Providence - November 6th 2009

Travelling Pulses for the
 Discrete FitzHugh-Nagumo System

Hermen Jan Hupkes
Brown University
(Joint work with B. Sandstede)

Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).

Signal propagation

- Fiber has myeline coating with periodic gaps called nodes of Ranvier .
- Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
- Slow propagation in gaps, but signal chemically reinforced.

Signal Propagation: The Model

One is interested in the potential U_{j} at the node sites.

Signals appear to "hop" from one node to the next [Lillie, 1925].
lonic current has sodium and potassium component.
Electro-chemical analysis leads to the two component LDE [Keener and Sneyd, 1998]

$$
\begin{aligned}
\dot{U}_{j}(t) & =U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)+g\left(U_{j}(t) ; a\right)-W_{j}(t) \\
\dot{W}_{j}(t) & =\epsilon\left[U_{j}(t)-\gamma W_{j}(t)\right]
\end{aligned}
$$

posed on a 1-dimension lattice, i.e. $j \in \mathbb{Z}$.
Potassium recovery encoded in second equation.

Signal Propagation: Nonlinearity

Recall the dynamics:

$$
\begin{aligned}
\dot{U}_{j}(t) & =U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)+g\left(U_{j}(t) ; a\right)-W_{j}(t) \\
\dot{W}_{j}(t) & =\epsilon\left[U_{j}(t)-\gamma W_{j}(t)\right]
\end{aligned}
$$

Signal Propagation: FitzHugh-Nagumo PDE

The discrete FitzHugh-Nagumo system arises by discretizing the FH-N PDE

$$
\begin{aligned}
U_{t} & =U_{x x}+g(U ; a)-W \\
W_{t} & =\epsilon[U-\gamma W]
\end{aligned}
$$

- Many authors have studied this equation.
- Starting point: travelling wave Ansatz

$$
(U, W)(x, t)=(u, w)(x+c t)
$$

This Ansatz yields the ODE

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =c v-g(u ; a)+w \\
w^{\prime} & =\frac{\epsilon}{c}(u-\gamma w)
\end{aligned}
$$

This slow-fast system has served as a prototype for development of geometric singular perturbation theory.

Signal Propagation: FitzHugh-Nagumo PDE

Choosing $\epsilon=0$, we find

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =c v-g(u ; a)+w \\
w^{\prime} & =0
\end{aligned}
$$

admitting an equilibria-manifold $\mathcal{M}=(u, 0, g(u ; a))$.
Write $p_{0}=(0,0,0)$ and $p_{1}=(1,0,0)$ and choose $p_{0} \in \mathcal{M}_{L} \subset \mathcal{M}$ and $p_{1} \in \mathcal{M}_{R} \subset \mathcal{M}$; avoiding knees of the cubic.

Signal Propagation: FitzHugh-Nagumo PDE

Heteroclinics $p_{0} \rightarrow p_{1}$ must solve

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =c v-g(u ; a)
\end{aligned}
$$

and satisfy $u(-\infty)=0$ and $u(+\infty)=1$.
These correspond to travelling pulses of the Nagumo PDE

$$
U_{t}=U_{x x}+g(U ; a)
$$

Existence of such pulses is well-known; explicit calculations are possible for the cubic g.

Signal Propagation: FitzHugh-Nagumo PDE

Fix $0<a<\frac{1}{2}$; there exists wave speed c_{*} and front q_{f} :

We now need to go back from \mathcal{M}_{R} to \mathcal{M}_{L}.
Cubic is mirror symmetric around inflection point \longrightarrow there exists w_{*} and profile q_{b} connecting \mathcal{M}_{R} to \mathcal{M}_{L} for same wave speed $c=c_{*}$.

Signal Propagation: FitzHugh-Nagumo PDE

Connecting the pieces we find a fast $\left[c_{*}>0\right]$ singular homoclinic orbit Γ_{0}^{fs}.

Classic Theorem: For sufficiently small $\epsilon>0$, there is a [locally unique] travelling pulse solution to FH-N PDE that winds around Γ_{0}^{fs} once, with wavespeed $c<c_{*}$.

