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Discrete Reaction-Diffusion Systems

We consider the prototype reaction diffusion system

∂ty(x, t) = γ∂xxy(x, t) + [LDy](x, t) + f
(
y(x, t)

)
with discrete Laplacian

[LDy](x, t) = y(x+ 1, t) + y(x− 1, t)− 2y(x, t).

• When γ = 0, we have a pure lattice system

• For γ > 0, we have a partially discrete reaction-diffusion system

• Useful for models with local and nonlocal interactions

• Allows study of transition continuous → discrete (Van Vleck, Elmer, H.,
Verduyn Lunel) .
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Wave trains

We are interested in wave train solutions (periodic travelling waves). Ansatz

y(x, t) = u(ωt− kx)

leads to second order MFDE F(u, ω, k) = 0 with

F(u, ω, k) := −γk2u′′(ζ) + ωu′(ζ)− [u(ξ − k) + u(ξ + k)− 2u(ξ)]− f(u(ζ))

We require periodicity u(ζ) = u(ζ + 2π).

Under generic assumptions, if F(u0, ω0, k0) = 0, then can construct 1-parameter
family of wave-train solutions

y(x, t) = u(ωnl(k)t− kx; k) for k ≈ k0

cp = ω
k cg = dω

dkphase velocity group velocity
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Linear stability

To consider the linear stability of the wave train, insert Floquet Ansatz

y(x, t) = u(ζ; k0) + eλte−νζ/k0w(ζ),

with ζ = ω0t− k0x. Ignoring higher order terms, we must have

Lst(ν)w = λw,

with (for γ = 0 )

Lst(ν)w = [νcp − ω0D]w + [eνw(· − k0) + e−νw(·+ k0)− 2w]
+Df(u(·; k0))w.

We find a set of curves ν → λj(ν) that are analytic except at intersection points.
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Linear dispersion relation

Note that Lstu
′(·; k0) = 0. If the eigenvalue λ = 0 is simple, we find a curve

ν 7→ λlin(ν)

that is analytic for ν ≈ 0, with

λlin(0) = 0, λ′lin(0) = cp − cg

Spectral stability hypothesis (d > 0):

λlin(iγ) = i(cp − cg)γ − dγ2 + O(γ3)

λlin(iγ)

Reλ

Imλ
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PDE Reaction-Diffusion Systems

Step back for a moment and consider the PDE

yt = yxx + f(y),

again with the 1-parameter family of wave-trains u(ωnl(k)t− kx; k).

Consider the formal Ansatz

y(x, t) = u(kx− ωt+ φ(X,T ); k + εφX(X,T ))

where X = ε(x− cgt), T = ε2t/2 and ε� 1

Wavenumber q = φX formally satisfies the viscous Burgers equation:

∂q

∂T
= λ′′(0)

∂2q

∂X2
− ω′′nl(k)

(
q2
)
X

[Howard and Koppel, 1977]
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Predictions from the Burgers equation

• Issue 1: Validity of Burgers equation over natural time scale [0, ε−2]:
[Doelman, Sandstede, Scheel, Schneider]

• Issue 2: Predictions from Burger equation

Lax shocks of Burgers equation −→ Weak defects:

cg

y

q

(convex dispersion relation: ω′′nl(k) > 0)
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Verifying the existence of the lax shock

The shock that we seek is a modulated travelling wave. Write as

y(x, t) = u∗(x− c∗t, ω∗t)

where u∗ is 2π periodic in the second variable.

Asymptotics

u∗(x− c∗t, ω∗t)→ u(ω±t− k±x; k±) as x− c∗t→ ±∞

Space-time plot for ω∗t ∈ [0, 2π]:

space (comoving frame)

ti
m

e

Since c−g > c∗ > c+g , transport occurs towards defect → sink.
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Construction of lax shock in continuous setting

Introduce new variables v(ξ, τ) = u∗(ξ, τ) and w(ξ, τ) = ∂ξu∗(ξ, τ), with
ξ = x− c∗t and τ = ω∗t.

