Loughborough - August 4th 2011

Well-posedness of Initial Value Problems for Functional Differential-Algebraic Equations of Mixed Type

Hermen Jan Hupkes
University of Missouri - Columbia, MO
(Joint work with E. Augeraud-Véron)

Initial value problems

Prototype initial value problem:

$$
\begin{array}{lll}
\mathcal{I} x^{\prime}(t) & =x(t)+\int_{-1}^{1} x(t+\sigma) d \sigma+f(x(t)) & \\
\text { for all } t \geq 0 \\
x(\tau) & =\phi(\tau) & \\
\text { for all }-1 \leq \tau \leq 0 .
\end{array}
$$

- Matrix \mathcal{I} diagonal: singular and invertible both allowed.
- Dependence both on 'past' and 'future' arguments of x
- If \mathcal{I} invertible: mixed type functional differential equation (MFDE).
- If \mathcal{I} singular: mixed type differential-algebraic equation (MFDAE)
- Does every initial condition ϕ lead to a (bounded) solution?
- Uniqueness of solution for given ϕ ?

Initial value problems

Recall prototype initial value problem:

$$
\begin{array}{lll}
\mathcal{I} x^{\prime}(t)=x(t)+\int_{-1}^{1} x(t+\sigma) d \sigma+f(x(t)) & & \text { for all } t \geq 0 \\
x(\tau) & =\phi(\tau) & \text { for all }-1 \leq \tau \leq 0
\end{array}
$$

- Solution $x=\widehat{x}(t)$ may have jump at $t=0$; similar to impulsive equations [Liu, Ballinger]

Motivation

Direct motivation comes from economic modelling.

- Can central bank stabilize inflation by jump in interest rate?
- Do multiple self-fulfilling paths exist?

Model Equations

Model system given by

$$
\begin{aligned}
\Lambda(R(t)) R^{\prime}(t) & =\pi(t)+r-R(t) \\
\pi^{b}(t) & =\int_{-1}^{0} e^{\beta^{b} \sigma} \pi(\sigma) d \sigma \\
\pi^{f}(t) & =\int_{0}^{1} e^{\beta^{f} \sigma} \pi(\sigma) d \sigma \\
\pi(t) & =f(R(t))-\pi^{b}(t)-\pi^{f}(t)
\end{aligned}
$$

Differential equation coupled with algebraic equations.

- Interest rate: $R(t)$.
- Inflation rate: $\pi(t)$.
- Past inflation: $\pi^{b}(t)$.
- Inflation expectation: $\pi^{f}(t)$.

Variable $\pi(t)$ can be eliminated, leaving three independent variables.
Initial values for R, π^{b} and π^{f} given on $[-1,0]$.

Delay Equations

Consider first the linear delay differential equation

$$
x^{\prime}(\xi)=L_{-} \operatorname{ev}_{\xi}^{-} x
$$

where $L_{-}: C([-1,0], \mathbb{R}) \rightarrow \mathbb{R}$.
Characteristic function given by

$$
\Delta_{L_{-}}(z)=z-L_{-} e^{z}
$$

Delay Equations

We are interested in solution spaces

$$
\begin{aligned}
& \mathfrak{Q}_{L_{-}}=\left\{w \in B C((-\infty, 0], \mathbb{R}): w^{\prime}(\xi)=L_{-} \operatorname{ev}_{\xi}^{-} w \text { for all } \xi \leq 0\right\}, \\
& \mathfrak{Q}_{\vec{L}_{-}}=\left\{v \in B C([-1, \infty), \mathbb{R}): v^{\prime}(\xi)=L_{-} \operatorname{ev}_{\xi}^{-} v \text { for all } \xi \geq 0\right\} .
\end{aligned}
$$

We also use 'initial segment' spaces

$$
Q_{L_{-}}^{\leftarrow}=\operatorname{ev}_{0}^{-}\left(\mathfrak{Q}_{L_{-}}^{\leftarrow}\right), \quad Q_{L_{-}}=\operatorname{ev}_{0}^{-}\left(\mathfrak{Q}_{L_{-}}\right)
$$

Delay Equations

Thm. If $\Delta_{L_{-}}(z)=0$ has no roots on imag. axis, then

$$
C([-1,0], \mathbb{C})=Q_{L_{-}}^{\leftarrow} \oplus Q_{L_{-}}^{\overrightarrow{-}}
$$

$Q_{L_{-}}^{\leftarrow}$ is finite dimensional, spanned by eigenfunctions for roots $\Delta_{L_{-}}(z)=0$ with $\operatorname{Re} z>0$.

