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Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).
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• Fiber has myeline coating with periodic gaps called nodes of Ranvier .
• Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
• Slow propagation in gaps, but signal chemically reinforced.
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Signal Propagation: The Model

One is interested in the potential Uj at the node sites.

Axon

U0U-1 U1

Signals appear to ”hop” from one node to the next [Lillie, 1925].

Ionic current has sodium and potassium component.

Electro-chemical analysis leads to the two component LDE [Keener and Sneyd,

1998]

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)],

posed on a 1-dimension lattice, i.e. j ∈ Z.

Potassium recovery encoded in second equation.
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Signal Propagation: Nonlinearity

Recall the dynamics:

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)].
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w = g(u;a)

u =    w  γ 
Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).

Parameter γ > 0 small so

w 6= g(γw; a)

for w 6= 0.
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Signal Propagation: FitzHugh-Nagumo PDE

The discrete FitzHugh-Nagumo system arises by discretizing the FH-N PDE

Ut = Uxx + g(U ; a)−W,
Wt = ε[U − γW ].

• Many authors have studied this equation.
• Starting point: travelling wave Ansatz

(U,W )(x, t) = (u,w)(x+ ct).

This Ansatz yields the ODE

u′ = v,
v′ = cv − g(u; a) + w,
w′ = ε

c(u− γw).

This slow-fast system has served as a prototype for development of geometric
singular perturbation theory.
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Signal Propagation: FitzHugh-Nagumo PDE

Choosing ε = 0, we find

u′ = v,
v′ = cv − g(u; a) + w,
w′ = 0,

admitting an equilibria-manifold M = (u, 0, g(u; a)).

Write p0 = (0, 0, 0) and p1 = (1, 0, 0) and choose p0 ∈ML ⊂M and
p1 ∈MR ⊂M; avoiding knees of the cubic.
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Signal Propagation: FitzHugh-Nagumo PDE

Heteroclinics p0 → p1 must solve

u′ = v,
v′ = cv − g(u; a),

and satisfy u(−∞) = 0 and u(+∞) = 1.

These correspond to travelling pulses of the Nagumo PDE

Ut = Uxx + g(U ; a).

Existence of such pulses is well-known;
explicit calculations are possible for the
cubic g.
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Signal Propagation: FitzHugh-Nagumo PDE

Fix 0 < a < 1
2; there exists wave speed c∗ and front qf :

We now need to go back from MR to ML.

Cubic is mirror symmetric around inflection point −→ there exists w∗ and profile
qb connecting MR to ML for same wave speed c = c∗.
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Signal Propagation: FitzHugh-Nagumo PDE

Connecting the pieces we find a fast [c∗ > 0] singular homoclinic orbit Γfs
0 .

Classic Theorem: For sufficiently small ε > 0, there is a [locally unique] travelling
pulse solution to FH-N PDE that winds around Γfs

0 once, with wavespeed c < c∗.

9



Signal Propagation: FitzHugh-Nagumo PDE

• First proofs given by Carpenter and Hastings [1976].
• ‘Modern’ proof developed by Jones and coworkers based on transverse

intersection of manifolds Wu(0) and Ws(ML).

Main difficulty: track Wu(0) as it spends time O(ε−1) near MR.
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FitzHugh-Nagumo PDE: Exchange Lemma

Exchange Lemma is key tool to track Wu(0) near MR.

Fenichel coordinates:

x′ = −As(x, y, z)x
y′ = Au(x, y, z)y
z′ = ε[1 +B(x, y, z)xy],

with As, Au > η > 0; As, Au, B smooth
and bounded.

• Fix small ∆ > 0.
• Pick z0 ∈ R, T large and ε > 0 small
• Find solution with

x(0) = ∆, z(0) = z0, y(T ) = ∆

• Exchange Lemma: unique solution exists, bounds:

|y(0)|+ |x(T )|+ |z(T )− z0 − εT | = O(e−ηT )
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FitzHugh-Nagumo PDE: Exchange Lemma

The problem can now be decomposed into two parts:

• Intersection Wu(0) ∩ {x = ∆} can be studied separately from intersection
Ws(ML) ∩ {y = ∆}.
• Melnikov identities yield signs of DcWu(0) etc.
• Exchange Lemma used to link pieces together.
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FitzHugh-Nagumo PDE: Slow Pulses

Recall the travelling wave ODE

u′ = v,
v′ = cv − g(u; a) + w,
w′ = ε

c(u− γw).

