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Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

u̇j(t) = α
(
uj−1(t) + uj+1(t)− 2uj(t)

)
+ f

(
uj(t)

)
, j ∈ Z.

Picking α = h−2 � 1, LDE can be seen as discretization with distance h of PDE

∂tu(t, x) = ∂xxu(t, x) + f
(
u(t, x)

)
, x ∈ R.

• Discrete Laplacian: uj−1 + uj+1 − 2uj

• Many physical models have a discrete spatial structure → LDEs.

• Main theme: qualitative differences between PDEs and LDEs.
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Lattice Differential Equations

Recall LDE

u̇j(t) = α
(
uj−1(t) + uj+1(t)− 2uj(t)

)
+ f

(
uj(t)

)
, j ∈ Z.

• α� 1 - semi-discretization of PDE. Useful discretizations should not introduce
new behaviour.

• α ∼ 1 - spatial gaps as energy barriers.

• α < 0 - anti-diffusion.

PDE ill-posed.

LDE still well-posed.

Motivation: Phase transition models [Van Vleck, Vainchtein, 2009]
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Phase Transition Model

Force between NN depends
on ẋn+1 − ẋn (viscous) and
E′(xn+1 − xn) (elastic).

Negative diffusion comes from
viscous terms in overdamped
limit.
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Phase Transition Model

Writing un = xn+1 − xn, in overdamped limit we get system

u̇n(t) = −d[un+1(t) + un−1(t)− 2un(t)] + E′
(
un(t)

)
, d > 0.
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Phase Transition Model

Recall dynamics

u̇n(t) = −d[un+1(t) + un−1(t)− 2un(t)] + E′
(
un(t)

)
, d > 0.

Note that E′ is cartoon of cubic.

Negative diffusion ’encourages’ interactions near phase boundary instead of
smoothing them all out.
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Negative Diffusion

Main interest here: 2d lattices

u̇ij(t) = −d[∆+u(t)]ij + g
(
uij(t); a

)
, d > 0.

Plus-shaped discrete Laplacian:

[∆+u]ij = ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij.

Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).
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Negative Diffusion

Recall negative diffusion equation

u̇ij(t) = −d[∆+u]ij(t) + g
(
uij(t); a

)
, d > 0.

Looking for travelling wave uij(t) = Ψ
(

(cos θ, sin θ) · (i, j)− ct
)

will not get you

very far.

Main idea: split lattice into even and odd sites.
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Negative Diffusion

Writing uij(t) for odd sites and vij(t) for even sites, system rewrites as

d
dtuij = −d[vi,j+1 + vi,j−1 + vi−1,j + vi+1,j − 4uij] + g

(
uij; a

)
,

d
dtvij = −d[ui,j+1 + ui,j−1 + ui−1,j + ui+1,j − 4vij] + g

(
vij; a

)
Equilibria (u, v) must satisfy

4d(v − u) = g(u; a),
4d(u− v) = g(v; a).

Besides three ’constant’ equilibria (0, 0), (a, a) and (1, 1), also ’periodic’ equilibria
u 6= v. In particular, eliminating u gives

−g(v; a) = g
(
v + (4d)−1g(v; a); a

)
.

Since g was a cubic; we get a ninth-degree polynomial expression in v.
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Negative Diffusion

Recall ninth-order system

−g(v; a) = g
(
v + (4d)−1g(v; a); a

)
.

Studied in detail by [Brucal, Van Vleck]. For appropriate choices of parameters,
exists equilibrium (u∗, v∗) with u∗v∗ < 0 (opposite sign).

Idea: look for waves that connect (0, 0) to (u∗, v∗).

Idea: rescale u and v so connection is from (0, 0)→ (1, 1).

d
dtuij = do[vi,j+1 + vi,j−1 + vi−1,j + vi+1,j − 4uij] + go

(
uij; a

)
,

d
dtvij = de[ui,j+1 + ui,j−1 + ui−1,j + ui+1,j − 4vij] + ge

(
vij; a

)
Now we have do > 0 and de > 0; typically different. Also go and ge typically
different.
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Travelling Wave

Recall lattice system

d
dtuij = do[vi,j+1 + vi,j−1 + vi−1,j + vi+1,j − 4uij] + go

(
uij; a

)
,

d
dtvij = de[ui,j+1 + ui,j−1 + ui−1,j + ui+1,j − 4vij] + ge

(
vij; a

)
Travelling wave Ansatz

uij(t) = Ψu

(
(cos θ, sin θ) · (i, j)− ct

)
, vij(t) = Ψv

(
(cos θ, sin θ) · (i, j)− ct

)
,

leads to system with both advances and delays:

−cΨ′u(ξ) = do[Ψv(ξ ± cos θ) + Ψv(ξ ± sin θ)− 4Ψu(ξ)]
+go

(
Ψu(ξ); a

)
,

−cΨ′v(ξ) = de[Ψu(ξ ± cos θ) + Ψu(ξ ± sin θ)− 4Ψv(ξ)]
+ge

(
Ψv(ξ); a

)
Notation: Ψ(ξ ± cos θ) means Ψ(ξ + cos θ) + Ψ(ξ − cos θ).
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Setting

