# Propagation Failure In The Discrete Nagumo Equation



## Hermen Jan Hupkes University of Missouri - Columbia (Joint work with D. Pelinovsky and B. Sandstede)

## **Lattice Differential Equations**

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

$$\frac{d}{dt}u_{j}(t) = \alpha \left( u_{j-1}(t) - 2u_{j}(t) + u_{j+1}(t) \right) + f\left( u_{j}(t) \right), \qquad j \in \mathbb{Z}.$$



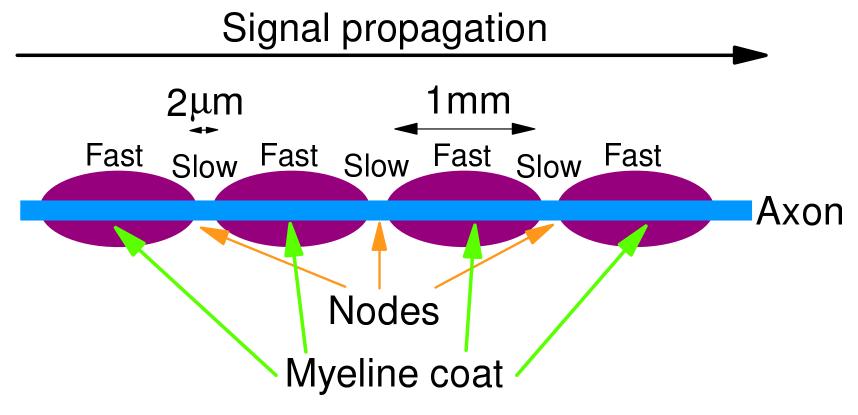
Picking  $\alpha = h^{-2} \gg 1$ , LDE can be seen as discretization with distance h of PDE

$$\partial_t u(t,x) = \partial_{xx} u(t,x) + f(u(t,x)), \qquad x \in \mathbb{R}.$$

- Many physical models have a discrete spatial structure  $\rightarrow$  LDEs.
- No need for  $\alpha$  to be large; some models even have  $\alpha < 0$ .
- Main theme: qualitative differences between PDEs and LDEs.

## Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).



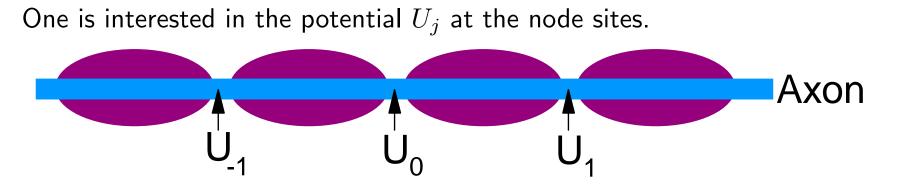
- Fiber has myeline coating with periodic gaps called nodes of Ranvier .
- Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
- Slow propagation in gaps, but signal chemically reinforced.

## Signal Propagation: The Model

-0.06

-0.08 -

a



Signals appear to "hop" from one node to the next [Lillie, 1925]. Ignoring recovery, one arrives at the LDE [Keener and Sneyd, 1998]

## **Signal Propagation: PDE**

In continuum limit: Nagumo LDE becomes Nagumo PDE

$$\partial_t u = \partial_{xx} u + u(a - u)(u - 1).$$

Starting step [Fife, McLeod]: travelling waves.

Travelling wave  $u(x,t) = \phi(x+ct)$  satisfies:

$$c\phi'(\xi) = \phi''(\xi) + \phi(\xi)(a - \phi(\xi))(\phi(\xi) - 1).$$

Interested in pulse solutions connecting 0 to 1, i.e.

$$\lim_{\xi \to -\infty} \phi(\xi) = 0, \qquad \lim_{\xi \to +\infty} \phi(\xi) = 1.$$

## **Signal Propagation: PDE**

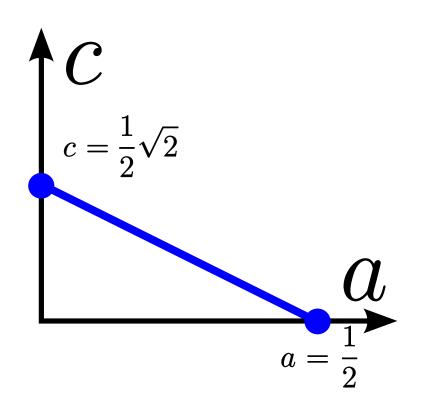
Recall travelling wave ODE

$$c\phi'(\xi) \qquad \qquad = \quad \phi''(\xi) + \phi(\xi) \big(a - \phi(\xi)\big) \big(\phi(\xi) - 1\big).$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

