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2d Lattice Differential Equation

Focus in this talk: lattice differential equation (LDE)

wii(t) = [ATu)]i; + g(ui;(t);a).

Often called: discrete Nagumo equation.

Two dimensional spatial lattice: (i,7) € Z2.

Nonlinearity g is bistable.

Discrete Laplacian AT mixes nearest neighbours:




2d LDE: Nonlinearity

Recall the dynamics:

U, (1) = [ATu)]i; + g(ui;(t);a).
0.08
0.0% - Bistable nonlinearity g given by
0.04

0.02 g(u;a) = ula —u)(u—1).
A

04-02 | 12 14 Two stable equilibria u = 0
—0.02 and u = 1.
—0.04 - One unstable equilibrium
0.06
—0.08 -

u = Q.




Lattice equations: Travelling Waves

Recall the dynamics:

wij(t) = [ATu)]i; + g(ui;(t);a).

The nonlinearity g 'pulls’ u towards either u = 0 or u = 1 [competition].
The discrete diffusion 'smooths’ out any wrinkles in w.

Travelling waves: compromise between these two forces.

Travelling waves with profile ® and speed c
connecting © = 0 to w = 1 in direction

k = (cosf,sinf).

u; j(t) = ®((cosb,sinb) - (¢,5) + ct), d(—o0) =0, O(+o0) =



Lattice equations: Travelling Waves

Recall the dynamics:
wij(t) = [ATu()]i; + g(ui;(t);a).
e Travelling waves connecting u = 0 to v = 1 must satisfy

V' (€) = D€+ cosh) + (€ — cosh) + (€ + sinb) + B(E — sing) — 4P(¢€)
+9(®(£); a)

This is a mixed type functional differential equation
(MFDE).

Direction 6 explicitly appears in wave equation.




Lattice equations: Travelling Waves

Recall the dynamics:

wii(t) = [ATu)]i; + g(ui;(t);a).

Existence of travelling waves For each a € (0,1) and 8 € [0, 27| there exists a
travelling wave.

Speed c(a, ) is unique.
If ¢ # 0, then wave profile ® is unique and also monotone, i.e. &’ > 0.

[Mallet-Paret]

Dependence of ¢ on angle 6 and detuning parameter a very delicate. [Aaron
Hoffman's talk]

In this talk: we fix (a,f) and assume that ¢ # 0.

Goal: understand stability of the travelling wave.



Stability - Coordinate System

Assumption: we have a wave solution (c, ®) travelling (¢ # 0) in rational
direction (o1, 02) € Z°.

Naive Ansatz
uz-j(t) = (I)(’l:()'l —|—j0'2 —+ Ct) -+ ’Uij(t).

Need to understand behaviour of perturbation v(t).

First step: want natural coordinates parallel and perpendicular to propagation of
wave.

n = 101+ jos parallel

[ = 109—j0q transverse.



Stability - Coordinate System

New coordinates:

n = 101+ jo9 parallel

[ = 1i09—jo0q transverse.

Old coordinates:

i = [0?+ 03] noy + log]

j = o+ 03] noy —loi]

Equation only posed on sublattice of (n,1) € Z? in new coordinates.

Remember: (01, 03) € Z°.



Stability - Coordinate System

In new coordinates, LDE becomes

it (£) = [ ()]t + g (wni(1)):

The discrete operator A* now acts as

All geometrical information encoded in A*.
Travelling wave becomes: u,;(t) = ®(n + ct)

Special cases (01,02) = (1,0) or (0,1) (horizontal or vertical waves): A* = AT,



Stability - Perturbation

Substituting naive perturbation Ansatz

Uni(t) = ®(n + ct) + vy(t)
into LDE we obtain

oni(t) = [A%0(t)]n + g’(q)(n + Ct))vnl(t)
+O (v (®)]?).

(L) Need to understand growth rate of linear system
Ui () = [A%0(8)]n1 + ' (R (0 + ct))vn(2).
In general, since we are in 2d, expect something algebraic.

(NL) Quadratic nonlinearities combined with slow algebraic decay spell trouble.

-~

!
/ gl + 1t — t())_l/%i(l + to)_l/Q]% dtO ~ ln(l + t)(l + t)_l/Q,
° Linea?rdecay nonlinearity
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Stability - Linear System

Focus on linear LDE posed on Z2:

Ui (t) = [A%0(8)]n1 + ' (P (0 + ct))vni().

