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2d Lattice Differential Equation

Focus in this talk: lattice differential equation (LDE)

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).

• Often called: discrete Nagumo equation.

• Two dimensional spatial lattice: (i, j) ∈ Z2.

• Nonlinearity g is bistable.

• Discrete Laplacian ∆+ mixes nearest neighbours:

[∆+u]i,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j.
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2d LDE: Nonlinearity

Recall the dynamics:

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).
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Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).

Two stable equilibria u = 0
and u = 1.

One unstable equilibrium

u = a.
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Lattice equations: Travelling Waves

Recall the dynamics:

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).

The nonlinearity g ’pulls’ u towards either u = 0 or u = 1 [competition].

The discrete diffusion ’smooths’ out any wrinkles in u.

Travelling waves: compromise between these two forces.

θ
Travelling waves with profile Φ and speed c
connecting u = 0 to u = 1 in direction

~k = (cos θ, sin θ).

ui,j(t) = Φ((cos θ, sin θ) · (i, j) + ct), Φ(−∞) = 0, Φ(+∞) = 1.
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Lattice equations: Travelling Waves

Recall the dynamics:

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).

• Travelling waves connecting u ≡ 0 to u ≡ 1 must satisfy

cΦ′(ξ) = Φ(ξ + cos θ) + Φ(ξ − cos θ) + Φ(ξ + sin θ) + Φ(ξ − sin θ)− 4Φ(ξ)

+g(Φ(ξ); a)

θ
This is a mixed type functional differential equation
(MFDE).

Direction θ explicitly appears in wave equation.
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Lattice equations: Travelling Waves

Recall the dynamics:

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).

Existence of travelling waves For each a ∈ (0, 1) and θ ∈ [0, 2π] there exists a
travelling wave.

Speed c(a, θ) is unique.

If c 6= 0, then wave profile Φ is unique and also monotone, i.e. Φ′ > 0.

[Mallet-Paret]

Dependence of c on angle θ and detuning parameter a very delicate. [Aaron
Hoffman’s talk]

In this talk: we fix (a, θ) and assume that c 6= 0.

Goal: understand stability of the travelling wave.
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Stability - Coordinate System

Assumption: we have a wave solution (c,Φ) travelling (c 6= 0) in rational
direction (σ1, σ2) ∈ Z2.

Naive Ansatz

uij(t) = Φ(iσ1 + jσ2 + ct) + vij(t).

Need to understand behaviour of perturbation v(t).

First step: want natural coordinates parallel and perpendicular to propagation of
wave.

n = iσ1 + jσ2 parallel

l = iσ2 − jσ1 transverse.
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Stability - Coordinate System

New coordinates:

n = iσ1 + jσ2 parallel

l = iσ2 − jσ1 transverse.

Old coordinates:

i = [σ2
1 + σ2

2]−1[nσ1 + lσ2]

j = [σ2
1 + σ2

2]−1[nσ2 − lσ1]

Equation only posed on sublattice of (n, l) ∈ Z2 in new coordinates.

Remember: (σ1, σ2) ∈ Z2.
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Stability - Coordinate System

In new coordinates, LDE becomes

u̇nl(t) = [∆×u(t)]nl + g
(
unl(t)

)
.

The discrete operator ∆× now acts as

[∆×u]n,l = un+σ1,l+σ2 + un+σ2,l−σ1

+un−σ1,l−σ2 + un−σ2,l+σ1

−4un,l.

All geometrical information encoded in ∆×.

Travelling wave becomes: unl(t) = Φ(n+ ct)

Special cases (σ1, σ2) = (1, 0) or (0, 1) (horizontal or vertical waves): ∆× = ∆+.
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Stability - Perturbation
Substituting naive perturbation Ansatz

unl(t) = Φ(n+ ct) + vnl(t)

into LDE we obtain

v̇nl(t) = [∆×v(t)]nl + g′
(
Φ(n+ ct)

)
vnl(t)

+O
(
|vnl(t)|2

)
.