Explicit solutions available:

$$\phi(\xi) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{1}{4}\sqrt{2}\,\xi\right), \\ c(a) = \frac{1}{\sqrt{2}}(1-2a).$$



Recall the Nagumo LDE

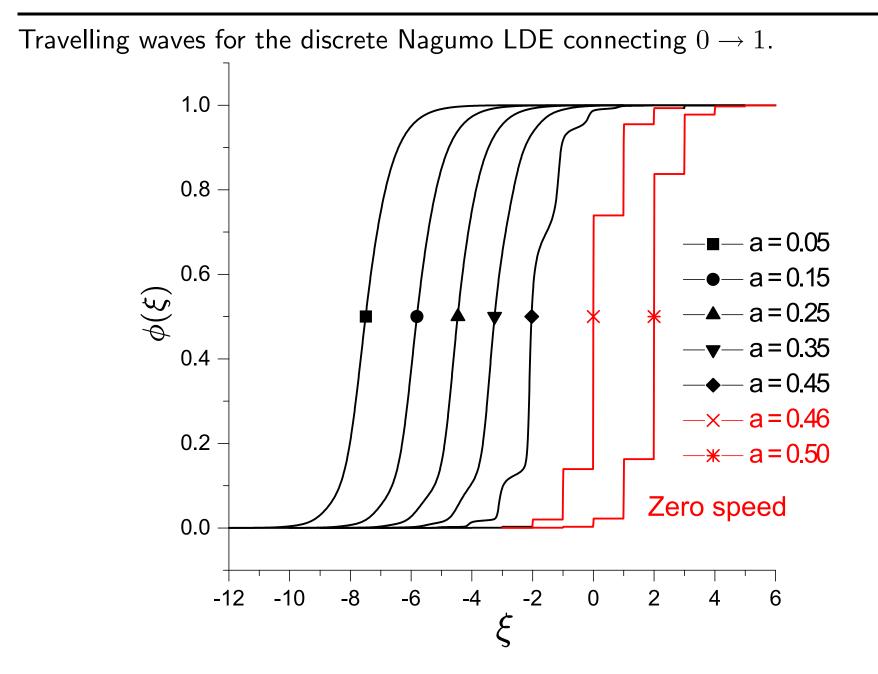
$$\frac{d}{dt}U_j(t) = \frac{1}{h^2}[U_{j+1}(t) + U_{j-1}(t) - 2U_j(t)] + g(U_j(t);a), \qquad j \in \mathbb{Z}.$$

Travelling wave profile  $U_j(t) = \phi(j + ct)$  must satisfy:

$$c\phi'(\xi) = \frac{1}{h^2} [\phi(\xi+1) + \phi(\xi-1) - 2\phi(\xi)] + g(\phi(\xi);a)$$
$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

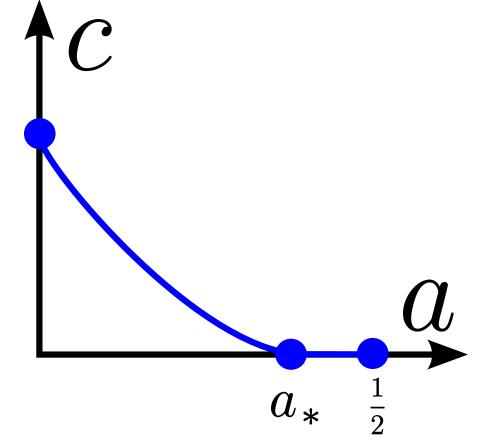
- Notice that wave speed c enters in singular fashion.
- When  $c \neq 0$ , this is a functional differential equation of mixed type (MFDE).
- When c = 0, this is a difference equation.

