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Initial value problems

Prototype initial value problem:

Ix'(t) = t+f (t+o)do+ f(z(t)) forallt>0,
z(t) = (1) forall —1 <7 <0.

e Matrix Z diagonal: singular and invertible both allowed.

e Dependence both on 'past’ and 'future’ arguments of x

e If 7 invertible: mixed type functional differential equation (MFDE).
e If 7 singular: mixed type differential-algebraic equation (MFDAE)
e Does every initial condition ¢ lead to a (bounded) solution?

e Uniqueness of solution for given ¢?



Initial value problems

Recall prototype initial value problem:

Ix'(t) = t+f (t+o)do+ f(z(t)) forallt>0,
z(t) = (1) forall —1 <7 <0.

z(t)

e Solution x = Z(t) may have jump at t = 0; similar to impulsive equations [Liu,
Ballinger]



Motivation

Direct motivation comes from economic modelling.

Inflation
inf 1 on-.
Pastlnfla@ @eetations @rest@

jumps T
delayed terms advanced terms @tra| Bank

e Can central bank stabilize inflation by jump in interest rate?

e Do multiple self-fulfilling paths exist?



Model Equations

Model system given by

) = w(t)+r— R(t)

) = [ ePn(o)do

) = fol eﬁf"ﬂ(a)da

) = f(R() — 7)) — 7l ()

Differential equation coupled with algebraic equations.

Interest rate: R(t).

Inflation rate: m(%).

Past inflation: 7°(¢).
Inflation expectation: 7/ (¢).

Variable 7(t) can be eliminated, leaving three independent variables.

Initial values for R, w° and 7/ given on [—1,0].



Delay Equations

Consider first the linear delay differential equation
/ L —
x'(§) = L_ev; z,

where L_ : C'(|-1,0[,R) — R.

Characteristic function given by

Ap (z2)=2z—L_¢€*

eve z € C([—1,0],R)
~— r € C(R,R)
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Delay Equations

We are interested in solution spaces

Q7 = {we BCO((—00,0,R) : w'(§) = L_ev,w for all £ < 0},
Qp = {veBC([-1,00),R) :v'(§) = L_ev v for all £ > 0}.

We also use 'initial segment’ spaces

Q. =evy (Q}j_), Q7 =evy (Qf_).

evg v €




Delay Equations

Thm. If Ay _(z) = 0 has no roots on imag. axis, then
O([_170]7C> — QZ_ D Q;_

Q7 is finite dimensional, spanned by eigenfunctions for roots A;,_(z) = 0 with

Rez > 0.
@
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Spectral projections explicitly give projections II™ and I1.



Delay Equations - Jumps

Consider now the linear delay differential equation
x'(§) = L &v¢

where L_ : PC([-1,0],R) — R.

&)

-1 0

Look for solutions x with single discontinuity at £ = 0.



Delay Equations

Interested in solution spaces

Qp = {e€C(~1,0,,R) x C([0,00),R) :
v'(§) = L_év, v for almost all £ > 0}.

We also use 'initial segment’ space

QO =& (Qp ) c C(-1,0],R) x R.

&, 0e Qp cC(-1,0,R) xR
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Delay Equations

Question: how to link jump-solutions 27" with continuous solutions Q7 .

Answer: Green's function Gr (&) =4 [ esAp (iv)~tdv.

— 2rJ-c0

G, € C(R_,R) x C(R,,R)

@L_ continuous except for discontinuity at £ = 0; solves

G (§) = L-&vg Gr_+5(¢)
This gives us

Q7 =97 ®span{Gy_}.
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Delay Equations

Starting from
Q7 =29; Pspan{G_},
what are consequences for initial segments

Qr vs  Qr

Gr € C(R_,R) x C(R,,R)

Need to understand relation

—

eVO GL_ VS L -
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Delay Equations

Use spectral projections to understand relation
evyg Gr1_ VS Q7 .
Prop. If Ay _(z.) = 0 with Re z, > 0, then we have

II°P(z,) evy Gr = —Res,_, e A (2) L

oo We have Q7 # C([-1,0],R). But: any ¢ €
C'(|—1,0],R) can be extended to a bounded solution T,
where the jump at zero depends directly (and explicitly)

