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Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

d

dt
uj(t) = α

(
uj−1(t)− 2uj(t) + uj+1(t)

)
+ f

(
uj(t)

)
, j ∈ Z.

Picking α = h−2 � 1, LDE can be seen as discretization with distance h of PDE

∂tu(t, x) = ∂xxu(t, x) + f
(
u(t, x)

)
, x ∈ R.

• Many physical models have a discrete spatial structure → LDEs.

• No need for α to be large; some models even have α < 0.

• Main theme: qualitative differences between PDEs and LDEs.
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Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).
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• Fiber has myeline coating with periodic gaps called nodes of Ranvier .
• Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
• Slow propagation in gaps, but signal chemically reinforced.
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Signal Propagation: The Model

One is interested in the potential Uj at the node sites.

Axon

U0U-1 U1

Signals appear to ”hop” from one node to the next [Lillie, 1925].
Ignoring recovery, one arrives at the LDE [Keener and Sneyd, 1998]

d
dtUj(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a), j ∈ Z.
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Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).
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Signal Propagation: PDE

In continuum limit: Nagumo LDE becomes Nagumo PDE

∂tu = ∂xxu+ u(a− u)(u− 1).

Starting step [Fife, McLeod]: travelling waves.

Travelling wave u(x, t) = φ(x+ ct) satisfies:

cφ′(ξ) = φ′′(ξ) + φ(ξ)
(
a− φ(ξ)

)(
φ(ξ)− 1

)
.

Interested in pulse solutions connecting 0 to 1, i.e.

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = 1.
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Signal Propagation: PDE

Recall travelling wave ODE

cφ′(ξ) = φ′′(ξ) + φ(ξ)
(
a− φ(ξ)

)(
φ(ξ)− 1

)
.

limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

Explicit solutions available:

φ(ξ) = 1
2 + 1

2 tanh
(

1
4

√
2 ξ
)
,

c(a) = 1√
2
(1− 2a).
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Signal Propagation: LDE

Recall the Nagumo LDE

d
dtUj(t) = 1

h2[Uj+1(t) + Uj−1(t)− 2Uj(t)] + g(Uj(t); a), j ∈ Z.

Travelling wave profile Uj(t) = φ(j + ct) must satisfy:

cφ′(ξ) = 1
h2[φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)] + g

(
φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

• Notice that wave speed c enters in singular fashion.

• When c 6= 0, this is a functional differential equation of mixed type (MFDE).

• When c = 0, this is a difference equation.
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Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0→ 1.
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Propagation

Typical wave speed c versus a plot for discrete reaction-diffusion systems:

In principle, can have a∗ = 1
2 or a∗ <

1
2.

In case a∗ <
1
2, then we say that LDE suffers from propagation failure.

Propagation failure widely studied; pioneed by [Keener].
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Signal Propagation: Comparison

PDE

∂tu = ∂xxu+ g(u, a)

Travelling wave u = φ(x+ ct) satisfies:

cφ′(ξ) = φ′′(ξ) + g
(
φ(ξ); a

)
0

Travelling waves connecting 0 to 1:

LDE

d

dt
Uj = Uj+1 + Uj−1 − 2Uj + g(Uj; a)

Travelling wave Uj = φ(j + ct) satisfies:

cφ′(ξ) = φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)
+g
(
φ(ξ); a

)
Travelling waves connecting 0 to 1:

Propagation failure if a∗ <
1
2.
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Propagation failure

Consider travelling wave MFDE with saw-tooth nonlinearity

cφ′(ξ) = 1
h2[φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)] + g

(
φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

Thm. [Cahn, Mallet-Paret, Van Vleck]:
Propagation failure for all h > 0 (1999).

Linear analysis with Fourier series.

11



Propagation failure

Consider travelling wave MFDE with near-saw-tooth nonlinearity

cφ′(ξ) = 1
h2[φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)] + g

(
φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

Thm. [Mallet-Paret]: Propagation failure
when g sufficiently close to saw-tooth.
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Propagation failure

Consider travelling wave MFDE with generic bistable nonlinearity

cφ′(ξ) = 1
h2[φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)] + g

(
φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

Thm. [Hoffman, Mallet-Paret]: Generic
condition on g guarantees propagation
failure.

Unknown if cubic satisfies this condition
for all h > 0.
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Propagation failure

Consider travelling wave MFDE with zig-zag bistable nonlinearity

cφ′(ξ) = 1
h2[φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)] + g

(
φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

Thm. [Elmer]: There exist countably
many h for which there is no propagation
failure.
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Propagation Failure

Recall travelling wave MFDE:

cφ′(ξ) = 1
h2[φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)] + gcub

(
φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

When c = 0, can restrict to ξ ∈ Z: recurrence relation!

With pj = φ(j) and rj = φ(j + 1), we find

pj+1 = rj
rj+1 = −pj + 2rj − h2rj(rj − a)(1− rj).

Saddles (0, 0) and (1, 1).
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Propagation Failure

pj+1 = rj
rj+1 = −pj + 2rj − α−1rj(rj − a)(1− rj).

For a = 1
2, site-centered (orange) and bond-centered (black) solutions. Generically:

16



Propagation Failure

pj+1 = rj
rj+1 = −pj + 2rj − α−1rj(rj − a)(1− rj).

Two branches coincide and annihilate at a = a∗.
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Propagation Failure

Discretizations of cubic may also involve multiple lattice sites:

d

dt
Uj =

1
h2

[Uj−1 + Uj+1 − 2Uj] +
1
2
Uj(Uj+1 + Uj−1 − 2a)(1− Uj).

Explicit solutions available:

Uj(t) =
1
2

+
1
2

tanh
(

arcsinh(
1
4

√
2h)(j + ct)

)
, c(a) =

(1− 2a)
4 arcsinh(1

4

√
2h)

.