Signal Propagation: FitzHugh-Nagumo PDE

- First proofs given by Carpenter and Hastings [1976].
- 'Modern' proof developed by Jones and coworkers based on transverse intersection of manifolds $\mathcal{W}^{u}(0)$ and $\mathcal{W}^{s}\left(\mathcal{M}_{L}\right)$.

Main difficulty: track $\mathcal{W}^{u}(0)$ as it spends time $O\left(\epsilon^{-1}\right)$ near \mathcal{M}_{R}.

FitzHugh-Nagumo PDE: Exchange Lemma

Exchange Lemma is key tool to track $\mathcal{W}^{u}(0)$ near \mathcal{M}_{R}.

Fenichel coordinates:

$$
\begin{aligned}
x^{\prime} & =-A^{s}(x, y, z) x \\
y^{\prime} & =A^{u}(x, y, z) y \\
z^{\prime} & =\epsilon[1+B(x, y, z) x y]
\end{aligned}
$$

with $A^{s}, A^{u}>\eta>0 ; A^{s}, A^{u}, B$ smooth and bounded.

- Fix small $\Delta>0$.
- Pick $z_{0} \in \mathbb{R}, T$ large and $\epsilon>0$ small
- Find solution with

$$
x(0)=\Delta, \quad z(0)=z_{0}, \quad y(T)=\Delta
$$

- Exchange Lemma: unique solution exists, bounds:

$$
|y(0)|+|x(T)|+\left|z(T)-z_{0}-\epsilon T\right|=O\left(e^{-\eta T}\right)
$$

FitzHugh-Nagumo PDE: Exchange Lemma

The problem can now be decomposed into two parts:

- Intersection $\mathcal{W}^{u}(0) \cap\{x=\Delta\}$ can be studied separately from intersection $\mathcal{W}^{s}\left(\mathcal{M}_{L}\right) \cap\{y=\Delta\}$.
- Melnikov identities yield signs of $D_{c} \mathcal{W}^{u}(0)$ etc.
- Exchange Lemma used to link pieces together.

FitzHugh-Nagumo PDE: Slow Pulses

Recall the travelling wave ODE

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =c v-g(u ; a)+w \\
w^{\prime} & =\frac{\epsilon}{c}(u-\gamma w)
\end{aligned}
$$

In the singular limit $c \rightarrow 0$ and $\frac{\epsilon}{c} \rightarrow 0$, one finds an additional slow-singular orbit Γ_{0}^{sl}.

FitzHugh-Nagumo PDE: Status

Conjecture [Yanagida]: fast and slow branches are connected.

- Sandstede, Krupa, Szmolyan (1997): for $a \approx \frac{1}{2}$, conjecture is true. Inclination-flip somewhere along connecting curve.
- Jones, Yanagida (1984): fast waves are asymptotically stable for full PDE.
- Flores (1991): slow waves are unstable.
- Sandstede: stability change at maximum of curve.

Discrete FitzHugh-Nagumo LDE

We return to the discrete FitzHugh-Nagumo system

$$
\begin{aligned}
\dot{U}_{j}(t) & =U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)+g\left(U_{j}(t) ; a\right)-W_{j}(t) \\
\dot{W}_{j}(t) & =\epsilon\left[U_{j}(t)-\gamma W_{j}(t)\right]
\end{aligned}
$$

Travelling wave Ansatz $\left(U_{j}, W_{j}\right)(t)=(u, w)(j+c t)$ leads to

$$
\begin{aligned}
c u^{\prime}(\xi) & =u(\xi+1)+u(\xi-1)-2 u(\xi)+g(u(\xi) ; a)-w(\xi) \\
c w^{\prime}(\xi) & =\epsilon[u(\xi)-\gamma w(\xi)]
\end{aligned}
$$

This is a singularly perturbed functional differential equation of mixed type (MFDE).

