underlying profile.
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Signal Propagation: LDE

Consider the Nagumo LDE

Lui(t) = [ujpr(t) +uj—1(t) — 2u;(t)] + geuwn(u;(t);a),  jEZ

Travelling wave profile u;(t) = ®(j + ct) must satisfy:

C(I)/(f) — (I)(f + 1) + (I)(f o 1) o 2(1)(5) + gcub(q)(g); CL)
1im£—>—oo (I)(f) = O,
lim£_>_|_oo (I)(f) = 1.

e Notice that wave speed c enters in singular fashion.
e When ¢ # 0, this is a functional differential equation of mixed type (MFDE).

e When ¢ = 0, this is a difference equation.
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Propagation Failure

Recall travelling wave MFDE:

c®'(€) = [@E+ 1)+ @(€—1) — 20(E)] + goun(P(€); a)
lime 400 0(&) = 1.

When ¢ = 0, can restrict to £ € Z: recurrence relation!

With p; = ®(j) and r; = (5 + 1), we find

Pj+1 T
riv1 = —pj+2r; —ri(r; —a)(l—7).

Saddles (0,0) and (1,1).
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Propagation Failure

Pj+1
Tj+1

Forgq =1

\V)

1 iteration

(0,0)

rj
—p; + 2r; —rj(r; —a)(1 —r;).

(1,1)

w (0,0 )

-)1\ iteration

W (1,1)

, site-centered (orange) and bond-centered (black) solutions. Generically:
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Propagation Failure

Pj+1 T
riv1 = =P+ 2r; —ri(ry; —a)(l —rj).

Two branches coincide and annihilate at a = a,.
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Propagation

Typical wave speed c versus a plot for discrete reaction-diffusion systems:

C

a

1
a 5
Wave speed ¢ depends uniquely on a.
In case a, < % then we say that LDE suffers from propagation failure.

Propagation failure common for LDEs [Keener, Mallet-Paret, Hoffman, ..

1.
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Discrete space
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Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0 — 1.
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Step Two - Temporal Discretization

Apply Backward-Euler time discretization with time-step At:

1 /
7 (i) — u;(t — At)] = [Azu(t)]; — G (u;(1)).

e Temporal variable t now in (At)Z (discrete).

e Spatial variable j € Z still discrete.

Travelling wave Ansatz u;(t) = ®(j + ct) now yields
c[D1,m®](¢) = ®(C+1) + (¢ — 1) — 22(¢) — G'(2(())
in which M = (cAt)~! and

[D1,m®](¢) = M[®(C) — (¢ — M )]

Domain of ( depends on M. Dense in R if M irrational; otherwise periodic.
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BDF Methods

e Backward-Euler discretization is the order £ = 1 BDF (Backward

Differentiation Formula) method.
e These methods are L-stable (slightly worse than A-stable); much better than

forward Euler.
e Methods available up to order £ = 6.
With BDF order k discretization, wave must solve:
[Dr.ar®)(¢) = B(C +1) + B — 1) — 28(C) — G (2(0)).
Example for k = 2:

D20 B](C) = SM[@(Q) — 3 B(C — M) + 5 8(C — 20|

For smooth functions ¢:

[Dieard = ¢)(¢) = 0" ¢+ ).
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Backward-Euler: restatement

For backward-Euler one can look for solutions to

5(6) = A [B(E — eAt) — D]+ B(E+ 1) + BE 1) —22(6) — C((€);a)

with ¢ = 0.

All shifted terms have positive coefficients. Allows framework of Mallet-Paret for
spatial discretization to be applied for fixed ¢ and At.

This gives unique ¢ = ¢(c, a).

Thm. [H., Van Vleck based on Mallet-Paret| Fix At. For all ¢ sufficiently small,
there is at least one a for which ¢(c,a) = 0.

Numerical insights Generically, ¢(c,a) = 0 for range of a [propagation failure].
Wave speed c is no longer a unique function of a. [Critical intervals [a_(c), a1 (c)]
overlap for different values of (]
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Backward-Euler: non-uniqueness of wave speed

Regions in (¢, a) space where solutions exist.
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Singular perturbation

For orders 2,3, ...6, this monotonic structure is not available.

Goal here is to fix a and look at ¢I' — 0, writing

D) = B.(Q) +v(Q),  e=co+d

where (c,, ®,) is the wave for the spatially discrete problem.

However the bifurcation is singular, in the sense that one must solve
Lrav=0w"+M*+¢),
with
[Lr,mv](() = =D, mv + (¢ + 1) + (¢ — 1) — 20(C) + ¢'(2.(¢))v(C).
We only know that
[Lov](§) = —cv’(§) +v(€+1) +v(§ — 1) = 2v(§) + ¢'(P(E))v(E)-

is Fredholm with index zero as H! — L? map, with Ker £, = {®,}. Can we lift?
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Spectral convergence

Comparison between Ly, 3y and L, can be studied based by adapting 'spectral
convergence' technique [Bates, Chen, Chmaj].

Compares resolvents of linear operators A and Aj; assuming that
o(Ap) — 0(A) as M — oo on compact subsets of C.

Step A: use weak convergence to pass to a weak limit.

Step B: recover 'missing’ information by exploiting equation.
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Step A: Weak Convergence

Need to build an H!-function from sequence

v M1 1

HereM:%soCE%Z.

Cannot directly do interpolation in a controlled fashion.
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Step A: Weak Convergence

nle)

After splitting; can interpolate. Size of derivative controlled by Dy prv.
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Step B: Missing information

e Bounded sequence of H' functions converge (after subsequence) weakly in H!
and strongly on L?([a, b]).

e Weak limit V satisfies limiting problem L,V = 0.
e Task: rule out V =0.

e Here exploit bistable nature of equation plus monotonic structure of discrete
Laplacian

e Can show that Dy prv can not get too big as M — oo

e This gives lower bound on L?([a,b]) norm of limit V.
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The result

Looking for travelling wave (c,v) of form

O(C) = @.(0 4 ¢) + v(¢)

to system

Dy,u® = (¢ + 1) + (¢ — 1) = 28(¢) + geu ((¢); a)

Thm. [H., Van Vleck| Fix integer g, > 1. There exists M, > 1 so that for all
M > M, and M = g with ¢ < g, there are unique solutions ¢y (a, ) and

var(a,9).

At can be recovered via M ! = cAt
Speed cps(a, V) = ¢, + O(M™1)
Periodicity cas(a, 9 + M~1) = cpr(a, 9).
Monotonicity d,car(a, ) < 0.

We have non-uniqueness of wave speed ¢ as a function of a and a as a
. . . -1
function of ¢ provided we can show that dycys(a,?) # 0. But this is O(eM ).
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