Oberwolfach - Dec 17th 2012

Negative Diffusion in High Dimensional Lattice Systems - Travelling Waves

Hermen Jan Hupkes
Leiden University
(Joint work with E. van Vleck)

Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

$$
\dot{u}_{j}(t)=\alpha\left(u_{j-1}(t)+u_{j+1}(t)-2 u_{j}(t)\right)+f\left(u_{j}(t)\right), \quad j \in \mathbb{Z}
$$

Picking $\alpha=h^{-2} \gg 1$, LDE can be seen as discretization with distance h of PDE

$$
\partial_{t} u(t, x)=\partial_{x x} u(t, x)+f(u(t, x)), \quad x \in \mathbb{R}
$$

$$
u(x)
$$

- Discrete Laplacian: $u_{j-1}+u_{j+1}-2 u_{j}$
- Many physical models have a discrete spatial structure \rightarrow LDEs.
- Main theme: qualitative differences between PDEs and LDEs.

Lattice Differential Equations

Recall LDE

$$
\dot{u}_{j}(t)=\alpha\left(u_{j-1}(t)+u_{j+1}(t)-2 u_{j}(t)\right)+f\left(u_{j}(t)\right), \quad j \in \mathbb{Z}
$$

- $\alpha \gg 1$ - semi-discretization of PDE. Useful discretizations should not introduce new behaviour.
- $\alpha \sim 1$ - spatial gaps as energy barriers.
- $\alpha<0$ - anti-diffusion.

PDE ill-posed.
LDE still well-posed.
Motivation: Phase transition models [Van Vleck, Vainchtein, 2009]

Phase Transition Model

Force between NN depends on $\dot{x}_{n+1}-\dot{x}_{n}$ (viscous) and $E^{\prime}\left(x_{n+1}-x_{n}\right)$ (elastic).

Negative diffusion comes from viscous terms in overdamped limit.

Phase Transition Model

Writing $u_{n}=x_{n+1}-x_{n}$, in overdamped limit we get system

$$
\dot{u}_{n}(t)=-d\left[u_{n+1}(t)+u_{n-1}(t)-2 u_{n}(t)\right]+E^{\prime}\left(u_{n}(t)\right), \quad d>0
$$

Phase Transition Model

Recall dynamics

$$
\dot{u}_{n}(t)=-d\left[u_{n+1}(t)+u_{n-1}(t)-2 u_{n}(t)\right]+E^{\prime}\left(u_{n}(t)\right), \quad d>0
$$

Note that E^{\prime} is cartoon of cubic.

Negative diffusion 'encourages' interactions near phase boundary instead of smoothing them all out.

Negative Diffusion

Main interest here: 2d lattices

$$
\dot{u}_{i j}(t)=-d\left[\Delta_{+} u(t)\right]_{i j}+g\left(u_{i j}(t) ; a\right), \quad d>0 .
$$

Plus-shaped discrete Laplacian:

$$
\left[\Delta_{+} u\right]_{i j}=u_{i+1, j}+u_{i, j+1}+u_{i-1, j}+u_{i, j-1}-4 u_{i j} .
$$

Bistable nonlinearity g given by

$$
g(u ; a)=u(a-u)(u-1) .
$$

Negative Diffusion

Recall negative diffusion equation

$$
\dot{u}_{i j}(t)=-d\left[\Delta_{+} u\right]_{i j}(t)+g\left(u_{i j}(t) ; a\right), \quad d>0 .
$$

Looking for travelling wave $u_{i j}(t)=\Psi((\cos \theta, \sin \theta) \cdot(i, j)-c t)$ will not get you very far.

Main idea: split lattice into even and odd sites.

Negative Diffusion

Writing $u_{i j}(t)$ for odd sites and $v_{i j}(t)$ for even sites, system rewrites as

$$
\begin{aligned}
\frac{d}{d t} u_{i j} & =-d\left[v_{i, j+1}+v_{i, j-1}+v_{i-1, j}+v_{i+1, j}-4 u_{i j}\right]+g\left(u_{i j} ; a\right) \\
\frac{d}{d t} v_{i j} & =-d\left[u_{i, j+1}+u_{i, j-1}+u_{i-1, j}+u_{i+1, j}-4 v_{i j}\right]+g\left(v_{i j} ; a\right)
\end{aligned}
$$

Equilibria (\bar{u}, \bar{v}) must satisfy

$$
\begin{aligned}
4 d(\bar{v}-\bar{u}) & =g(\bar{u} ; a) \\
4 d(\bar{u}-\bar{v}) & =g(\bar{v} ; a)
\end{aligned}
$$

Besides three 'constant' equilibria $(0,0),(a, a)$ and $(1,1)$, also 'periodic' equilibria $\bar{u} \neq \bar{v}$. In particular, eliminating \bar{u} gives

$$
-g(\bar{v} ; a)=g\left(\bar{v}+(4 d)^{-1} g(\bar{v} ; a) ; a\right)
$$

Since g was a cubic; we get a ninth-degree polynomial expression in \bar{v}.

