Minneapolis - December 4th 2012

Multi-Dimensional Stability of

Travelling Waves through

Rectangular Lattices

Hermen Jan Hupkes
Leiden University
(Joint work with E. van Vleck and A. Hoffman)

2d Lattice Differential Equation

Focus in this talk: lattice differential equation (LDE)

$$
\dot{u}_{i, j}(t)=\left[\Delta^{+} u(t)\right]_{i, j}+g\left(u_{i, j}(t) ; a\right) .
$$

- Often called: discrete Nagumo equation.
- Two dimensional spatial lattice: $(i, j) \in \mathbb{Z}^{2}$.
- Nonlinearity g is bistable.
- Discrete Laplacian Δ^{+}mixes nearest neighbours:

2d LDE: Nonlinearity

Recall the dynamics:

$$
\dot{u}_{i, j}(t)=\left[\Delta^{+} u(t)\right]_{i, j}+g\left(u_{i, j}(t) ; a\right) .
$$

Lattice equations: Travelling Waves

Recall the dynamics:

$$
\dot{u}_{i, j}(t)=\left[\Delta^{+} u(t)\right]_{i, j}+g\left(u_{i, j}(t) ; a\right) .
$$

The nonlinearity g 'pulls' u towards either $u=0$ or $u=1$ [competition].
The discrete diffusion 'smooths' out any wrinkles in u.
Travelling waves: compromise between these two forces.

Travelling waves with profile Φ and speed c connecting $u=0$ to $u=1$ in direction

$$
\vec{k}=(\cos \theta, \sin \theta)
$$

$$
u_{i, j}(t)=\Phi((\cos \theta, \sin \theta) \cdot(i, j)+c t), \quad \Phi(-\infty)=0, \quad \Phi(+\infty)=1
$$

Lattice equations: Travelling Waves

Recall the dynamics:

$$
\dot{u}_{i, j}(t)=\left[\Delta^{+} u(t)\right]_{i, j}+g\left(u_{i, j}(t) ; a\right) .
$$

- Travelling waves connecting $u \equiv 0$ to $u \equiv 1$ must satisfy

$$
\begin{aligned}
c \Phi^{\prime}(\xi)=\Phi(\xi & +\cos \theta)+\Phi(\xi-\cos \theta)+\Phi(\xi+\sin \theta)+\Phi(\xi-\sin \theta)-4 \Phi(\xi) \\
& +g(\Phi(\xi) ; a)
\end{aligned}
$$

This is a mixed type functional differential equation (MFDE).

Direction θ explicitly appears in wave equation.

Lattice equations: Travelling Waves

Recall the dynamics:

$$
\dot{u}_{i, j}(t)=\left[\Delta^{+} u(t)\right]_{i, j}+g\left(u_{i, j}(t) ; a\right) .
$$

Existence of travelling waves For each $a \in(0,1)$ and $\theta \in[0,2 \pi]$ there exists a travelling wave.

Speed $c(a, \theta)$ is unique.
If $c \neq 0$, then wave profile Φ is unique and also monotone, i.e. $\Phi^{\prime}>0$.
[Mallet-Paret]
Dependence of c on angle θ and detuning parameter a very delicate. [Aaron Hoffman's talk]

In this talk: we fix (a, θ) and assume that $c \neq 0$.
Goal: understand stability of the travelling wave.

Stability - Coordinate System

Assumption: we have a wave solution (c, Φ) travelling $(c \neq 0)$ in rational direction $\left(\sigma_{1}, \sigma_{2}\right) \in \mathbb{Z}^{2}$.

Naive Ansatz

$$
u_{i j}(t)=\Phi\left(i \sigma_{1}+j \sigma_{2}+c t\right)+v_{i j}(t) .
$$

Need to understand behaviour of perturbation $v(t)$.
First step: want natural coordinates parallel and perpendicular to propagation of wave.

$$
\begin{aligned}
n & =i \sigma_{1}+j \sigma_{2} & & \text { parallel } \\
l & =i \sigma_{2}-j \sigma_{1} & & \text { transverse. }
\end{aligned}
$$

Stability - Coordinate System

Equation only posed on sublattice of $(n, l) \in \mathbb{Z}^{2}$ in new coordinates.
Remember: $\left(\sigma_{1}, \sigma_{2}\right) \in \mathbb{Z}^{2}$.

Stability - Coordinate System

In new coordinates, LDE becomes

$$
\dot{u}_{n l}(t)=\left[\Delta^{\times} u(t)\right]_{n l}+g\left(u_{n l}(t)\right) .
$$

The discrete operator Δ^{\times}now acts as

$$
\begin{gathered}
{\left[\Delta^{\times} u\right]_{n, l}=u_{n+\sigma_{1}, l+\sigma_{2}}+u_{n+\sigma_{2}, l-\sigma_{1}}} \\
+u_{n-\sigma_{1}, l-\sigma_{2}}+u_{n-\sigma_{2}, l+\sigma_{1}} \\
-4 u_{n, l}
\end{gathered}
$$

All geometrical information encoded in Δ^{\times}.
Travelling wave becomes: $u_{n l}(t)=\Phi(n+c t)$
Special cases $\left(\sigma_{1}, \sigma_{2}\right)=(1,0)$ or $(0,1)$ (horizontal or vertical waves): $\Delta^{\times}=\Delta^{+}$.