Spectral projections explicitly give projections $\Pi \rightarrow$ and $\Pi \leftarrow$.

Delay Equations - Jumps

Consider now the linear delay differential equation

$$
x^{\prime}(\xi)=L_{-} \widehat{\operatorname{ev}}_{\xi}^{-} x
$$

where $L_{-}: \operatorname{PC}([-1,0], \mathbb{R}) \rightarrow \mathbb{R}$.

Look for solutions \widehat{x} with single discontinuity at $\xi=0$.

Delay Equations

Interested in solution spaces

$$
\begin{aligned}
& \widehat{\mathfrak{Q}}{\overrightarrow{L_{-}}}=\{\widehat{v} \in C([-1,0], \mathbb{R}) \times C([0, \infty), \mathbb{R}): \\
&\left.\widehat{v}^{\prime}(\xi)=L_{-} \widehat{\mathrm{ev}}_{\xi}^{-} \widehat{v} \text { for almost all } \xi \geq 0\right\}
\end{aligned}
$$

We also use 'initial segment' space

$$
\widehat{Q}_{L_{-}}=\widehat{\mathrm{ev}}_{0}^{-}\left(\mathfrak{Q}_{L_{-}}\right) \subset C([-1,0], \mathbb{R}) \times \mathbb{R}
$$

Delay Equations

Question: how to link jump-solutions $\widehat{\mathfrak{Q}}_{L_{-}}$with continuous solutions $\mathfrak{Q}_{L_{-}}$.
Answer: Green's function $\quad \widehat{G}_{L_{-}}(\xi)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \nu \xi} \Delta_{L_{-}}(i \nu)^{-1} d \nu$.

$\widehat{G}_{L_{-}}$continuous except for discontinuity at $\xi=0$; solves

$$
\widehat{G}_{L_{-}}^{\prime}(\xi)=L_{-} \widehat{\mathrm{ev}}_{\xi}^{-} \widehat{G}_{L_{-}}+\delta(\xi)
$$

This gives us

$$
\widehat{\mathfrak{Q}}_{L_{-}}=\mathfrak{Q}_{L_{-}} \oplus \operatorname{span}\left\{\widehat{G}_{L_{-}}\right\} .
$$

Delay Equations

Starting from

$$
\widehat{\mathfrak{Q}}_{L_{-}}=\mathfrak{Q}_{L_{-}} \oplus \operatorname{span}\left\{\widehat{G}_{L_{-}}\right\}
$$

what are consequences for initial segments

Need to understand relation

$$
\mathrm{ev}_{0}^{-} \widehat{G}_{L_{-}} \quad \text { vs } \quad Q_{L_{-}}
$$

Delay Equations

Use spectral projections to understand relation

$$
\mathrm{ev}_{0}^{-} \widehat{G}_{L_{-}} \quad \text { vs } \quad Q_{L_{-}} .
$$

Prop. If $\Delta_{L_{-}}\left(z_{*}\right)=0$ with $\operatorname{Re} z_{*}>0$, then we have

$$
\Pi^{\mathrm{sp}}\left(z_{*}\right) \operatorname{ev}_{0}^{-} \widehat{G}_{L_{-}}=-\operatorname{Res}_{z=z_{*}} e^{z \cdot} \Delta_{L_{-}}(z)^{-1}
$$

Example

We have $Q_{L_{-}} \neq C([-1,0], \mathbb{R})$. But: any $\phi \in$ $C([-1,0], \mathbb{R})$ can be extended to a bounded solution \widehat{x}, where the jump at zero depends directly (and explicitly) on ϕ.

Delay Equations

Use spectral projections to understand relation

$$
\mathrm{ev}_{0}^{-} \widehat{G}_{L_{-}} \quad \text { vs } \quad Q_{L_{-}} .
$$

Prop. If $\Delta_{L_{-}}\left(z_{*}\right)=0$ with $\operatorname{Re} z_{*}>0$, then we have

$$
\Pi^{\mathrm{sp}}\left(z_{*}\right) \operatorname{ev}_{0}^{-} \widehat{G}_{L_{-}}=-\operatorname{Res}_{z=z_{*}} e^{z \cdot} \Delta_{L_{-}}(z)^{-1}
$$

Example 2

We have $Q_{L_{-}}=C([-1,0], \mathbb{R})$. Any $\phi \in C([-1,0], \mathbb{R})$ can be extended in multiple ways to a bounded solution \widehat{x}, where the jump at zero can be chosen arbitrarily.