Negative Diffusion

Recall ninth-order system

$$
-g(\bar{v} ; a)=g\left(\bar{v}+(4 d)^{-1} g(\bar{v} ; a) ; a\right)
$$

Studied in detail by [Brucal, Van Vleck]. For appropriate choices of parameters, exists equilibrium (\bar{u}_{*}, \bar{v}_{*}) with $\bar{u}_{*} \bar{v}_{*}<0$ (opposite sign).

Idea: look for waves that connect $(0,0)$ to $\left(\bar{u}_{*}, \bar{v}_{*}\right)$.
Idea: rescale u and v so connection is from $(0,0) \rightarrow(1,1)$.

$$
\begin{aligned}
\frac{d}{d t} u_{i j} & =d_{o}\left[v_{i, j+1}+v_{i, j-1}+v_{i-1, j}+v_{i+1, j}-4 u_{i j}\right]+g_{o}\left(u_{i j} ; a\right) \\
\frac{d}{d t} v_{i j} & =d_{e}\left[u_{i, j+1}+u_{i, j-1}+u_{i-1, j}+u_{i+1, j}-4 v_{i j}\right]+g_{e}\left(v_{i j} ; a\right)
\end{aligned}
$$

Now we have $d_{o}>0$ and $d_{e}>0$; typically different. Also g_{o} and g_{e} typically different.

Travelling Wave

Recall lattice system

$$
\begin{aligned}
\frac{d}{d t} u_{i j} & =d_{o}\left[v_{i, j+1}+v_{i, j-1}+v_{i-1, j}+v_{i+1, j}-4 u_{i j}\right]+g_{o}\left(u_{i j} ; a\right) \\
\frac{d}{d t} v_{i j} & =d_{e}\left[u_{i, j+1}+u_{i, j-1}+u_{i-1, j}+u_{i+1, j}-4 v_{i j}\right]+g_{e}\left(v_{i j} ; a\right)
\end{aligned}
$$

Travelling wave Ansatz
$u_{i j}(t)=\Psi_{u}((\cos \theta, \sin \theta) \cdot(i, j)-c t), \quad v_{i j}(t)=\Psi_{v}((\cos \theta, \sin \theta) \cdot(i, j)-c t)$,
leads to system with both advances and delays:

$$
\begin{array}{cc}
-c \Psi_{u}^{\prime}(\xi)= & d_{o}\left[\Psi_{v}(\xi \pm \cos \theta)+\Psi_{v}(\xi \pm \sin \theta)-4 \Psi_{u}(\xi)\right] \\
& +g_{o}\left(\Psi_{u}(\xi) ; a\right), \\
-c \Psi_{v}^{\prime}(\xi)= & d_{e}\left[\Psi_{u}(\xi \pm \cos \theta)+\Psi_{u}(\xi \pm \sin \theta)-4 \Psi_{v}(\xi)\right] \\
& +g_{e}\left(\Psi_{v}(\xi) ; a\right)
\end{array}
$$

Notation: $\Psi(\xi \pm \cos \theta)$ means $\Psi(\xi+\cos \theta)+\Psi(\xi-\cos \theta)$.

Setting

Notice that any solution to

$$
\begin{aligned}
-c \Psi_{u}^{\prime}(\xi)= & d_{o}\left[\Psi_{v}(\xi \pm \cos \theta)+\Psi_{v}(\xi \pm \sin \theta)-4 \Psi_{u}(\xi)\right] \\
& +g_{o}\left(\Psi_{u}(\xi) ; a\right) \\
-c \Psi_{v}^{\prime}(\xi)= & d_{e}\left[\Psi_{u}(\xi \pm \cos \theta)+\Psi_{u}(\xi \pm \sin \theta)-4 \Psi_{v}(\xi)\right] \\
& +g_{e}\left(\Psi_{v}(\xi) ; a\right)
\end{aligned}
$$

is in fact ALSO a travelling wave solution to the non-local system

$$
\begin{aligned}
& \partial_{t} u(x, t)= d_{o}[v(x \pm \cos \theta, t)+v(x \pm \sin \theta)-4 u(x, t)] \\
&+g_{o}(u(x, t) ; a) \\
& \partial_{t} v(x, t)=\quad d_{e}[u(x \pm \cos \theta, t)+u(x \pm \sin \theta, t)-4 v(x, t)] \\
&+g_{e}(v(x, t) ; a)
\end{aligned}
$$

Notice: $x \in \mathbb{R}$ so this system now has only one spatial variable.