In the continuous case, we find

∂ξ

(
v
w

)
=
(

w
−γ−1[c∗w − ω∗∂τv + f(v)]

)
Following the spatial-dynamics approach due to [Kirchgässner], [Mielke], view as
an ODE on the space H2

per([0, 2π])×H1
per([0, 2π]).

Fix k0 and write

c∗ = cg(k0) = ω′nl(k0)
ω∗ = ωnl(k0)− k0ω

′
nl(k0) + ω

For small ω with appropriate sign, there exist:

• Wave numbers k±(ω) with k±(ω)→ k0 as ω → 0.
• Periodic solutions v±(ξ) = u(−k±ξ + ·; k±) (with accompanying w±)
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Construction of lax shock in continuous setting

For ω = 0, we have the ξ-periodic solution

v0(ξ)(τ) = u(−k0ξ + τ ; k0)
w0(ξ)(τ) = −k0u

′(−k0ξ + τ ; k0)

Idea: construct center manifold around (v0, w0, ω = 0) that captures all solutions
that remain orbitally close to (v0, w0), for small ω.

Crucial ingredient: change of variables σ = τ − k0ξ into temporal comoving frame
yields

∂ξ

(
v
w

)
= k0∂σ

(
v
w

)
+
(

w
−γ−1[c∗w − ∂σv + f(v)]

)

This change of variables turns periodic solution (v0, w0) into a ring of equilibria.

Orbitally close in original frame ↔ close to equilibria-ring in temporal comoving
frame
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Temporal Comoving Frame

Recall temporal-comoving frame

∂ξ

(
v
w

)
= k0∂σ

(
v
w

)
+
(

w
−γ−1[c∗w − ω∗∂σv + f(v)]

)

Center space around equilibrium u0 = (v0, w0) is two dimensional by our choice
c∗ = cg. Spanned by

u′0 = (u′(·; k0),−k0u
′′(·; k0)), u1 = (−∂ku(·; k0), k0∂ku

′(·; k0) + u′(·; k0)).

Formally insert Ansatz

(v, w) = u0(· − θ)− κu1(· − θ) +O(θ2 + κ2)

and derive ODE

∂ξθ = κ+O(|ω|+ |κ|2)
∂ξκ = 2λ′′lin(0)−1(1

2ω
′′
nl(k0)κ2 − ω) +O(|ω|2 + |ωκ|+ |κ|3)

Read off heteroclinic connections.

11



Heteroclinic connections

Recall

∂ξ

(
v
w

)
= k0∂σ

(
v
w

)
+
(

w
−γ−1[c∗w − ω∗∂σv + f(v)]

)
No general global center manifold result for such mixed hyperbolic - elliptic
systems.

To get CM, need to exploit CM result by [Mielke] for original equation

∂ξ

(
v
w

)
=
(

w
−γ−1[c∗w − ω∗∂τv + f(v)]

)
Result states that solutions that are orbitally close to (v0, w0) can be captured.
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Discrete Case

In discrete setting, the equation to solve becomes

∂ξ

(
v
w

)
=
(

w
−γ−1[c∗w − ω∗∂τv + [v(·+ 1) + v(· − 1)− 2v] + f(v)]

)
This is a functional differential equation of mixed type (MFDE) posed on the
space H2

per([0, 2π])×H1
per([0, 2π]).

• The center manifold result developed by Mielke no longer works for MFDEs

• The situation was partially remedied in [Hupkes, Verduyn Lunel, 2008], where
center manifolds are constructed around periodic solutions to MFDEs

• However, orbital closeness is still an unresolved issue.

• In addition, results only for MFDEs posed on Cn, not general Hilbert spaces
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Discrete Case

For simplicity, we choose to work directly in temporal comoving frame and solve

∂ξ

(
v
w

)
= k0∂σ

(
v
w

)
+
(

w
−γ−1[c∗w − ω∗∂σv + f(v)]

)
+
(

0
[v(·+ 1)(· − k0) + v(· − 1)(·+ k0)− 2v]

)
posed on the space H2

per([0, 2π])×H1
per([0, 2π]).