Stability - Perturbation

Substituting naive perturbation Ansatz

$$
u_{n l}(t)=\Phi(n+c t)+v_{n l}(t)
$$

into LDE we obtain

$$
\begin{gathered}
\dot{v}_{n l}(t)=\left[\Delta^{\times} v(t)\right]_{n l}+g^{\prime}(\Phi(n+c t)) v_{n l}(t) \\
+O\left(\left|v_{n l}(t)\right|^{2}\right) .
\end{gathered}
$$

(L) Need to understand growth rate of linear system

$$
\dot{v}_{n l}(t)=\left[\Delta^{\times} v(t)\right]_{n l}+g^{\prime}(\Phi(n+c t)) v_{n l}(t)
$$

In general, since we are in 2d, expect something algebraic.
(NL) Quadratic nonlinearities combined with slow algebraic decay spell trouble.

$$
\int_{0}^{t} \underbrace{\left(1+t-t_{0}\right)^{-1 / 2}}_{\text {Linear decay }} \underbrace{\left[\left(1+t_{0}\right)^{-1 / 2}\right]^{2}}_{\text {nonlinearity }} d t_{0} \sim \ln (1+t)(1+t)^{-1 / 2}
$$

Stability - Linear System

Focus on linear LDE posed on \mathbb{Z}^{2} :

$$
\dot{v}_{n l}(t)=\left[\Delta^{\times} v(t)\right]_{n l}+g^{\prime}(\Phi(n+c t)) v_{n l}(t) .
$$

Observe: transverse coordinate l does not appear in coefficients.
Ideal for Fourier transform in transverse direction.
Write, for $\omega \in[-\pi, \pi]$:

$$
\widehat{v}_{n}(\omega)=\sum_{l \in \mathbb{Z}} v_{n l} e^{-i \omega l}
$$

Inverse transformation:

$$
v_{n l}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i l \omega} \widehat{v}_{n}(\omega) d \omega
$$

Stability - Linear System

Focus on linear LDE posed on \mathbb{Z}^{2} :

$$
\dot{v}_{n l}(t)=\left[\Delta^{\times} v(t)\right]_{n l}+g^{\prime}(\Phi(n+c t)) v_{n l}(t) .
$$

Observe: transverse coordinate l does not appear in coefficients.
Ideal for Fourier transform in transverse direction.
System is decoupled into

$$
\frac{d}{d t} \widehat{v}_{n}(\omega, t)=\left[\widehat{\Delta}^{\times}(\omega) \widehat{v}(\omega, t)\right]_{n}+g^{\prime}(\Phi(n+c t)) \widehat{v}_{n}(\omega, t)
$$

with

$$
\left[\widehat{\Delta}^{\times}(\omega) v\right]_{n}=e^{+i \omega \sigma_{2}} v_{n+\sigma_{1}}+e^{-i \omega \sigma_{1}} v_{n+\sigma_{2}}+e^{-i \omega \sigma_{2}} v_{n-\sigma_{1}}+e^{i \omega \sigma_{1}} v_{n-\sigma_{2}}-4 v_{n}
$$

In other words, for each frequency ω we have an LDE posed on a 1d lattice (in parallel coordinate n).

Stability - Linear System

Recall decoupled LDE

$$
\frac{d}{d t} \widehat{v}_{n}(\omega, t)=\left[\widehat{\Delta}^{\times}(\omega) \widehat{v}(\omega, t)\right]_{n}+g^{\prime}(\Phi(n+c t)) \widehat{v}_{n}(\omega, t)
$$

with

$$
\left[\widehat{\Delta}^{\times}(\omega) v\right]_{n}=e^{+i \omega \sigma_{2}} v_{n+\sigma_{1}}+e^{-i \omega \sigma_{1}} v_{n+\sigma_{2}}+e^{-i \omega \sigma_{2}} v_{n-\sigma_{1}}+e^{i \omega \sigma_{1}} v_{n-\sigma_{2}}-4 v_{n}
$$

Special case $\omega=0$. Write $w_{n}(t)=\widehat{v}_{n}(0, t)$. We get

$$
\frac{d}{d t} w_{n}(t)=\left[\widehat{\Delta}^{\times}(0) w(t)\right]_{n}+g^{\prime}(\Phi(n+c t)) w_{n}(t),
$$

with

$$
\left[\widehat{\Delta}^{\times}(0) w\right]_{n}=w_{n+\sigma_{1}}+w_{n+\sigma_{2}}+w_{n-\sigma_{1}}+w_{n-\sigma_{2}}-4 w_{n}
$$

Stability - Linear System

In special case $\omega=0$, writing $w_{n}(t)=\widehat{v}_{n}(0, t)$, we hence have:

$$
\begin{gathered}
\frac{d}{d t} w_{n}(t)=w_{n+\sigma_{1}}(t)+w_{n+\sigma_{2}}(t)+w_{n-\sigma_{1}}(t)+w_{n-\sigma_{2}}(t)-4 w_{n}(t) \\
+g^{\prime}(\Phi(n+c t)) w_{n}(t)
\end{gathered}
$$

Notice that $w_{n}(t)=\Phi^{\prime}(n+c t)$ is a solution.
Indeed: wave profile Φ had to satisfy

$$
c \Phi^{\prime}(\xi)=\Phi\left(\xi+\sigma_{1}\right)+\Phi\left(\xi+\sigma_{2}\right)+\Phi\left(\xi-\sigma_{1}\right)+\Phi\left(\xi-\sigma_{2}\right)-4 \Phi(\xi)+g(\Phi(\xi))
$$

The zero-frequency component is hence the usual linearization around the travelling wave, just like in 1d.

Stability - 1d Linear Systems

Need to understand 1d LDE's, e.g.

$$
\dot{U}_{j}(t)=U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)+g\left(U_{j}(t)\right), \quad j \in \mathbb{Z}
$$

Write as

$$
\dot{U}(t)=\mathcal{F}(U(t))
$$

with $\mathcal{F}: \ell^{\infty}(\mathbb{Z} ; \mathbb{R}) \rightarrow \ell^{\infty}(\mathbb{Z} ; \mathbb{R})$.
View as ODE posed on sequence space $\ell^{\infty}(\mathbb{Z} ; \mathbb{R})$.
Suppose we have a wave solution $\bar{U}_{j}(t)=\Phi(j+c t)$ with $c>0$, with

$$
\lim _{\xi \rightarrow-\infty} \Phi(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} \Phi(\xi)=1
$$

Want to understand linear behaviour of $U(t)=\bar{U}(t)+V(t)$.

Stability - 1d Linear Systems

Linear dynamics for $V(t)=U(t)-\bar{U}(t)$:

$$
\dot{V}(t)=D \mathcal{F}(\bar{U}(t)) V(t), \quad V(t) \in \ell^{\infty}(\mathbb{Z} ; \mathbb{R})
$$

Problem: Non-Autonomous!

