# Travelling Pulses for the Discrete FitzHugh-Nagumo System



Hermen Jan Hupkes Brown University (Joint work with B. Sandstede )

# Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).



- Fiber has myeline coating with periodic gaps called nodes of Ranvier .
- Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
- Slow propagation in gaps, but signal chemically reinforced.

### Signal Propagation: The Model



Signals appear to "hop" from one node to the next [Lillie, 1925].

lonic current has sodium and potassium component.

Electro-chemical analysis leads to the two component LDE [Keener and Sneyd, 1998]

$$\dot{U}_{j}(t) = U_{j+1}(t) + U_{j-1}(t) - 2U_{j}(t) + g(U_{j}(t); a) - W_{j}(t), \dot{W}_{j}(t) = \epsilon [U_{j}(t) - \gamma W_{j}(t)],$$

posed on a 1-dimension lattice, i.e.  $j \in \mathbb{Z}$ .

Potassium recovery encoded in second equation.

### Signal Propagation: Nonlinearity

Recall the dynamics:

$$\dot{U}_j(t) = U_{j+1}(t) + U_{j-1}(t) - 2U_j(t) + g(U_j(t);a) - W_j(t), \dot{W}_j(t) = \epsilon [U_j(t) - \gamma W_j(t)].$$



The discrete FitzHugh-Nagumo system arises by discretizing the FH-N PDE

$$U_t = U_{xx} + g(U;a) - W,$$
  

$$W_t = \epsilon [U - \gamma W].$$

- Many authors have studied this equation.
- Starting point: travelling wave Ansatz

$$(U, W)(x, t) = (u, w)(x + ct).$$

This Ansatz yields the ODE

$$u' = v,$$
  

$$v' = cv - g(u; a) + w,$$
  

$$w' = \frac{\epsilon}{c}(u - \gamma w).$$

This slow-fast system has served as a prototype for development of geometric singular perturbation theory.

Choosing  $\epsilon = 0$ , we find

admitting an equilibria-manifold  $\mathcal{M} = (u, 0, g(u; a))$ .

Write  $p_0 = (0, 0, 0)$  and  $p_1 = (1, 0, 0)$  and choose  $p_0 \in \mathcal{M}_L \subset \mathcal{M}$  and  $p_1 \in \mathcal{M}_R \subset \mathcal{M}$ ; avoiding knees of the cubic.



Heteroclinics  $p_0 \rightarrow p_1$  must solve

$$u' = v,$$
  

$$v' = cv - g(u; a),$$

and satisfy  $u(-\infty) = 0$  and  $u(+\infty) = 1$ .

These correspond to travelling pulses of the Nagumo PDE

$$U_t = U_{xx} + g(U;a).$$



Existence of such pulses is well-known; explicit calculations are possible for the cubic g.



We now need to go back from  $\mathcal{M}_R$  to  $\mathcal{M}_L$ .

Cubic is mirror symmetric around inflection point  $\longrightarrow$  there exists  $w_*$  and profile  $q_b$  connecting  $\mathcal{M}_R$  to  $\mathcal{M}_L$  for same wave speed  $c = c_*$ .

Connecting the pieces we find a fast  $[c_* > 0]$  singular homoclinic orbit  $\Gamma_0^{\text{fs}}$ .



**Classic Theorem:** For sufficiently small  $\epsilon > 0$ , there is a [locally unique] travelling pulse solution to FH-N PDE that winds around  $\Gamma_0^{\text{fs}}$  once, with wavespeed  $c < c_*$ .

- First proofs given by Carpenter and Hastings [1976].
- 'Modern' proof developed by Jones and coworkers based on transverse intersection of manifolds  $\mathcal{W}^u(0)$  and  $\mathcal{W}^s(\mathcal{M}_L)$ .



Main difficulty: track  $\mathcal{W}^{u}(0)$  as it spends time  $O(\epsilon^{-1})$  near  $\mathcal{M}_{R}$ .

# FitzHugh-Nagumo PDE: Exchange Lemma

Exchange Lemma is key tool to track  $\mathcal{W}^u(0)$  near  $\mathcal{M}_R$ .