Discrete FitzHugh-Nagumo - Previous work

Two main directions for previous work on discrete FitzHugh-Nagumo LDE

$$
\begin{aligned}
\dot{U}_{j}(t) & =U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)+g\left(U_{j}(t) ; a\right)-W_{j}(t) \\
\dot{W}_{j}(t) & =\epsilon\left[U_{j}(t)-\gamma W_{j}(t)\right]
\end{aligned}
$$

- Rigorous results for specially prepared nonlinearities
- Chen + Hastings: nonlinearity vanishes identically on critical regions of U and W.
- Tonnelier; Elmer and Van Vleck: explicit calculations with Fourier series for McKean sawtooth caricature:

- Carpio and coworkers: formal results using asymptotic techniques.

Discrete FitzHugh-Nagumo LDE

For $\epsilon=0$ and $w=0$, we obtain the discrete Nagumo LDE

$$
\dot{U}_{j}(t)=\alpha\left[U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)\right]+g\left(U_{j}(t) ; a\right),
$$

with travelling pulse MFDE

$$
c u^{\prime}(\xi)=\alpha[u(\xi+1)+u(\xi-1)-2 u(\xi)]+g(u(\xi) ; a) .
$$

- This problem becomes singular in the $c \rightarrow 0$ limit, in contrast with the Nagumo PDE case.
- Keener (1987) + Mallet-Paret (1999): pick $\alpha>0$ small; $c=0$ for a in nonempty interval $\left[a_{*}, \frac{1}{2}\right]$.

Discrete FitzHugh-Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo equation [$\alpha=0.1$] connecting $0 \rightarrow 1$.

- Note that $c=0$ for all $a \in[0.46,0.54]$. Propagation failure!
- Observe the discontinuities in the wave profiles in this region.
- Gaps cause "energy barrier" that signal must overcome.

Discrete FitzHugh-Nagumo LDE - Fast Pulses

- Focus on fast-solutions to discrete FHN bifurcating from Γ_{0}^{fs},

$$
\begin{aligned}
c u^{\prime}(\xi) & =u(\xi+1)+u(\xi-1)-2 u(\xi)+g(u(\xi) ; a)-w(\xi) \\
c w^{\prime}(\xi) & =\epsilon[u(\xi)-\gamma w(\xi)] .
\end{aligned}
$$

- Unclear how to treat slow-solutions in propagation failure regime.

Mixed Type Functional Differential Equations (MFDEs)

Let us first study the Nagumo travelling wave MFDE

$$
u^{\prime}(\xi)=u(\xi+1)+u(\xi-1)-2 u(\xi)+g(u(\xi) ; a) .
$$

- Theory for MFDEs started developing ~ 10 years ago.
- MFDEs generalize delay equations, e.g.

$$
u^{\prime}(\xi)=u(\xi-1)+g(u(\xi))
$$

which have been used for more than half a century.

- Time lags naturally in many modelling applications.
- Delay equations: functional-analytic setup developed in past three decades.

MFDEs

Recall our prototype MFDE

$$
u^{\prime}(\xi)=u(\xi+\mathbf{1})+u(\xi-\mathbf{1})-2 u(\xi)+g(u(\xi) ; a)
$$

Such equations differ from ODEs and delay equations in a fundamental way.

Problem I: Statespace is infinite dimensional: need to specify an initial function on $[-1,1]$.

Problem II: III-posedness

Consider the homogeneous MFDE

$$
v^{\prime}(\xi)=v(\xi-1)+v(\xi+1) .
$$

(Example due to Rustichini)

Problem II: III-posedness

Consider the homogeneous MFDE

$$
v^{\prime}(\xi)=v(\xi-1)+v(\xi+1) .
$$

$$
v^{\prime}(\xi)=0, v(\xi-1)=1 \Rightarrow v(\xi+1)=-1
$$

- Continuity lost \Longrightarrow ill-defined as an initial value problem.

III-posedness: What is going on?

- The problem is infinite dimensional (as for delay equations).
- There is no exponential bound possible for solutions, at both $\pm \infty$ (unlike delay equations)!

