## Snowbird - May 21st 2009

Modulated Travelling<br>Waves in Discrete<br>Reaction Diffusion Systems

Hermen Jan Hupkes

Brown University
(Joint work with B. Sandstede - Brown University)

## Discrete Reaction-Diffusion Systems

We consider the prototype reaction diffusion system

$$
\partial_{t} y(x, t)=\gamma \partial_{x x} y(x, t)+\left[L_{D} y\right](x, t)+f(y(x, t))
$$

with discrete Laplacian

$$
\left[L_{D} y\right](x, t)=y(x+1, t)+y(x-1, t)-2 y(x, t) .
$$

- When $\gamma=0$, we have a pure lattice system
- For $\gamma>0$, we have a partially discrete reaction-diffusion system
- Useful for models with local and nonlocal interactions
- Allows study of transition continuous $\rightarrow$ discrete (Van Vleck, Elmer, H., Verduyn Lunel).


## Wave trains

We are interested in wave train solutions (periodic travelling waves). Ansatz

$$
y(x, t)=u(\omega t-k x)
$$

leads to second order MFDE $\mathcal{F}(u, \omega, k)=0$ with

$$
\mathcal{F}(u, \omega, k):=-\gamma k^{2} u^{\prime \prime}(\zeta)+\omega u^{\prime}(\zeta)-[u(\xi-k)+u(\xi+k)-2 u(\xi)]-f(u(\zeta))
$$

We require periodicity $u(\zeta)=u(\zeta+2 \pi)$.
Under generic assumptions, if $\mathcal{F}\left(u_{0}, \omega_{0}, k_{0}\right)=0$, then can construct 1 -parameter family of wave-train solutions

$$
y(x, t)=u\left(\omega_{\mathrm{nl}}(k) t-k x ; k\right) \text { for } k \approx k_{0}
$$

phase velocity $c_{\mathrm{p}}=\frac{\omega}{k}$
MNANM


## Linear stability

To consider the linear stability of the wave train, insert Floquet Ansatz

$$
y(x, t)=u\left(\zeta ; k_{0}\right)+e^{\lambda t} e^{-\nu \zeta / k_{0}} w(\zeta)
$$

with $\zeta=\omega_{0} t-k_{0} x$. Ignoring higher order terms, we must have

$$
\mathcal{L}_{\text {st }}(\nu) w=\lambda w,
$$

with (for $\gamma=0$ )

$$
\begin{aligned}
\mathcal{L}_{\mathrm{st}}(\nu) w= & {\left[\nu c_{p}-\omega_{0} D\right] w+\left[e^{\nu} w\left(\cdot-k_{0}\right)+e^{-\nu} w\left(\cdot+k_{0}\right)-2 w\right] } \\
& +D f\left(u\left(\cdot ; k_{0}\right)\right) w .
\end{aligned}
$$

We find a set of curves $\nu \rightarrow \lambda_{j}(\nu)$ that are analytic except at intersection points.

## Linear dispersion relation

Note that $\mathcal{L}_{\text {st }} u^{\prime}\left(\cdot ; k_{0}\right)=0$. If the eigenvalue $\lambda=0$ is simple, we find a curve

$$
\nu \mapsto \lambda_{\operatorname{lin}}(\nu)
$$

that is analytic for $\nu \approx 0$, with

$$
\lambda_{\operatorname{lin}}(0)=0, \quad \lambda_{\operatorname{lin}}^{\prime}(0)=c_{p}-c_{g}
$$



## PDE Reaction-Diffusion Systems

Step back for a moment and consider the PDE

$$
y_{t}=y_{x x}+f(y),
$$

again with the 1-parameter family of wave-trains $u\left(\omega_{\mathrm{nl}}(k) t-k x ; k\right)$.
Consider the formal Ansatz

$$
y(x, t)=u\left(k x-\omega t+\phi(X, T) ; k+\epsilon \phi_{X}(X, T)\right)
$$

where $X=\epsilon\left(x-c_{\mathrm{g}} t\right), \quad T=\epsilon^{2} t / 2 \quad$ and $\quad \epsilon \ll 1$
Wavenumber $q=\phi_{X}$ formally satisfies the viscous Burgers equation:

$$
\frac{\partial q}{\partial T}=\lambda^{\prime \prime}(0) \frac{\partial^{2} q}{\partial X^{2}}-\omega_{\mathrm{nl}}^{\prime \prime}(k)\left(q^{2}\right)_{X}
$$