Remember: $\bar{U}_{j}(t)=\Phi(j+c t)$. We DO have shift-periodicity

$$
\bar{U}_{j}(t+1 / c)=\bar{U}_{j+1}(t) \quad(=\Phi(j+1)) .
$$

Stability - 1d Linear Systems

Linear behaviour $V(t)=U(t)-\bar{U}(t)$:
Green's function $\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j_{0}}$ is value of $V_{j}(t)$ for unique solution to linearized LDE

$$
\begin{gathered}
\dot{V}(t)=D \mathcal{F}(\bar{U}(t)) V(t) \\
V_{j^{\prime}}\left(t_{0}\right)=\delta_{j^{\prime}, j_{0}} . \\
{\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j, j_{0}}} \\
\text { evolve } \uparrow \\
j \uparrow V(t)
\end{gathered}
$$

Stability - 1d Linear Systems

Linear behaviour $V(t)=U(t)-\bar{U}(t)$:
Green's function $\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j_{0}}$ is value of $V_{j}(t)$ for unique solution to linearized LDE

$$
\begin{aligned}
\dot{V}(t) & =D \mathcal{F}(\bar{U}(t)) V(t) \\
V_{j^{\prime}}\left(t_{0}\right) & =\delta_{j^{\prime}, j_{0}} .
\end{aligned}
$$

For $V \in \ell^{\infty}(\mathbb{Z} ; \mathbb{R})$, write $\mathcal{G}\left(t, t_{0}\right) V$ for sequence

$$
\left[\mathcal{G}\left(t, t_{0}\right) V\right]_{j}=\sum_{j_{0} \in \mathbb{Z}}\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j, j_{0}} V_{j_{0}}
$$

(convolution).
All information (time + space) on linear system encoded in $\mathcal{G}\left(t, t_{0}\right)$.

Stability - 1d Linear Systems

To understand $\mathcal{G}\left(t, t_{0}\right)$ must solve

$$
\dot{V}(t)=D \mathcal{F}(\bar{U}(t)) V(t) .
$$

[Chow, Mallet-Paret, Shen] Can exploit shift-periodicity to develop shift-periodic Floquet theory.

Problem: must analyze 'monodromy map' $\mathcal{G}\left(t_{0}+\frac{1}{c}, t_{0}\right)$ 'by hand'. Heavily dependent on ad-hoc arguments e.g. comparison principles. All arguments in sequence space $\ell^{\infty}(\mathbb{Z} ; \mathbb{R})$.

Nevertheless, authors managed to understand discrete Nagumo equation.
Our goal: Make connection with highly developed nonlinear stability theory for PDEs [Zumbrun, Howard, ...].

Stability - 1d Linear Systems

Recall linear problem on $\ell^{\infty}(\mathbb{Z} ; \mathbb{R})$:

$$
\dot{V}(t)=D \mathcal{F}(\bar{U}(t)) V(t),
$$

which for discrete Nagumo LDE is:

$$
\dot{V}_{j}(t)=V_{j+1}(t)+V_{j-1}(t)-2 V_{j}(t)+g^{\prime}(\Phi(j+c t)) V_{j}(t) .
$$

We 'fill in the gaps' between lattice points and look for solutions

$$
V_{j}(t)=e^{\lambda t} v(j+c t)
$$

Here $\lambda \in \mathbb{C}$ is spectral parameter and v must be bounded and solve

$$
c v^{\prime}(\xi)+\lambda v(\xi)=v(\xi-1)+v(\xi+1)-2 v(\xi)+g^{\prime}(\Phi(\xi)) v(\xi)
$$

in comoving frame $\xi=j+c t$. Write as $\mathcal{L} v=\lambda v$ with

$$
[\mathcal{L} v](\xi)=-c v^{\prime}(\xi)+v(\xi-1)+v(\xi+1)-2 v(\xi)+g^{\prime}(\Phi(\xi)) v(\xi) .
$$

Fundamental relation

Reminder: Green's function $\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j j_{0}}$ is value of $V_{j}(t)$ for unique solution to linearized LDE

$$
\begin{aligned}
\dot{V}(t) & =D \mathcal{F}(\bar{U}(t)) V(t) \\
V_{j^{\prime}}\left(t_{0}\right) & =\delta_{j^{\prime}, j_{0}} .
\end{aligned}
$$

Thm. [Benzoni-Gavage, Huot, Rousset] For $\gamma \gg 1$ and $t>t_{0}$,

$$
\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j j_{0}}=\frac{-1}{2 \pi i} \int_{\gamma-i \pi c}^{\gamma+i \pi c} e^{\lambda\left(t-t_{0}\right)} G_{\lambda}\left(j+c t, j_{0}+c t_{0}\right) d \lambda
$$

Resolvent kernel $G_{\lambda}\left(\xi, \xi_{0}\right)$ is unique solution [if defined] to

$$
(\mathcal{L}-\lambda) G_{\lambda}\left(\cdot, \xi_{0}\right)=\delta\left(\xi-\xi_{0}\right)
$$

Stability

Recall identity $\left(\gamma \gg 1\right.$ and $\left.t>t_{0}\right)$

$$
\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j j_{0}}=\frac{-1}{2 \pi i} \int_{\gamma-i \pi c}^{\gamma+i \pi c} e^{\lambda\left(t-t_{0}\right)} G_{\lambda}\left(j+c t, j_{0}+c t_{0}\right) d \lambda
$$

Can view this as refined version of meta-identity

$$
e^{t \mathcal{L}}=-\frac{1}{2 \pi i} \int e^{\lambda t}[\mathcal{L}-\lambda]^{-1} d \lambda
$$

Have to worry about invertibility of $\mathcal{L}-\lambda$, i.e. study spectrum of \mathcal{L}.
For example $\mathcal{L} \Phi^{\prime}=0$ (translational invariance), so $\lambda=0$ in spectrum.