Fenichel coordinates:

$$\begin{array}{rcl} x' &=& -A^s(x,y,z)x\\ y' &=& A^u(x,y,z)y\\ z' &=& \epsilon[1+B(x,y,z)xy], \end{array}$$

with  $A^s, A^u > \eta > 0$ ;  $A^s, A^u, B$  smooth and bounded.

- Fix small  $\Delta > 0$ .
- Pick  $z_0 \in \mathbb{R}$ , T large and  $\epsilon > 0$  small
- Find solution with

$$x(0) = \Delta, \qquad z(0) = z_0, \qquad y(T) = \Delta$$

• Exchange Lemma: unique solution exists, bounds:

$$|y(0)| + |x(T)| + |z(T) - z_0 - \epsilon T| = O(e^{-\eta T})$$

# FitzHugh-Nagumo PDE: Exchange Lemma

The problem can now be decomposed into two parts:



- Intersection  $\mathcal{W}^u(0) \cap \{x = \Delta\}$  can be studied separately from intersection  $\mathcal{W}^s(\mathcal{M}_L) \cap \{y = \Delta\}.$
- Melnikov identities yield signs of  $D_c \mathcal{W}^u(0)$  etc.
- Exchange Lemma used to link pieces together.

### FitzHugh-Nagumo PDE: Slow Pulses

Recall the travelling wave ODE

$$u' = v,$$
  

$$v' = cv - g(u; a) + w,$$
  

$$w' = \frac{\epsilon}{c}(u - \gamma w).$$

In the singular limit  $c \to 0$  and  $\frac{\epsilon}{c} \to 0$ , one finds an additional slow-singular orbit  $\Gamma_0^{\rm sl}$ .



# FitzHugh-Nagumo PDE: Status



- Sandstede, Krupa, Szmolyan (1997): for  $a \approx \frac{1}{2}$ , conjecture is true. Inclination-flip somewhere along connecting curve.
- Jones, Yanagida (1984): fast waves are asymptotically stable for full PDE.
- Flores (1991): slow waves are unstable.
- Sandstede: stability change at maximum of curve.

#### **Discrete FitzHugh-Nagumo LDE**

We return to the discrete FitzHugh-Nagumo system

$$\dot{U}_{j}(t) = U_{j+1}(t) + U_{j-1}(t) - 2U_{j}(t) + g(U_{j}(t);a) - W_{j}(t), \dot{W}_{j}(t) = \epsilon [U_{j}(t) - \gamma W_{j}(t)].$$

Travelling wave Ansatz  $(U_j, W_j)(t) = (u, w)(j + ct)$  leads to

$$cu'(\xi) = u(\xi + 1) + u(\xi - 1) - 2u(\xi) + g(u(\xi); a) - w(\xi),$$
  

$$cw'(\xi) = \epsilon[u(\xi) - \gamma w(\xi)].$$

This is a singularly perturbed functional differential equation of mixed type (MFDE).

### **Discrete FitzHugh-Nagumo - Previous work**

Two main directions for previous work on discrete FitzHugh-Nagumo LDE

$$\dot{U}_{j}(t) = U_{j+1}(t) + U_{j-1}(t) - 2U_{j}(t) + g(U_{j}(t); a) - W_{j}(t),$$
  
$$\dot{W}_{j}(t) = \epsilon [U_{j}(t) - \gamma W_{j}(t)].$$

- Rigorous results for specially prepared nonlinearities
  - Chen + Hastings: nonlinearity vanishes identically on critical regions of U and W.
  - Tonnelier; Elmer and Van Vleck: explicit calculations with Fourier series for McKean sawtooth caricature:



• Carpio and coworkers: formal results using asymptotic techniques.

#### **Discrete FitzHugh-Nagumo LDE**

For  $\epsilon = 0$  and w = 0, we obtain the discrete Nagumo LDE

$$U_j(t) = \alpha [U_{j+1}(t) + U_{j-1}(t) - 2U_j(t)] + g(U_j(t);a),$$

with travelling pulse MFDE

$$cu'(\xi) = \alpha [u(\xi+1) + u(\xi-1) - 2u(\xi)] + g(u(\xi);a)$$



- This problem becomes singular in the  $c \rightarrow 0$  limit, in contrast with the Nagumo PDE case.
- Keener (1987) + Mallet-Paret (1999): pick  $\alpha > 0$  small; c = 0 for a in nonempty interval  $[a_*, \frac{1}{2}]$ .