Goal is to construct global center manifold near ring of equilibria(
u(ϑ+ · ; k0),−k0u

′(ϑ+ · ; k0)
)

, parametrized by ϑ ∈ [0, 2π].

Most important issues:

• The ∂σ derivatives prevent use of bootstrapping methods to get regularity of
solutions.

• The Hilbert space setting prevents explicit construction of characteristic
equations.
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Finite dimensional example

For simplicity, let us consider the planar ODE

y′ = f(y)

• Write ρ(ϑ) for rotation with angle ϑ.
• Suppose f : R2 → R

2 invariant, i.e. ρ(−ϑ)f(ρ(ϑ)v) = f(v) for v ∈ R2.
• Suppose f(y) = 0 for y 6= 0.

Change of variables

y(ξ) = ρ
(
θ(ξ)

)
[y + u(ξ)]

with normalization condition

〈Dρ(0)y, u(ξ)〉 = 0.
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Finite dimensional example - continued

Recall y′ = f(y) with

y(ξ) = ρ
(
θ(ξ)

)
[y + u(ξ)], 〈Dρ(0)y, u(ξ)〉 = 0.

Differentiation yields

u′(ξ) = −θ′(ξ)Dρ(0)[y + u(ξ)] + f
(
y + u(ξ)

)
θ′(ξ) = [〈Dρ(0)y,Dρ(0)y〉+ 〈Dρ(0)y,Dρ(0)u(ξ)〉]−1〈Dρ(0)y, f

(
y + u(ξ)

)
〉.

Variable θ can hence be eliminated from equation for u, allowing use of standard
CM theory.

However, turning to our setting y′(ξ) = f
(
y(ξ), y(ξ − 1), y(ξ + 1)

)
, we find:

• Symmetry ρ acts as translation −→ the term Dρ(0)u(ξ) becomes unbounded.
• Equation for θ no longer decouples.
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Global center manifold

To resolve the unboundedness issue, need to use Ansatz

y(ξ) = ρ(θ(ξ))y + u(ξ).

We need to obtain CM for the coupled system

u′(ξ) = −θ′(ξ)Dρ(θ(ξ))y + f(θξ, uξ)
θ′(ξ) = [〈Dρ(0)y,Dρ(0)y〉+ 〈Dρ(θ(ξ))y, u(ξ)〉]−1〈Dρ(θ(ξ))y, f(θξ, uξ)〉

in which u is small, but without bound on θ.

f(θξ, uξ) = f
(
ρ(θ(ξ))y + u(ξ), ρ(θ(ξ − 1))y + u(ξ − 1), ρ(θ(ξ + 1))y + u(ξ + 1)

)
.

Notice that linearization of equation for u′ includes dependence on θ(ξ), θ(ξ ± 1).

Key idea: For small u, the variable θ is slowly varying. Linearized equation for u
thus has slowly varying coefficients, allowing us to solve for prescribed θ.
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Fenichel Theory

Close connection with singularly perturbed systems

θ′ = εgs(θ, u, ε)
u′ = gf(θ, u, ε),

that admit a manifold ũ(ϑ) of equilibria

gf(ϑ, ũ(ϑ), 0) = 0.

Key question: persistence of invariant manifold as slow flow is turned on (ε > 0).

• Fenichel (1970s): in absence of extra center directions (normal hyperbolicity),
manifold persists

• Large literature on persistence of center manifolds for general
normally-hyperbolic invariant sets

• Some results on situations where normal-hyperbolicity fails [Chow, Liu, Yi]

18



Analytic techniques

• Almost all results rely on geometric Hadamard graph transform techniques

• Need analytic setup for generalization to infinite dimensions

• [Sakamoto, 1990] Analytic proof of first Fenichel theorem by fixed point
argument. Idea:

– For prescribed slowly modulated function θ, construct solution operator K(θ)
to solve linearized system for u.

