Madrid - July 9th 2014

Travelling Waves for Fully Discretized Bistable Reaction-Diffusion Problems

Hermen Jan Hupkes

Leiden University

(Joint work with Erik van Vleck - U. Kansas)

Reaction-Diffusion System

- Continuous spatial variable: $x \in \mathbb{R}$.
- Continuous temporal variable: $t \in \mathbb{R}$.
- $0 \leq u(x, t) \leq 1$
- Prototype for Pattern formation.

Reaction Term

- Think of $G(u)$ as a potential.
- Ignoring spatial variations, u moves through potential landscape.

Diffusion Term

- Diffusion: flattens wrinkles.

Travelling Waves

Basic pattern: travelling waves connecting $u=0$ to $u=1$.

- Building blocks for more complex patterns.

Nonlinearity

For concreteness, will use quartic potential; i.e.

$$
-G^{\prime}(u)=-G^{\prime}(u ; a)=g_{\mathrm{cub}}(u ; a)=u(1-u)(u-a)
$$

Travelling wave: PDE

Nagumo PDE with $g_{\text {cub }}(\cdot ; a)$:

$$
\partial_{t} u=\partial_{x x} u+u(1-u)(u-a)
$$

Starting step [Fife, McLeod]: travelling waves.
Travelling wave $u(x, t)=\Phi(x+c t)$ satisfies:

$$
c \Phi^{\prime}(\xi)=\Phi^{\prime \prime}(\xi)+\Phi(\xi)(1-\Phi(\xi))(\Phi(\xi)-a)
$$

Interested in pulse solutions connecting 0 to 1, i.e.

$$
\lim _{\xi \rightarrow-\infty} \Phi(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} \Phi(\xi)=1
$$

Signal Propagation: PDE

Recall travelling wave ODE

$$
\begin{array}{ll}
c \Phi^{\prime}(\xi) & =\Phi^{\prime \prime}(\xi)+\Phi(\xi)(a-\Phi(\xi))(\Phi(\xi)-1) \\
\lim _{\xi \rightarrow-\infty} \phi(\xi) & =0 \\
\lim _{\xi \rightarrow+\infty} \phi(\xi) & =1
\end{array}
$$

Explicit solutions available:

$$
\begin{aligned}
& \Phi(\xi)=\frac{1}{2}+\frac{1}{2} \tanh \left(\frac{1}{4} \sqrt{2} \xi\right) \\
& c(a)=\frac{1}{\sqrt{2}}(1-2 a)
\end{aligned}
$$

Continuous space

Step 1 - Spatial Discretization

- Translational symmetry broken

- Gaps in discrete space: barriers
- Fundamental difference between Moving Waves and Standing Waves

Reaction-Diffusion System

\[

\]

Single grid site

- Discrete spatial variable: $j \in \mathbb{Z}$.
- Continuous temporal variable: $t \in \mathbb{R}$.
- $0 \leq u_{j}(t) \leq 1$

Diffusion Term

- Diffusion: flattens variations between neighbours.

$$
\left[\Delta_{\mathbb{Z}} u(t)\right]_{j}=u_{j+1}(t)+u_{j-1}(t)-2 u_{j}(t)
$$

Travelling Waves

Again: Basic pattern: travelling waves connecting $u=0$ to $u=1$.

Different times see different discrete samples of smooth underlying profile.

Signal Propagation: LDE

Consider the Nagumo LDE

$$
\frac{d}{d t} u_{j}(t)=\left[u_{j+1}(t)+u_{j-1}(t)-2 u_{j}(t)\right]+g_{\mathrm{cub}}\left(u_{j}(t) ; a\right), \quad j \in \mathbb{Z}
$$

Travelling wave profile $u_{j}(t)=\Phi(j+c t)$ must satisfy:

$$
\begin{array}{ll}
c \Phi^{\prime}(\xi) & =\Phi(\xi+1)+\Phi(\xi-1)-2 \Phi(\xi)+g_{\mathrm{cub}}(\Phi(\xi) ; a) \\
\lim _{\xi \rightarrow-\infty} \Phi(\xi) & =0 \\
\lim _{\xi \rightarrow+\infty} \Phi(\xi) & =1
\end{array}
$$

- Notice that wave speed c enters in singular fashion.
- When $c \neq 0$, this is a functional differential equation of mixed type (MFDE).
- When $c=0$, this is a difference equation.