“. on .
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Delay Equations

Use spectral projections to understand relation
evgy @L_ VS Q7 .
Prop. If Ay _(z.) = 0 with Re z, > 0, then we have
II°P(z,) evy Gr = —Res,_, e A (2) L

Example 2

®e

o
We have Q7 = C([-1,0,R). Any ¢ € C([-1,0],R)
® can be extended in multiple ways to a bounded solution
x, where the jump at zero can be chosen arbitrarily.
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MFDE - lll-posedness

Moving on to mixed type equations, consider the MFDE

v'(§) =v(€—1) +u(+1).

initial state
*
+1:
- M _’1"'_|.+1 """"""" _|f'3 """"""""""" )
_1%

(Example due to Rustichini )
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lll-posedness

Moving on to mixed type equations, consider the MFDE

v'(§) =v(€—1) +u(+1).

V(&) =0,v(&1)=1 => v(&+1) =-1
Initial state °

/.
|

T
°°°°°°°°°°°°°° :"3:'1"+"1-|'-'3
cEEE—— _1-;- T —

e Continuity lost = ill-posed as an initial value problem with initial conditions
in the 'mathematical’ state space C'([—1, 1], R).
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lll-posedness: What is going on?

[ ° NE o [
e = e
\ ° _E ° /
° ‘ °
: Substitution of e*¢ into
° E °
S V(€)= v(§ — 1)+ (€ + 1)
"""""""""""" ..Re-z yields the characteristic
o - o equation
° ; ° Alz) =z—e *—e=0.
o : o
° : °
° ‘ °
° : °
[ . [

e No exponential bound possible for solutions, at both +00 (unlike delay
equations)!
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MFDEs

Consider the linear mixed-type equation (MFDE)
z'(§) = Levex,

where L : C([—-1,1],R) — R.

Characteristic function given by:

Ap(z) =2z — Le*

eV, T € C([-1,1],R)
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MFDEs

We are interested in solution spaces

Q7 = {we BC((—00,1],R) : w'(§) = Levew for all £ <0},
Q7 = {ve BC(]-1,0),R):v'(§) = Levew for all £ > 0}.

We also use 'initial segment’ spaces

Qr =evo(Qr), Qp =evo(Qr).

evy v € @
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MFDEs

Thm. [Verduyn-Lunel+Mallet-Paret, Rustichini] If Az (z) = 0 has no roots on
imag. axis, then

00 ® ®oo H—Qp o0 ® oo

iInfinite
dim

Can no longer use spectral projections to define projections II*™ and II™.

iInfinite
dim
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MFDEs

'Mathematical’ state space C'(|—1, 1], R), but 'modelling’ state space
C([_17 O]vR)

Restriction operators:

T Q; —>C([_17O]7R)7 QP'—)evawzw[—l,O]

v EQ; — ¢ e C([-1,0,R)

-1 0 +1 -1 0
Thm. [Verduyn-Lunel4Mallet-Paret| 7~ is Fredholm.
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MFDEs

Recall Fredholm restriction operator:
T Q; _>C([_17O]7R)7 w'_)evo_w:w[—l,()]
and write

R = Rangen™ C C(|-1,0],R), K =Kern™ C C(|-1,1],R)

R has finite codimension and determines possibility of extending initial condition
qb S C([_lv 0]7 R)

K has finite dimension and determines uniqueness of such an extension.

Unfortunately, no direct way to characterize R and K.
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MFDEs - Wiener-Hopf Factorization

Thm. [Verduyn-Lunel4+Mallet-Paret; slightly generalized by H.+Augeraud-Veron]
Pick a > 0. There exist (non-unique) linear operators

L_:C(]-1,0],C) — C, L, :C([0,1],C) - C
such that
Ap (2)Ar,(2) = (z + a)AL(z).
The integer
nt = {z: Ap (z) =0and Rez <0} —{2:Ar_(2) =0 and Rez > 0}
does not depend on specific pair L_, L. Finally,

codim R = max{1 — nﬁL, 0}, dim K = max{nﬁL — 1,0}

23



MFDEs - Wiener-Hopf Factorization

f

Integer n} counts roots of Ay, (z) =0 and A, (z) = 0 that are on 'wrong’ side

of imaginary axis.
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MFDEs - Wiener-Hopf Factorization

In practice, finding a Wiener-Hopf factorization is intractable.

However, suppose once has a special reference system L,..s that one can factorize
(easier to find).