## **Discrete Nagumo LDE - Propagation failure**



## **Propagation**

Typical wave speed c versus a plot for discrete reaction-diffusion systems:



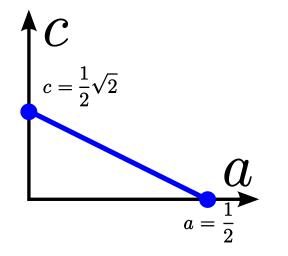
In principle, can have  $a_* = \frac{1}{2}$  or  $a_* < \frac{1}{2}$ .

In case  $a_* < \frac{1}{2}$ , then we say that LDE suffers from propagation failure. Propagation failure widely studied; pioneed by [Keener].

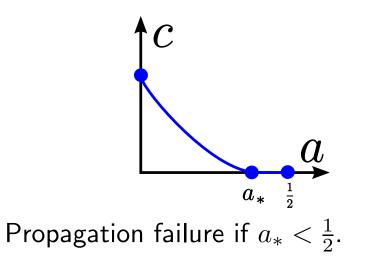
## **Signal Propagation: Comparison**

| PDE                                           | LDE                                                                     |
|-----------------------------------------------|-------------------------------------------------------------------------|
| $\partial_t u = \partial_{xx} u + g(u, a)$    | $\frac{d}{dt}U_j = U_{j+1} + U_{j-1} - 2U_j + g(U_j; a)$                |
| Travelling wave $u = \phi(x + ct)$ satisfies: | Travelling wave $U_j = \phi(j + ct)$ satisfies:                         |
| $c\phi'(\xi) = \phi''(\xi) + g(\phi(\xi); a)$ | $c\phi'(\xi) = \phi(\xi+1) + \phi(\xi-1) - 2\phi(\xi) + g(\phi(\xi);a)$ |

Travelling waves connecting 0 to 1:



Travelling waves connecting 0 to 1:



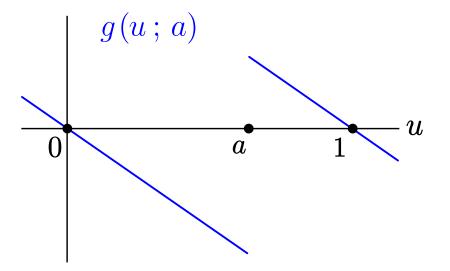
Consider travelling wave MFDE with saw-tooth nonlinearity

$$c\phi'(\xi) = \frac{1}{h^2} [\phi(\xi+1) + \phi(\xi-1) - 2\phi(\xi)] + g(\phi(\xi);a)$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

**Thm.** [Cahn, Mallet-Paret, Van Vleck]: Propagation failure for all h > 0 (1999).

Linear analysis with Fourier series.

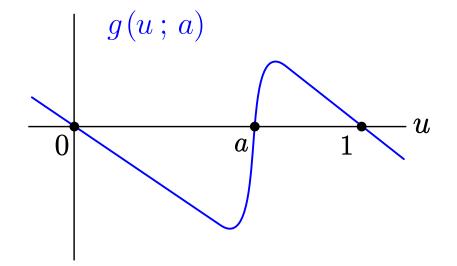


Consider travelling wave MFDE with near-saw-tooth nonlinearity

$$c\phi'(\xi) = \frac{1}{h^2} [\phi(\xi+1) + \phi(\xi-1) - 2\phi(\xi)] + g(\phi(\xi);a)$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

**Thm.** [Mallet-Paret]: Propagation failure when *g* sufficiently close to saw-tooth.

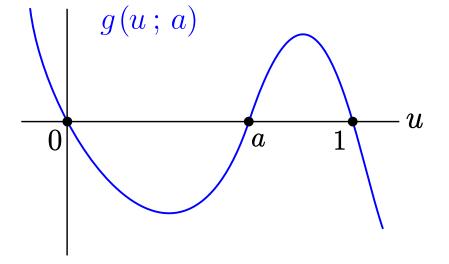


Consider travelling wave MFDE with generic bistable nonlinearity

$$c\phi'(\xi) = \frac{1}{h^2} [\phi(\xi+1) + \phi(\xi-1) - 2\phi(\xi)] + g(\phi(\xi);a)$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

**Thm.** [Hoffman, Mallet-Paret]: Generic condition on g guarantees propagation failure.



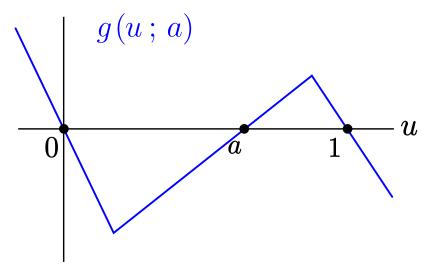
Unknown if cubic satisfies this condition for all h > 0.