(L) Need to understand growth rate of linear system

v̇nl(t) = [∆×v(t)]nl + g′
(
Φ(n+ ct)

)
vnl(t).

In general, since we are in 2d, expect something algebraic.

(NL) Quadratic nonlinearities combined with slow algebraic decay spell trouble.∫ t

0

(1 + t− t0)−1/2︸ ︷︷ ︸
Linear decay

[(1 + t0)−1/2]2︸ ︷︷ ︸
nonlinearity

dt0 ∼ ln(1 + t)(1 + t)−1/2.
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Stability - Linear System

Focus on linear LDE posed on Z2:

v̇nl(t) = [∆×v(t)]nl + g′
(
Φ(n+ ct)

)
vnl(t).

Observe: transverse coordinate l does not appear in coefficients.

Ideal for Fourier transform in transverse direction.

Write, for ω ∈ [−π, π]:

v̂n(ω) =
∑
l∈Z

vnle
−iωl.

Inverse transformation:

vnl =
1

2π

∫ π

−π
eilωv̂n(ω) dω.
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Stability - Linear System

Focus on linear LDE posed on Z2:

v̇nl(t) = [∆×v(t)]nl + g′
(
Φ(n+ ct)

)
vnl(t).

Observe: transverse coordinate l does not appear in coefficients.

Ideal for Fourier transform in transverse direction.

System is decoupled into

d

dt
v̂n(ω, t) = [∆̂×(ω)v̂(ω, t)]n + g′(Φ(n+ ct))v̂n(ω, t),

with

[∆̂×(ω)v]n = e+iωσ2vn+σ1 + e−iωσ1vn+σ2 + e−iωσ2vn−σ1 + eiωσ1vn−σ2 − 4vn.

In other words, for each frequency ω we have an LDE posed on a 1d lattice (in
parallel coordinate n).
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Stability - Linear System

Recall decoupled LDE

d

dt
v̂n(ω, t) = [∆̂×(ω)v̂(ω, t)]n + g′(Φ(n+ ct))v̂n(ω, t),

with

[∆̂×(ω)v]n = e+iωσ2vn+σ1 + e−iωσ1vn+σ2 + e−iωσ2vn−σ1 + eiωσ1vn−σ2 − 4vn.

Special case ω = 0. Write wn(t) = v̂n(0, t). We get

d

dt
wn(t) = [∆̂×(0)w(t)]n + g′(Φ(n+ ct))wn(t),

with

[∆̂×(0)w]n = wn+σ1 + wn+σ2 + wn−σ1 + wn−σ2 − 4wn.

13



Stability - Linear System

In special case ω = 0, writing wn(t) = v̂n(0, t), we hence have:

d
dtwn(t) = wn+σ1(t) + wn+σ2(t) + wn−σ1(t) + wn−σ2(t)− 4wn(t)

+g′(Φ(n+ ct))wn(t).

Notice that wn(t) = Φ′(n+ ct) is a solution.

Indeed: wave profile Φ had to satisfy

cΦ′(ξ) = Φ(ξ + σ1) + Φ(ξ + σ2) + Φ(ξ − σ1) + Φ(ξ − σ2)− 4Φ(ξ) + g(Φ(ξ)).

The zero-frequency component is hence the usual linearization around the
travelling wave, just like in 1d.
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Stability - 1d Linear Systems

Need to understand 1d LDE’s, e.g.

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t)), j ∈ Z.

Write as

U̇(t) = F
(
U(t)

)
,

with F : `∞(Z;R)→ `∞(Z;R).

View as ODE posed on sequence space `∞(Z;R).

Suppose we have a wave solution U j(t) = Φ(j + ct) with c > 0, with

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1.

Want to understand linear behaviour of U(t) = U(t) + V (t).
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Stability - 1d Linear Systems

Linear dynamics for V (t) = U(t)− U(t):

V̇ (t) = DF(U(t))V (t), V (t) ∈ `∞(Z;R).

Problem: Non-Autonomous!