Construct a path
r:[0,1] — £(C([-1,1],C),C)

that connects L,.f to L,

Thm. [H., Augeraud-Veron| Under some nondegeneracy conditions on the path T,

nﬁL = nﬁL — cross(I),

ref

where cross(I') is number of roots that cross imaginary axis from left to right as u
increases from zero to one.
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MFDEs with Jumps

Interested in solution spaces

Qp = {0eC(-1,0,R) x C([0,0),R) :
V(&) = Léve v for almost all £ > 0}.

We also use 'initial segment’ space

Qr = &o(Q7) € C([-1,0],R) x C([0,1],R).

Vo € Q; C C([—1,0L,R) x C([0,1], R)
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MFDEs with Jumps

Again, introduce restriction

7 :Qp — C([-1,0,R),  ©—evyt =_1g

Also introduce:

AN AN

R = Range7 € C(|-1,0],R), K =Ker7™ € C(|-1,0,R) x C([0,1],R)

R determines possibility of extending initial condition ¢ € C([—1,0], R) to
bounded solution with jump.

K determines uniqueness of such an extension.
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MFDEs - Comparison

Recall non-jump setting:

™o Q; — C([_17 0]7R)7 ¢ = w[—l,O]
R = Rangen™ C C([-1,0],R), K =Kern™ € C(|-1,1],R)

with dimensions

codim R = max{1 — nﬁL, 0}, dim K = max{nﬂL — 1,0}

Recall jump setting:

77 Qr — C(-1,0LR), ¢ evgt =1
R =Range7™ € C([-1,0],R), K =Ker7 € C([-1,0],R) x C(]0,1],R)

Thm.[H., Augeraud-Veron| The operator 7~ is Fredholm and we have
codim R = max{—nﬁL, 0}, dim K = max{nﬁL, 0}

Conclusion: presence of jump introduces one extra d.o.f. for initial value problem.
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MFDEs - Sketch of Proof

We again have ﬁf =97 @ span{@[,},

with @L the Green's function for MFDE. Use special ordered Wiener-Hopf
factorization:

“OAL_:O ‘AL+:O “ALZO‘

In this case, relation between evy G, and 7~ (Q7’) can be determined by using
spectral projections of operator L_.
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Differential-Algebraic Equations

We know turn to the differential-algebraic equation
Tx'(§) = Mevex,

where M : C'(|—1,1],R™) — R™ and 7 is diagonal and typically singular.

Characteristic equation given by

51,]\/[(2) =T7Tz— Me*.

Main Assumption: There exists L : C'(|—1,1],R™) — R” so that solutions satisfy

z'(§) = Levex.
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Differential-Algebraic Equations - Example

Example: Consider algebraic equation

0=—x(§) +/ z(&+ o) do, (1)

—1

which after a single differentiation yields the MFDE
z'(§) =z +1)—z(—-1) (2)

Vice versa, if x solves (2) and has x(0) = f_ll x(o)do, then x solves (1).

Characteristic function for (1) given by

! 1
o(z)=1-— / edo=1——(e* —e %)

-1 <
Characteristic function for (2) given by
Alz)=z—(eF—e %)

Notice z0(z) = A(z).
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Differential-Algebraic Equations with Jump

Recall 'smooth’ differential-algebraic equation (posed on R")
Tz'(§) = Mevex.
Interested in solution spaces

dry = {v e C([-1,0],R") x C(]0,00),R") :

Tv'(€) = M éve v for "almost’ all £ > 0}.

algebraic criteria

r’7 N\

modelling state space
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Differential-Algebraic Equations

Recall 'smooth’ differential-algebraic equation (posed on R")

Zz'(§) = Mevex.

Thm. [H. + Augeraud-Veron| Pick any v > 0. There exist non-negative integers
l1,...,4, and an operator L(v) : C(|—1,1],R™) — R™ such that

(2= 0 0
0 T 0 5I,M(Z) = AL(,Y)(Z).
0 0 (z—7)n

In addition, we have

Az = Q1)

Conclusion: Can use prior results to study q7,,.
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Outlook

Linear results can be lifted to local nonlinear results.
Jumps allow 'unstable’ equilibria to be stabilized.
Mixed type equations can have non-unique continuations of initial conditions.

Mixed type equations in more than one dimension still elusive.
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