# **Discrete FitzHugh-Nagumo LDE - Propagation failure**



- Note that c = 0 for all  $a \in [0.46, 0.54]$ . Propagation failure!
- Observe the discontinuities in the wave profiles in this region.
- Gaps cause "energy barrier" that signal must overcome.

### **Discrete FitzHugh-Nagumo LDE - Fast Pulses**

• Focus on fast-solutions to discrete FHN bifurcating from  $\Gamma_0^{fs}$ ,

$$cu'(\xi) = u(\xi+1) + u(\xi-1) - 2u(\xi) + g(u(\xi);a) - w(\xi),$$
  

$$cw'(\xi) = \epsilon[u(\xi) - \gamma w(\xi)].$$

• Unclear how to treat slow-solutions in propagation failure regime.



# Mixed Type Functional Differential Equations (MFDEs)

Let us first study the Nagumo travelling wave MFDE

$$u'(\xi) = u(\xi + 1) + u(\xi - 1) - 2u(\xi) + g(u(\xi); a).$$

- Theory for MFDEs started developing  $\sim$  10 years ago.
- MFDEs generalize delay equations, e.g.

$$u'(\xi) = u(\xi - 1) + g(u(\xi)),$$

which have been used for more than half a century.

- Time lags naturally in many modelling applications.
- Delay equations: functional-analytic setup developed in past three decades.

Recall our prototype MFDE

$$u'(\xi) = u(\xi + 1) + u(\xi - 1) - 2u(\xi) + g(u(\xi); a).$$

Such equations differ from ODEs and delay equations in a fundamental way.



Problem I: Statespace is infinite dimensional: need to specify an initial function on [-1,1].

### **Problem II: Ill-posedness**

Consider the homogeneous MFDE

$$v'(\xi) = v(\xi - 1) + v(\xi + 1).$$



(Example due to Rustichini)

### **Problem II: Ill-posedness**

Consider the homogeneous MFDE



• Continuity lost  $\implies$  ill-defined as an initial value problem.

### **III-posedness: What is going on?**



- The problem is infinite dimensional (as for delay equations).
- There is no exponential bound possible for solutions, at both  $\pm \infty$  (unlike delay equations)!

# **Exponential Dichotomies**

Exponential dichotomies are the method of choice for ill-posed problems. Consider the linearization around some function q,

$$v'(\xi) = v(\xi+1) + v(\xi-1) - 2v(\xi) + g'(q(\xi))v(\xi)$$



H. + Verduyn Lunel (2008): For  $\xi \ge 0$ , we have  $C([-1,1],\mathbb{R}) = Q(\xi) \oplus S(\xi)$ .

Exponential decay for forward-solutions and backward-solutions.

### **Exponential Dichotomies - Inhomogeneous system**

Consider the inhomogeneous system

$$v'(\xi) = v(\xi+1) + v(\xi-1) - 2v(\xi) + g'(q(\xi))v(\xi) + f(\xi).$$

Recall the splitting  $C([-1,1],\mathbb{R}) = Q(\xi) \oplus S(\xi)$ .

Usually, exponential dichotomies can be used to construct a variation-of-constants formula

$$v \sim \int_0^{\xi} T(\xi, \xi') \Pi_{Q(\xi')} f(\xi') d\xi' + \int_{\infty}^{\xi} T(\xi, \xi') \Pi_{S(\xi')} f(\xi') d\xi',$$

where T should be seen as an evolution operator.

However, since  $f : \mathbb{R} \to \mathbb{C}^n$  does not map into the state space C([-1, 1]) complications arise.

- Delay equations: sun-star calculus based upon semigroup properties
- Mixed type equations: unclear how to mimic this construction for C([-1,1]). Possibilities on space  $L^2([-1,1])$ , but technical complications.