Exponential Dichotomies

Exponential dichotomies are the method of choice for ill-posed problems. Consider the linearization around some function q,

$$
v^{\prime}(\xi)=v(\xi+1)+v(\xi-1)-2 v(\xi)+g^{\prime}(q(\xi)) v(\xi)
$$

H. + Verduyn Lunel (2008): For $\xi \geq 0$, we have $C([-1,1], \mathbb{R})=Q(\xi) \oplus S(\xi)$.

Exponential decay for forward-solutions and backward-solutions.

Exponential Dichotomies - Inhomogeneous system

Consider the inhomogeneous system

$$
v^{\prime}(\xi)=v(\xi+1)+v(\xi-1)-2 v(\xi)+g^{\prime}(q(\xi)) v(\xi)+f(\xi)
$$

Recall the splitting $C([-1,1], \mathbb{R})=Q(\xi) \oplus S(\xi)$.
Usually, exponential dichotomies can be used to construct a variation-of-constants formula

$$
v \sim \int_{0}^{\xi} T\left(\xi, \xi^{\prime}\right) \Pi_{Q\left(\xi^{\prime}\right)} f\left(\xi^{\prime}\right) d \xi^{\prime}+\int_{\infty}^{\xi} T\left(\xi, \xi^{\prime}\right) \Pi_{S\left(\xi^{\prime}\right)} f\left(\xi^{\prime}\right) d \xi^{\prime}
$$

where T should be seen as an evolution operator.
However, since $f: \mathbb{R} \rightarrow \mathbb{C}^{n}$ does not map into the state space $C([-1,1])$ complications arise.

- Delay equations: sun-star calculus based upon semigroup properties
- Mixed type equations: unclear how to mimic this construction for $C([-1,1])$. Possibilities on space $L^{2}([-1,1])$, but technical complications.

Inhomogeneous systems

Mallet-Paret (1998) considered operator $\Lambda: B C^{1}(\mathbb{R}, \mathbb{R}) \rightarrow B C(\mathbb{R}, \mathbb{R})$,

$$
[\Lambda v](\xi)=v^{\prime}(\xi)-[v(\xi+1)+v(\xi-1)-2 v(\xi)]-g^{\prime}(q(\xi)) v(\xi)
$$

- Λ is a Fredholm operator:
- Kernel is finite dimensional
- Range is closed and has finite dimensional codimension
- Range $\mathcal{R}(\Lambda)$ can be explicitly characterized:

$$
\mathcal{R}(\Lambda)=\left\{f \in B C(\mathbb{R}, \mathbb{R}) \mid \int_{-\infty}^{\infty} d(\xi)^{*} f(\xi) d \xi=0 \text { for all } d \in \mathcal{K}\left(\Lambda^{*}\right)\right\}
$$

with adjoint given by

$$
\left[\Lambda^{*} v\right](\xi)=v^{\prime}(\xi)+[v(\xi+1)+v(\xi-1)-2 v(\xi)]+g^{\prime}(q(\xi)) v(\xi)
$$

Inhomogeneous systems - II

In general $\mathcal{R}(\Lambda) \neq B C(\mathbb{R}, \mathbb{R})$, with again

$$
[\Lambda v](\xi)=v^{\prime}(\xi)-[v(\xi+1)+v(\xi-1)-2 v(\xi)]-g^{\prime}(q(\xi)) v(\xi)
$$

Important property Any solution to $\Lambda^{*} v=0$ with $\operatorname{ev}_{\xi} v=0$ for some ξ, has $v=0$ everywhere.

For any f, solve $\Lambda v=f$ on $[0, \infty)$, by modifying f on \mathbb{R}_{-}.

The program

Recall the singularly perturbed MFDE

$$
\begin{aligned}
c u^{\prime}(\xi) & =u(\xi+1)+u(\xi-1)-2 u(\xi)+g(u(\xi) ; a)-w(\xi), \\
c w^{\prime}(\xi) & =\epsilon[u(\xi)-\gamma w(\xi)] .
\end{aligned}
$$

Main goal: lift geometric singular perturbation theory to MFDEs.