Notice that any solution to

−cΨ′u(ξ) = do[Ψv(ξ ± cos θ) + Ψv(ξ ± sin θ)− 4Ψu(ξ)]
+go

(
Ψu(ξ); a

)
,

−cΨ′v(ξ) = de[Ψu(ξ ± cos θ) + Ψu(ξ ± sin θ)− 4Ψv(ξ)]
+ge

(
Ψv(ξ); a

)
is in fact ALSO a travelling wave solution to the non-local system

∂tu(x, t) = do[v(x± cos θ, t) + v(x± sin θ)− 4u(x, t)]
+go

(
u(x, t); a

)
,

∂tv(x, t) = de[u(x± cos θ, t) + u(x± sin θ, t)− 4v(x, t)]
+ge

(
v(x, t); a

)
.

Notice: x ∈ R so this system now has only one spatial variable.
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Main System

Our focus is on travelling wave solutions to the system

ut(x, t) = γuxx(x, t) +
N∑
j=0

Aj[u(x+ rj, t)− u(x)] + g
(
u(x, t) ; a

)
.

• Non-scalar system: u(x, t) ∈ Rn for some n ≥ 2.

• Matrices Aj ≥ 0 ∈ Rn×n.

• Matrix A :=
∑N
j=0Aj is irreducible; i.e. all components of u are mixed.

• Off-diagonal derivatives non-zero:

∂ujgi(u; a) ≥ Aij, i 6= j.

• Extra smoothing term γ ≥ 0.
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Main System

Requirements on zeroes of g
(
·; a
)

for fixed parameter a:

ut(x, t) = γuxx(x, t) +
N∑
j=0

Aj[u(x+ rj, t)− u(x)] + g
(
u(x, t) ; a

)
.

Stability refers to ODE u′ = g(u; a).
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Main Results

Chiefly interested in transition γ ↓ 0:

ut(x, t) = γuxx(x, t) +
N∑
j=0

Aj[u(x+ rj, t)− u(x)] + g
(
u(x, t) ; a

)
. (1)

Thm. [H., Van Vleck] For each γ > 0, (1) has unique travelling wave solution
u = Ψ(x− ct) connecting 0 to 1, which depends smoothly on parameter a.

Thm. [H., Van Vleck] Consider sequence γk ↓ 0 and corresponding waves
uk = Ψk(x− ckt). After passing to a subsequence, we have

Ψk(x)→ Ψ∗(x), ck → c∗

and (Ψ∗, c∗) is travelling wave at γ = 0 that connects 0 and 1.

These results generalize earlier scalar equation results [H., Verduyn-Lunel, 2004].
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Main Results: γ = 0

When γ = 0, we recover nonlocal system

ut(x, t) =
N∑
j=0

Aj[u(x+ rj, t)− u(x)] + g
(
u(x, t) ; a

)
. (2)

Thm. [...] Unique wave speed c for which (2) has travelling waves that connect 0
to 1. If c 6= 0, then profile is unique and (Ψ, c) depend smoothly on a. If c = 0,
profiles exist but no longer unique.

This generalizes scalar (u(x, t) ∈ R) equation results [Mallet-Paret, 1998].

Existence of travelling waves for (2) with rationally related rj can be found as a
byproduct in [Chen, Guo, Wu, 2008], where periodic 1d-lattices were considered.
Lattice-based approach; cannot easily consider γ > 0.

Our focus is on dependence on a and γ; closely follow [Mallet-Paret] ideas.
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Mallet-Paret: Fredholm theory

Focus in [Mallet-Paret, 1998] and [H., Verduyn Lunel] is on scalar mixed type
equation

−γΨ′′(ξ)− cΨ′(ξ) =
N∑
j=0

Aj[Ψ(ξ + rj)−Ψ(x)] + g
(
Ψ(ξ); a

)
.

that wave profiles must satisfy.

• Continuation of waves: Relies on studying Fredholm operator

L : Φ 7→ γΦ′′(ξ) + cΦ′(ξ) +
N∑
j=0

Aj[Φ(ξ + rj)− Φ(ξ)] +Dg(Ψ(ξ); a)Φ(ξ)

related to linearization around wave Ψ. Important for stability, gluing waves
together, singular perturbations. Natural to generalize to systems.

• Existence of waves: Relies on embedding system into a normal family, with
very specific rules on how g(·; a) depends on a. Homotopy to reference system.
Unclear how to lift to systems.
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Continuation of Waves: Fredholm theory

Main task: understand Fredholm properties of

L : Φ 7→ γΦ′′(ξ) + cΦ′(ξ) +
N∑
j=0

Aj[Φ(ξ + rj)− Φ(ξ)] +Dg(Ψ(ξ); a)Φ(ξ)

related to linearization around wave Ψ.

Need to show: kernel L is one-dimensional (Ψ
′
> 0) and same for adjoint L∗.

Krein-Rutman type result.

