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Discrete Reaction-Diffusion Systems

We consider the prototype reaction diffusion system

Oy (x,t) = Y0pey(z,t) + [Lpy|(x,t) + f(y(z,1))
with discrete Laplacian

Lpyl(z,t) = y(z + 1,1) + y(z — 1,t) — 2y(z, ).
e When v = 0, we have a pure lattice system
e For v > 0, we have a partially discrete reaction-diffusion system

e Useful for models with local and nonlocal interactions

e Allows study of transition continuous — discrete (Van Vleck, Elmer, H.,
Verduyn Lunel) .



Wave trains

We are interested in wave train solutions (periodic travelling waves). Ansatz
y(x,t) = u(wt — kx)
leads to second order MFDE F(u,w, k) = 0 with

Fu,w, k) = —vk*u"(¢) + wu/(C) — [u(€ — k) + u(€ + k) — 2u(§)] — f(u(())

We require periodicity u(¢) = u(¢ + 27).

Under generic assumptions, if F(ug,wq, ko) = 0, then can construct 1-parameter
family of wave-train solutions

y(x,t) = u(wn(k)t — kx; k) for k ~ kg

w dw
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Linear stability

To consider the linear stability of the wave train, insert Floquet Ansatz
y(z,t) = u(C; ko) + e Mow((),
with ( = wgt — kox. Ignoring higher order terms, we must have
Lei(v)w = Aw,
with (for v =10)

Li(V)w = |ve, —woDw+ [eXw(- — ko) + e Yw(- + ko) — 2w]
+ D f(u(-; ko))w.

We find a set of curves v — \;(v) that are analytic except at intersection points.



Linear dispersion relation

Note that Lgu/(+; kg) = 0. If the eigenvalue X\ = 0 is simple, we find a curve
v +— Ajin(V)
that is analytic for v = 0, with

)\lin(o) — 07 ’ (O) = Cp — (g

Im )\

Spectral stability hypothesis (d > 0):

Re A
>\11n(7/7) — 7/( )7 d’}/ + O( )



PDE Reaction-Diffusion Systems

Step back for a moment and consider the PDE

Yt = Yoz + [(Y),

again with the 1-parameter family of wave-trains u(wp (k)t — kx; k).

Consider the formal Ansatz
y(x,t) = ulkr —wt+ (X, T); k+ epx (X, T))

where X = e(x — cot), T =¢€t/2 and e<1

Wavenumber ¢ = ¢ x formally satisfies the viscous Burgers equation:

dq 1 02(] 17
8_T = A (O)aXQ o wnl(k) <q2>X

[Howard and Koppel, 1977]




Predictions from the Burgers equation

e Issue 1: Validity of Burgers equation over natural time scale [0, 2]

[Doelman, Sandstede, Scheel, Schneider]

e Issue 2: Predictions from Burger equation

Lax shocks of Burgers equation — Weak defects:

Cg

=

(convex dispersion relation: w! (k) > 0)



Verifying the existence of the lax shock

The shock that we seek is a modulated travelling wave. Write as
Y(x,1) = U (T — Cut, wil)

where u, is 27 periodic in the second variable.

Asymptotics

U (T — Cot,wit) — u(wet — kix; ky) as x — et — +00

Space-time plot for w,t € [0, 2n]:

N\\\\\\V///7/7

space (comoving frame)

Since Cy > Cx > c;, transport occurs towards defect — sink.



Construction of lax shock in continuous setting

Introduce new variables v(§, 7) = u. (&, 7) and w(, 7) = Ogus (&, 7), with
E=x —cit and T = w,t.

In the continuous case, we find

w

(‘95( :j] ) = ( —~y e,w — wodrv + F(V)] )

Following the spatial-dynamics approach due to [Kirchgassner], [Mielke], view as
an ODE on the space HZ, .([0,27]) x H!. ([0, 27]).

per per

Fix kg and write

C ¢q(ko) = wiy(Ko)
Wx — wnl(k’o) — kow;ﬂ(ko) + W

For small @ with appropriate sign, there exist:

e Wave numbers ki (@) with k() — kg as w — 0.
e Periodic solutions v4 (&) = u(—k+& + -; k+) (with accompanying w.)



Construction of lax shock in continuous setting

For w = 0, we have the &-periodic solution

u(—ko§ + 7; ko)
—kou'(—ko& 4+ T3 ko)

vo(£)(7)
wo(§)(7)

ldea: construct center manifold around (vg, wg,w = 0) that captures all solutions
that remain orbitally close to (vg, wyg), for small @.