Observe: transverse coordinate [ does not appear in coefficients.

ldeal for Fourier transform in transverse direction.

Write, for w € [—m, 7|

Up(w) = Z vpre”

Inverse transformation:
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Stability - Linear System

Focus on linear LDE posed on Z2:

Ui (t) = [A ()]t + ¢/ (P(n + ct)) v ().

Observe: transverse coordinate [ does not appear in coefficients.
Ideal for Fourier transform in transverse direction.

System is decoupled into

(1) = B (@)5(w, D]+ ¢'(B(n + )T, 1),

with

A X _ twwoo —lwo —1W0o9 1Wwoq
A" (w)v], =€ Untoq, T € Untoy T € Un—gqy + €“ 00 _p, — 4Up.

In other words, for each frequency w we have an LDE posed on a 1d lattice (in
parallel coordinate n).
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Stability - Linear System

Recall decoupled LDE

(1) = B (@), O]+ ¢'(B(n + ct))Ta(w,1),

with

A X _ twwoo —lwo —1W0o9 1wWoq
A" (w)v], =€ Unto, T € Untoqy T € Un—gq + €“ 005, — 4Up.

Special case w = 0. Write w,(t) = v,,(0,t). We get
—wp(t) = [A™(0)w()]n + g'(®(n + ct))wa(t),
with

[ﬁx (O)w]n — Wn4o04 + Wn 409 + Wn—0oq + Wp—cgy — 4wn
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Stability - Linear System

In special case w = 0, writing w,(t) = v,(0,t), we hence have:

%wn(t) —  Wn+o,q (t) T Wn+oy (t) T Wn—o, (t) T Wn—oy (t) B 4wn(t)
+9'(®(n + ct))wn(?).

Notice that w,(t) = ®'(n + ct) is a solution.

Indeed: wave profile ® had to satisfy

c®(§) = P(E+ 01) + P(§ + 02) + P(§ — 01) + (€ — 02) — 4D(£) + g(P())-

The zero-frequency component is hence the usual linearization around the
travelling wave, just like in 1d.
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Stability - 1d Linear Systems

Need to understand 1d LDE's, e.g.

Ui(t) = Ujra(t) + Uja(t) = 205(t) + 9(U;(t),  jEZ.

Write as

with F : *°(Z; R) — £>°(Z;R).
View as ODE posed on sequence space £*°(Z;R).

Suppose we have a wave solution U;(t) = ®(j + ct) with ¢ > 0, with

lim ®(&) =0, lim ®(&) = 1.

§——o0 ¢ +o0

Want to understand linear behaviour of U(t) = U(t) + V(¢).
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Stability - 1d Linear Systems

Linear dynamics for V(t) = U(t) — U(t):
V(t)=DFU®))V(t), V()€ L>(Z;R).

Problem: Non-Autonomous!

Remember: U;(t) = ®(j + ct). We DO have shift-periodicity

ZE@+1@):Uﬂﬂﬂ (:®@+1».
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Stability - 1d Linear Systems

Linear behaviour V (t) = U(t) — U(t):

Green'’s function [G(t,t0)];;, is value of V;(t) for unique solution to linearized
LDE

v (t) DF(U®)V(t)
Vilto) = 0y

{g(ta tO)]jJO

,hu,lm

evolve H

11
oo 00000 0V
Jo
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Stability - 1d Linear Systems

Linear behaviour V (t) = U(t) — U(t):

Green'’s function [G(t,t0)];;, is value of V;(t) for unique solution to linearized
LDE

vy = DF(T®)VE)

‘/j/(t()) — 5j/,j0'

For V' € (*°(Z;R), write G(t,ty)V for sequence

[g(ta tO)V]j — Z [g<t7 to)]j,jov}O

JoEZL
(convolution).

All information (time + space) on linear system encoded in G(t,tg).



Stability - 1d Linear Systems

To understand G(¢,tg) must solve

V(t) = DFU )V (t).

[Chow, Mallet-Paret, Shen| Can exploit shift-periodicity to develop shift-periodic
Floquet theory.

Problem: must analyze 'monodromy map' G(ty + %,to) 'by hand’. Heavily
dependent on ad-hoc arguments e.g. comparison principles. All arguments in
sequence space (*°(Z;R).