Main issue: matrices Aj not necessarily invertible; in contrast with scalar case.

Main consequence: 2d stability of waves; see [Aaron’s talk].

Secondary consequence: can understand perturbations [Van Vleck, Zhang]; e.g.
(1d)

u̇n(t) = −d[un+1(t) + un−1(t)− 2un(t)] + g
(
un(t); a

)
+ε
∑
k∈Z

1
k2(−1)kun+k(t).
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Existence of Waves

Second task is focus on existence of travelling waves with γ > 0 for

ut(x, t) = γuxx(x, t) +
N∑
j=0

Aj[u(x+ rj, t)− u(x)] + g
(
u(x, t) ; a

)
.

Degenerate situation γ = 0 handled afterwards by limit γ ↓ 0.

If Aj = 0 for all 0 ≤ j ≤ n, then can use standard theory [Volpert, Volpert,
Volpert] (see also [Crooks, Toland] for convective terms). Methods rely on
topological arguments (index theory; homotopies).

In [Chen, 1991] scalar non-local PDEs are considered. Waves constructed using
only comparison principles. Basis for our approach.
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Main System

Focus on spatially invariant solutions, which satisfy ODE

u′(t) = g
(
u(t) ; a

)
.

Separatrix W∗ splits
basins of attraction.

Based on [Hirsch, 1982] (cooperative systems): no points on W∗ related by ≤.
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Existence of travelling wave

Pick smooth non-decreasing initial condition u(x, 0) = u0(x) and evolve

ut(x, t) = γuxx(x, t) +
N∑
j=0

Aj[u(x+ rj, t)− u(x)] + g
(
u(x, t) ; a

)
.
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Existence of travelling wave

Note that u(·, t) must always intersect W∗ once; say at x = ξ∗(t).

ut(x, t) = γuxx(x, t) +
N∑
j=0

Aj[u(x+ rj, t)− u(x)] + g
(
u(x, t) ; a

)
.

Main goal: show that u(x− ξ∗(t), t)→ U(x) as t→∞ in some sense.
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Existence of travelling wave

Pick two squares El and Er near (0, 0) and (1, 1)

u(·, t) intersects squares at x = ξl(t), x = ξr(t).

Must show: ξr(t)− ξl(t) bounded for convergence u(x− ξ∗(t), t)→ U(x) to be
useful.
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Existence of travelling wave

Build a tube around separatrix: build Tr and Tl by shifting W∗ left and right.

Intersections with Tl, Tr at x = ξlT (t), x = ξrT (t).

Idea: bound ξlT (t)− ξl(t), ξrT (t)− ξlT (t) and ξr(t)− ξrT (t) separately.
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Existence of travelling wave

Step I: Bound for ξlT (t)− ξl(t).

Write Φ(t; q) for solution to ODE initial value problem:

u′(t) = g(u), u(0) = q.

For any q ∈ Tl, note that under flow Φ q is transferred through El.

Transfer time can be uniformly bounded in q.
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Existence of travelling wave: Step I: Bound for ξlT (t)− ξl(t)
Construct supersolution u+ by picking C � 1 and connecting Φ(t; q) with
(1, 1) + δvr, where vr > 0 is eigenvector for Df(1, 1).

Remember: super solutions satisfy

∂tu
+ − γ∂xxu+ −

N∑
j=0

Aj[u+(·+ rj)− u+(·)]− g(u+) ≥ 0.

Our choice ensures ξl(t+ T )− ξlT is bounded from below; where T was maximal
transfer time.
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Existence of travelling wave

Step II: Bound for ξrT (t)− ξlT (t).

Idea: decompose crossings vectors as (1, 1) + ψr and (−1,−1) + ψl, where ψl and
ψr lie in tangent bundle of W∗.
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Existence of travelling wave

Step II: Bound for ξrT (t)− ξlT (t).

Shorthand: q = u(ξ∗(t), t) ∈ Ws; intersection with separatrix.

Construct super solution u+ and subsolution u− that are step functions at t = 0
and solve system for t > 0.

Use: (1, 1) direction will grow faster than parallel directions ψr and ψl.
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Existence of travelling wave

Step II: Bound for ξrT (t)− ξlT (t).

Similar to heat-flow; solutions spread out. (1, 1) direction expands. Can push both
u± out of tube T at same x-value after T time steps.
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Spatially Periodic Diffusion - Anisotropy

Wavespeed c depends on the angle of propagation θ.
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Spatially Periodic Diffusion - Anisotropy

Wavespeed plot for system

d
dtuij = 0.9[vi,j+1 + vi,j−1 + vi−1,j + vi+1,j − 4uij] + uij(uij − a)(1− uij),
d
dtvij = 1.1[ui,j+1 + ui,j−1 + ui−1,j + ui+1,j − 4vij] + vij(vij − a)(1− vij).
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Spatially Periodic Diffusion - Anisotropy

32



Spatially Periodic Diffusion - Anisotropy

Crystallographic pinning: 1-component [Hoffman, Mallet-Paret], [Cahn, V.Vleck,
Mallet-Paret].
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