Crucial ingredient: change of variables ¢ = 7 — kg€ into temporal comoving frame

yields
O ( Zj} > = koOs ( 5} ) T ( v e,w fuaav+f(v)] )

This change of variables turns periodic solution (vg,wg) into a ring of equilibria.

Orbitally close in original frame < close to equilibria-ring in temporal comoving
frame
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Temporal Comoving Frame

Recall temporal-comoving frame

5&( Z ) = 7“050< Z ) * ( —7—1[c*w—z*ﬁav+f(v)] )

Center space around equilibrium ug = (vg, wq) is two dimensional by our choice
C« = C4. Spanned by

ug = (u'(+; ko), —kou"(-; ko)), w; = (—0ku(:; ko), koOru'(+; ko) + u'(+; ko)).

Formally insert Ansatz
(v,w) = up(- — 0) — kuy (- — 0) + O(0* + Kk?)

and derive ODE

90 = r+O0(z|+ k%)
Ok = 2XN! (0)~ (3w (ko)k? — @) + O(|@]* + |[wr| + |&°)

Read off heteroclinic connections.
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Heteroclinic connections

Recall

() =k () (s s )

No general global center manifold result for such mixed hyperbolic - elliptic
systems.

To get CM, need to exploit CM result by [Mielke] for original equation

A2t

Result states that solutions that are orbitally close to (vg, wg) can be captured.
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Discrete Case

In discrete setting, the equation to solve becomes

. w

% ( u ) - ( M ew — wdrv + o + 1) +o(- — 1) — 20] + f(v)] )

This is a functional differential equation of mixed type (MFDE) posed on the
space H2, ([0,2n]) x H!  ([0,27]).

per per
e The center manifold result developed by Mielke no longer works for MFDEs

e The situation was partially remedied in [Hupkes, Verduyn Lunel, 2008], where
center manifolds are constructed around periodic solutions to MFDEs

e However, orbital closeness is still an unresolved issue.

e |n addition, results only for MFDEs posed on C", not general Hilbert spaces
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Discrete Case

For simplicity, we choose to work directly in temporal comoving frame and solve

1(2) = 0 (2)+ (o )

u : )
0+ 1) = o) + 0 = 1)(- + o) — 20

posed on the space HZ ([0,27]) x H! ([0,27]).

per per

Goal is to construct global center manifold near ring of equilibria
(u(ﬁ 4 ko), —kou!(9 + - kg)), parametrized by ¥ € [0, 27].

Most important issues:

e The O, derivatives prevent use of bootstrapping methods to get regularity of
solutions.

e The Hilbert space setting prevents explicit construction of characteristic
equations.
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Finite dimensional example

For simplicity, let us consider the planar ODE

e Write p(19) for rotation with angle .
e Suppose f: R? — R? invariant, i.e. p(—19)f(p(9)v) = f(v) for v € R
e Suppose f(y) =0 for 7 # 0.

Change of variables

y(€) = p(0(8)) [7 + u(&)]

with normalization condition

(Dp(0)7, u(€)) = 0.




Finite dimensional example - continued

Recall ¥ = f(y) with

Differentiation yields

u'(§) = —0'(§)Dp(0)[7 +u(@)] + f (7 + ()

0'(§) = [(Dp(0)7, Dp(0)7) + (Dp(0)7, Dp(0)u(&))]| = {Dp(0)7, f (7 + u(§)))-

Variable 6 can hence be eliminated from equation for u, allowing use of standard
CM theory.

However, turning to our setting y'(&) = f(y(&),y(€ — 1), y(§ + 1)), we find:

e Symmetry p acts as translation — the term Dp(0)u(£) becomes unbounded.
e Equation for 6 no longer decouples.
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Global center manifold

To resolve the unboundedness issue, need to use Ansatz

We need to obtain CM for the coupled system

—0'(&)Dp(0(&))y + f(Oc, ue)
[(Dp(0)7, Dp(0)7) + (Dp(0(E))7, u(&))] = (Dp(8(£))7, f(Oe, ue))

:\
~~
I
N— —
|

in which « is small, but without bound on 6.

f (O, ue) = f(p(0(€)F + u(€), p(0(§ — 1))7 +u(€ — 1), p(0( + 1))T + u(€ + 1)).

Notice that linearization of equation for u' includes dependence on 6(¢), (£ +1).