Stability

Recall identity $\left(\gamma \gg 1\right.$ and $\left.t>t_{0}\right)$

$$
\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j j_{0}}=\frac{-1}{2 \pi i} \int_{\gamma-i \pi c}^{\gamma+i \pi c} e^{\lambda\left(t-t_{0}\right)} G_{\lambda}\left(j+c t, j_{0}+c t_{0}\right) d \lambda .
$$

Stability - 1d Linear Systems

Recall identity $\left(\gamma \gg 1\right.$ and $\left.t>t_{0}\right)$

$$
\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j j_{0}}=\frac{-1}{2 \pi i} \int_{\gamma-i \pi c}^{\gamma+i \pi c} e^{\lambda\left(t-t_{0}\right)} G_{\lambda}\left(j+c t, j_{0}+c t_{0}\right) d \lambda
$$

Main goal: construct expressions for $G_{\lambda}\left(\xi, \xi_{0}\right)$ that can be extended meromorphically in λ near poles of $[\mathcal{L}-\lambda]^{-1}$.

Can do this if translational eigenvalue $\lambda=0$ is a simple eigenvalue $[\mathrm{H} .+$ Sandstede]. In particular, if $\operatorname{Ker} \mathcal{L}=\operatorname{span}\left\{\Phi^{\prime}\right\}$ and $\Phi^{\prime} \notin$ Range \mathcal{L}.

One obtains

$$
G_{\lambda}\left(\xi, \xi_{0}\right)=\lambda^{-1} \Phi^{\prime}(\xi) \Psi\left(\xi_{0}\right)+O\left(e^{-\nu\left|\xi-\xi_{0}\right|}\right)
$$

where we have

$$
\operatorname{Ker} \mathcal{L}^{*}=\operatorname{span}\{\Psi\}
$$

with \mathcal{L}^{*} the formal adjoint of \mathcal{L}.

Stability - 1d Linear Systems

Recall identity $\left(\gamma \gg 1\right.$ and $\left.t>t_{0}\right)$

$$
\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j j_{0}}=\frac{-1}{2 \pi i} \int_{\gamma-i \pi c}^{\gamma+i \pi c} e^{\lambda\left(t-t_{0}\right)} G_{\lambda}\left(j+c t, j_{0}+c t_{0}\right) d \lambda
$$

Using meromorphic form

$$
G_{\lambda}\left(\xi, \xi_{0}\right)=\lambda^{-1} \Phi^{\prime}(\xi) \Psi\left(\xi_{0}\right)+O\left(e^{-\nu\left|\xi-\xi_{0}\right|}\right)
$$

we now obtain the key result

$$
\begin{aligned}
{\left[\mathcal{G}\left(t, t_{0}\right)\right]_{j j_{0}}=\quad \Phi(j} & +c t) \Psi\left(j_{0}+c t_{0}\right) \\
& +O\left(e^{-\nu\left(t-t_{0}\right)} e^{-\nu\left|j+c t-j_{0}-c t_{0}\right|}\right)
\end{aligned}
$$

In particular, Green's function for 1d lattice system can be 'read-off' from well-behaved spectral pictures.

Stability - back to 2d

Remember: for $\omega=0$, writing $w_{n}(t)=\widehat{v}_{n}(0, t)$, we had:

$$
\begin{gathered}
\frac{d}{d t} w_{n}(t)=w_{n+\sigma_{1}}(t)+w_{n+\sigma_{2}}(t)+w_{n-\sigma_{1}}(t)+w_{n-\sigma_{2}}(t)-4 w_{n}(t) \\
+g^{\prime}(\Phi(n+c t)) w_{n}(t)
\end{gathered}
$$

In this case, the relevant linear operator is:

$$
\left[\mathcal{L}_{0} w\right](\xi)=-c w^{\prime}(\xi)+w\left(\xi \pm \sigma_{1}\right)+w\left(\xi \pm \sigma_{2}\right)-4 w(\xi)+g^{\prime}(\Phi(\xi)) w(\xi)
$$

Remember $\mathcal{L}_{0} \Phi^{\prime}=0$. We also have: $\mathcal{L}_{0}^{*} \Psi=0$ for the adjoint Ψ which has $\Psi(\xi)>0$ [Mallet-Paret].

For the Green's function we hence get

$$
\begin{aligned}
{\left[\mathcal{G}_{\omega=0}\left(t, t_{0}\right)\right]_{n n_{0}}=\quad \Phi^{\prime}(n} & +c t) \Psi\left(n_{0}+c t_{0}\right) \\
& +O\left(e^{-\nu\left(t-t_{0}\right)} e^{-\nu\left|n+c t-n_{0}-c t_{0}\right|}\right)
\end{aligned}
$$

Note: no temporal decay.

Stability - Linear System

Back to $\omega \neq 0$. Recall decoupled LDE

$$
\frac{d}{d t} \widehat{v}_{n}(\omega, t)=\left[\widehat{\Delta}^{\times}(\omega) \widehat{v}(\omega, t)\right]_{n}+g^{\prime}(\Phi(n+c t)) \widehat{v}_{n}(\omega, t),
$$

with

$$
\left[\widehat{\Delta}^{\times}(\omega) v\right]_{n}=e^{+i \omega \sigma_{2}} v_{n+\sigma_{1}}+e^{-i \omega \sigma_{1}} v_{n+\sigma_{2}}+e^{-i \omega \sigma_{2}} v_{n-\sigma_{1}}+e^{i \omega \sigma_{1}} v_{n-\sigma_{2}}-4 v_{n}
$$

Relevant operator now is:
$\left[\mathcal{L}_{\omega} w\right](\xi)=-c w^{\prime}(\xi)+e^{ \pm i \omega \sigma_{2}} w\left(\xi \pm \sigma_{1}\right)+e^{\mp i \omega \sigma_{1}} w\left(\xi \pm \sigma_{2}\right)-4 w(\xi)+g^{\prime}(\Phi(\xi)) w(\xi)$.

Need to understand spectrum of this operator.
What happens to zero eigenvalue for $\omega \approx 0$?