Consider travelling wave MFDE with zig-zag bistable nonlinearity

$$c\phi'(\xi) = \frac{1}{h^2} [\phi(\xi+1) + \phi(\xi-1) - 2\phi(\xi)] + g(\phi(\xi);a)$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

**Thm.** [Elmer]: There exist countably many h for which there is no propagation failure.



Recall travelling wave MFDE:

$$c\phi'(\xi) = \frac{1}{h^2} [\phi(\xi+1) + \phi(\xi-1) - 2\phi(\xi)] + g_{\rm cub}(\phi(\xi);a)$$

$$\lim_{\xi \to -\infty} \phi(\xi) = 0,$$
$$\lim_{\xi \to +\infty} \phi(\xi) = 1.$$

When c = 0, can restrict to  $\xi \in \mathbb{Z}$ : recurrence relation!

With  $p_j = \phi(j)$  and  $r_j = \phi(j+1)$ , we find

$$\begin{array}{rcl} p_{j+1} &=& r_j \\ r_{j+1} &=& -p_j + 2r_j - h^2 r_j (r_j - a)(1 - r_j). \end{array}$$

Saddles (0,0) and (1,1).

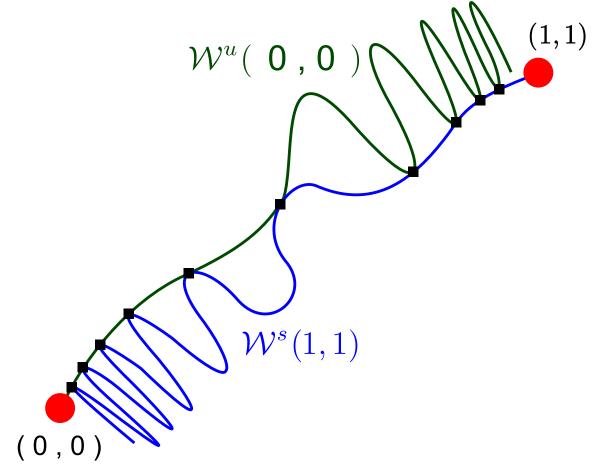
$$p_{j+1} = r_j$$

$$r_{j+1} = -p_j + 2r_j - \alpha^{-1}r_j(r_j - a)(1 - r_j).$$
For  $a = \frac{1}{2}$ , site-centered (orange) and bond-centered (black) solutions. Generically:  

$$\mathcal{W}^u(0, 0) \qquad (1, 1)$$
1 iteration  
1 iteration  
 $\mathcal{W}^s(1, 1)$   
 $(0, 0)$ 

$$\begin{array}{rcl} p_{j+1} &=& r_j \\ r_{j+1} &=& -p_j + 2r_j - \alpha^{-1} r_j (r_j - a)(1 - r_j). \end{array}$$

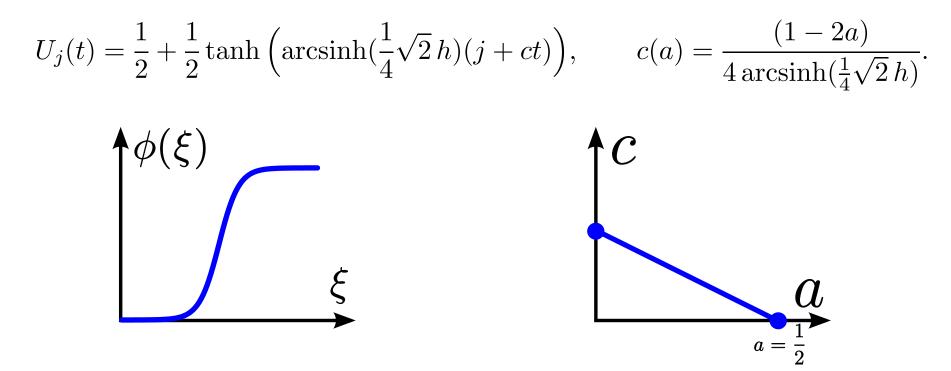
Two branches coincide and annihilate at  $a = a_*$ .