#### Inhomogeneous systems

Mallet-Paret (1998) considered operator  $\Lambda : BC^1(\mathbb{R}, \mathbb{R}) \to BC(\mathbb{R}, \mathbb{R})$ ,

$$[\Lambda v](\xi) = v'(\xi) - [v(\xi+1) + v(\xi-1) - 2v(\xi)] - g'(q(\xi))v(\xi).$$

- $\Lambda$  is a Fredholm operator:
  - Kernel is finite dimensional
  - Range is closed and has finite dimensional codimension
- Range  $\mathcal{R}(\Lambda)$  can be explicitly characterized:

$$\mathcal{R}(\Lambda) = \{ f \in BC(\mathbb{R}, \mathbb{R}) \mid \int_{-\infty}^{\infty} d(\xi)^* f(\xi) d\xi = 0 \text{ for all } d \in \mathcal{K}(\Lambda^*) \},$$

with adjoint given by

$$[\Lambda^* v](\xi) = v'(\xi) + [v(\xi + 1) + v(\xi - 1) - 2v(\xi)] + g'(q(\xi))v(\xi).$$

#### Inhomogeneous systems - II

In general  $\mathcal{R}(\Lambda) \neq BC(\mathbb{R},\mathbb{R})$ , with again

$$[\Lambda v](\xi) = v'(\xi) - [v(\xi+1) + v(\xi-1) - 2v(\xi)] - g'(q(\xi))v(\xi).$$

**Important property** Any solution to  $\Lambda^* v = 0$  with  $ev_{\xi}v = 0$  for some  $\xi$ , has v = 0 everywhere.



For any f, solve  $\Lambda v = f$  on  $[0,\infty)$ , by modifying f on  $\mathbb{R}_-$ .

### The program

Recall the singularly perturbed MFDE

$$cu'(\xi) = u(\xi+1) + u(\xi-1) - 2u(\xi) + g(u(\xi);a) - w(\xi),$$
  

$$cw'(\xi) = \epsilon[u(\xi) - \gamma w(\xi)].$$

Main goal: lift geometric singular perturbation theory to MFDEs.

- Persistence of slow manifold  $\mathcal{M}_R$  for  $\epsilon > 0$  relies on Fenichel's first thm.
- Almost every proof relies on geometric Hadamard-graph transform.
- Exchange Lemma: Fenichel coordinates unavailable in infinite dimensions.
- Unstable / stable manifolds will be infinite dimensional. How to track intersections?

Main ingredients:

- Isolate suitable finite dimensional subspaces of  $C([-1,1],\mathbb{R})$ .
- Provide firm analytical underpinning for geometrical constructions.

### The program

Recall the singularly perturbed MFDE

$$cu'(\xi) = u(\xi+1) + u(\xi-1) - 2u(\xi) + g(u(\xi);a) - w(\xi),$$
  

$$cw'(\xi) = \epsilon[u(\xi) - \gamma w(\xi)].$$

- Step 1: Persistence of  $\mathcal{M}_L$  and  $\mathcal{M}_R$  for  $\epsilon > 0$ .
- Step 2: How do  $q_f$  and  $q_b$  break as  $\epsilon \approx 0$  and  $c \approx c_*$ ?
- Step 3: Connect broken front and back solutions as they pass near  $\mathcal{M}_R(c,\epsilon)$ .
- Step 4: Set up and solve two-dimensional nonlinear bifurcation equations to repair front and backs and find  $c(\epsilon)$ .

### The program: Step 1 - Persistence of Slow Manifolds



We have  $\mathcal{M}_R = \{(\widetilde{s}_R(w), w)\}$  for  $w \in [w_{\min}, w_{\max}]$ .

**Goal:** find functions  $s_R(w, c, \epsilon)$  so that the manifold  $\mathcal{M}_R(c, \epsilon) = \{(s_R(w, c, \epsilon), w)\}$  is invariant.

#### The program: Step 1 - Persistence of Slow Manifolds

Idea based upon Sakomoto (1990): find solution (u, w) with  $w(0) = w_0$  and  $u(\xi) = \tilde{s}_R(w(\xi)) + v(\xi),$ 

with small v and write  $s_R(w_0, c, \epsilon) = u(0)$ . Need to solve

$$cv'(\xi) = L\left(\widetilde{s}_R(w(\xi))\right) ev_{\xi}v + \mathcal{R}_{nl}(v, w, c, \epsilon)(\xi),$$
  
$$cw'(\xi) = \epsilon[\widetilde{s}_R(w(\xi)) + v(\xi) - \gamma w(\xi)]$$

with nonlinear  $\mathcal{R}_{nl}$  and linear operator  $L(u) : C([-1,1],\mathbb{R}) \to \mathbb{R}$  given by

$$L(u) ev_{\xi} v = v(\xi + 1) + v(\xi - 1) - 2v(\xi) + g'(\mathbf{u})v(\xi).$$

Note that  $w' = O(\epsilon)$ , so linear part varies slowly.