[Howard and Koppel, 1977]

## Predictions from the Burgers equation

- Issue 1: Validity of Burgers equation over natural time scale $\left[0, \epsilon^{-2}\right]$ :
[Doelman, Sandstede, Scheel, Schneider]
- Issue 2: Predictions from Burger equation

Lax shocks of Burgers equation $\longrightarrow$ Weak defects:

(convex dispersion relation: $\omega_{\text {nl }}^{\prime \prime}(k)>0$ )

## Verifying the existence of the lax shock

The shock that we seek is a modulated travelling wave. Write as

$$
y(x, t)=u_{*}\left(x-c_{*} t, \omega_{*} t\right)
$$

where $u_{*}$ is $2 \pi$ periodic in the second variable.
Asymptotics

$$
u_{*}\left(x-c_{*} t, \omega_{*} t\right) \rightarrow u\left(\omega_{ \pm} t-k_{ \pm} x ; k_{ \pm}\right) \text {as } x-c_{*} t \rightarrow \pm \infty
$$

Space-time plot for $\omega_{*} t \in[0,2 \pi]$ :

$$
\begin{gathered}
\text { space (comoving frame) }
\end{gathered}
$$

Since $c_{g}^{-}>c_{*}>c_{g}^{+}$, transport occurs towards defect $\rightarrow$ sink.

## Construction of lax shock in continuous setting

Introduce new variables $v(\xi, \tau)=u_{*}(\xi, \tau)$ and $w(\xi, \tau)=\partial_{\xi} u_{*}(\xi, \tau)$, with $\xi=x-c_{*} t$ and $\tau=\omega_{*} t$.

In the continuous case, we find

$$
\partial_{\xi}\binom{v}{w}=\binom{w}{-\gamma^{-1}\left[c_{*} w-\omega_{*} \partial_{\tau} v+f(v)\right]}
$$

Following the spatial-dynamics approach due to [Kirchgässner], [Mielke], view as an ODE on the space $H_{p e r}^{2}([0,2 \pi]) \times H_{p e r}^{1}([0,2 \pi])$.
Fix $k_{0}$ and write

$$
\begin{aligned}
c_{*} & =c_{g}\left(k_{0}\right)=\omega_{\mathrm{n} 1}^{\prime}\left(k_{0}\right) \\
\omega_{*} & =\omega_{\mathrm{nl} 1}\left(k_{0}\right)-k_{0} \omega_{\mathrm{n} 1}^{\prime}\left(k_{0}\right)+\bar{\omega}
\end{aligned}
$$

For small $\bar{\omega}$ with appropriate sign, there exist:

- Wave numbers $k_{ \pm}(\bar{\omega})$ with $k_{ \pm}(\bar{\omega}) \rightarrow k_{0}$ as $\bar{\omega} \rightarrow 0$.
- Periodic solutions $v_{ \pm}(\xi)=u\left(-k_{ \pm} \xi+\cdot ; k_{ \pm}\right)$(with accompanying $w_{ \pm}$)


## Construction of lax shock in continuous setting

For $\bar{\omega}=0$, we have the $\xi$-periodic solution

$$
\begin{aligned}
& v_{0}(\xi)(\tau)=u\left(-k_{0} \xi+\tau ; k_{0}\right) \\
& w_{0}(\xi)(\tau)=-k_{0} u^{\prime}\left(-k_{0} \xi+\tau ; k_{0}\right)
\end{aligned}
$$

Idea: construct center manifold around $\left(v_{0}, w_{0}, \bar{\omega}=0\right)$ that captures all solutions that remain orbitally close to $\left(v_{0}, w_{0}\right)$, for small $\bar{\omega}$.