Nevertheless, authors managed to understand discrete Nagumo equation.

Our goal: Make connection with highly developed nonlinear stability theory for
PDEs [Zumbrun, Howard, ...].
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Stability - 1d Linear Systems

Recall linear problem on ¢*°(Z;R):
V(t) = DFUM)V (),
which for discrete Nagumo LDE is:
Vi(t) = Vi (t) + Vi—a(t) = 2Vi(t) + g/ (R(F + ct)) V5 ().
We 'fill in the gaps’ between lattice points and look for solutions
Vi(t) = eMu(j + ct).

Here A € C is spectral parameter and v must be bounded and solve

cv'(€) + Mo(€) = v(€ — 1) + (£ + 1) — 20(&) + ¢ (2(£))v(€)

in comoving frame & = j + ct. Write as Lv = A\v with

[L)(€) = —cv'(§) +v(§ — 1) +v(§ + 1) — 20(8§) + ¢’ (2(£)) v(E)-
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Fundamental relation

Reminder: Green'’s function [G(t,10)];,, is value of V;(t) for unique solution to

linearized LDE

vy = DF(T®)VE)
Virlto) = 01 jo-

Thm. [Benzoni-Gavage, Huot, Rousset| For v > 1 and t > ¢y,

1 Y+ime
[g(t, tO)]jjO = —/ EZ)\(t_tO)G)\(j + Ct;jO + Cto)CD\.
Y

27T7’ —TC

Resolvent kernel GG (&, &p) is unique solution [if defined] to

(L —=N)GA(- &) = (& — &o).
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Stability

Recall identity ( v > 1 and ¢t >ty )

1 Y+imwe . .
Ot tollii =5y | GG o+ eto)d
Tl Jy—ime

Can view this as refined version of meta-identity

1
tL At 1
= —— — A :
e 5 | € L — A7 dA

Have to worry about invertibility of £ — A, i.e. study spectrum of L.

For example £L®' = 0 (translational invariance), so A = 0 in spectrum.
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Stability

Recall identity (y> 1 and t >t )

2mi

1 Y+ime
[g(t, to)]jjo = / GA(t_tO)GA(j + ct, jo + cto)d.
Y

—TTC

translation = | nteg I.

_9mic @ Want to
?  shift
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Stability - 1d Linear Systems

Recall identity (v > 1 and t >ty )

21 —TTC

1 Y+ime
G(t,t0)];5, = / et (5 + et jo + cto)d.
Y

Main goal: construct expressions for G (&, &p) that can be extended
meromorphically in A near poles of [£ — \]71.

Can do this if translational eigenvalue A = 0 is a simple eigenvalue [H. +
Sandstede]. In particular, if KerL = span{®’} and ®' ¢ RangeCL.

One obtains
GA(€,60) = A1 (E)W(&) + O(evIE—%0l),
where we have
Ker £L* = span{ U},

with L£* the formal adjoint of L.
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Stability - 1d Linear Systems

Recall identity ( v > 1 and ¢t >ty )

1 Y+imwe . .
Ot tollii =5y | GG o+ eto)d
UK y—1me

Using meromorphic form

- | ImA\ B el
e ) ! me 2 Rel =7 GA(&‘SO) = A 1CI)/(€)\I](€O) T 0(6 S 50|)7
T translation ? nteqgr.
° |_50 ! e Ppatthg we now obtain the key result
I ~— OO
) ® —9mic Want to
TR G(tto)lyjy = @0+ ct)T(jo + cto)

_|_O (e_V(t_tO)€_V|j+Ct_j0_Ct0|)

In particular, Green's function for 1d lattice system can be 'read-off’ from
well-behaved spectral pictures.
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Stability - back to 2d

Remember: for w = 0, writing w,,(t) = v,(0,%), we had:

%wn(t) = Wn+oy (t) T Wntoy (t) T Wn—0, (t) T Wn—oy (t) N 4wn(t)
+9'(®(n + ct))wn(1).

In this case, the relevant linear operator is:

[Low](§) = —cw'(§) + w(§ £ 01) + w(§ £ 02) — 4w(E) + g'(2(8))w (&)

Remember Ly®" = 0. We also have: L5V = 0 for the adjoint ¥ which has
U (&) > 0 [Mallet-Paret].