- Persistence of slow manifold \mathcal{M}_{R} for $\epsilon>0$ relies on Fenichel's first thm.
- Almost every proof relies on geometric Hadamard-graph transform.
- Exchange Lemma: Fenichel coordinates unavailable in infinite dimensions.
- Unstable / stable manifolds will be infinite dimensional. How to track intersections?

Main ingredients:

- Isolate suitable finite dimensional subspaces of $C([-1,1], \mathbb{R})$.
- Provide firm analytical underpinning for geometrical constructions.

The program

Recall the singularly perturbed MFDE

$$
\begin{aligned}
c u^{\prime}(\xi) & =u(\xi+1)+u(\xi-1)-2 u(\xi)+g(u(\xi) ; a)-w(\xi) \\
c w^{\prime}(\xi) & =\epsilon[u(\xi)-\gamma w(\xi)]
\end{aligned}
$$

- Step 1: Persistence of \mathcal{M}_{L} and \mathcal{M}_{R} for $\epsilon>0$.
- Step 2: How do q_{f} and q_{b} break as $\epsilon \approx 0$ and $c \approx c_{*}$?
- Step 3: Connect broken front and back solutions as they pass near $\mathcal{M}_{R}(c, \epsilon)$.
- Step 4: Set up and solve two-dimensional nonlinear bifurcation equations to repair front and backs and find $c(\epsilon)$.

The program: Step 1 - Persistence of Slow Manifolds

Introduce function \widetilde{s}_{R} such that $g\left(\widetilde{s}_{R}(w)\right)=w$.

We have $\mathcal{M}_{R}=\left\{\left(\widetilde{s}_{R}(w), w\right)\right\}$ for $w \in\left[w_{\text {min }}, w_{\text {max }}\right]$.
Goal: find functions $s_{R}(w, c, \epsilon)$ so that the manifold $\mathcal{M}_{R}(c, \epsilon)=\left\{\left(s_{R}(w, c, \epsilon), w\right)\right\}$ is invariant.

The program: Step 1 - Persistence of Slow Manifolds

Idea based upon Sakomoto (1990): find solution (u, w) with $w(0)=w_{0}$ and

$$
u(\xi)=\widetilde{s}_{R}(w(\xi))+v(\xi),
$$

with small v and write $s_{R}\left(w_{0}, c, \epsilon\right)=u(0)$. Need to solve

$$
\begin{aligned}
c v^{\prime}(\xi) & =L\left(\widetilde{s}_{R}(w(\xi))\right) \mathrm{ev}_{\xi} v+\mathcal{R}_{\mathrm{n} 1}(v, w, c, \epsilon)(\xi), \\
c w^{\prime}(\xi) & =\epsilon\left[\tilde{s}_{R}(w(\xi))+v(\xi)-\gamma w(\xi)\right]
\end{aligned}
$$

with nonlinear $\mathcal{R}_{\mathrm{n} 1}$ and linear operator $L(u): C([-1,1], \mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
L(u) \operatorname{ev}_{\xi} v=v(\xi+1)+v(\xi-1)-2 v(\xi)+g^{\prime}(\mathbf{u}) v(\xi) .
$$

Note that $w^{\prime}=O(\epsilon)$, so linear part varies slowly.

- Equation for w with $w(0)=w_{0}$ can be solved $\longrightarrow W\left(v, c, \epsilon, w_{0}\right)$.
- Suppose that operator $\mathcal{K}(w, c)$ solves linear v-problem \longrightarrow fixed point problem

$$
v=\mathcal{K}\left(W\left(v, c, \epsilon, w_{0}\right), c\right) \mathcal{R}_{\mathrm{nl}}\left(v, W\left(v, c, \epsilon, w_{0}\right), c, \epsilon\right)
$$