– Solve fixed point system

u = K(θ[u])G(u),

in appropriate weighted function space, where G contains nonlinear terms.

Unfortunately, normal-hyperbolicity is essential.
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Construction of global CM

Crucial idea, inspired by technique in [Yi]: use two fixed point arguments in
succession.

Equation to solve: (E denotes extension from center space to solutions to
homogeneous linear system)

u = E(θ[u])Πctu(0) +K(θ[u])G(u) (1)

• Assume that CM has the form h : (κ, θ)→ H
• Plug in Ansatz

u = ρ(θ)y + κρ(θ)u1 + h(κ, θ)

and using center projections and fixed point argument, determine evolution for
the center variables (κ, θ). Evolution depends only on κ(0), θ(0), h.
• Pick arbitrary κ(0) and θ(0), determine κ(ξ) and θ(ξ) from this and compute

right hand side of (1).
• Evaluating at zero and equating with left hand side of (1) yields fixed point

equation for CM function h.
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Main Result

Theorem 1 (H., Sandstede, JDDE, to appear). Consider the partially
discrete system

∂ty(x, t) = γ∂xxy(x, t) + [LDy](x, t) + f
(
y(x, t)

)
with γ > 0. Suppose that ω′′nl(k0) 6= 0 and λ′′lin > 0. Suppose furthermore that
some technical conditions hold for the lattice.

Then for k1 ≈ k0, there exists k2 ≈ k0 and a modulated travelling wave that
connects the wavetrain at k− to the wave train at k+, in which k− = k1 and
k+ = k2 if ω′′nl(k0) < 0 and vice versa if ω′′nl(k0) > 0.

• The technical conditions on the lattice are absent in the continuous case.
• They arise due to the fact that the θ equation is an MFDE.
• Equation is scalar, but many eigenfunctions can in principle appear.
• To make sure flow on CM depends only on θ(0) and κ(0), need to ensure that

there are no resonances.
• In the limit γ → 0 one cannot avoid these resonances.
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Technical conditions on the lattice

Characteristic equation (for c∗ = cg) is given by

Lch(z)v = [−Lst(z) + z(cp − cg)]v

Associated operator
T (z) : H2

per([0, 2π])×H1
per([0, 2π])→ H1

per([0, 2π])×H0
per([0, 2π]) given by

T (z)
(
v1

v2

)
=
(

1 0
−(z + 1

γcg − k0D) 1

)(
−γz + γk0D γ
Lch(z) 0

)(
v1

v2

)
,

• We have 〈u′0, T ′(0)u′0〉 6= 0 and 〈u′0, T (iκ)u′0〉 6= 0 for κ ∈ R \ {0}. [The
MFDE for normalization θ is well-defined after fixing θ(0)]

• We have ∆(iκ) 6= 0 for κ ∈ R \ {0} and ∆′′(0) 6= 0, for

∆(z) = −γz ‖u1‖2H1×H0 〈u′0, T (z)u′0〉 − 〈u1, T ′(0)u′0〉〈u′0, T (z)u′0〉
+〈u′0, T ′(0)u′0〉〈u1, T (z)u′0〉,

[Evolution on center manifold defined after fixing κ(0) and θ(0)].
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The limit γ → 0.

To get a further idea what goes wrong in γ → 0 limit, study the characteristic
equation (for γ = 0)

Lch(z)v = [−Lst(z) + z(cp − cg)]v

= [zcg − (ω∗ + k0cg)D]v + [ezv(· − k0) + e−zv(·+ k0)− 2v]

+Df(u(·; k0))v.

Consider ` ∈ Z and ∆k ∈ Z, and

ṽ = exp[i∆k·]v
z̃ = z + ik0∆k + 2π`

We get

exp[−i∆k·]Lch(z̃)ṽ = Lch(z)v + i(2πcg`− ω∗∆k)v

If πcg and ω∗ are not rationally related, there is no hope of getting a uniform
bound on Lch(z) in vertical strips if Lch(z0) has eigenvalue with Reλ = Re z0.
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