Stability - Linear System

Recall ω-dependent linear operators

$$
\left[\mathcal{L}_{\omega} w\right](\xi)=-c w^{\prime}(\xi)+e^{ \pm i \omega \sigma_{2}} w\left(\xi \pm \sigma_{1}\right)+e^{\mp i \omega \sigma_{1}} w\left(\xi \pm \sigma_{2}\right)-4 w(\xi)+g^{\prime}(\Phi(\xi)) w(\xi)
$$

There exists a branch

$$
\omega \mapsto\left(\lambda_{\omega}, \phi_{\omega}, \psi_{\omega}\right)
$$

for $\omega \approx 0$ with

$$
\left[\mathcal{L}_{\omega}-\lambda_{\omega}\right] \phi_{\omega}=0, \quad\left[\mathcal{L}_{\omega}^{*}-\lambda_{\omega}^{*}\right] \psi_{\omega}=0
$$

Of course, $\lambda_{0}=0, \phi_{0}=\Phi^{\prime}$ and $\psi_{0}=\Psi$.
Key assumption:

$$
\operatorname{Re} \lambda_{\omega} \leq-\kappa \omega^{2}, \quad \omega \approx 0, \quad \kappa>0
$$

For general directions $\left(\sigma_{1}, \sigma_{2}\right) \in \mathbb{Z}^{2}$, can only establish this with numerics.

Stability - Linear System

Recall ω-dependent linear operators

$$
\left[\mathcal{L}_{\omega} w\right](\xi)=-c w^{\prime}(\xi)+e^{ \pm i \omega \sigma_{2}} w\left(\xi \pm \sigma_{1}\right)+e^{\mp i \omega \sigma_{1}} w\left(\xi \pm \sigma_{2}\right)-4 w(\xi)+g^{\prime}(\Phi(\xi)) w(\xi)
$$

In special case $\left(\sigma_{1}, \sigma_{2}\right)=(1,0)$ we get

$$
\begin{aligned}
{\left[\mathcal{L}_{\omega} w\right](\xi) } & =-c w^{\prime}(\xi)+w(\xi \pm 1)+2 \cos \omega w(\xi)-4 w(\xi)+g^{\prime}(\Phi(\xi)) w(\xi) \\
& =\left[\mathcal{L}_{0} w\right](\xi)+2(\cos \omega-1) w(\xi)
\end{aligned}
$$

This immediately gives $\lambda_{\omega}=2(\cos \omega-1)$ and $\phi_{\omega}=\Phi^{\prime}$.
Eigenfunctions ϕ_{ω} now independent of ω.

Stability - Linear System

Recall ω-dependent linear operators

$$
\left[\mathcal{L}_{\omega} w\right](\xi)=-c w^{\prime}(\xi)+e^{ \pm i \omega \sigma_{2}} w\left(\xi \pm \sigma_{1}\right)+e^{\mp i \omega \sigma_{1}} w\left(\xi \pm \sigma_{2}\right)-4 w(\xi)+g^{\prime}(\Phi(\xi)) w(\xi)
$$

In special case $\left(\sigma_{1}, \sigma_{2}\right)=(1,1)$ we get

$$
\left[\mathcal{L}_{\omega} w\right](\xi)=-c w^{\prime}(\xi)+(2 \cos \omega) w(\xi \pm 1)-4 w(\xi)+g^{\prime}(\Phi(\xi)) w(\xi)
$$

This gives $\left[\partial_{\omega} \lambda_{\omega}\right]_{\omega=0}=0$ and $\left[\partial_{\omega} \phi_{\omega}\right]_{\omega=0}=0$.
Eigenfunctions ϕ_{ω} now dependent on ω. But everything is quadratic in ω.

Stability - Linear System

Recall decoupled LDE

$$
\frac{d}{d t} \widehat{v}_{n}(\omega, t)=\left[\widehat{\Delta}^{\times}(\omega) \widehat{v}(\omega, t)\right]_{n}+g^{\prime}(\Phi(n+c t)) \widehat{v}_{n}(\omega, t) .
$$

For the Green's function we get

$$
\begin{aligned}
& {\left[\mathcal{G}_{\omega}\left(t, t_{0}\right)\right]_{n n_{0}}=\quad e^{\lambda_{\omega}\left(t-t_{0}\right)} \phi_{\omega}(n+c t) \psi_{\omega}^{*}\left(n_{0}+c t_{0}\right)} \\
& +O\left(e^{-\nu\left(t-t_{0}\right)} e^{-\nu\left|n+c t-n_{0}-c t_{0}\right|}\right) .
\end{aligned}
$$

Note: temporal decay of order $O\left(e^{-\kappa \omega^{2} \Delta t}\right)$ since $\operatorname{Re} \lambda_{\omega} \leq-\kappa \omega^{2}$.
In particular, expect heat-kernel type decay in transverse direction.

Stability - Linear System

Return to full 2d linear system

$$
\dot{v}_{n l}(t)=\left[\Delta^{\times} v(t)\right]_{n l}+g^{\prime}(\Phi(n+c t)) v_{n l}(t) .
$$

Look at initial condition

$$
v_{n l}(0)=v_{n l}^{0}=\left(v_{n}^{0}\right)_{l}
$$

with $v^{0} \in \ell^{\infty}\left(\mathbb{Z} ; \ell^{1}(\mathbb{Z} ; \mathbb{R})\right)$.
Norm on $v^{0}: \ell^{\infty}$ in direction parallel to wave and ℓ^{1} in direction transverse to wave.