- Equation for w with  $w(0) = w_0$  can be solved  $\longrightarrow W(v, c, \epsilon, w_0)$ .
- Suppose that operator  $\mathcal{K}(w,c)$  solves linear v-problem  $\longrightarrow$  fixed point problem

$$v = \mathcal{K}(W(v, c, \epsilon, w_0), c) \mathcal{R}_{\mathrm{nl}}(v, W(v, c, \epsilon, w_0), c, \epsilon)$$

#### The program: Step 1 - Persistence of Slow Manifolds

Key ingredient is the construction of solution operator  $\mathcal{K}(w,c)$  for linear systems

$$cv'(\xi) = L\left(\widetilde{s}_R(w(\xi))\right) \operatorname{ev}_{\xi} v + f(\xi).$$

Use the fact that for each fixed  $w_0 \in [w_{\min}, w_{\max}]$ , the system

$$cv'(\xi) = L(\widetilde{s}_R(w_0)) \operatorname{ev}_{\xi} v + f(\xi),$$

can be solved;  $v = \mathcal{K}_{fx}(w_0, c)f$  [Mallet-Paret 1998]. Can now define approximate solution operator

$$[\mathcal{K}_{\mathrm{apx}}(w,c)f](\xi) = \int_{\xi-\frac{1}{2}}^{\xi+\frac{1}{2}} [\mathcal{K}_{\mathrm{fx}}(w(\zeta),c)f](\xi)d\zeta.$$

If w' is small, the error is small and can be corrected;  $\mathcal{K}_{apx} \to \mathcal{K}$ .

# The program: Step 2 - Breaking the front



Hyperplane H transverse to orbit  $q_f$  at  $\xi=0,$  i.e.,

$$C([-1,1],\mathbb{R}) = \operatorname{ev}_0 q_f + H \oplus \operatorname{span}\{\operatorname{ev}_0 q'_f\}.$$

- Perturbation  $u^+$  from  $q_f$  is large as  $\xi \to \infty$ .
- Hyperplane H is infinite dimensional

### The program: Step 2 - Breaking the front

To control size of perturbation, split up real line into three separate parts.

$$\frac{u^{-}(\xi) = q_f(\xi) + v^{-}(\xi)}{\xi = 0} \qquad u^{+}(\xi) = q_f(\xi) + v^{\diamond}(\xi)$$

$$\xi = 0 \qquad \xi = \xi_*$$

• The functions 
$$v^-$$
,  $v^\diamond$  and  $w_{|(-\infty,\xi_*]}$  are small.

# The program: Step 2 - Breaking the front

We need to study the remaining gap in H. Call this gap  $\xi_f^{\infty}(c, \epsilon)$ .



Main Goal: Reduce problem to finite dimensions.

To do this, we will need to split  $H = ev_0 q_f + Y \oplus \Gamma_f$ , with  $\Gamma_f$  finite dimensional.

In addition, need to make sure that the "gaps"  $\xi_f^{\infty}(c,\epsilon)$  are all in  $\Gamma$ .

Construction based upon exponential dichotomies on  $\ensuremath{\mathbb{R}}$  for



Mallet-Paret + Verduyn Lunel (2001):  $C([-1,1],\mathbb{R}) = \widehat{P}_{\leftarrow} \oplus \widehat{Q}_{\rightarrow} \oplus B \oplus \Gamma.$ 

We have  $ev_0 q' \in B$ . Can use  $Y = \widehat{P}_{\leftarrow} \oplus \widehat{Q}_{\rightarrow}$ . The space  $\Gamma$  can be explicitly characterized using special integral inner product (Hale inn. pr.).