Main System

Our focus is on travelling wave solutions to the system

$$
u_{t}(x, t)=\gamma u_{x x}(x, t)+\sum_{j=0}^{N} A_{j}\left[u\left(x+r_{j}, t\right)-u(x)\right]+g(u(x, t) ; a)
$$

- Non-scalar system: $u(x, t) \in \mathbb{R}^{n}$ for some $n \geq 2$.
- Matrices $A_{j} \geq 0 \in \mathbb{R}^{n \times n}$.
- Matrix $\mathcal{A}:=\sum_{j=0}^{N} A_{j}$ is irreducible; i.e. all components of u are mixed.
- Off-diagonal derivatives non-zero:

$$
\partial_{u_{j}} g_{i}(u ; a) \geq \mathcal{A}_{i j}, \quad i \neq j
$$

- Extra smoothing term $\gamma \geq 0$.

Main System

Requirements on zeroes of $g(\cdot ; a)$ for fixed parameter a :

$$
u_{t}(x, t)=\gamma u_{x x}(x, t)+\sum_{j=0}^{N} A_{j}\left[u\left(x+r_{j}, t\right)-u(x)\right]+g(u(x, t) ; a)
$$

Stability refers to ODE $u^{\prime}=g(u ; a)$.

Main Results

Chiefly interested in transition $\gamma \downarrow 0$:

$$
\begin{equation*}
u_{t}(x, t)=\gamma u_{x x}(x, t)+\sum_{j=0}^{N} A_{j}\left[u\left(x+r_{j}, t\right)-u(x)\right]+g(u(x, t) ; a) \tag{1}
\end{equation*}
$$

Thm. [H., Van Vleck] For each $\gamma>0$, (1) has unique travelling wave solution $u=\Psi(x-c t)$ connecting 0 to $\mathbf{1}$, which depends smoothly on parameter a.

Thm. [H., Van Vleck] Consider sequence $\gamma_{k} \downarrow 0$ and corresponding waves $u_{k}=\Psi_{k}\left(x-c_{k} t\right)$. After passing to a subsequence, we have

$$
\Psi_{k}(x) \rightarrow \Psi_{*}(x), \quad c_{k} \rightarrow c_{*}
$$

and $\left(\Psi_{*}, c_{*}\right)$ is travelling wave at $\gamma=0$ that connects $\mathbf{0}$ and $\mathbf{1}$.
These results generalize earlier scalar equation results [H., Verduyn-Lunel, 2004].

Main Results: $\gamma=0$
When $\gamma=0$, we recover nonlocal system

$$
\begin{equation*}
u_{t}(x, t)=\sum_{j=0}^{N} A_{j}\left[u\left(x+r_{j}, t\right)-u(x)\right]+g(u(x, t) ; a) \tag{2}
\end{equation*}
$$

Thm. [...] Unique wave speed c for which (2) has travelling waves that connect $\mathbf{0}$ to 1 . If $c \neq 0$, then profile is unique and (Ψ, c) depend smoothly on a. If $c=0$, profiles exist but no longer unique.

This generalizes scalar $(u(x, t) \in \mathbb{R})$ equation results [Mallet-Paret, 1998].
Existence of travelling waves for (2) with rationally related r_{j} can be found as a byproduct in [Chen, Guo, Wu, 2008], where periodic $1 d$-lattices were considered. Lattice-based approach; cannot easily consider $\gamma>0$.

Our focus is on dependence on a and γ; closely follow [Mallet-Paret] ideas.

Mallet-Paret: Fredholm theory

Focus in [Mallet-Paret, 1998] and [H., Verduyn Lunel] is on scalar mixed type equation

$$
-\gamma \Psi^{\prime \prime}(\xi)-c \Psi^{\prime}(\xi)=\sum_{j=0}^{N} A_{j}\left[\Psi\left(\xi+r_{j}\right)-\Psi(x)\right]+g(\Psi(\xi) ; a)
$$

that wave profiles must satisfy.