In the singular limit c→ 0 and ε
c → 0, one finds an additional slow-singular orbit

Γsl
0 .
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FitzHugh-Nagumo PDE: Status

Conjecture [Yanagida]: fast and slow branches are connected.

• Sandstede, Krupa, Szmolyan (1997): for a ≈ 1
2, conjecture is true.

Inclination-flip somewhere along connecting curve.
• Jones, Yanagida (1984): fast waves are asymptotically stable for full PDE.
• Flores (1991): slow waves are unstable.
• Sandstede: stability change at maximum of curve.
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Discrete FitzHugh-Nagumo LDE

We return to the discrete FitzHugh-Nagumo system

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)].

Travelling wave Ansatz (Uj,Wj)(t) = (u,w)(j + ct) leads to

cu′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g(u(ξ); a)− w(ξ),
cw′(ξ) = ε[u(ξ)− γw(ξ)].

This is a singularly perturbed functional differential equation of mixed type
(MFDE).
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Discrete FitzHugh-Nagumo - Previous work

Two main directions for previous work on discrete FitzHugh-Nagumo LDE

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)].

• Rigorous results for specially prepared nonlinearities

– Chen + Hastings: nonlinearity vanishes identically on critical regions of U
and W .

– Tonnelier; Elmer and Van Vleck: explicit calculations with Fourier series for
McKean sawtooth caricature:

a 10

• Carpio and coworkers: formal results using asymptotic techniques.
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Discrete FitzHugh-Nagumo LDE

For ε = 0 and w = 0, we obtain the discrete Nagumo LDE

U̇j(t) = α[Uj+1(t) + Uj−1(t)− 2Uj(t)] + g(Uj(t); a),

with travelling pulse MFDE

cu′(ξ) = α[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g(u(ξ); a).

• This problem becomes singular in the
c → 0 limit, in contrast with the
Nagumo PDE case.

• Keener (1987) + Mallet-Paret (1999):
pick α > 0 small; c = 0 for a in
nonempty interval [a∗, 1

2].

17



Discrete FitzHugh-Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo equation [α = 0.1] connecting 0→ 1.
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• Note that c = 0 for all a ∈ [0.46, 0.54]. Propagation failure!
• Observe the discontinuities in the wave profiles in this region.
• Gaps cause ”energy barrier” that signal must overcome.
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Discrete FitzHugh-Nagumo LDE - Fast Pulses

• Focus on fast-solutions to discrete FHN bifurcating from Γfs
0 ,

cu′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g(u(ξ); a)− w(ξ),
cw′(ξ) = ε[u(ξ)− γw(ξ)].

• Unclear how to treat slow-solutions in propagation failure regime.
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Mixed Type Functional Differential Equations (MFDEs)

Let us first study the Nagumo travelling wave MFDE

u′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g
(
u(ξ); a

)
.

• Theory for MFDEs started developing ∼ 10 years ago.

• MFDEs generalize delay equations, e.g.

u′(ξ) = u(ξ − 1) + g
(
u(ξ)

)
,

which have been used for more than half a century.

• Time lags naturally in many modelling applications.

• Delay equations: functional-analytic setup developed in past three decades.
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MFDEs

Recall our prototype MFDE

u′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g
(
u(ξ) ; a

)
.

Such equations differ from ODEs and delay equations in a fundamental way.

-1 1

Problem I: Statespace is infinite dimensional: need to specify an initial function on
[−1, 1].
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Problem II: Ill-posedness

Consider the homogeneous MFDE

v′(ξ) = v(ξ − 1) + v(ξ + 1).

+1

-1
+1-1

initial state

-3 +3

(Example due to Rustichini )
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Problem II: Ill-posedness

Consider the homogeneous MFDE

v′(ξ) = v(ξ − 1) + v(ξ + 1).

+1

-1
+1-1

initial state

-3 +3

v(  ) = 0, v(  -1 ) = 1  => v(  +1) = -1'ξ ξ ξ

• Continuity lost =⇒ ill-defined as an initial value problem.
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Ill-posedness: What is going on?

Re z
Im

 z

Substitution of ezξ into

v′(ξ) = v(ξ − 1) + v(ξ + 1),

yields the characteristic
equation

∆(z) := z − e−z − ez = 0.