The program: Step 1 - Persistence of Slow Manifolds

Key ingredient is the construction of solution operator $\mathcal{K}(w, c)$ for linear systems

$$
c v^{\prime}(\xi)=L\left(\widetilde{s}_{R}(w(\xi))\right) \operatorname{ev}_{\xi} v+f(\xi)
$$

Use the fact that for each fixed $w_{0} \in\left[w_{\min }, w_{\text {max }}\right]$, the system

$$
c v^{\prime}(\xi)=L\left(\widetilde{s}_{R}\left(w_{0}\right)\right) \operatorname{ev}_{\xi} v+f(\xi)
$$

can be solved; $v=\mathcal{K}_{\mathrm{fx}}\left(w_{0}, c\right) f$ [Mallet-Paret 1998]. Can now define approximate solution operator

$$
\left[\mathcal{K}_{\mathrm{apx}}(w, c) f\right](\xi)=\int_{\xi-\frac{1}{2}}^{\xi+\frac{1}{2}}\left[\mathcal{K}_{\mathrm{fx}}(w(\zeta), c) f\right](\xi) d \zeta
$$

If w^{\prime} is small, the error is small and can be corrected; $\mathcal{K}_{\mathrm{apx}} \rightarrow \mathcal{K}$.

The program: Step 2 - Breaking the front

Varying ϵ and c breaks orbit q_{f} into two parts $\left(u^{-}, w\right)$ and $\left(u^{+}, w\right)$.

Hyperplane H transverse to orbit q_{f} at $\xi=0$, i.e.,

$$
C([-1,1], \mathbb{R})=\operatorname{ev}_{0} q_{f}+H \oplus \operatorname{span}\left\{\operatorname{ev}_{0} q_{f}^{\prime}\right\} .
$$

- Perturbation u^{+}from q_{f} is large as $\xi \rightarrow \infty$.
- Hyperplane H is infinite dimensional

The program: Step 2 - Breaking the front

To control size of perturbation, split up real line into three separate parts.

- The functions v^{-}, v^{\diamond} and $w_{\left[\left(-\infty, \xi_{*}\right]\right.}$ are small.

The program: Step 2 - Breaking the front

We need to study the remaining gap in H. Call this gap $\xi_{f}^{\infty}(c, \epsilon)$.

Main Goal: Reduce problem to finite dimensions.
To do this, we will need to split $H=\operatorname{ev}_{0} q_{f}+Y \oplus \Gamma_{f}$, with Γ_{f} finite dimensional. In addition, need to make sure that the "gaps" $\xi_{f}^{\infty}(c, \epsilon)$ are all in Γ.

The program: Step 2 - Breaking the front

Construction based upon exponential dichotomies on \mathbb{R} for

$$
v^{\prime}(\xi)=v(\xi+1)+v(\xi-1)-2 v(\xi)+g^{\prime}\left(q_{f}(\xi)\right) v(\xi)
$$

Mallet-Paret + Verduyn Lunel (2001): $C([-1,1], \mathbb{R})=\widehat{P} \leftarrow \oplus \widehat{Q}_{\rightarrow} \oplus B \oplus \Gamma$.
We have $\mathrm{ev}_{0} q^{\prime} \in B$. Can use $Y=\widehat{P} \leftarrow \oplus \widehat{Q}_{\rightarrow}$. The space Γ can be explicitly characterized using special integral inner product (Hale inn. pr.).

The program: Step 2 - Breaking the front

Can use remaining freedom to ensure that gap is in Γ, since

$$
C([-1,1], \mathbb{R})=\operatorname{ev}_{0} q_{f}+\widehat{P}_{\leftarrow} \oplus \widehat{Q}_{\rightarrow} \oplus\left\{\operatorname{ev}_{0} q_{f}^{\prime}\right\} \oplus \Gamma
$$

At $c=0$ and $\epsilon=0$, we have Melnikov identities such as

$$
D_{c}\left\langle\mathrm{ev}_{0} d, \xi_{f}^{\infty}\right\rangle_{\mathrm{Hale}}=-\int_{-\infty}^{\xi_{*}} d\left(\xi^{\prime}\right) q_{f}^{\prime}(\xi) d \xi^{\prime}+O\left(e^{-\eta_{*} \xi_{*}}\right)
$$

for d that solves adjoint $-c d^{\prime}(\xi)=\alpha[d(\xi+1)+d(\xi-1)-2 d(\xi)]+g^{\prime}\left(q_{f}(\xi)\right) v(\xi)$.