For the Green’s function we hence get

[gw:()(t, tO)]nno = (I)’(TL -+ Ct)\If(no —+ Ct())
_|_O(e—l/(t—t())6—1/|n—|—ct—n0—ct0|) .

Note: no temporal decay.
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Stability - Linear System

Back to w # 0. Recall decoupled LDE

%@n(w, t) = [A (w)o(w, )]0 + ¢ (B(n + ct))Tn(w, 1),
with

N _ _H4wwo —two —tWwo WO
A" (w)v], =€ 2Vntoq T € YWnto, + € 2Un—gq + €7 gy — 4U.

Relevant operator now is:

[Low](€) = —cw'(§) + e 2w(€ £ 01) + T w (€ £ 02) — 4w () + g'(B(E))w(E).

Need to understand spectrum of this operator.

What happens to zero eigenvalue for w ~ 07
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Stability - Linear System

Recall w-dependent linear operators
[Low](€) = —cw'(§) + e 2w(€ £ 01) + T w (€ + 02) — 4w () + g'(B(E))w(E).
There exists a branch

w = (Aw; Pu, Yu)

for w ~ 0 with

[»Cw — Aw]¢w — 07 [ﬁz - )\Z]%) =0

Of course, \g = 0, ¢pg = &’ and Yy = .

Key assumption:
Re )\, < —kw?, w =~ 0, k>0

For general directions (o1, 09) € Z?, can only establish this with numerics.
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Stability - Linear System

Recall w-dependent linear operators
[Low](§) = —cw'(§) + e 72w(E £ 01) + T w(€ £ a) — 4w(E) + ¢'(@(€))w(E).
In special case (01,032) = (1,0) we get

Low](§) = —cw'(§)+w(§+1)+2cosww(l) —4w(§) +g'(P(£))w(l)
= [Low](§) + 2(cosw — 1)w(§).

This immediately gives A, = 2(cosw — 1) and ¢, = .

Eigenfunctions ¢, now independent of w.

29



Stability - Linear System

Recall w-dependent linear operators

[Low](€) = —cw'(§) + 2w (€ £ 01) + eTMw(E £ 03) — dw(§) + ¢'(B())w(E).

In special case (01,02) = (1,1) we get
Low](§) = —cw'(§) + (2cosw)w(§ £ 1) — dw(E) + g'(D(£))w(§)

This gives [0, A\y]w=0 = 0 and [0,¢,]w—0 = 0.

Eigenfunctions ¢, now dependent on w. But everything is quadratic in w.
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Stability - Linear System

Recall decoupled LDE

(1) = R ()3, O] + ¢/ (B0 + 1)), 1)

For the Green's function we get

[gw (ta tO)]nnO — 6Aw(t_t0)¢w(n + Ct)lbf, (nO + CtO)

+0 (e—z/(t—to)6—1/|n—|-ct—n0—ct0|) .

2 .
Note: temporal decay of order O(e™"“ 2%) since Re A\, < —kw?.

In particular, expect heat-kernel type decay in transverse direction.
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Stability - Linear System

Return to full 2d linear system
Ui (t) = [A% ()]s + ¢' (P (n + ct))vn(t).

ook at initial condition

with v¥ € £°(Z; 11 (Z; R)).

Norm on v": £ in direction parallel to wave and ¢! in direction transverse to
wave.

We get for £? norm in transverse direction:

H’U(t)Heoo(z;e2(Z;R)) ~ (1 + t)_1/4 H”OHeoo(z;el(Z;R)) '

For £°° norm in transverse direction get extra decay:

—1/21[,.0
Hv(t)||eoo(z;eoo(z;1@)) ~ (1+1) / HU Heoo(z;el(z;R))'
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Stability - Naive Ansatz

Substituting naive perturbation Ansatz
Uni(t) = ®(n + ct) + vy (t)

led to

oni(t) = [A*0()]u + g (P(n + ct))vn(t)
+O (v (®)]?).

1/4

Linear decay of t~*/* much too weak to close nonlinear argument.

However, we understand precisely the terms in Green's function leading to slow
decay:

[gw (ta tO)]nno ~ e)w(t_t())qbw (n + Ct)¢c*u(n0 + CtO)'
Since ¢g = ®’, deformations in wave profile are the main culprit of slow decay.
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Stability - Refined Ansatz

Refined perturbation Ansatz

Uni(t) = @ (n+ ct 4+ 6,(t)) + vn(?).