• The problem is infinite dimensional (as for delay equations).
• There is no exponential bound possible for solutions, at both ±∞ (unlike delay

equations)!
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Exponential Dichotomies

Exponential dichotomies are the method of choice for ill-posed problems. Consider
the linearization around some function q,

v′(ξ) = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
q(ξ)

)
v(ξ).

ξ

Q(   )ξ

S(   )ξ

C([-1, 1])

0

H. + Verduyn Lunel (2008): For ξ ≥ 0, we have C([−1, 1],R) = Q(ξ)⊕ S(ξ).

Exponential decay for forward-solutions and backward-solutions.
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Exponential Dichotomies - Inhomogeneous system

Consider the inhomogeneous system

v′(ξ) = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
q(ξ)

)
v(ξ) + f(ξ).

Recall the splitting C([−1, 1],R) = Q(ξ)⊕ S(ξ).

Usually, exponential dichotomies can be used to construct a variation-of-constants
formula

v ∼
∫ ξ

0

T (ξ, ξ′)ΠQ(ξ′)f(ξ′)dξ′ +
∫ ξ

∞
T (ξ, ξ′)ΠS(ξ′)f(ξ′)dξ′,

where T should be seen as an evolution operator.

However, since f : R→ C
n does not map into the state space C([−1, 1])

complications arise.

• Delay equations: sun-star calculus based upon semigroup properties
• Mixed type equations: unclear how to mimic this construction for C([−1, 1]).

Possibilities on space L2([−1, 1]), but technical complications.
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Inhomogeneous systems

Mallet-Paret (1998) considered operator Λ : BC1(R,R)→ BC(R,R),

[Λv](ξ) = v′(ξ)− [v(ξ + 1) + v(ξ − 1)− 2v(ξ)]− g′
(
q(ξ)

)
v(ξ).

• Λ is a Fredholm operator:

– Kernel is finite dimensional
– Range is closed and has finite dimensional codimension

• Range R(Λ) can be explicitly characterized:

R(Λ) = {f ∈ BC(R,R) |
∫ ∞
−∞

d(ξ)∗f(ξ)dξ = 0 for all d ∈ K(Λ∗)},

with adjoint given by

[Λ∗v](ξ) = v′(ξ) + [v(ξ + 1) + v(ξ − 1)− 2v(ξ)] + g′
(
q(ξ)

)
v(ξ).
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Inhomogeneous systems - II

In general R(Λ) 6= BC(R,R), with again

[Λv](ξ) = v′(ξ)− [v(ξ + 1) + v(ξ − 1)− 2v(ξ)]− g′
(
q(ξ)

)
v(ξ).

Important property Any solution to Λ∗v = 0 with evξv = 0 for some ξ, has
v = 0 everywhere.

0

f

modified f

For any f , solve Λv = f on [0,∞), by modifying f on R−.
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The program

Recall the singularly perturbed MFDE

cu′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g(u(ξ); a)− w(ξ),
cw′(ξ) = ε[u(ξ)− γw(ξ)].

Main goal: lift geometric singular perturbation theory to MFDEs.

• Persistence of slow manifold MR for ε > 0 relies on Fenichel’s first thm.
• Almost every proof relies on geometric Hadamard-graph transform.
• Exchange Lemma: Fenichel coordinates unavailable in infinite dimensions.
• Unstable / stable manifolds will be infinite dimensional. How to track

intersections?

Main ingredients:

• Isolate suitable finite dimensional subspaces of C([−1, 1],R).
• Provide firm analytical underpinning for geometrical constructions.
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The program

Recall the singularly perturbed MFDE

cu′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g(u(ξ); a)− w(ξ),
cw′(ξ) = ε[u(ξ)− γw(ξ)].

• Step 1: Persistence of ML and MR for ε > 0.

• Step 2: How do qf and qb break as ε ≈ 0 and c ≈ c∗?

• Step 3: Connect broken front and back solutions as they pass near MR(c, ε).

• Step 4: Set up and solve two-dimensional nonlinear bifurcation equations to
repair front and backs and find c(ε).
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The program: Step 1 - Persistence of Slow Manifolds

Introduce function s̃R such that g(s̃R(w)) = w.

We have MR = {(s̃R(w), w)} for w ∈ [wmin, wmax].