The program: Step 2 - Breaking the front

Now need to study part near \mathcal{M}_{R}.

- The functions v^{+}, θ^{+}are small.
- The parameter ϑ^{+}selects the fibre of \mathcal{M}_{R} to which $\left(u^{+}, w\right)$ converges as $\xi \rightarrow \infty$.
- The function $\Theta_{R}^{\mathrm{fs}}\left(\vartheta^{+}, c, \epsilon\right)$ is unique solution of ODE

$$
\Theta^{\prime}(\xi)=\epsilon\left[s_{R}(\Theta(\xi), c, \epsilon)-\gamma \Theta(\xi)\right], \quad \Theta(0)=\vartheta^{+}
$$

which describes flow along $\mathcal{M}_{R}(c, \epsilon)$ in terms of fast time scale.

The program: Step 2 - Breaking the front

Must understand linearization near slow manifold $\mathcal{M}_{R}(c, \epsilon)$.
First fix $w_{0} \in\left[w_{\min }, w_{\text {max }}\right]$ and consider constant coefficient linearization

$$
v^{\prime}(\xi)=v(\xi+1)+v(\xi-1)-2 v(\xi)+g^{\prime}\left(\widetilde{s}_{R}\left(w_{0}\right)\right) v(\xi)
$$

Mallet-Paret + Verduyn Lunel (2001): $C([-1,1], \mathbb{R})=P_{R, \leftarrow}^{\mathrm{fb}}\left(w_{0}\right) \oplus Q_{R, \rightarrow}^{\mathrm{fb}}\left(w_{0}\right)$.

The program: Step 2 - Breaking the front

Now consider $w \in C^{1}\left(\mathbb{R},\left[w_{\min }, w_{\max }\right]\right)$ that has very small $\left\|w^{\prime}\right\|_{\infty}$ and $w(0)=w_{0}$.
Consider linearization

$$
\begin{equation*}
v^{\prime}(\xi)=v(\xi+1)+v(\xi-1)-2 v(\xi)+g^{\prime}\left(\widetilde{s}_{R}(w(\xi))\right) v(\xi) \tag{1}
\end{equation*}
$$

Main idea:

- For any $\phi \in Q_{R, \rightarrow}^{\mathrm{fb}}\left(w_{0}\right)$, there exists $v \in C([-1, \infty), \mathbb{R})$ that solves (1) with $\Pi_{Q_{R, \rightarrow}^{\mathrm{fb}}\left(w_{0}\right)} \mathrm{ev}_{0} v=\phi$.
- Any bounded solution to (1) can be written in this form.

The program: Step 2 - Breaking the front

Gap at \mathcal{M}_{R} can be completely closed, since

$$
S_{\leftarrow \leftarrow}\left(\xi_{*}\right) \approx P_{R, \leftarrow}^{f b}(0)
$$

and

$$
C([-1,1], \mathbb{R})=P_{R, \leftarrow}^{f b}(0) \oplus Q_{R, \rightarrow}^{f b}(0) .
$$

The program: Step 2 - Breaking the front

In summary, we have constructed quasi-front solutions to the travelling wave equation for $\epsilon \approx 0$ and $c \approx c_{*}$.

The program: Step 2 - Breaking the back

Similarly, can construct quasi-back solutions to the travelling wave equation for $\epsilon \approx 0, c \approx c_{*}$ and extra degree of freedom $w_{0} \approx w_{*}$.

This extra d.o.f. used to specify $w(0)=w_{0}$ (lift quasi-back up and down).