We get for ℓ^{2} norm in transverse direction:

$$
\|v(t)\|_{\ell^{\infty}\left(\mathbb{Z} ; \ell^{2}(\mathbb{Z} ; \mathbb{R})\right)} \sim(1+t)^{-1 / 4}\left\|v^{0}\right\|_{\ell^{\infty}\left(\mathbb{Z} ; \ell^{1}(\mathbb{Z} ; \mathbb{R})\right)}
$$

For ℓ^{∞} norm in transverse direction get extra decay:

$$
\|v(t)\|_{\ell^{\infty}(\mathbb{Z} ; \ell \infty(\mathbb{Z} ; \mathbb{R}))} \sim(1+t)^{-1 / 2}\left\|v^{0}\right\|_{\ell \infty\left(\mathbb{Z} ; \ell^{1}(\mathbb{Z} ; \mathbb{R})\right)}
$$

Stability - Naive Ansatz

Substituting naive perturbation Ansatz

$$
u_{n l}(t)=\Phi(n+c t)+v_{n l}(t)
$$

led to

$$
\begin{gathered}
\dot{v}_{n l}(t)=\left[\Delta^{\times} v(t)\right]_{n l}+g^{\prime}(\Phi(n+c t)) v_{n l}(t) \\
+O\left(\left|v_{n l}(t)\right|^{2}\right) .
\end{gathered}
$$

Linear decay of $t^{-1 / 4}$ much too weak to close nonlinear argument.
However, we understand precisely the terms in Green's function leading to slow decay:

$$
\left[\mathcal{G}_{\omega}\left(t, t_{0}\right)\right]_{n n_{0}} \sim e^{\lambda_{\omega}\left(t-t_{0}\right)} \phi_{\omega}(n+c t) \psi_{\omega}^{*}\left(n_{0}+c t_{0}\right)
$$

Since $\phi_{0}=\Phi^{\prime}$, deformations in wave profile are the main culprit of slow decay.

Stability - Refined Ansatz

Refined perturbation Ansatz

$$
u_{n l}(t)=\Phi\left(n+c t+\theta_{l}(t)\right)+v_{n l}(t)
$$

Here $\theta_{l}(t)$ measures deformation of wave profile (expect slow decay).
Remainder included in $v(t)$ (expect faster decay).

Stability - Refined Ansatz

Refined perturbation Ansatz

$$
u_{n l}(t)=\Phi\left(n+c t+\theta_{l}(t)\right)+v_{n l}(t)
$$

Normalization conditions:

$$
\sum_{n \in \mathbb{Z}} \Psi(n+c t) v_{n l}(t)=0, \quad \text { for all } l \in \mathbb{Z}
$$

Let us shorten this to:

$$
Q_{c t} v(t)=0 \in \ell^{\infty}(\mathbb{Z} ; \mathbb{R})
$$

Reminder: we had $\mathcal{L}_{0} \Phi^{\prime}=0$ and $\mathcal{L}_{0}^{*} \Psi=0$ with

$$
\sum_{n \in \mathbb{Z}} \Psi(n+c t) \Phi^{\prime}(n+c t)=1
$$

Stability - Refined Ansatz

Need notation:

$$
\theta_{l}^{\diamond}=\left(\theta_{l+\sigma_{2}}-\theta_{l}, \theta_{l-\sigma_{2}}-\theta_{l}, \theta_{l-\sigma_{1}}-\theta_{l}, \theta_{l+\sigma_{1}}-\theta_{l}\right)
$$

This expression contains only differences in θ. Fourier symbol for difference: $e^{ \pm i \omega \sigma_{i}}-1=O(\omega)$.

Linear evolution for θ can be written as:

$$
\dot{\theta}_{l}(t)=Q_{c t} L(c t+\theta) v(t)+Q_{c t} M(c t+\theta) \theta^{\diamond}(t)+c Q_{c t}^{\prime} v(t)
$$

Here we have [Very similar to naive linearization]:

$$
[L(c t+\theta) v]_{n l}=\left[\Delta^{\times} v\right]_{n l}+g^{\prime}\left(\Phi\left(n+c t+\theta_{l}\right)\right) v_{n l} .
$$

New term [Measures effect of profile mismatches]:

$$
\begin{aligned}
{\left[M(c t+\theta) \theta^{\diamond}\right]_{n l}=\Phi^{\prime}(n} & \left.+c t+\theta_{l} \pm \sigma_{1}\right)\left[\theta_{l \pm \sigma_{2}}-\theta_{l}\right] \\
& +\Phi^{\prime}\left(n+c t+\theta_{l} \pm \sigma_{2}\right)\left[\theta_{l \mp \sigma_{1}}-\theta_{l}\right]
\end{aligned}
$$

Stability - Refined Ansatz

Recall linear evolution for θ :

$$
\dot{\theta}_{l}(t)=Q_{c t} L(c t+\theta) v(t)+Q_{c t} M(c t+\theta) \theta^{\diamond}(t)+c Q_{c t}^{\prime} v(t)
$$

with mismatch term

$$
\begin{aligned}
& {\left[M(c t+\theta) \theta^{\diamond}\right]_{n l}=\Phi^{\prime}\left(n+c t+\theta_{l} \pm \sigma_{1}\right)\left[\theta_{l \pm \sigma_{2}}-\theta_{l}\right]} \\
& +\Phi^{\prime}\left(n+c t+\theta_{l} \pm \sigma_{2}\right)\left[\theta_{l \mp \sigma_{1}}-\theta_{l}\right] .
\end{aligned}
$$

Special case $\left(\sigma_{1}, \sigma_{2}\right)=(1,0)$:

$$
\begin{aligned}
{\left[M(c t+\theta) \theta^{\diamond}\right]_{n l} } & =\Phi^{\prime}\left(n+c t+\theta_{l}\right)\left[\theta_{l+1}+\theta_{l-1}-2 \theta_{l}\right] \\
& =\left[\widetilde{M}(c t+\theta) \theta^{\diamond \diamond}\right]_{n l}
\end{aligned}
$$

with second-difference operator

$$
\theta_{l}^{\diamond \infty}=\left(\theta_{l+1}+\theta_{l-1}-2 \theta_{l}\right) .
$$

Similar reduction to second differences also possible for $\left(\sigma_{1}, \sigma_{2}\right)=(1,1)$.

Stability - Refined Ansatz

Recall linear evolution for θ :

$$
\dot{\theta}_{l}(t)=Q_{c t} L(c t+\theta) v(t)+Q_{c t} M(c t+\theta) \theta^{\diamond}(t)+c Q_{c t}^{\prime} v(t) .
$$

Write $L_{c t}=L(c t+0)$ and $M_{c t}=M(c t+0)$. Now obtain

$$
\dot{\theta}_{l}(t)=Q_{c t} L_{c t} v(t)+Q_{c t} M_{c t} \theta^{\diamond}(t)+c Q_{c t}^{\prime} v(t)+\text { h.o.t. }
$$

Worst higher order terms given by θv and $\theta \theta^{\circ}$.
In special directions $(1,0)$ and $(1,1)$, worst higher order terms given by $\theta v, \theta \theta^{\diamond \infty}$ and $\left(\theta^{\diamond}\right)^{2}$. No $\theta \theta^{\diamond}$ term.