Can use remaining freedom to ensure that gap is in  $\Gamma$ , since

$$C([-1,1],\mathbb{R}) = \mathrm{ev}_0 q_f + \widehat{P}_{\leftarrow} \oplus \widehat{Q}_{\rightarrow} \oplus \{\mathrm{ev}_0 q'_f\} \oplus \Gamma$$

At c = 0 and  $\epsilon = 0$ , we have Melnikov identities such as

$$D_c \langle \operatorname{ev}_0 d, \xi_f^{\infty} \rangle_{\operatorname{Hale}} = -\int_{-\infty}^{\xi_*} d(\xi') q'_f(\xi) d\xi' + O(e^{-\eta_* \xi_*}),$$

for d that solves adjoint  $-cd'(\xi) = \alpha[d(\xi+1) + d(\xi-1) - 2d(\xi)] + g'(q_f(\xi))v(\xi)$ .

Now need to study part near  $\mathcal{M}_R$ .



- The functions  $v^+$ ,  $\theta^+$  are small.
- The parameter  $\vartheta^+$  selects the fibre of  $\mathcal{M}_R$  to which  $(u^+, w)$  converges as  $\xi \to \infty$ .
- The function  $\Theta_R^{\mathrm{fs}}(\vartheta^+,c,\epsilon)$  is unique solution of ODE

$$\Theta'(\xi) = \epsilon[s_R(\Theta(\xi), c, \epsilon) - \gamma \Theta(\xi)], \qquad \Theta(0) = \vartheta^+,$$

which describes flow along  $\mathcal{M}_R(c,\epsilon)$  in terms of fast time scale.

Must understand linearization near slow manifold  $\mathcal{M}_R(c,\epsilon)$ .

First fix  $w_0 \in [w_{\min}, w_{\max}]$  and consider **constant coefficient** linearization

$$v'(\xi) = v(\xi+1) + v(\xi-1) - 2v(\xi) + g'(\tilde{s}_R(w_0))v(\xi)$$



 $\mathsf{Mallet-Paret} + \mathsf{Verduyn} \mathsf{ Lunel} (2001): \ C([-1,1],\mathbb{R}) = P_{R,\leftarrow}^{\mathrm{fb}}(w_0) \oplus Q_{R,\rightarrow}^{\mathrm{fb}}(w_0).$ 

Now consider  $w \in C^1(\mathbb{R}, [w_{\min}, w_{\max}])$  that has very small  $||w'||_{\infty}$  and  $w(0) = w_0$ . Consider linearization

$$v'(\xi) = v(\xi+1) + v(\xi-1) - 2v(\xi) + g'\Big(\tilde{s}_R\big(w(\xi)\big)\Big)v(\xi).$$
(1)

Main idea:

- For any  $\phi \in Q_{R,\rightarrow}^{\text{fb}}(w_0)$ , there exists  $v \in C([-1,\infty),\mathbb{R})$  that solves (1) with  $\Pi_{Q_{R,\rightarrow}^{\text{fb}}(w_0)} \text{ev}_0 v = \phi$ .
- Any bounded solution to (1) can be written in this form.



Gap at  $\mathcal{M}_R$  can be completely closed, since

$$S_{\leftarrow}(\xi_*) \approx P_{R,\leftarrow}^{fb}(0)$$

and

$$C([-1,1],\mathbb{R}) = P_{R,\leftarrow}^{fb}(0) \oplus Q_{R,\rightarrow}^{fb}(0).$$

In summary, we have constructed **quasi-front** solutions to the travelling wave equation for  $\epsilon \approx 0$  and  $c \approx c_*$ .



### The program: Step 2 - Breaking the back

Similarly, can construct **quasi-back** solutions to the travelling wave equation for  $\epsilon \approx 0$ ,  $c \approx c_*$  and **extra** degree of freedom  $w_0 \approx w_*$ .

This extra d.o.f. used to specify  $w(0) = w_0$  (lift quasi-back up and down).



The quasi-fronts and quasi-backs need to be tied together near  $\mathcal{M}_R(c,\epsilon)$ .

Primary parameter: time T that solution spends near  $\mathcal{M}_R(c,\epsilon)$ .

Note that  $\epsilon = 0$  is not a useful parameter, since quasi-fronts and quasi-backs do not connect when  $\epsilon = 0$ .