The program: Step 3 - Exchange Lemma

The quasi-fronts and quasi-backs need to be tied together near $\mathcal{M}_{R}(c, \epsilon)$.
Primary parameter: time T that solution spends near $\mathcal{M}_{R}(c, \epsilon)$.
Note that $\epsilon=0$ is not a useful parameter, since quasi-fronts and quasi-backs do not connect when $\epsilon=0$.

Write $\Theta_{R}^{\mathrm{sl}}(\vartheta, c, \epsilon)$ for unique solution of ODE

$$
\Theta^{\prime}(\zeta)=\left[s_{R}(\Theta(\zeta), c, \epsilon)-\gamma \Theta(\zeta)\right], \quad \Theta(0)=\vartheta
$$

which describes flow along $\mathcal{M}_{R}(c, \epsilon)$ in terms of slow time scale.
Slow time T_{*}^{sl} uniquely defined by

$$
\Theta_{R}^{\mathrm{sl}}\left(0, c_{*}, 0\right)\left(T_{*}^{\mathrm{sl}}\right)=w_{*}
$$

We will need $\epsilon T \approx T_{*}^{\mathrm{sl}}$; introduce new variable $T^{\mathrm{sl}}=\epsilon T$.
Independent parameters are now $\left(c, T^{\mathrm{sl}}, T\right)$ taken near $\left(c_{*}, T_{*}^{\mathrm{sl}}, \infty\right)$.

The program: Step 3 - Exchange Lemma

Recall the fibre $\vartheta_{f}^{+}(c, \epsilon)$ that was selected by the quasifront.
Recall also the fibre $\vartheta_{b}^{-}\left(w_{0}, c, \epsilon\right)$ selected by the quasiback.
Want to make sure fibres match.

Consequence: at "half-way" point, quasi-front and quasi-back miss each other by $O\left(e^{-\frac{1}{2} \eta_{*} T}\right)$!

The program: Step 3 - Exchange Lemma

Match the quasi-front and quasi-back at halfway-point along \mathcal{M}_{R}. Split into seven distinct intervals.

The program: Step 3 - Exchange Lemma

Quasi-front and quasi-back can be matched up to two one-dimensional jumps.

The program: Step 4 - Bifurcation equations

The independent parameters are $\left(c, T^{\mathrm{sl}}, T\right)$ taken near $\left(c_{*}, T_{*}^{\mathrm{sl}}, \infty\right)$.
The jumps in Γ_{f} and Γ_{b} can be split into two parts:

- Construction of quasi-fronts and quasi-backs
- Modification due to Exchange Lemma

The Exchange Lemma contribution + derivatives are of order $O\left(e^{-\eta_{*} T}\right)$.
System to solve is hence, to first order,

$$
\begin{aligned}
M_{c}^{f}\left(c-c_{*}\right) & =-M_{\epsilon}^{f} T^{\mathrm{sl}} / T \\
M_{c}^{b}\left(c-c_{*}\right) & =-M_{w}^{b}\left(T^{\mathrm{sl}}-T_{*}^{\mathrm{sl}}\right)-M_{\epsilon}^{b} T^{\mathrm{sl}} / T
\end{aligned}
$$

The sign of the M-constants can be read off from Melnikov integrals.
Three unknowns; two equations \longrightarrow curve of solutions $(\epsilon, c(\epsilon))$.

Outlook

Recall FHN-LDE:

$$
\begin{aligned}
\dot{U}_{j}(t) & =\alpha\left[U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)\right]+g\left(U_{j}(t) ; a\right)-W_{j}(t) \\
\dot{W}_{j}(t) & =\epsilon\left[U_{j}(t)-\gamma W_{j}(t)\right] .
\end{aligned}
$$

Number of issues open to explore:

- Stability of the fast pulses: same singular perturbation setup should yield results.
- What happens to fast pulses as propagation failure region is encountered?
- For $a \approx \frac{1}{2}$, can one Taylor expand in the Exchange Lemma and connect slow and fast pulses [as in Krupa, Sandstede, Szmolyan (1997)]?
- Multi-pulses, homoclinic blow-up etc in other singularly perturbed lattice problems.