Discretizations of cubic may also involve multiple lattice sites:

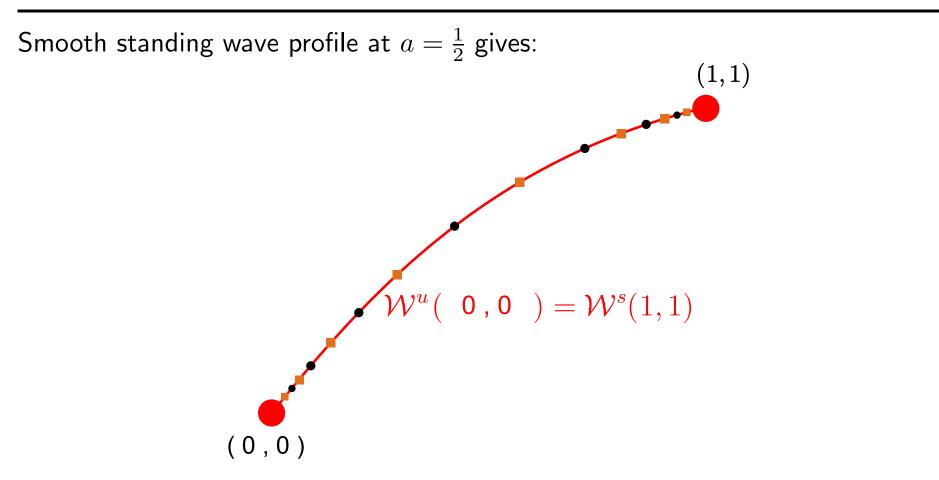
$$\frac{d}{dt}U_j = \frac{1}{h^2}[U_{j-1} + U_{j+1} - 2U_j] + \frac{1}{2}U_j(U_{j+1} + U_{j-1} - 2a)(1 - U_j).$$

Explicit solutions available:



No propagation failure; smooth wave profile.

## **Propagation Failure - Discrete map**



Site centered and bond centered solutions now connected by continuous branch of standing waves.

Q: What happens to manifolds when  $a \neq \frac{1}{2}$ ?

Do intersections disappear (no prop failure) or survive (prop failure)?

#### Lattice point of view

Let us write LDE as:

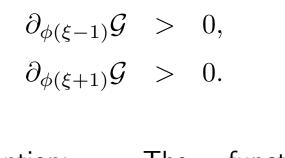
$$\frac{d}{dt}U(t) = \mathcal{F}(U(t); a),$$

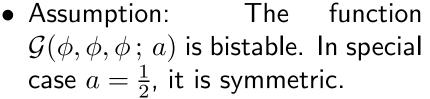
with  $U(t) \in \ell^{\infty}$  and  $\mathcal{F} : \ell^{\infty} \times [0,1] \to \ell^{\infty}$ .

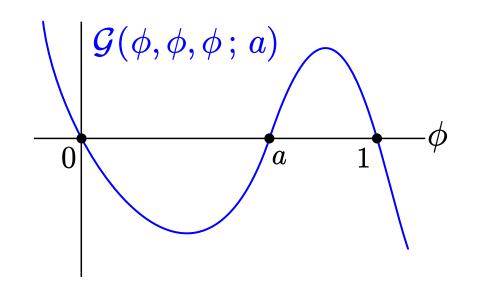
Travelling waves  $U_j(t) = \phi(j + ct)$  satisfy some MFDE

$$c\phi'(\xi) = \mathcal{G}\Big(\phi(\xi-1), \phi(\xi), \phi(\xi+1); a\Big).$$

• Assumption: We have







#### Lattice point of view

Recall LDE as:

$$\frac{d}{dt}U(t) = \mathcal{F}(U(t); a),$$

and travelling wave MFDE

$$c\phi'(\xi) = \mathcal{G}\Big(\phi(\xi-1), \phi(\xi), \phi(\xi+1); a\Big)$$

Suppose at  $a = \frac{1}{2}$  we have a smooth solution  $p(\xi)$  to

$$0 = \mathcal{G}\Big(p(\xi - 1), p(\xi), p(\xi + 1); a\Big), \qquad \xi \in \mathbb{R}.$$

Then for every  $\vartheta \in \mathbb{R}$ , we have equilibrium solution  $p^{(\vartheta)} \in \ell^{\infty}$  to our LDE:

$$\mathcal{F}(p^{(\vartheta)}; \frac{1}{2}) = 0, \qquad p_j^{(\vartheta)} = p(\vartheta + j).$$

#### **Invariant Manifold**

Recall 
$$p^{(\vartheta)} \in \ell^{\infty}$$
 with  $p_j^{(\vartheta)} = p(\vartheta + j)$ .