MFDE - III-posedness

Moving on to mixed type equations, consider the MFDE

$$
v^{\prime}(\xi)=v(\xi-1)+v(\xi+1) .
$$

(Example due to Rustichini)

III-posedness

Moving on to mixed type equations, consider the MFDE

- Continuity lost \Longrightarrow ill-posed as an initial value problem with initial conditions in the 'mathematical' state space $C([-1,1], \mathbb{R})$.

III-posedness: What is going on?

- No exponential bound possible for solutions, at both $\pm \infty$ (unlike delay equations)!

MFDEs

Consider the linear mixed-type equation (MFDE)

$$
x^{\prime}(\xi)=L \operatorname{ev}_{\xi} x
$$

where $L: C([-1,1], \mathbb{R}) \rightarrow \mathbb{R}$.
Characteristic function given by:

$$
\Delta_{L}(z)=z-L e^{z}
$$

MFDEs

We are interested in solution spaces

$$
\begin{aligned}
& \mathfrak{Q}_{L}=\left\{w \in B C((-\infty, 1], \mathbb{R}): w^{\prime}(\xi)=L \operatorname{ev}_{\xi} w \text { for all } \xi \leq 0\right\}, \\
& \mathfrak{Q}_{\vec{L}}=\left\{v \in B C([-1, \infty), \mathbb{R}): v^{\prime}(\xi)=L \operatorname{ev}_{\xi} v \text { for all } \xi \geq 0\right\} .
\end{aligned}
$$

We also use 'initial segment' spaces

$$
Q_{L}^{\leftarrow}=\operatorname{ev}_{0}\left(\mathfrak{Q}_{L}^{\leftarrow}\right), \quad Q_{L}=\operatorname{ev}_{0}\left(\mathfrak{Q}_{\vec{L}}\right)
$$

MFDEs

Thm. [Verduyn-Lunel+Mallet-Paret, Rustichini] If $\Delta_{L}(z)=0$ has no roots on imag. axis, then

$$
C([-1,1], \mathbb{C})=Q_{L}^{\leftarrow} \oplus Q_{L}^{\vec{L}} .
$$

Can no longer use spectral projections to define projections Π^{\leftarrow} and Π^{\rightarrow}.

MFDEs

'Mathematical' state space $C([-1,1], \mathbb{R})$, but 'modelling' state space $C([-1,0], \mathbb{R})$.

Restriction operators:

$$
\pi^{-}: Q_{L} \rightarrow C([-1,0], \mathbb{R}), \quad \psi \mapsto \mathrm{ev}_{0}^{-} \psi=\psi_{[-1,0]}
$$

Thm. [Verduyn-Lunel+Mallet-Paret] π^{-}is Fredholm.

MFDEs

Recall Fredholm restriction operator:

$$
\pi^{-}: Q_{L} \rightarrow C([-1,0], \mathbb{R}), \quad \psi \mapsto \mathrm{ev}_{0}^{-} \psi=\psi_{[-1,0]}
$$

and write

$$
R=\text { Range } \pi^{-} \subset C([-1,0], \mathbb{R}), \quad K=\operatorname{Ker} \pi^{-} \subset C([-1,1], \mathbb{R})
$$

R has finite codimension and determines possibility of extending initial condition $\phi \in C([-1,0], \mathbb{R})$.
K has finite dimension and determines uniqueness of such an extension.
Unfortunately, no direct way to characterize R and K.

MFDEs - Wiener-Hopf Factorization

Thm. [Verduyn-Lunel+Mallet-Paret; slightly generalized by H.+Augeraud-Veron] Pick $\alpha>0$. There exist (non-unique) linear operators

$$
L_{-}: C([-1,0], \mathbb{C}) \rightarrow \mathbb{C}, \quad L_{+}: C([0,1], \mathbb{C}) \rightarrow \mathbb{C}
$$

such that

$$
\Delta_{L_{-}}(z) \Delta_{L_{+}}(z)=(z+\alpha) \Delta_{L}(z)
$$

The integer

$$
n_{L}^{\sharp}=\left\{z: \Delta_{L_{+}}(z)=0 \text { and } \operatorname{Re} z<0\right\}-\left\{z: \Delta_{L_{-}}(z)=0 \text { and } \operatorname{Re} z>0\right\}
$$

does not depend on specific pair L_{-}, L_{+}. Finally,

$$
\operatorname{codim} R=\max \left\{1-n_{L}^{\sharp}, 0\right\}, \quad \operatorname{dim} K=\max \left\{n_{L}^{\sharp}-1,0\right\}
$$

MFDEs - Wiener-Hopf Factorization

Integer n_{L}^{\sharp} counts roots of $\Delta_{L_{-}}(z)=0$ and $\Delta_{L_{+}}(z)=0$ that are on 'wrong' side of imaginary axis.