- Continuation of waves: Relies on studying Fredholm operator

$$
\mathcal{L}: \Phi \mapsto \gamma \Phi^{\prime \prime}(\xi)+c \Phi^{\prime}(\xi)+\sum_{j=0}^{N} A_{j}\left[\Phi\left(\xi+r_{j}\right)-\Phi(\xi)\right]+D g(\bar{\Psi}(\xi) ; a) \Phi(\xi)
$$

related to linearization around wave $\bar{\Psi}$. Important for stability, gluing waves together, singular perturbations. Natural to generalize to systems.

- Existence of waves: Relies on embedding system into a normal family, with very specific rules on how $g(\cdot ; a)$ depends on a. Homotopy to reference system. Unclear how to lift to systems.

Continuation of Waves: Fredholm theory

Main task: understand Fredholm properties of

$$
\mathcal{L}: \Phi \mapsto \gamma \Phi^{\prime \prime}(\xi)+c \Phi^{\prime}(\xi)+\sum_{j=0}^{N} A_{j}\left[\Phi\left(\xi+r_{j}\right)-\Phi(\xi)\right]+D g(\bar{\Psi}(\xi) ; a) \Phi(\xi)
$$

related to linearization around wave $\bar{\Psi}$.
Need to show: kernel \mathcal{L} is one-dimensional $\left(\bar{\Psi}^{\prime}>0\right)$ and same for adjoint \mathcal{L}^{*}. Krein-Rutman type result.

Main issue: matrices A_{j} not necessarily invertible; in contrast with scalar case.
Main consequence: 2d stability of waves; see [Aaron's talk].
Secondary consequence: can understand perturbations [Van Vleck, Zhang]; e.g. (1d)

$$
\begin{gathered}
\dot{u}_{n}(t)=-d\left[u_{n+1}(t)+u_{n-1}(t)-2 u_{n}(t)\right]+g\left(u_{n}(t) ; a\right) \\
+\epsilon \sum_{k \in \mathbb{Z}} \frac{1}{k^{2}}(-1)^{k} u_{n+k}(t)
\end{gathered}
$$

Existence of Waves

Second task is focus on existence of travelling waves with $\gamma>0$ for

$$
u_{t}(x, t)=\gamma u_{x x}(x, t)+\sum_{j=0}^{N} A_{j}\left[u\left(x+r_{j}, t\right)-u(x)\right]+g(u(x, t) ; a)
$$

Degenerate situation $\gamma=0$ handled afterwards by limit $\gamma \downarrow 0$.
If $A_{j}=0$ for all $0 \leq j \leq n$, then can use standard theory [Volpert, Volpert, Volpert] (see also [Crooks, Toland] for convective terms). Methods rely on topological arguments (index theory; homotopies).

In [Chen, 1991] scalar non-local PDEs are considered. Waves constructed using only comparison principles. Basis for our approach.

Main System

Focus on spatially invariant solutions, which satisfy ODE

$$
u^{\prime}(t)=g(u(t) ; a)
$$

Separatrix \mathcal{W}_{*} splits basins of attraction.

Based on [Hirsch, 1982] (cooperative systems): no points on \mathcal{W}_{*} related by \leq.

Existence of travelling wave

Pick smooth non-decreasing initial condition $u(x, 0)=u_{0}(x)$ and evolve

$$
u_{t}(x, t)=\gamma u_{x x}(x, t)+\sum_{j=0}^{N} A_{j}\left[u\left(x+r_{j}, t\right)-u(x)\right]+g(u(x, t) ; a)
$$

Existence of travelling wave

Note that $u(\cdot, t)$ must always intersect \mathcal{W}_{*} once; say at $x=\xi_{*}(t)$.

$$
u_{t}(x, t)=\gamma u_{x x}(x, t)+\sum_{j=0}^{N} A_{j}\left[u\left(x+r_{j}, t\right)-u(x)\right]+g(u(x, t) ; a)
$$

Main goal: show that $u\left(x-\xi_{*}(t), t\right) \rightarrow U(x)$ as $t \rightarrow \infty$ in some sense.

Existence of travelling wave

Pick two squares \mathcal{E}_{l} and \mathcal{E}_{r} near $(0,0)$ and $(1,1)$
$u(\cdot, t)$ intersects squares at $x=\xi_{l}(t), x=\xi_{r}(t)$.