Stability - Refined Ansatz

Full linear system for v and θ :

$$
\begin{aligned}
\dot{v}(t) & =\left[I-P_{c t}\right] L_{c t} v(t)+\left[I-P_{c t}\right] M_{c t} \theta^{\diamond}-c P_{c t}^{\prime} v(t), \\
\dot{\theta}(t) & =Q_{c t} L_{c t} v(t)+Q_{c t} M_{c t} \theta^{\circ}(t)+c Q_{c t}^{\prime} v(t),
\end{aligned}
$$

with $P_{c t}=\Phi^{\prime}(\cdot+c t) Q_{c t}$. Note $P_{c t}^{2}=P_{c t}$.
Write $\mathcal{G}\left(t, t_{0}\right)$ for Green's function. Also write $\overline{\mathcal{G}}\left(t, t_{0}\right)$ for Green's function for:

$$
\dot{w}_{n l}(t)=\left[L_{c t} w(t)\right]_{n l}=\left[\Delta^{\times} w(t)\right]_{n l}+g^{\prime}(\Phi(n+c t)) w_{n l}(t)
$$

[We have already studied this system].
We then have:

$$
\mathcal{G}\left(t, t_{0}\right)=\left(\begin{array}{cc}
{\left[I-P_{c t}\right] \overline{\mathcal{G}}\left(t, t_{0}\right)\left[I-P_{c t_{0}}\right]} & {\left[I-P_{c t}\right] \overline{\mathcal{G}}\left(t, t_{0}\right) \Phi^{\prime}\left(\cdot+c t_{0}\right)} \\
Q_{c t} \overline{\mathcal{G}}\left(t, t_{0}\right)\left[I-P_{c t_{0}}\right] & Q_{c t} \overline{\mathcal{G}}\left(t, t_{0}\right) \Phi^{\prime}\left(\cdot+c t_{0}\right)
\end{array}\right) .
$$

Stability - Refined Ansatz

Recall Green's function:

$$
\mathcal{G}\left(t, t_{0}\right)=\left(\begin{array}{cc}
{\left[I-P_{c t}\right] \overline{\mathcal{G}}\left(t, t_{0}\right)\left[I-P_{c t_{0}}\right]} & {\left[I-P_{c t}\right] \overline{\mathcal{G}}\left(t, t_{0}\right) \Phi^{\prime}\left(\cdot+c t_{0}\right)} \\
Q_{c t} \overline{\mathcal{G}}\left(t, t_{0}\right)\left[I-P_{c t_{0}}\right] & Q_{c t} \overline{\mathcal{G}}\left(t, t_{0}\right) \Phi^{\prime}\left(\cdot+c t_{0}\right)
\end{array}\right) .
$$

We know the slow parts of $\overline{\mathcal{G}}\left(t, t_{0}\right)$. In Fourier space tbese are given by

$$
\left[\overline{\mathcal{G}}_{\omega}\left(t, t_{0}\right)\right]_{n n_{0}} \sim e^{\lambda_{\omega}\left(t-t_{0}\right)} \phi_{\omega}(n+c t) \psi_{\omega}^{*}\left(n_{0}+c t_{0}\right)
$$

Now, $\left[I-P_{c t}\right]$ projects away $\phi_{0}(n+c t)$. In addition, $\psi_{0}\left(n_{0}+c t_{0}\right)$ can be seen as $Q_{c t_{0}}$, and we have $Q_{c t_{0}}\left[I-P_{c t_{0}}\right]=0$.

Roughly speaking, in Fourier space:

$$
\mathcal{G}_{\omega}\left(t, t_{0}\right)=\left(\begin{array}{cc}
\omega^{2} e^{-\kappa \omega^{2}\left(t-t_{0}\right)} & \omega e^{-\kappa \omega^{2}\left(t-t_{0}\right)} \\
\omega e^{-\kappa \omega^{2}\left(t-t_{0}\right)} & e^{-\kappa \omega^{2}\left(t-t_{0}\right)}
\end{array}\right)
$$

Stability - Refined Ansatz

In special direction and $(1,1)$ we have better expansion:

$$
\mathcal{G}_{\omega}\left(t, t_{0}\right)=\left(\begin{array}{cc}
\omega^{4} e^{-\kappa \omega^{2}\left(t-t_{0}\right)} & \omega^{2} e^{-\kappa \omega^{2}\left(t-t_{0}\right)} \\
\omega^{2} e^{-\kappa \omega^{2}\left(t-t_{0}\right)} & e^{-\kappa \omega^{2}\left(t-t_{0}\right)}
\end{array}\right) .
$$

Each ω gives $t^{-1 / 2}$ extra decay. We hence expect, for initial condition $\left(v^{0}, \theta^{0}\right)$ that are ℓ^{1} in transverse direction:

$$
\begin{array}{ll}
\|\theta(t)\|_{\ell^{2}(\mathbb{Z} ; \mathbb{R})} & \sim(1+t)^{-1 / 4} \\
\left\|\theta^{\diamond}(t)\right\|_{\ell^{2}(\mathbb{Z} ; \mathbb{R})} & \sim(1+t)^{-3 / 4} \\
\left\|\theta^{\diamond \diamond}(t)\right\|_{\ell^{2}(\mathbb{Z} ; \mathbb{R})} & \sim(1+t)^{-5 / 4} \\
\|v(t)\|_{\ell^{\infty}\left(\mathbb{Z} ; \ell^{2}(\mathbb{Z} ; \mathbb{R})\right)} & \sim(1+t)^{-5 / 4},
\end{array}
$$

Since worst nonlinear terms are $\theta v, \theta \theta^{\diamond \diamond}$ and $\left(\theta^{\diamond}\right)^{2}$, which all decay in ℓ^{1} as $(1+t)^{-3 / 2}$, a nonlinear argument closes easily.