Key idea: For small u, the variable 6 is slowly varying. Linearized equation for u
thus has slowly varying coefficients, allowing us to solve for prescribed 6.
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Fenichel Theory

Close connection with singularly perturbed systems

0" = €gs(0,u,¢)

u/ gf(97 u? 6)7

that admit a manifold u(?) of equilibria
g5(0,u(),0) = 0.
Key question: persistence of invariant manifold as slow flow is turned on (e > 0).

e Fenichel (1970s): in absence of extra center directions (normal hyperbolicity),
manifold persists

e Large literature on persistence of center manifolds for general
normally-hyperbolic invariant sets

e Some results on situations where normal-hyperbolicity fails [Chow, Liu, Yi]
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Analytic techniques

e Almost all results rely on geometric Hadamard graph transform techniques
e Need analytic setup for generalization to infinite dimensions

e [Sakamoto, 1990] Analytic proof of first Fenichel theorem by fixed point
argument. ldea:

— For prescribed slowly modulated function 6, construct solution operator ()
to solve linearized system for w.
— Solve fixed point system

u = K(0u])G(u),

in appropriate weighted function space, where GG contains nonlinear terms.

Unfortunately, normal-hyperbolicity is essential.
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Construction of global CM

Crucial idea, inspired by technique in [Yi]: use two fixed point arguments in
succession.

Equation to solve: (E denotes extension from center space to solutions to
homogeneous linear system)

u = E(0[u])IIeu(0) + L(0]u])G(u) (1)

e Assume that CM has the form h: (k,0) — H
e Plug in Ansatz

w = p(6)7 + rp(6)us + h(x, 0)

and using center projections and fixed point argument, determine evolution for
the center variables (k, ). Evolution depends only on x(0), 6(0), h.

e Pick arbitrary x(0) and 6(0), determine (&) and (&) from this and compute
right hand side of (1).

e Evaluating at zero and equating with left hand side of (1) yields fixed point
equation for CM function h.
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Main Result

Theorem 1 (H., Sandstede, JDDE, to appear). Consider the partially
discrete system

Oyy(x,t) = Y0pey(x,t) + [Lpyl(z,t) + f(y(,1))

with v > 0. Suppose that w' (ko) # 0 and A{

lin
some technical conditions hold for the lattice.

> 0. Suppose furthermore that

Then for k1 =~ kg, there exists ko =~ kg and a modulated travelling wave that
connects the wavetrain at k_ to the wave train at ki, in which k_ = ky and
ki = ko if w! (ko) < 0 and vice versa if w!, (ko) > 0.

The technical conditions on the lattice are absent in the continuous case.
They arise due to the fact that the 6 equation is an MFDE.
Equation is scalar, but many eigenfunctions can in principle appear.

there are no resonances.
e |n the limit v — 0 one cannot avoid these resonances.

To make sure flow on CM depends only on 6(0) and x(0), need to ensure that
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Technical conditions on the lattice

Characteristic equation (for ¢, = ¢4) is given by
Len(2)v = [—Lst(2) + 2(cp — ¢g)Jv

Associated operator
T(2) : H2,([0,27]) x Hor([0,27)) — HL,,((0,27]) x HY,,([0,27]) given by

per per

o (2)= (et D) (TEE ) (0

e We have (uj, 7'(0)uj) # 0 and (up, 7 (ik)ug) # 0 for k € R\ {0}. [The
MFDE for normalization 6 is well-defined after fixing 8(0)]

e We have A(ix) # 0 for k € R\ {0} and A”(0) # 0, for

A(z) = =zl (uh, T(2)up) — (wr, T'(0)up) (up, 7 (2)ug
+(ug, T(0)ug) (ur, 7 (2)up),

[Evolution on center manifold defined after fixing x(0) and 6(0)].

)

)
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The limit v — 0.

To get a further idea what goes wrong in v — 0 limit, study the characteristic
equation (for v = 0)

La(z)v = [=Lst(2) + 2(cp — ¢g)lv
= [2cg — (Wi + kocg)D]v + [e*v(- — ko) + e *v(- + ko) — 2v]
+D f(u(-; ko))v.

Consider ¢ € 7Z and Ak € 7Z, and

v = exp|iAk-|v

z = z-+i1kgAk+ 27/l
We get
exp|—1Ak | Len(2)0 = Len(2)v + i(2mcgl — w Ak)v

If mc, and w, are not rationally related, there is no hope of getting a uniform

bound on L.,(2) in vertical strips if Lo,(20) has eigenvalue with Re A = Re 2.
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