Crucial ingredient: change of variables $\sigma=\tau-k_{0} \xi$ into temporal comoving frame yields

$$
\partial_{\xi}\binom{v}{w}=k_{0} \partial_{\sigma}\binom{v}{w}+\binom{w}{-\gamma^{-1}\left[c_{*} w-\partial_{\sigma} v+f(v)\right]}
$$

This change of variables turns periodic solution $\left(v_{0}, w_{0}\right)$ into a ring of equilibria.
Orbitally close in original frame $\leftrightarrow$ close to equilibria-ring in temporal comoving frame

## Temporal Comoving Frame

Recall temporal-comoving frame

$$
\partial_{\xi}\binom{v}{w}=k_{0} \partial_{\sigma}\binom{v}{w}+\binom{w}{-\gamma^{-1}\left[c_{*} w-\omega_{*} \partial_{\sigma} v+f(v)\right]}
$$

Center space around equilibrium $\mathbf{u}_{0}=\left(v_{0}, w_{0}\right)$ is two dimensional by our choice $c_{*}=c_{g}$. Spanned by

$$
\mathbf{u}_{0}^{\prime}=\left(u^{\prime}\left(\cdot ; k_{0}\right),-k_{0} u^{\prime \prime}\left(\cdot ; k_{0}\right)\right), \quad \mathbf{u}_{1}=\left(-\partial_{k} u\left(\cdot ; k_{0}\right), k_{0} \partial_{k} u^{\prime}\left(\cdot ; k_{0}\right)+u^{\prime}\left(\cdot ; k_{0}\right)\right)
$$

Formally insert Ansatz

$$
(v, w)=\mathbf{u}_{0}(\cdot-\theta)-\kappa \mathbf{u}_{1}(\cdot-\theta)+O\left(\theta^{2}+\kappa^{2}\right)
$$

and derive ODE

$$
\begin{aligned}
\partial_{\xi} \theta & =\kappa+O\left(|\bar{\omega}|+|\kappa|^{2}\right) \\
\partial_{\xi} \kappa & =2 \lambda_{\operatorname{lin}}^{\prime \prime}(0)^{-1}\left(\frac{1}{2} \omega_{\mathrm{nl}}^{\prime \prime}\left(k_{0}\right) \kappa^{2}-\bar{\omega}\right)+O\left(|\bar{\omega}|^{2}+|\bar{\omega} \kappa|+|\kappa|^{3}\right)
\end{aligned}
$$

Read off heteroclinic connections.

## Heteroclinic connections

Recall

$$
\partial_{\xi}\binom{v}{w}=k_{0} \partial_{\sigma}\binom{v}{w}+\binom{w}{-\gamma^{-1}\left[c_{*} w-\omega_{*} \partial_{\sigma} v+f(v)\right]}
$$

No general global center manifold result for such mixed hyperbolic - elliptic systems.

To get CM, need to exploit CM result by [Mielke] for original equation

$$
\partial_{\xi}\binom{v}{w}=\binom{w}{-\gamma^{-1}\left[c_{*} w-\omega_{*} \partial_{\tau} v+f(v)\right]}
$$

Result states that solutions that are orbitally close to $\left(v_{0}, w_{0}\right)$ can be captured.


## Discrete Case

In discrete setting, the equation to solve becomes

$$
\partial_{\xi}\binom{v}{w}=\binom{w}{-\gamma^{-1}\left[c_{*} w-\omega_{*} \partial_{\tau} v+[v(\cdot+1)+v(\cdot-1)-2 v]+f(v)\right]}
$$

This is a functional differential equation of mixed type (MFDE) posed on the space $H_{p e r}^{2}([0,2 \pi]) \times H_{p e r}^{1}([0,2 \pi])$.

- The center manifold result developed by Mielke no longer works for MFDEs
- The situation was partially remedied in [Hupkes, Verduyn Lunel, 2008], where center manifolds are constructed around periodic solutions to MFDEs
- However, orbital closeness is still an unresolved issue.
- In addition, results only for MFDEs posed on $\mathbb{C}^{n}$, not general Hilbert spaces


## Discrete Case

For simplicity, we choose to work directly in temporal comoving frame and solve

$$
\begin{aligned}
& \partial_{\xi}\binom{v}{w}=k_{0} \partial_{\sigma}\binom{v}{w}+\binom{w}{-\gamma^{-1}\left[c_{*} w-\omega_{*} \partial_{\sigma} v+f(v)\right]} \\
&+\binom{0}{\left[v(\cdot+1)\left(\cdot-k_{0}\right)+v(\cdot-1)\left(\cdot+k_{0}\right)-2 v\right]}
\end{aligned}
$$

posed on the space $H_{p e r}^{2}([0,2 \pi]) \times H_{p e r}^{1}([0,2 \pi])$.
Goal is to construct global center manifold near ring of equilibria $\left(u\left(\vartheta+\cdot ; k_{0}\right),-k_{0} u^{\prime}\left(\vartheta+\cdot ; k_{0}\right)\right)$, parametrized by $\vartheta \in[0,2 \pi]$.
Most important issues:

- The $\partial_{\sigma}$ derivatives prevent use of bootstrapping methods to get regularity of solutions.
- The Hilbert space setting prevents explicit construction of characteristic equations.


## Finite dimensional example

For simplicity, let us consider the planar ODE

$$
y^{\prime}=f(y)
$$

- Write $\rho(\vartheta)$ for rotation with angle $\vartheta$.
- Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ invariant, i.e. $\rho(-\vartheta) f(\rho(\vartheta) v)=f(v)$ for $v \in \mathbb{R}^{2}$.
- Suppose $f(\bar{y})=0$ for $\bar{y} \neq 0$.

Change of variables

$$
y(\xi)=\rho(\theta(\xi))[\bar{y}+u(\xi)]
$$

with normalization condition

$$
\langle D \rho(0) \bar{y}, u(\xi)\rangle=0
$$



## Finite dimensional example - continued

Recall $y^{\prime}=f(y)$ with

$$
y(\xi)=\rho(\theta(\xi))[\bar{y}+u(\xi)], \quad\langle D \rho(0) \bar{y}, u(\xi)\rangle=0
$$

Differentiation yields

$$
\begin{aligned}
u^{\prime}(\xi) & =-\theta^{\prime}(\xi) D \rho(0)[\bar{y}+u(\xi)]+f(\bar{y}+u(\xi)) \\
\theta^{\prime}(\xi) & =[\langle D \rho(0) \bar{y}, D \rho(0) \bar{y}\rangle+\langle D \rho(0) \bar{y}, D \rho(0) u(\xi)\rangle]^{-1}\langle D \rho(0) \bar{y}, f(\bar{y}+u(\xi))\rangle .
\end{aligned}
$$

Variable $\theta$ can hence be eliminated from equation for $u$, allowing use of standard CM theory.

However, turning to our setting $y^{\prime}(\xi)=f(y(\xi), y(\xi-1), y(\xi+1))$, we find:

- Symmetry $\rho$ acts as translation $\longrightarrow$ the term $D \rho(0) u(\xi)$ becomes unbounded.
- Equation for $\theta$ no longer decouples.


## Global center manifold

To resolve the unboundedness issue, need to use Ansatz

$$
y(\xi)=\rho(\theta(\xi)) \bar{y}+u(\xi)
$$

We need to obtain CM for the coupled system

$$
\begin{aligned}
u^{\prime}(\xi) & =-\theta^{\prime}(\xi) D \rho(\theta(\xi)) \bar{y}+f\left(\theta_{\xi}, u_{\xi}\right) \\
\theta^{\prime}(\xi) & =[\langle D \rho(0) \bar{y}, D \rho(0) \bar{y}\rangle+\langle D \rho(\theta(\xi)) \bar{y}, u(\xi)\rangle]^{-1}\left\langle D \rho(\theta(\xi)) \bar{y}, f\left(\theta_{\xi}, u_{\xi}\right)\right\rangle
\end{aligned}
$$

in which $u$ is small, but without bound on $\theta$.
$f\left(\theta_{\xi}, u_{\xi}\right)=f(\rho(\theta(\xi)) \bar{y}+u(\xi), \rho(\theta(\xi-1)) \bar{y}+u(\xi-1), \rho(\theta(\xi+1)) \bar{y}+u(\xi+1))$.

Notice that linearization of equation for $u^{\prime}$ includes dependence on $\theta(\xi), \theta(\xi \pm 1)$.
Key idea: For small $u$, the variable $\theta$ is slowly varying. Linearized equation for $u$ thus has slowly varying coefficients, allowing us to solve for prescribed $\theta$.