Goal: find functions sR(w, c, ε) so that the manifold
MR(c, ε) = {(sR(w, c, ε), w)} is invariant.
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The program: Step 1 - Persistence of Slow Manifolds

Idea based upon Sakomoto (1990): find solution (u,w) with w(0) = w0 and

u(ξ) = s̃R(w(ξ)) + v(ξ),

with small v and write sR(w0, c, ε) = u(0). Need to solve

cv′(ξ) = L
(
s̃R
(
w(ξ)

))
evξv +Rnl(v, w, c, ε)(ξ),

cw′(ξ) = ε[s̃R
(
w(ξ)

)
+ v(ξ)− γw(ξ)]

with nonlinear Rnl and linear operator L(u) : C([−1, 1],R)→ R given by

L(u)evξv = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′(u)v(ξ).

Note that w′ = O(ε), so linear part varies slowly.

• Equation for w with w(0) = w0 can be solved −→W (v, c, ε, w0).
• Suppose that operator K(w, c) solves linear v-problem −→ fixed point problem

v = K(W (v, c, ε, w0), c)Rnl(v,W (v, c, ε, w0), c, ε)
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The program: Step 1 - Persistence of Slow Manifolds

Key ingredient is the construction of solution operator K(w, c) for linear systems

cv′(ξ) = L
(
s̃R
(
w(ξ)

))
evξv + f(ξ).

Use the fact that for each fixed w0 ∈ [wmin, wmax], the system

cv′(ξ) = L
(
s̃R
(
w0

))
evξv + f(ξ),

can be solved; v = Kfx(w0, c)f [Mallet-Paret 1998]. Can now define approximate
solution operator

[Kapx(w, c)f ](ξ) =
∫ ξ+1

2

ξ−1
2

[Kfx(w(ζ), c)f ](ξ)dζ.

If w′ is small, the error is small and can be corrected; Kapx → K.
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The program: Step 2 - Breaking the front

Varying ε and c breaks orbit qf into two parts (u−, w) and (u+, w).

Hyperplane H transverse to orbit qf at ξ = 0, i.e.,

C([−1, 1],R) = ev0qf +H ⊕ span{ev0q
′
f}.

• Perturbation u+ from qf is large as ξ →∞.
• Hyperplane H is infinite dimensional
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The program: Step 2 - Breaking the front

To control size of perturbation, split up real line into three separate parts.

• The functions v−, v� and w|(−∞,ξ∗] are small.
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The program: Step 2 - Breaking the front

We need to study the remaining gap in H. Call this gap ξ∞f (c, ε).

Main Goal: Reduce problem to finite dimensions.

To do this, we will need to split H = ev0 qf + Y ⊕ Γf , with Γf finite dimensional.

In addition, need to make sure that the ”gaps” ξ∞f (c, ε) are all in Γ.
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The program: Step 2 - Breaking the front

Construction based upon exponential dichotomies on R for

v′(ξ) = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
qf(ξ)

)
v(ξ).

Mallet-Paret + Verduyn Lunel (2001): C([−1, 1],R) = P̂← ⊕ Q̂→ ⊕B ⊕ Γ.

We have ev0 q
′ ∈ B. Can use Y = P̂← ⊕ Q̂→. The space Γ can be explicitly

characterized using special integral inner product (Hale inn. pr.).
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The program: Step 2 - Breaking the front

Can use remaining freedom to ensure that gap is in Γ, since

C([−1, 1],R) = ev0qf + P̂← ⊕ Q̂→ ⊕ {ev0q
′
f} ⊕ Γ

At c = 0 and ε = 0, we have Melnikov identities such as

Dc〈ev0d, ξ
∞
f 〉Hale = −

∫ ξ∗

−∞
d(ξ′)q′f(ξ)dξ′ +O(e−η∗ξ∗),

for d that solves adjoint −cd′(ξ) = α[d(ξ + 1) + d(ξ − 1)− 2d(ξ)] + g′(qf(ξ))v(ξ).
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The program: Step 2 - Breaking the front

Now need to study part near MR.

• The functions v+, θ+ are small.

• The parameter ϑ+ selects the fibre of MR to which (u+, w) converges as
ξ →∞.

• The function Θfs
R(ϑ+, c, ε) is unique solution of ODE

Θ′(ξ) = ε[sR(Θ(ξ), c, ε)− γΘ(ξ)], Θ(0) = ϑ+,

which describes flow along MR(c, ε) in terms of fast time scale.
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The program: Step 2 - Breaking the front

Must understand linearization near slow manifold MR(c, ε).