Propagation Failure

Recall travelling wave MFDE:

$$
\begin{array}{ll}
c \Phi^{\prime}(\xi) & =[\Phi(\xi+1)+\Phi(\xi-1)-2 \Phi(\xi)]+g_{\mathrm{cub}}(\Phi(\xi) ; a) \\
\lim _{\xi \rightarrow-\infty} \phi(\xi) & =0 \\
\lim _{\xi \rightarrow+\infty} \phi(\xi) & =1
\end{array}
$$

When $c=0$, can restrict to $\xi \in \mathbb{Z}$: recurrence relation!
With $p_{j}=\Phi(j)$ and $r_{j}=\Phi(j+1)$, we find

$$
\begin{aligned}
p_{j+1} & =r_{j} \\
r_{j+1} & =-p_{j}+2 r_{j}-r_{j}\left(r_{j}-a\right)\left(1-r_{j}\right)
\end{aligned}
$$

Saddles $(0,0)$ and (1,1).

Propagation Failure

$$
\begin{aligned}
p_{j+1} & =r_{j} \\
r_{j+1} & =-p_{j}+2 r_{j}-r_{j}\left(r_{j}-a\right)\left(1-r_{j}\right)
\end{aligned}
$$

For $a=\frac{1}{2}$, site-centered (orange) and bond-centered (black) solutions. Generically:

$$
\mathcal{W}^{u}(0,0)
$$

1 iteration

$$
(0,0)
$$

Propagation Failure

$$
\begin{aligned}
p_{j+1} & =r_{j} \\
r_{j+1} & =-p_{j}+2 r_{j}-r_{j}\left(r_{j}-a\right)\left(1-r_{j}\right)
\end{aligned}
$$

Two branches coincide and annihilate at $a=a_{*}$.

Propagation

Typical wave speed c versus a plot for discrete reaction-diffusion systems:

Wave speed c depends uniquely on a.
In case $a_{*}<\frac{1}{2}$, then we say that LDE suffers from propagation failure.
Propagation failure common for LDEs [Keener, Mallet-Paret, Hoffman, ...].

Discrete space

Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting $0 \rightarrow 1$.

Step Two - Temporal Discretization

Apply Backward-Euler time discretization with time-step Δt :

$$
\frac{1}{\Delta t}\left[u_{j}(t)-u_{j}(t-\Delta t)\right]=\left[\Delta_{\mathbb{Z}} u(t)\right]_{j}-G^{\prime}\left(u_{j}(t)\right)
$$

- Temporal variable t now in $(\Delta t) \mathbb{Z}$ (discrete).
- Spatial variable $j \in \mathbb{Z}$ still discrete.

Travelling wave Ansatz $u_{j}(t)=\Phi(j+c t)$ now yields

$$
c\left[\mathcal{D}_{1, M} \Phi\right](\zeta)=\Phi(\zeta+1)+\Phi(\zeta-1)-2 \Phi(\zeta)-G^{\prime}(\Phi(\zeta))
$$

in which $M=(c \Delta t)^{-1}$ and

$$
\left[\mathcal{D}_{1, M} \Phi\right](\zeta)=M\left[\Phi(\zeta)-\Phi\left(\zeta-M^{-1}\right)\right]
$$

Domain of ζ depends on M. Dense in \mathbb{R} if M irrational; otherwise periodic.

BDF Methods

- Backward-Euler discretization is the order $k=1$ BDF (Backward Differentiation Formula) method.
- These methods are L-stable (slightly worse than A-stable); much better than forward Euler.
- Methods available up to order $k=6$.

With BDF order k discretization, wave must solve:

$$
c\left[\mathcal{D}_{k, M} \Phi\right](\zeta)=\Phi(\zeta+1)+\Phi(\zeta-1)-2 \Phi(\zeta)-G^{\prime}(\Phi(\zeta))
$$

Example for $k=2$:

$$
\left[\mathcal{D}_{2, M} \Phi\right](\zeta)=\frac{3}{2} M\left[\Phi(\zeta)-\frac{4}{3} \Phi\left(\zeta-M^{-1}\right)+\frac{1}{3} \Phi\left(\zeta-2 M^{-1}\right)\right]
$$

For smooth functions ϕ :

$$
\left[\mathcal{D}_{k, M} \phi-\phi^{\prime}\right](\zeta)=O\left(M^{-k}\left\|\phi^{(k+1)}\right\|_{\infty}\right)
$$

Backward-Euler: restatement

For backward-Euler one can look for solutions to

$$
\widetilde{c} \Phi^{\prime}(\xi)=\frac{1}{\Delta t}[\Phi(\xi-c \Delta t)-\Phi(\xi)]+\Phi(\xi+1)+\Phi(\xi-1)-2 \Phi(\xi)-G^{\prime}(\Phi(\xi) ; a)
$$

with $\widetilde{c}=0$.
All shifted terms have positive coefficients. Allows framework of Mallet-Paret for spatial discretization to be applied for fixed c and Δt.