## Fenichel Theory

Close connection with singularly perturbed systems

$$
\begin{aligned}
\theta^{\prime} & =\epsilon g_{s}(\theta, u, \epsilon) \\
u^{\prime} & =g_{f}(\theta, u, \epsilon)
\end{aligned}
$$

that admit a manifold $\widetilde{u}(\vartheta)$ of equilibria

$$
g_{f}(\vartheta, \widetilde{u}(\vartheta), 0)=0
$$

Key question: persistence of invariant manifold as slow flow is turned on $(\epsilon>0)$.

- Fenichel (1970s): in absence of extra center directions (normal hyperbolicity), manifold persists
- Large literature on persistence of center manifolds for general normally-hyperbolic invariant sets
- Some results on situations where normal-hyperbolicity fails [Chow, Liu, Yi]


## Analytic techniques

- Almost all results rely on geometric Hadamard graph transform techniques
- Need analytic setup for generalization to infinite dimensions
- [Sakamoto, 1990] Analytic proof of first Fenichel theorem by fixed point argument. Idea:
- For prescribed slowly modulated function $\theta$, construct solution operator $\mathcal{K}(\theta)$ to solve linearized system for $u$.
- Solve fixed point system

$$
u=\mathcal{K}(\theta[u]) G(u),
$$

in appropriate weighted function space, where $G$ contains nonlinear terms.
Unfortunately, normal-hyperbolicity is essential.

## Construction of global CM

Crucial idea, inspired by technique in [Yi]: use two fixed point arguments in succession.

Equation to solve: ( $E$ denotes extension from center space to solutions to homogeneous linear system)

$$
\begin{equation*}
u=E(\theta[u]) \Pi_{c t} u(0)+\mathcal{K}(\theta[u]) G(u) \tag{1}
\end{equation*}
$$

- Assume that CM has the form $h:(\kappa, \theta) \rightarrow H$
- Plug in Ansatz

$$
u=\rho(\theta) \bar{y}+\kappa \rho(\theta) \mathbf{u}_{1}+h(\kappa, \theta)
$$

and using center projections and fixed point argument, determine evolution for the center variables $(\kappa, \theta)$. Evolution depends only on $\kappa(0), \theta(0), h$.

- Pick arbitrary $\kappa(0)$ and $\theta(0)$, determine $\kappa(\xi)$ and $\theta(\xi)$ from this and compute right hand side of (1).
- Evaluating at zero and equating with left hand side of (1) yields fixed point equation for CM function $h$.


## Main Result

Theorem 1 (H., Sandstede, JDDE, to appear). Consider the partially discrete system

$$
\partial_{t} y(x, t)=\gamma \partial_{x x} y(x, t)+\left[L_{D} y\right](x, t)+f(y(x, t))
$$

with $\gamma>0$. Suppose that $\omega_{\mathrm{nl}}^{\prime \prime}\left(k_{0}\right) \neq 0$ and $\lambda_{\mathrm{lin}}^{\prime \prime}>0$. Suppose furthermore that some technical conditions hold for the lattice.

Then for $k_{1} \approx k_{0}$, there exists $k_{2} \approx k_{0}$ and a modulated travelling wave that connects the wavetrain at $k_{-}$to the wave train at $k_{+}$, in which $k_{-}=k_{1}$ and $k_{+}=k_{2}$ if $\omega_{\mathrm{n} 1}^{\prime \prime}\left(k_{0}\right)<0$ and vice versa if $\omega_{\mathrm{n} 1}^{\prime \prime}\left(k_{0}\right)>0$.

- The technical conditions on the lattice are absent in the continuous case.
- They arise due to the fact that the $\theta$ equation is an MFDE.
- Equation is scalar, but many eigenfunctions can in principle appear.
- To make sure flow on CM depends only on $\theta(0)$ and $\kappa(0)$, need to ensure that there are no resonances.
- In the limit $\gamma \rightarrow 0$ one cannot avoid these resonances.