Notice that

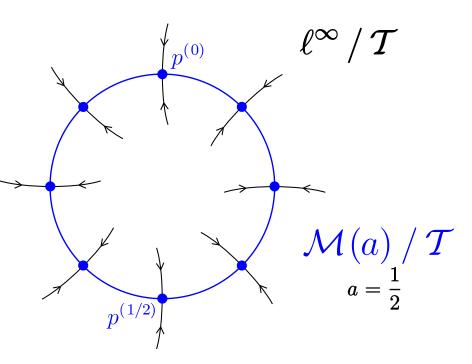
$$p^{(\vartheta)} = \mathcal{T}p^{(\vartheta+1)},$$

where  $\mathcal{T}: \ell^{\infty} \to \ell^{\infty}$  is right-shift operator  $(\mathcal{T}u)_j = u_{j-1}$ .

Combining these equilibria gives a smooth manifold

$$\mathcal{M}(a = \frac{1}{2}) = \{p^{(\vartheta)}\}_{\vartheta \in \mathbb{R}}.$$

After dividing out  $\mathcal{T}$ , we get a ring!

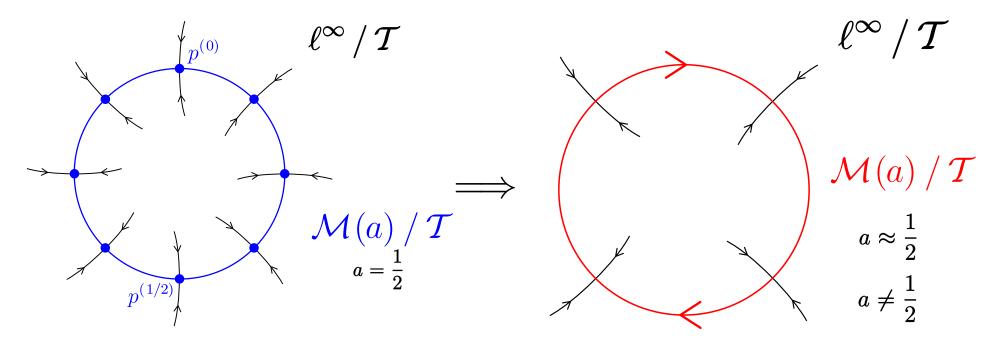


#### Invariant Manifold - Scenario #1

Based on spectral stability of equilibria  $p^{(\vartheta)}$  [Chow, Mallet-Paret, Shen, 1998] and comparison principles can prove:

**Prop:** The manifold  $\mathcal{M}(a = \frac{1}{2})$  is normally hyperbolic.

Possible scenario #1 for persistence of  $\mathcal{M}(a)$  with  $a \neq \frac{1}{2}$ :



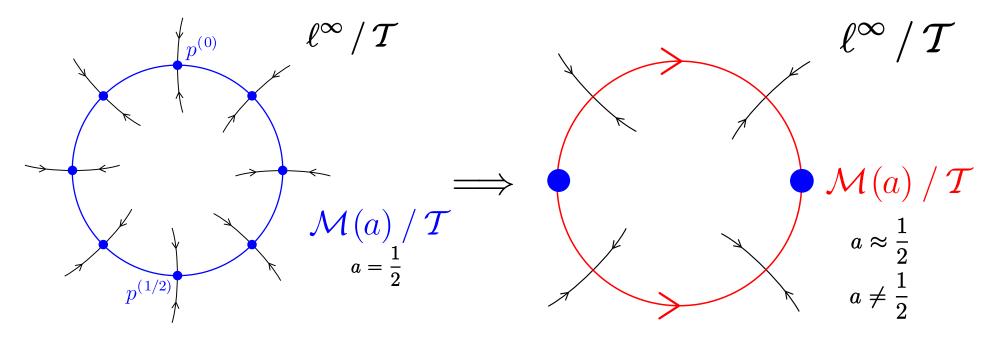
No equilibria survive;  $\mathcal{M}(a)$  is orbit of travelling wave. No Propagation Failure.