First fix w0 ∈ [wmin, wmax] and consider constant coefficient linearization

v′(ξ) = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
s̃R(w0)

)
v(ξ)

Mallet-Paret + Verduyn Lunel (2001): C([−1, 1],R) = P fb
R,←(w0)⊕Qfb

R,→(w0).
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The program: Step 2 - Breaking the front

Now consider w ∈ C1(R, [wmin, wmax]) that has very small ‖w′‖∞ and w(0) = w0.

Consider linearization

v′(ξ) = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
s̃R
(
w(ξ)

))
v(ξ). (1)

Main idea:

• For any φ ∈ Qfb
R,→(w0), there exists v ∈ C([−1,∞),R) that solves (1) with

ΠQfb
R,→(w0)ev0v = φ.

• Any bounded solution to (1) can be written in this form.
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The program: Step 2 - Breaking the front

Gap at MR can be completely closed, since

S←(ξ∗) ≈ P fbR,←(0)

and

C([−1, 1],R) = P fbR,←(0)⊕QfbR,→(0).
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The program: Step 2 - Breaking the front

In summary, we have constructed quasi-front solutions to the travelling wave
equation for ε ≈ 0 and c ≈ c∗.
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The program: Step 2 - Breaking the back

Similarly, can construct quasi-back solutions to the travelling wave equation for
ε ≈ 0, c ≈ c∗ and extra degree of freedom w0 ≈ w∗.

This extra d.o.f. used to specify w(0) = w0 (lift quasi-back up and down).
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The program: Step 3 - Exchange Lemma

The quasi-fronts and quasi-backs need to be tied together near MR(c, ε).

Primary parameter: time T that solution spends near MR(c, ε).

Note that ε = 0 is not a useful parameter, since quasi-fronts and quasi-backs do
not connect when ε = 0.

Write Θsl
R(ϑ, c, ε) for unique solution of ODE

Θ′(ζ) = [sR(Θ(ζ), c, ε)− γΘ(ζ)], Θ(0) = ϑ,

which describes flow along MR(c, ε) in terms of slow time scale.

Slow time T sl
∗ uniquely defined by

Θsl
R(0, c∗, 0)(T sl

∗ ) = w∗

We will need εT ≈ T sl
∗ ; introduce new variable T sl = εT .

Independent parameters are now (c, T sl, T ) taken near (c∗, T sl
∗ ,∞).

45



The program: Step 3 - Exchange Lemma

Recall the fibre ϑ+
f (c, ε) that was selected by the quasifront.

Recall also the fibre ϑ−b (w0, c, ε) selected by the quasiback.

Want to make sure fibres match.

• Define w∞0 (c, T sl, T ) by the following identity:

ϑ−b (w∞0 , c, T
sl/T ) = Θsl

R(ϑ+
f (c, T sl/T ), c, T sl/T )(T sl)

for (c, T sl, T ) ≈ (c∗, T sl
∗ ,∞).

Consequence: at ”half-way” point, quasi-front and quasi-back miss each other by
O(e−

1
2η∗T )!
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The program: Step 3 - Exchange Lemma

Match the quasi-front and quasi-back at halfway-point along MR. Split into
seven distinct intervals.
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The program: Step 3 - Exchange Lemma

Quasi-front and quasi-back can be matched up to two one-dimensional jumps.
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The program: Step 4 - Bifurcation equations

The independent parameters are (c, T sl, T ) taken near (c∗, T sl
∗ ,∞).

The jumps in Γf and Γb can be split into two parts:

• Construction of quasi-fronts and quasi-backs
• Modification due to Exchange Lemma

The Exchange Lemma contribution + derivatives are of order O(e−η∗T ).

System to solve is hence, to first order,

Mf
c (c− c∗) = −Mf

ε T
sl/T

M b
c (c− c∗) = −M b

w(T sl − T sl
∗ )−M b

εT
sl/T

The sign of the M -constants can be read off from Melnikov integrals.

Three unknowns; two equations −→ curve of solutions
(
ε, c(ε)

)
.
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Outlook

Recall FHN-LDE:

U̇j(t) = α[Uj+1(t) + Uj−1(t)− 2Uj(t)] + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)].

Number of issues open to explore:

• Stability of the fast pulses: same singular perturbation setup should yield
results.

• What happens to fast pulses as propagation failure region is encountered?

• For a ≈ 1
2, can one Taylor expand in the Exchange Lemma and connect slow

and fast pulses [as in Krupa, Sandstede, Szmolyan (1997) ]?

• Multi-pulses, homoclinic blow-up etc in other singularly perturbed lattice
problems.
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