## Technical conditions on the lattice

Characteristic equation (for $c_{*}=c_{g}$ ) is given by

$$
\mathcal{L}_{\mathrm{ch}}(z) v=\left[-\mathcal{L}_{\mathrm{st}}(z)+z\left(c_{p}-c_{g}\right)\right] v
$$

Associated operator
$\mathcal{T}(z): H_{\text {per }}^{2}([0,2 \pi]) \times H_{\text {per }}^{1}([0,2 \pi]) \rightarrow H_{\text {per }}^{1}([0,2 \pi]) \times H_{\text {per }}^{0}([0,2 \pi])$ given by
$\mathcal{T}(z)\binom{v_{1}}{v_{2}}=\left(\begin{array}{c}1 \\ -\left(z+\frac{1}{\gamma} c_{g}-k_{0} D\right)\end{array}\right.$
$\left.\begin{array}{l}0 \\ 1\end{array}\right)\left(\begin{array}{c}-\gamma z+\gamma k_{0} D \\ \mathcal{L}_{\mathrm{ch}}(z)\end{array}\right.$
$\left.\begin{array}{l}\gamma \\ 0\end{array}\right)\binom{v_{1}}{v_{2}}$,

- We have $\left\langle\mathbf{u}_{0}^{\prime}, \mathcal{T}^{\prime}(0) \mathbf{u}_{0}^{\prime}\right\rangle \neq 0$ and $\left\langle\mathbf{u}_{0}^{\prime}, \mathcal{T}(i \kappa) \mathbf{u}_{0}^{\prime}\right\rangle \neq 0$ for $\kappa \in \mathbb{R} \backslash\{0\}$. [The MFDE for normalization $\theta$ is well-defined after fixing $\theta(0)$ ]
- We have $\Delta(i \kappa) \neq 0$ for $\kappa \in \mathbb{R} \backslash\{0\}$ and $\Delta^{\prime \prime}(0) \neq 0$, for

$$
\begin{aligned}
\Delta(z)= & -\gamma z\left\|\mathbf{u}_{1}\right\|_{H^{1} \times H^{0}}^{2}\left\langle\mathbf{u}_{0}^{\prime}, \mathcal{T}(z) \mathbf{u}_{0}^{\prime}\right\rangle-\left\langle\mathbf{u}_{1}, \mathcal{T}^{\prime}(0) \mathbf{u}_{0}^{\prime}\right\rangle\left\langle\mathbf{u}_{0}^{\prime}, \mathcal{T}(z) \mathbf{u}_{0}^{\prime}\right\rangle \\
& +\left\langle\mathbf{u}_{0}^{\prime}, \mathcal{T}^{\prime}(0) \mathbf{u}_{0}^{\prime}\right\rangle\left\langle\mathbf{u}_{1}, \mathcal{T}(z) \mathbf{u}_{0}^{\prime}\right\rangle,
\end{aligned}
$$

[Evolution on center manifold defined after fixing $\kappa(0)$ and $\theta(0)$ ].

## The limit $\gamma \rightarrow 0$.

To get a further idea what goes wrong in $\gamma \rightarrow 0$ limit, study the characteristic equation (for $\gamma=0$ )

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ch}}(z) v= & {\left[-\mathcal{L}_{\mathrm{st}}(z)+z\left(c_{p}-c_{g}\right)\right] v } \\
= & {\left[z c_{g}-\left(\omega_{*}+k_{0} c_{g}\right) D\right] v+\left[e^{z} v\left(\cdot-k_{0}\right)+e^{-z} v\left(\cdot+k_{0}\right)-2 v\right] } \\
& \quad+D f\left(u\left(\cdot ; k_{0}\right)\right) v
\end{aligned}
$$

Consider $\ell \in \mathbb{Z}$ and $\Delta k \in \mathbb{Z}$, and

$$
\begin{aligned}
\widetilde{v} & =\exp [i \Delta k \cdot] v \\
\widetilde{z} & =z+i k_{0} \Delta k+2 \pi \ell
\end{aligned}
$$

We get

$$
\exp [-i \Delta k \cdot] \mathcal{L}_{\mathrm{ch}}(\widetilde{z}) \widetilde{v}=\mathcal{L}_{\mathrm{ch}}(z) v+i\left(2 \pi c_{g} \ell-\omega_{*} \Delta k\right) v
$$

If $\pi c_{g}$ and $\omega_{*}$ are not rationally related, there is no hope of getting a uniform bound on $\mathcal{L}_{\mathrm{ch}}(z)$ in vertical strips if $\mathcal{L}_{\mathrm{ch}}\left(z_{0}\right)$ has eigenvalue with $\operatorname{Re} \lambda=\operatorname{Re} z_{0}$.