Must show: $\xi_{r}(t)-\xi_{l}(t)$ bounded for convergence $u\left(x-\xi_{*}(t), t\right) \rightarrow U(x)$ to be useful.

Existence of travelling wave

Build a tube around separatrix: build \mathcal{T}_{r} and \mathcal{T}_{l} by shifting \mathcal{W}_{*} left and right. Intersections with $\mathcal{T}_{l}, \mathcal{T}_{r}$ at $x=\xi_{\mathcal{T}}^{l}(t), x=\xi_{\mathcal{T}}^{r}(t)$.

Idea: bound $\xi_{\mathcal{T}}^{l}(t)-\xi_{l}(t), \xi_{\mathcal{T}}^{r}(t)-\xi_{\mathcal{T}}^{l}(t)$ and $\xi_{r}(t)-\xi_{\mathcal{T}}^{r}(t)$ separately.

Existence of travelling wave

Step I: Bound for $\xi_{\mathcal{T}}^{l}(t)-\xi_{l}(t)$.
Write $\Phi(t ; q)$ for solution to ODE initial value problem:

$$
u^{\prime}(t)=g(u), \quad u(0)=q
$$

For any $q \in \mathcal{T}_{l}$, note that under flow Φq is transferred through \mathcal{E}_{l}.
Transfer time can be uniformly bounded in q.

Existence of travelling wave: Step I: Bound for $\xi_{\mathcal{T}}^{l}(t)-\xi_{l}(t)$

Construct supersolution u^{+}by picking $C \gg 1$ and connecting $\Phi(t ; q)$ with $(1,1)+\delta v_{r}$, where $v_{r}>0$ is eigenvector for $D f(1,1)$.

Remember: super solutions satisfy

$$
\partial_{t} u^{+}-\gamma \partial_{x x} u^{+}-\sum_{j=0}^{N} A_{j}\left[u^{+}\left(\cdot+r_{j}\right)-u^{+}(\cdot)\right]-g\left(u^{+}\right) \geq 0
$$

Our choice ensures $\xi_{l}(t+T)-\xi_{\mathcal{T}}^{l}$ is bounded from below; where T was maximal transfer time.

Existence of travelling wave

Step II: Bound for $\xi_{\mathcal{T}}^{r}(t)-\xi_{\mathcal{T}}^{l}(t)$.

Idea: decompose crossings vectors as $(1,1)+\psi_{r}$ and $(-1,-1)+\psi_{l}$, where ψ_{l} and ψ_{r} lie in tangent bundle of \mathcal{W}_{*}.

Existence of travelling wave

Step II: Bound for $\xi_{\mathcal{T}}^{r}(t)-\xi_{\mathcal{T}}^{l}(t)$.

Shorthand: $q=u\left(\xi_{*}(t), t\right) \in \mathcal{W}_{s}$; intersection with separatrix.
Construct super solution u^{+}and subsolution u^{-}that are step functions at $t=0$ and solve system for $t>0$.

Use: $(1,1)$ direction will grow faster than parallel directions ψ_{r} and ψ_{l}.

Existence of travelling wave

Step II: Bound for $\xi_{\mathcal{T}}^{T}(t)-\xi_{\mathcal{T}}^{I}(t)$.

Similar to heat-flow; solutions spread out. (1,1) direction expands. Can push both $u^{ \pm}$out of tube \mathcal{T} at same x-value after T time steps.

Spatially Periodic Diffusion - Anisotropy

Wavespeed c depends on the angle of propagation θ.

Spatially Periodic Diffusion - Anisotropy

Wavespeed plot for system

$$
\begin{aligned}
\frac{d}{d t} u_{i j} & =0.9\left[v_{i, j+1}+v_{i, j-1}+v_{i-1, j}+v_{i+1, j}-4 u_{i j}\right]+u_{i j}\left(u_{i j}-a\right)\left(1-u_{i j}\right) \\
\frac{d}{d t} v_{i j} & =1.1\left[u_{i, j+1}+u_{i, j-1}+u_{i-1, j}+u_{i+1, j}-4 v_{i j}\right]+v_{i j}\left(v_{i j}-a\right)\left(1-v_{i j}\right)
\end{aligned}
$$

Spatially Periodic Diffusion - Anisotropy

Spatially Periodic Diffusion - Anisotropy

Crystallographic pinning: 1-component [Hoffman, Mallet-Paret], [Cahn, V.Vleck, Mallet-Paret].