This gives unique $\widetilde{c}=\widetilde{c}(c, a)$.
Thm. [H., Van Vleck based on Mallet-Paret] Fix Δt. For all c sufficiently small, there is at least one a for which $\widetilde{c}(c, a)=0$.

Numerical insights Generically, $\widetilde{c}(c, a)=0$ for range of a [propagation failure]. Wave speed c is no longer a unique function of a. [Critical intervals $\left[a_{-}(c), a_{+}(c)\right.$] overlap for different values of c]

Backward-Euler: non-uniqueness of wave speed

Regions in (c, a) space where solutions exist.

Singular perturbation

For orders $2,3, \ldots 6$, this monotonic structure is not available.
Goal here is to fix a and look at $c T \rightarrow 0$, writing

$$
\Phi(\zeta)=\Phi_{*}(\zeta)+v(\zeta), \quad c=c_{*}+c^{\prime}
$$

where $\left(c_{*}, \Phi_{*}\right)$ is the wave for the spatially discrete problem.
However the bifurcation is singular, in the sense that one must solve

$$
\mathcal{L}_{k, M} v=O\left(v^{2}+M^{-1}+c^{\prime}\right)
$$

with

$$
\left[\mathcal{L}_{k, M} v\right](\zeta)=-c_{*} \mathcal{D}_{k, M} v+v(\zeta+1)+v(\zeta-1)-2 v(\zeta)+g^{\prime}\left(\Phi_{*}(\zeta)\right) v(\zeta)
$$

We only know that

$$
\left[\mathcal{L}_{*} v\right](\xi)=-c_{*} v^{\prime}(\xi)+v(\xi+1)+v(\xi-1)-2 v(\xi)+g^{\prime}\left(\Phi_{*}(\xi)\right) v(\xi)
$$

is Fredholm with index zero as $H^{1} \rightarrow L^{2}$ map, with $\operatorname{Ker} \mathcal{L}_{*}=\left\{\Phi_{*}\right\}$. Can we lift?

Spectral convergence

- Comparison between $\mathcal{L}_{k, M}$ and \mathcal{L}_{*} can be studied based by adapting 'spectral convergence' technique [Bates, Chen, Chmaj].
- Compares resolvents of linear operators \mathcal{A} and \mathcal{A}_{M} assuming that $\sigma\left(\mathcal{A}_{M}\right) \rightarrow \sigma(\mathcal{A})$ as $M \rightarrow \infty$ on compact subsets of \mathbb{C}.
- Step A: use weak convergence to pass to a weak limit.
- Step B: recover 'missing' information by exploiting equation.

Step A: Weak Convergence

Need to build an H^{1}-function from sequence

Here $M=\frac{3}{2}$ so $\zeta \in \frac{1}{3} \mathbb{Z}$.
Cannot directly do interpolation in a controlled fashion.

Step A: Weak Convergence

After splitting; can interpolate. Size of derivative controlled by $\mathcal{D}_{k, M} v$.

Step B: Missing information

- Bounded sequence of H^{1} functions converge (after subsequence) weakly in H^{1} and strongly on $L^{2}([a, b])$.
- Weak limit V satisfies limiting problem $\mathcal{L}_{*} V=0$.
- Task: rule out $V=0$.
- Here exploit bistable nature of equation plus monotonic structure of discrete Laplacian
- Can show that $\mathcal{D}_{k, M} v$ can not get too big as $M \rightarrow \infty$
- This gives lower bound on $L^{2}([a, b])$ norm of limit V.

The result

Looking for travelling wave (c, v) of form

$$
\Phi(\zeta)=\Phi_{*}(\vartheta+\zeta)+v(\zeta)
$$

to system

$$
c \mathcal{D}_{k, M} \Phi=\Phi(\zeta+1)+\Phi(\zeta-1)-2 \Phi(\zeta)+g_{\mathrm{cub}}(\Phi(\zeta) ; a)
$$

Thm. [H., Van Vleck] Fix integer $q_{*}>1$. There exists $M_{*} \gg 1$ so that for all $M \geq M_{*}$ and $M=\frac{p}{q}$ with $q \leq q_{*}$ there are unique solutions $c_{M}(a, \vartheta)$ and $v_{M}(a, \vartheta)$.

- Δt can be recovered via $M^{-1}=c \Delta t$
- Speed $c_{M}(a, \vartheta)=c_{*}+O\left(M^{-1}\right)$
- Periodicity $c_{M}\left(a, \vartheta+M^{-1}\right)=c_{M}(a, \vartheta)$.
- Monotonicity $\partial_{a} c_{M}(a, \vartheta)<0$.

We have non-uniqueness of wave speed c as a function of a and a as a function of c provided we can show that $\partial_{\vartheta} c_{M}(a, \vartheta) \neq 0$. But this is $O\left(e^{M^{-1}}\right)$.