#### Invariant Manifold - Scenario #2

Based on spectral stability of equilibria  $p^{(\vartheta)}$  [Chow, Mallet-Paret, Shen, 1998] and comparison principles can prove:

**Prop:** The manifold  $\mathcal{M}(a = \frac{1}{2})$  is normally hyperbolic.

Possible scenario #2 for persistence of  $\mathcal{M}(a)$  with  $a \neq \frac{1}{2}$ :



One or more equilibria survive. Propagation Failure\*.

\*Certain terms and conditions apply...

## Dynamics near ${\cal M}$

Angular coordinate  $\theta$  measures position along  $\mathcal{M}(a)$ . Dynamics given by

$$\frac{d}{dt}\theta = \left(a - \frac{1}{2}\right)\Psi(\theta) + O\left(\left|a - \frac{1}{2}\right|^2\right),$$

in which  $\Psi(\theta)$  given by

$$\Psi(\vartheta) = \sum_{j \in \mathbb{Z}} q_j^{(\vartheta)} \partial_a \mathcal{G}\Big(p_{j-1}^{(\vartheta)}, p_j^{(\vartheta)}, p_{j+1}^{(\vartheta)}; a = \frac{1}{2}\Big).$$

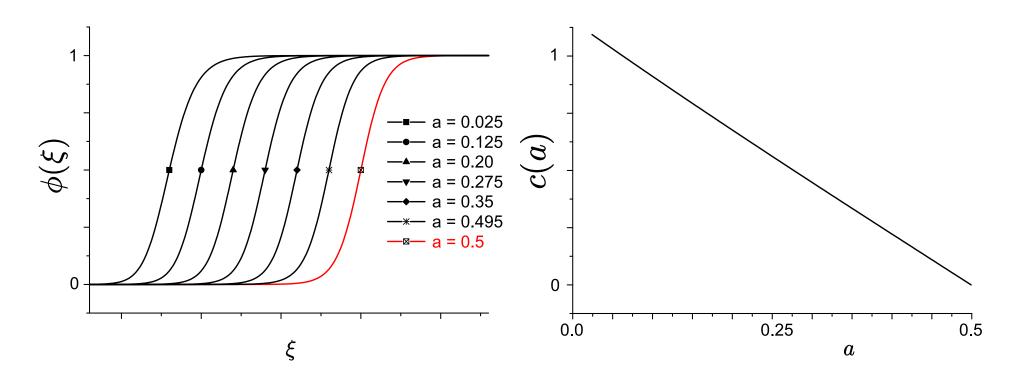
Here  $q^{(\vartheta)}$  is adjoint eigenvector; i.e. solves  $L^{(\vartheta)*}q^{(\vartheta)} = 0$  with

$$(L^{(\vartheta)*}w)_{j} = \partial_{\phi(\xi-1)}\mathcal{G}\left(p_{j}^{(\vartheta)}, p_{j+1}^{(\vartheta)}, p_{j+2}^{(\vartheta)}; \frac{1}{2}\right)w_{j+1} \\ + \partial_{\phi(\xi)}\mathcal{G}\left(p_{j-1}^{(\vartheta)}, p_{j}^{(\vartheta)}, p_{j+1}^{(\vartheta)}; \frac{1}{2}\right)w_{j} \\ + \partial_{\phi(\xi+1)}\mathcal{G}\left(p_{j-2}^{(\vartheta)}, p_{j-1}^{(\vartheta)}, p_{j}^{(\vartheta)}; \frac{1}{2}\right)w_{j-1}.$$

**Known:**  $q_j^{(\vartheta)} > 0$  for all  $j \in \mathbb{Z}$  and  $\vartheta \in \mathbb{R}$ . So  $\partial_a \mathcal{G} < 0$  guarantees no prop failure.