Here 6;(t) measures deformation of wave profile (expect slow decay).

Remainder included in v(t) (expect faster decay).
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Stability - Refined Ansatz

Refined perturbation Ansatz

Uni(t) = @(n+ ct 4+ 60,(t)) + vni(?).

Normalization conditions:

Z U(n + ct)vy(t) =0, for all [ € Z.

nez

Let us shorten this to:
Q:v(t) =0 € L°(Z; R).
Reminder: we had Lo®" = 0 and L{V = 0 with

Z U(n+ ct)®' (n+ ct) = 1.

nez
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Stability - Refined Ansatz

Need notation:

0F = Q140 — 01,01—0y — 01, 01—, — 01,0145, — 01).

This expression contains only differences in 6. Fourier symbol for difference:
etwoi 1 = O(w).

Linear evolution for @ can be written as:

01(t) = QetL(ct + 0)v(t) + QM (ct 4 0)0°(t) + cQ’,u(t)

Here we have [Very similar to naive linearization|:

[L(ct + 0)v]n = [A 0] + ¢ (P(n + ct + 6;) ) va.

New term [Measures effect of profile mismatches]:

[M(Ct —+ (9)90]”[ = CID’(n +ct+0; £ 0'1)[(91:&02 — (91]
+<I>’(n +ct+ 0, & 02)[6[:‘:01 — (9[]
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Stability - Refined Ansatz

Recall linear evolution for 6:
0,(t) = QetL(ct + 0)v(t) + QutM (ct + 0)0°(t) + cQlyv(t)

with mismatch term

[M(Ct + Q)QO]M = <I>’(n +ct+ 0, + 0'1)[(9[:&02 — (9[]
—|-<I>’(n +ct+ 0, + 0'2)[(9[:F01 — (91]
Special case (o1,02) = (1,0):

[M(Ct + @)Ho]nl = <I>’(n + ct + 95)[9l+1 +6;_1 — 2(9;]

= [M(ct+ 0)6°°|,,
with second-difference operator
(9?0 = (6)[4_1 + 60,1 — 2(9[).

Similar reduction to second differences also possible for (o1,02) = (1,1).
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Stability - Refined Ansatz

Recall linear evolution for 6:
01(t) = QerL(ct + 0)v(t) + QoM (ct 4 0)0°(t) + cQ’,u(t).
Write L.t = L(ct + 0) and M. = M (ct + 0). Now obtain
01(t) = QetLerv(t) + QueMe0°(t) + cQlyv(t) + h.o.t.

Worst higher order terms given by fv and 66°.

In special directions (1,0) and (1, 1), worst higher order terms given by fv, 06°°
and (0°)%. No 66° term.
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Stability - Refined Ansatz

Full linear system for v and 6:

0(t) = [I — Py]Lev(t) + [ — Poy)|M40° — cPlo(t),
H(t) QcthtU(t) + QctMcteo(t) + CQ/ctv(t)a

with Pct = (I)/( + Ct)Qct- Note PCQt — Pct-

Write G(t,to) for Green's function. Also write G(t,t,) for Green's function for:
Wni(t) = [Lepw(t)]n = [A*w(t)]n + ¢ (P(n + b)) wp ()

[We have already studied this system].

We then have:

_ (= PalG(t,t0)ll — Pet]  [I — PetlG(t,0) @' (- + cto)
g“’“’)‘( QuiG(t ) — Po]  QuiGlt to)D'(- + cto) )
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Stability - Refined Ansatz

Recall Green's function:

_ (I = PGt to)lI = Pery] [I = Pet]G(t,t0)®'(- + cto)
Q(t,to)—( 0uG(t1 [t )

D= Pa] - Q. t0)0(-+ cto)

We know the slow parts of G(t,t,). In Fourier space tbese are given by

[?w (t, tO)]nno ~ eAw(t_t(ﬁ(/bw(n + Ct)%t (nO + CtO)-

Now, [I — P.] projects away ¢g(n + ct). In addition, 1o(ng + ctg) can be seen as
Qctyr and we have Qo [ — Pey,) = 0.