MFDEs - Wiener-Hopf Factorization

In practice, finding a Wiener-Hopf factorization is intractable.
However, suppose once has a special reference system $L_{\text {ref }}$ that one can factorize (easier to find).

Construct a path

$$
\Gamma:[0,1] \rightarrow \mathcal{L}(C([-1,1], \mathbb{C}), \mathbb{C})
$$

that connects L_{ref} to L,

$$
\Gamma(0)=L_{\mathrm{ref}}, \quad \Gamma(1)=L
$$

Thm. [H., Augeraud-Veron] Under some nondegeneracy conditions on the path Γ,

$$
n_{L}^{\sharp}=n_{L_{\mathrm{ref}}}^{\sharp}-\operatorname{cross}(\Gamma),
$$

where cross (Γ) is number of roots that cross imaginary axis from left to right as μ increases from zero to one.

MFDEs with Jumps

Interested in solution spaces

$$
\begin{aligned}
& \widehat{\mathfrak{Q}}_{L}=\{\widehat{v} \in C([-1,0], \mathbb{R}) \times C([0, \infty), \mathbb{R}): \\
&\left.\widehat{v}^{\prime}(\xi)=L \widehat{\operatorname{ev}} \xi \widehat{v} \text { for almost all } \xi \geq 0\right\}
\end{aligned}
$$

We also use 'initial segment' space

$$
\widehat{Q}_{L} \overrightarrow{\widehat{e v}_{0}}\left(\mathfrak{Q}_{L}\right) \subset C([-1,0], \mathbb{R}) \times C([0,1], \mathbb{R})
$$

MFDEs with Jumps

Again, introduce restriction

$$
\widehat{\pi}^{-}: \widehat{Q}_{L} \rightarrow C([-1,0], \mathbb{R}), \quad \widehat{\psi} \mapsto \mathrm{ev}_{0}^{-} \widehat{\psi}=\widehat{\psi}_{[-1,0]}
$$

Also introduce:

$$
\widehat{R}=\text { Range } \widehat{\pi}^{-} \in C([-1,0], \mathbb{R}), \quad \widehat{K}=\operatorname{Ker} \widehat{\pi}^{-} \in C([-1,0], \mathbb{R}) \times C([0,1], \mathbb{R})
$$

\widehat{R} determines possibility of extending initial condition $\phi \in C([-1,0], \mathbb{R})$ to bounded solution with jump.
\widehat{K} determines uniqueness of such an extension.

MFDEs - Comparison

Recall non-jump setting:

$$
\begin{aligned}
& \pi^{-}: Q_{L} \rightarrow C([-1,0], \mathbb{R}), \quad \psi \mapsto \psi_{[-1,0]} \\
& R=\text { Range } \pi^{-} \subset C([-1,0], \mathbb{R}), \quad K=\operatorname{Ker} \pi^{-} \in C([-1,1], \mathbb{R})
\end{aligned}
$$

with dimensions

$$
\operatorname{codim} R=\max \left\{1-n_{L}^{\sharp}, 0\right\}, \quad \operatorname{dim} K=\max \left\{n_{L}^{\sharp}-1,0\right\}
$$

Recall jump setting:

$$
\begin{aligned}
& \widehat{\pi}^{-}: \widehat{Q}_{L} \rightarrow C([-1,0], \mathbb{R}), \quad \widehat{\psi} \mapsto \operatorname{ev}_{0}^{-} \widehat{\psi}=\widehat{\psi}_{[-1,0]} \\
& \widehat{R}=\text { Range } \widehat{\pi}^{-} \in C([-1,0], \mathbb{R}), \quad \widehat{K}=\operatorname{Ker} \widehat{\pi}^{-} \in C([-1,0], \mathbb{R}) \times C([0,1], \mathbb{R})
\end{aligned}
$$

Thm.[H., Augeraud-Veron] The operator $\widehat{\pi}^{-}$is Fredholm and we have

$$
\operatorname{codim} \widehat{R}=\max \left\{-n_{L}^{\sharp}, 0\right\}, \quad \operatorname{dim} \widehat{K}=\max \left\{n_{L}^{\sharp}, 0\right\}
$$

Conclusion: presence of jump introduces one extra d.o.f. for initial value problem.