Situation for $(1,0)$ is even better, since $\phi_{\omega}=\Phi^{\prime}$ for all ω.

Stability - Refined Ansatz

Recall rough expansion

$$
\mathcal{G}_{\omega}\left(t, t_{0}\right)=\left(\begin{array}{cc}
\omega^{2} e^{-\kappa \omega^{2} t} & \omega e^{-\kappa \omega^{2} t} \\
\omega e^{-\kappa \omega^{2} t} & e^{-\kappa \omega^{2} t}
\end{array}\right)
$$

Each ω gives $t^{-1 / 2}$ extra decay. We hence expect, for initial condition $\left(v^{0}, \theta^{0}\right)$ that are ℓ^{1} in transverse direction:

$$
\begin{array}{ll}
\|\theta(t)\|_{\ell^{2}(\mathbb{Z} ; \mathbb{R})} & \sim(1+t)^{-1 / 4} \\
\left\|\theta^{\diamond}(t)\right\|_{\ell^{2}(\mathbb{Z} ; \mathbb{R})} & \sim(1+t)^{-3 / 4} \\
\|v(t)\|_{\ell^{\infty}\left(\mathbb{Z} ; \ell^{2}(\mathbb{Z} ; \mathbb{R})\right)} & \sim(1+t)^{-3 / 4}
\end{array}
$$

Worst nonlinear terms now $v \theta$ and $\theta \theta^{\diamond}$. Both are $O\left(t^{-1}\right)$ in ℓ^{1}-transverse.
Need delicate non-linear argument.

Stability - Refined Ansatz

Need to deal with $\theta \theta^{\curvearrowright}$ and $v \theta$ terms.
Key trick:

$$
\theta_{l}\left(\theta_{l+1}-\theta_{l}\right)=\frac{1}{2}\left(\theta_{l+1}^{2}-\theta_{l}^{2}-\left(\theta_{l+1}-\theta_{l}\right)^{2}\right)
$$

This is discrete version of

$$
u u_{x}=\frac{1}{2}\left(u^{2}\right)_{x}
$$

heavily exploited in study of conservation laws.
Key point: $\left(\theta_{l+1}-\theta_{l}\right)^{2}$ decays very fast $\left(t^{-3 / 2}\right)$. Difference $\theta_{l+1}^{2}-\theta_{l}^{2}$ decays very slow $\left(t^{-1 / 2}\right)$, but gives an extra ω in Fourier space which leads to more decay on Green's function ($t^{-3 / 4}$ instead of $t^{-1 / 4}$).

$$
\begin{array}{ll}
\int_{0}^{t}\left(1+t-t_{0}\right)^{-1 / 4}\left(1+t_{0}\right)^{-1} d t_{0} \sim \ln (1+t)(1+t)^{-1 / 4} & B A D \\
\int_{0}^{t}\left(1+t-t_{0}\right)^{-3 / 4}\left(1+t_{0}\right)^{-1 / 2} d t_{0} \sim(1+t)^{-1 / 4} & G O O D
\end{array}
$$

Stability - Refined Ansatz

Final term to deal with: θv.
Key trick: isolate slowest decaying part of v from Taylor expansion of Fourier symbol. Taylor expansion not in ω but in $e^{i \omega}-1$ in order to exploit difference structure!

Slowest decaying part of v directly proportional to slowest decaying part of θ^{\diamond}. Can decompose:

$$
v_{n l}(t)=w_{n l}(t)-i\left[I-P_{c t}\right]\left[\partial_{\omega} \phi(\cdot+c t)\right]_{\omega=0}\left(\theta_{l+1}(t)-\theta_{l}(t)\right) .
$$

New variable $w(t)$ decays faster than v, at rate $t^{-5 / 4}$.
Slow part of $v(t)$ proportional to θ^{\diamond}. Can treat in same way as $O\left(\theta \theta^{\diamond}\right)$ term!
Notice that in special directions $(1,0)$ and $(1,1)$, we have $v(t)=w(t)$.

Stability in 2d

Recall Ansatz

$$
u_{n l}(t)=\Phi\left(n+c t+\theta_{l}(t)\right)+v_{n l}(t) .
$$

Thm. [H., Hoffman, Van Vleck, 2012] Travelling wave $(c \neq 0)$ in any rational direction is nonlinearly stable under small perturbations

$$
\begin{array}{ll}
\sum_{l \in \mathbb{Z}}\left|\theta_{l}(0)\right| & \ll 1 \\
\sup _{n \in \mathbb{Z}}\left[\sum_{l \in \mathbb{Z}}\left|v_{n l}(0)\right|\right] & \ll 1
\end{array}
$$

Note: perturbations need to be summable in transverse direction.
We have $\theta_{l}(t) \rightarrow 0$ and $v_{n l}(t) \rightarrow 0$ as $t \rightarrow \infty$.
In other words, deformations of interface diffuse in transverse direction.
It does NOT lead to a shift in the wave.

Stability in 2d

Recall Ansatz

$$
u_{n l}(t)=\Phi\left(n+c t+\theta_{l}(t)\right)+v_{n l}(t) .
$$

Algebraic decay rates depend on direction of propagation!
Horizontal waves $(\theta=0)$:

$$
\theta_{l}(t) \sim t^{-1 / 2}, \quad v_{n l}(t) \sim t^{-7 / 4}
$$

Diagonal waves $\left(\theta=\frac{\pi}{4}\right)$:

$$
\theta_{l}(t) \sim t^{-1 / 2}, \quad v_{i j}(t) \sim t^{-3 / 2}
$$

Other rational directions: (very slow decay - delicate nonlinear analysis needed)

$$
\theta_{l}(t) \sim t^{-1 / 2}, \quad v_{i j}(t) \sim t^{-1}
$$

Summary

- Obtained stability in 2d for rational directions
- Only spectral conditions imposed on wave.
- Works even in absence of comparison principles.

Outlook:

- What about irrational directions ?
- What about standing waves $(c=0)$?