No propagation failure; smooth wave profile.
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Propagation Failure - Discrete map

Smooth standing wave profile at a = 1
2 gives:

Site centered and bond centered solutions now connected by continuous branch of
standing waves.

Q: What happens to manifolds when a 6= 1
2?

Do intersections disappear (no prop failure) or survive (prop failure)?
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Lattice point of view

Let us write LDE as:

d

dt
U(t) = F(U(t) ; a),

with U(t) ∈ `∞ and F : `∞ × [0, 1]→ `∞.

Travelling waves Uj(t) = φ(j + ct) satisfy some MFDE

cφ′(ξ) = G
(
φ(ξ − 1), φ(ξ), φ(ξ + 1) ; a

)
.

• Assumption: We have

∂φ(ξ−1)G > 0,

∂φ(ξ+1)G > 0.

• Assumption: The function
G(φ, φ, φ ; a) is bistable. In special
case a = 1

2, it is symmetric.
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Lattice point of view

Recall LDE as:

d

dt
U(t) = F(U(t) ; a),

and travelling wave MFDE

cφ′(ξ) = G
(
φ(ξ − 1), φ(ξ), φ(ξ + 1) ; a

)
Suppose at a = 1

2 we have a smooth solution p(ξ) to

0 = G
(
p(ξ − 1), p(ξ), p(ξ + 1) ; a

)
, ξ ∈ R.

Then for every ϑ ∈ R, we have equilibrium solution p(ϑ) ∈ `∞ to our LDE:

F(p(ϑ) ;
1
2

) = 0, p
(ϑ)
j = p(ϑ+ j).
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Invariant Manifold

Recall p(ϑ) ∈ `∞ with p
(ϑ)
j = p(ϑ+ j).

Notice that

p(ϑ) = T p(ϑ+1),

where T : `∞ → `∞ is right-shift operator (T u)j = uj−1.

Combining these equilibria gives
a smooth manifold

M(a =
1
2

) = {p(ϑ)}ϑ∈R.

After dividing out T , we get a
ring!
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Invariant Manifold - Scenario #1

Based on spectral stability of equilibria p(ϑ) [Chow, Mallet-Paret, Shen, 1998] and
comparison principles can prove:

Prop: The manifold M(a = 1
2) is normally hyperbolic.

Possible scenario #1 for persistence of M(a) with a 6= 1
2:

=⇒

No equilibria survive; M(a) is orbit of travelling wave. No Propagation Failure.
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Invariant Manifold - Scenario #2

Based on spectral stability of equilibria p(ϑ) [Chow, Mallet-Paret, Shen, 1998] and
comparison principles can prove:

Prop: The manifold M(a = 1
2) is normally hyperbolic.

Possible scenario #2 for persistence of M(a) with a 6= 1
2:

=⇒

One or more equilibria survive. Propagation Failure*.

*Certain terms and conditions apply...
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Dynamics near M
Angular coordinate θ measures position along M(a). Dynamics given by

d

dt
θ = (a− 1

2
)Ψ(θ) +O

( ∣∣∣∣a− 1
2

∣∣∣∣2 ),
in which Ψ(θ) given by

Ψ(ϑ) =
∑
j∈Z

q
(ϑ)
j ∂aG

(
p

(ϑ)
j−1, p

(ϑ)
j , p

(ϑ)
j+1 ; a =

1
2

)
.

Here q(ϑ) is adjoint eigenvector; i.e. solves L(ϑ)∗q(ϑ) = 0 with

(L(ϑ)∗w)j = ∂φ(ξ−1)G
(
p

(ϑ)
j , p

(ϑ)
j+1, p

(ϑ)
j+2 ; 1

2

)
wj+1

+∂φ(ξ)G
(
p

(ϑ)
j−1, p

(ϑ)
j , p

(ϑ)
j+1 ; 1

2

)
wj

+∂φ(ξ+1)G
(
p

(ϑ)
j−2, p

(ϑ)
j−1, p

(ϑ)
j ; 1

2

)
wj−1.

Known: q
(ϑ)
j > 0 for all j ∈ Z and ϑ ∈ R. So ∂aG < 0 guarantees no prop failure.
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Propagation Failure

Thm. [H., Sandstede, Pelinovsky] No prop failure for LDE

d
dtuj = uj−1 + uj+1 − 2uj + (uj − a)

(
uj−1(1− uj+1) + uj+1(1− uj−1)

)
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Propagation Failure

Thm. [H., Sandstede, Pelinovsky] No prop failure for LDE

d
dtuj = uj−1 + uj+1 − 2uj + (uj − a)

(
uj−1(1− uj+1) + uj+1(1− uj−1)

)
−5

4(a− 1
2) sin(2πuj).

Here ∂aG may have both signs, but (numerically) Ψ(θ) < 0 for all θ.
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Propagation Failure

Thm. [H., Sandstede, Pelinovsky] Do have prop failure for LDE

d
dtuj = uj−1 + uj+1 − 2uj + 4uj(1− uj)(uj−1 + uj+1 − 2a)

−5(a− 1
2) sin(2πuj)(6

5 + 8
5u).

Numerically computed: Ψ(θ = 0) < 0 < Ψ(θ = 1
2).
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Discussion

Recall PDE ut = uxx + g(u ; a).

• Active interest in multi-lattice-site discretizations of g that admit continuous
branch of stationary solutions [Barashenkov, Oxtoby, Pelinovsky, Dmitriev,
Kevrekidis, Yoshikawa].

• One generally expects size of propagation failure interval to be exponentially
small in h.

• For higher dimensional problems, indications are that using ’small enough’
h > 0 to reduce influence of propagation failure can hurt numerical
performance [Beyn, Speight].
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