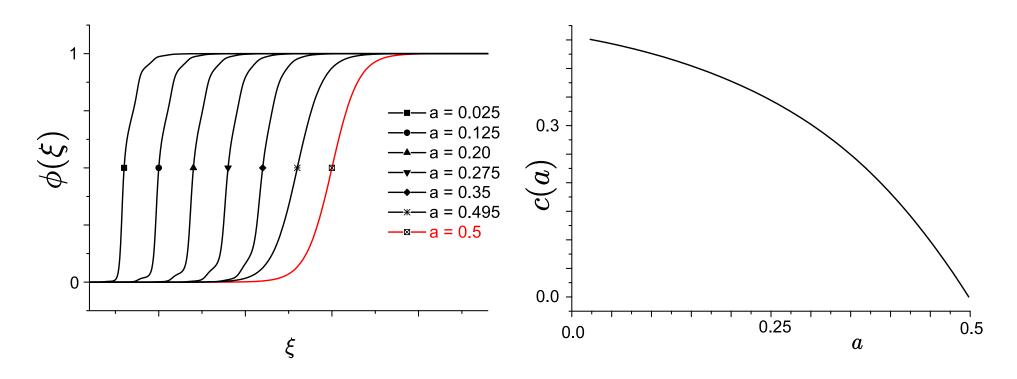
Thm. [H., Sandstede, Pelinovsky] No prop failure for LDE

$$\frac{d}{dt}u_j = u_{j-1} + u_{j+1} - 2u_j + (u_j - a)\left(u_{j-1}(1 - u_{j+1}) + u_{j+1}(1 - u_{j-1})\right)$$



Thm. [H., Sandstede, Pelinovsky] No prop failure for LDE

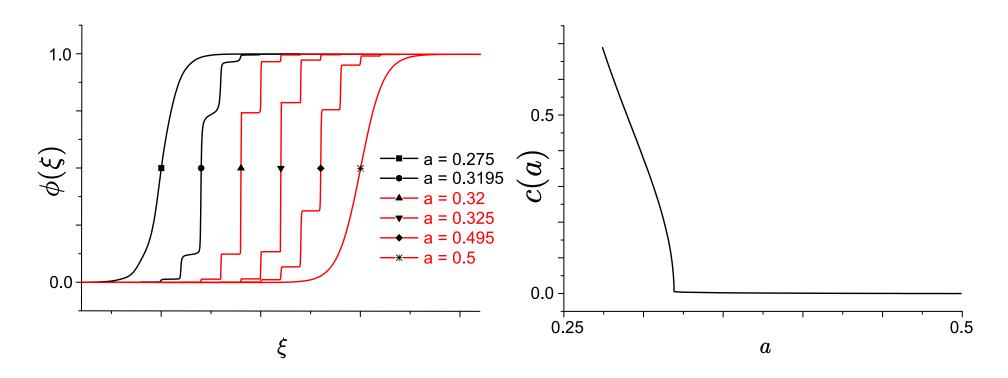
$$\frac{d}{dt}u_j = u_{j-1} + u_{j+1} - 2u_j + (u_j - a) \left( u_{j-1}(1 - u_{j+1}) + u_{j+1}(1 - u_{j-1}) \right) \\ -\frac{5}{4}(a - \frac{1}{2})\sin(2\pi u_j).$$



Here  $\partial_a \mathcal{G}$  may have both signs, but (numerically)  $\Psi(\theta) < 0$  for all  $\theta$ .

Thm. [H., Sandstede, Pelinovsky] Do have prop failure for LDE

$$\frac{d}{dt}u_j = u_{j-1} + u_{j+1} - 2u_j + 4u_j(1 - u_j)(u_{j-1} + u_{j+1} - 2a) \\ -5(a - \frac{1}{2})\sin(2\pi u_j)(\frac{6}{5} + \frac{8}{5}u).$$



Numerically computed:  $\Psi(\theta = 0) < 0 < \Psi(\theta = \frac{1}{2}).$ 

#### **Discussion**

Recall PDE  $u_t = u_{xx} + g(u; a)$ .

- Active interest in multi-lattice-site discretizations of g that admit continuous branch of stationary solutions [Barashenkov, Oxtoby, Pelinovsky, Dmitriev, Kevrekidis, Yoshikawa].
- One generally expects size of propagation failure interval to be exponentially small in *h*.
- For higher dimensional problems, indications are that using 'small enough' h > 0 to reduce influence of propagation failure can hurt numerical performance [Beyn, Speight].