MFDEs - Sketch of Proof

We again have $\quad \widehat{\mathfrak{Q}}_{\vec{L}}=\mathfrak{Q}_{\vec{L}} \oplus \operatorname{span}\left\{\widehat{G}_{L}\right\}$,
with \widehat{G}_{L} the Green's function for MFDE. Use special ordered Wiener-Hopf factorization:

In this case, relation between $\mathrm{ev}_{0}^{-} \widehat{G}_{L}$ and $\pi^{-}\left(Q_{L}\right)$ can be determined by using spectral projections of operator L_{-}.

Differential-Algebraic Equations

We know turn to the differential-algebraic equation

$$
\mathcal{I} x^{\prime}(\xi)=M \operatorname{ev}_{\xi} x,
$$

where $M: C\left([-1,1], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ and \mathcal{I} is diagonal and typically singular.
Characteristic equation given by

$$
\delta_{\mathcal{I}, M}(z)=\mathcal{I}_{z}-M e^{z} .
$$

Main Assumption: There exists $L: C\left([-1,1], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ so that solutions satisfy

$$
x^{\prime}(\xi)=L \operatorname{ev}_{\xi} x .
$$

Differential-Algebraic Equations - Example

Example: Consider algebraic equation

$$
\begin{equation*}
0=-x(\xi)+\int_{-1}^{1} x(\xi+\sigma) d \sigma \tag{1}
\end{equation*}
$$

which after a single differentiation yields the MFDE

$$
\begin{equation*}
x^{\prime}(\xi)=x(\xi+1)-x(\xi-1) \tag{2}
\end{equation*}
$$

Vice versa, if x solves (2) and has $x(0)=\int_{-1}^{1} x(\sigma) d \sigma$, then x solves (1).
Characteristic function for (1) given by

$$
\delta(z)=1-\int_{-1}^{1} e^{z \sigma} d \sigma=1-\frac{1}{z}\left(e^{z}-e^{-z}\right)
$$

Characteristic function for (2) given by

$$
\Delta(z)=z-\left(e^{z}-e^{-z}\right)
$$

Notice $z \delta(z)=\Delta(z)$.

Differential-Algebraic Equations with Jump

Recall 'smooth' differential-algebraic equation (posed on \mathbb{R}^{n})

$$
\mathcal{I} x^{\prime}(\xi)=M \operatorname{ev}_{\xi} x .
$$

Interested in solution spaces

$$
\begin{aligned}
& \widehat{\mathfrak{q}}_{\overrightarrow{\mathcal{I}}, M}=\left\{\hat{v} \in C\left([-1,0], \mathbb{R}^{n}\right) \times C\left([0, \infty), \mathbb{R}^{n}\right):\right. \\
&\left.\mathcal{I}^{\prime}(\xi)=M \widehat{\mathrm{e} v}_{\xi} \widehat{v} \text { for 'almost' all } \xi \geq 0\right\} .
\end{aligned}
$$

Differential-Algebraic Equations

Recall 'smooth' differential-algebraic equation (posed on \mathbb{R}^{n})

$$
\mathcal{I} x^{\prime}(\xi)=M \operatorname{ev}_{\xi} x .
$$

Thm. [H. + Augeraud-Veron] Pick any $\gamma>0$. There exist non-negative integers $\ell_{1}, \ldots, \ell_{n}$ and an operator $L(\gamma): C\left([-1,1], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ such that

$$
\left(\begin{array}{ccc}
(z-\gamma)^{\ell_{1}} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & (z-\gamma)^{\ell_{n}}
\end{array}\right) \delta_{\mathcal{I}, M}(z)=\Delta_{L(\gamma)}(z) .
$$

In addition, we have

$$
\widehat{\mathfrak{q}}_{\overrightarrow{\mathcal{I}}, M}=\widehat{\mathfrak{Q}}_{\vec{L}(\gamma)} .
$$

Conclusion: Can use prior results to study $\widehat{\mathfrak{q}}_{\overrightarrow{\mathcal{I}}, M}$.

Outlook

- Linear results can be lifted to local nonlinear results.
- Jumps allow 'unstable' equilibria to be stabilized.
- Mixed type equations can have non-unique continuations of initial conditions.
- Mixed type equations in more than one dimension still elusive.