Roughly speaking, in Fourier space:

2 —kw?(t—tg)

— kw2 (t—tg)
wee we
Gu(t, to) = ( —kw? (t—t() —rw? (t—to) ) .

we €
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Stability - Refined Ansatz

In special direction and (1,1) we have better expansion:

G (t . ) B w4€—mw2(t—t0) w2€—/€w2(t—t0)
w\® X0/ = w2€—mw2(t—t0) e—mw2(t—t0)

Each w gives t—1/2 extra decay. We hence expect, for initial condition (v, 6°)
that are /! in transverse direction:

0 2(z.r) ~ (L4t
0° ()| 2(z.r) ~ (L4)3
0°°(t) 2 (z.m) ~ (L+1)=>/
U(t)HEOO(Z;£2(Z;R)) ~ (14 t)_5/4’

Since worst nonlinear terms are 6v, 0°° and (90)2, which all decay in ¢! as
(1 4+t)73/2, a nonlinear argument closes easily.

Situation for (1,0) is even better, since ¢, = P’ for all w.
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Stability - Refined Ansatz

Recall rough expansion

2 2
w26—ﬁ;w t we kW t
gw(t’ t()) - — kw2t — kw3t )

we €

Each w gives t—1/2 extra decay. We hence expect, for initial condition (v, 6°)
that are ¢! in transverse direction:

0 2(z.r) ~ (141~
90@)”62(2;1[%) ~ (1+ t)_3/4
VOl z@my ~ O

Worst nonlinear terms now vf and 66°. Both are O(¢™ 1) in £!-transverse.

Need delicate non-linear argument.
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Stability - Refined Ansatz
Need to deal with 86° and vf terms.

Key trick:

1
01(01+1 — 01) = §(<9zz+1 — 07 — (0141 — 01)°).

This is discrete version of

Uy = (uQ)x,

heavily exploited in study of conservation laws.

Key point: (041 — 6;)? decays very fast (t73/2). Difference 67, ; — 67 decays very
slow (t71/2), but gives an extra w in Fourier space which leads to more decay on
Green's function (t73/4 instead of t=1/4).

Y14t —tg)" Y41+ tg) L dtg ~In(1 +¢)(1 +1)"Y4* BAD
0
S+t — to) 7341 + to) M2 dtg ~ (1 + 1)1/ GOOD.
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Stability - Refined Ansatz

Final term to deal with: Ov.

Key trick: isolate slowest decaying part of v from Taylor expansion of Fourier
symbol. Taylor expansion not in w but in ¢’ — 1 in order to exploit difference
structure!

Slowest decaying part of v directly proportional to slowest decaying part of 6°.
Can decompose:

vn(t) = wi(t) — il = Pe][0ud(- + ct)]w=o(O141(t) — 0:(2))-

New variable w(t) decays faster than v, at rate t=°/4.
Slow part of v(t) proportional to #°. Can treat in same way as O(06°) term!

Notice that in special directions (1,0) and (1,1), we have v(t) = w(t).
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Stability in 2d

Recall Ansatz

uni(t) = (n 4 ct + 0,(t)) + v (t).

Thm. [H., Hoffman, Van Vleck, 2012] Travelling wave (¢ # 0) in any rational
direction is nonlinearly stable under small perturbations

Zlezwl(O)‘ < 1
SuPneZ[Zlez‘vnl(O)H < L

Note: perturbations need to be summable in transverse direction.
We have 6;(t) — 0 and v,;(t) — 0 as t — 0.
In other words, deformations of interface diffuse in transverse direction.

It does NOT lead to a shift in the wave.
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Stability in 2d

Recall Ansatz

uni(t) = (n 4 ct + 0,(t)) + v (t).

Algebraic decay rates depend on direction of propagation!

Horizontal waves (6 = 0):

0i(t) ~t Y2 wp(t) ~ 7T

):

Oi(t) ~ 72 () ~ T3

Diagonal waves (6 =

N

Other rational directions: (very slow decay - delicate nonlinear analysis needed)

Oi(t) ~t 2 w(t) ~ L
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Summary

e Obtained stability in 2d for rational directions

e Only spectral conditions imposed on wave.

e Works even in absence of comparison principles.

Outlook:

e \What about irrational directions ?

e What about standing waves (¢ = 0) ?
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