Write  $\Theta_R^{\rm sl}(\vartheta,c,\epsilon)$  for unique solution of ODE

$$\Theta'(\zeta) = [s_R(\Theta(\zeta), c, \epsilon) - \gamma \Theta(\zeta)], \qquad \Theta(0) = \vartheta,$$

which describes flow along  $\mathcal{M}_R(c,\epsilon)$  in terms of **slow** time scale. Slow time  $T_*^{sl}$  uniquely defined by

$$\Theta_R^{\rm sl}(0, c_*, 0)(T_*^{\rm sl}) = w_*$$

We will need  $\epsilon T \approx T_*^{\rm sl}$ ; introduce new variable  $T^{\rm sl} = \epsilon T$ .

Independent parameters are now  $(c, T^{sl}, T)$  taken near  $(c_*, T^{sl}_*, \infty)$ .

Recall the fibre  $\vartheta_f^+(c,\epsilon)$  that was selected by the quasifront.

Recall also the fibre  $\vartheta_b^-(w_0, c, \epsilon)$  selected by the quasiback.

Want to make sure fibres match.

$$\begin{split} \vartheta_b^-(w_0^\infty,c,T^{\mathrm{sl}}/T) & \to \text{Define } w_0^\infty(c,T^{\mathrm{sl}},T) \text{ by the following identity:} \\ \mathcal{M}_R(c,T^{\mathrm{sl}}/T) & \bullet \text{Define } w_0^\infty(c,T^{\mathrm{sl}},T) = \Theta_R^{\mathrm{sl}}(\vartheta_f^+(c,T^{\mathrm{sl}}/T),c,T^{\mathrm{sl}}/T)(T^{\mathrm{sl}}) \\ \vartheta_b^-(w_0^\infty,c,T^{\mathrm{sl}}/T) & = \Theta_R^{\mathrm{sl}}(\vartheta_f^+(c,T^{\mathrm{sl}}/T),c,T^{\mathrm{sl}}/T)(T^{\mathrm{sl}}) \\ \text{for } (c,T^{\mathrm{sl}},T) \approx (c_*,T^{\mathrm{sl}}_*,\infty). \end{split}$$

Consequence: at "half-way" point, quasi-front and quasi-back miss each other by  $O(e^{-\frac{1}{2}\eta_*T})!$ 

Match the quasi-front and quasi-back at halfway-point along  $\mathcal{M}_R$ . Split into seven distinct intervals.



Quasi-front and quasi-back can be matched up to two one-dimensional jumps.



### The program: Step 4 - Bifurcation equations

The independent parameters are  $(c, T^{sl}, T)$  taken near  $(c_*, T^{sl}_*, \infty)$ .

The jumps in  $\Gamma_f$  and  $\Gamma_b$  can be split into two parts:

- Construction of quasi-fronts and quasi-backs
- Modification due to Exchange Lemma

The Exchange Lemma contribution + derivatives are of order  $O(e^{-\eta_*T})$ .

System to solve is hence, to first order,

$$M_{c}^{f}(c - c_{*}) = -M_{\epsilon}^{f}T^{\rm sl}/T$$
  

$$M_{c}^{b}(c - c_{*}) = -M_{w}^{b}(T^{\rm sl} - T_{*}^{\rm sl}) - M_{\epsilon}^{b}T^{\rm sl}/T$$

The sign of the *M*-constants can be read off from Melnikov integrals. Three unknowns; two equations  $\longrightarrow$  curve of solutions  $(\epsilon, c(\epsilon))$ .

# Outlook

Recall FHN-LDE:

$$\dot{U}_j(t) = \alpha [U_{j+1}(t) + U_{j-1}(t) - 2U_j(t)] + g(U_j(t); a) - W_j(t), \dot{W}_j(t) = \epsilon [U_j(t) - \gamma W_j(t)].$$

Number of issues open to explore:

- Stability of the fast pulses: same singular perturbation setup should yield results.
- What happens to fast pulses as propagation failure region is encountered?
- For  $a \approx \frac{1}{2}$ , can one Taylor expand in the Exchange Lemma and connect slow and fast pulses [as in Krupa, Sandstede, Szmolyan (1997)]?
- Multi-pulses, homoclinic blow-up etc in other singularly perturbed lattice problems.