Remember: U j(t) = Φ(j + ct). We DO have shift-periodicity

U j
(
t+ 1/c

)
= U j+1(t)

(
= Φ(j + 1)

)
.
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Stability - 1d Linear Systems

Linear behaviour V (t) = U(t)− U(t):

Green’s function [G(t, t0)]jj0 is value of Vj(t) for unique solution to linearized
LDE

V̇ (t) = DF
(
U(t)

)
V (t)

Vj′(t0) = δj′,j0.
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Stability - 1d Linear Systems

Linear behaviour V (t) = U(t)− U(t):

Green’s function [G(t, t0)]jj0 is value of Vj(t) for unique solution to linearized
LDE

V̇ (t) = DF
(
U(t)

)
V (t)

Vj′(t0) = δj′,j0.

For V ∈ `∞(Z;R), write G(t, t0)V for sequence

[G(t, t0)V ]j =
∑
j0∈Z

[G(t, t0)]j,j0Vj0

(convolution).

All information (time + space) on linear system encoded in G(t, t0).
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Stability - 1d Linear Systems

To understand G(t, t0) must solve

V̇ (t) = DF(U(t))V (t).

[Chow, Mallet-Paret, Shen] Can exploit shift-periodicity to develop shift-periodic
Floquet theory.

Problem: must analyze ’monodromy map’ G(t0 + 1
c, t0) ’by hand’. Heavily

dependent on ad-hoc arguments e.g. comparison principles. All arguments in
sequence space `∞(Z;R).

Nevertheless, authors managed to understand discrete Nagumo equation.

Our goal: Make connection with highly developed nonlinear stability theory for
PDEs [Zumbrun, Howard, ...].
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Stability - 1d Linear Systems

Recall linear problem on `∞(Z;R):

V̇ (t) = DF(U(t))V (t),

which for discrete Nagumo LDE is:

V̇j(t) = Vj+1(t) + Vj−1(t)− 2Vj(t) + g′
(
Φ(j + ct)

)
Vj(t).

We ’fill in the gaps’ between lattice points and look for solutions

Vj(t) = eλtv(j + ct).

Here λ ∈ C is spectral parameter and v must be bounded and solve

cv′(ξ) + λv(ξ) = v(ξ − 1) + v(ξ + 1)− 2v(ξ) + g′
(
Φ(ξ)

)
v(ξ)

in comoving frame ξ = j + ct. Write as Lv = λv with

[Lv](ξ) = −cv′(ξ) + v(ξ − 1) + v(ξ + 1)− 2v(ξ) + g′
(
Φ(ξ)

)
v(ξ).
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Fundamental relation

Reminder: Green’s function [G(t, t0)]jj0 is value of Vj(t) for unique solution to
linearized LDE

V̇ (t) = DF
(
U(t)

)
V (t)

Vj′(t0) = δj′,j0.

Thm. [Benzoni-Gavage, Huot, Rousset] For γ � 1 and t > t0,

[G(t, t0)]jj0 =
−1
2πi

∫ γ+iπc

γ−iπc
eλ(t−t0)Gλ(j + ct, j0 + ct0)dλ.

Resolvent kernel Gλ(ξ, ξ0) is unique solution [if defined] to

(L − λ)Gλ(·, ξ0) = δ(ξ − ξ0).
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Stability

Recall identity ( γ � 1 and t > t0 )

[G(t, t0)]jj0 =
−1
2πi

∫ γ+iπc

γ−iπc
eλ(t−t0)Gλ(j + ct, j0 + ct0)dλ.

Can view this as refined version of meta-identity

etL = − 1
2πi

∫
eλt[L − λ]−1 dλ.

Have to worry about invertibility of L − λ, i.e. study spectrum of L.

For example LΦ′ = 0 (translational invariance), so λ = 0 in spectrum.
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Stability

Recall identity ( γ � 1 and t > t0 )

[G(t, t0)]jj0 =
−1
2πi

∫ γ+iπc

γ−iπc
eλ(t−t0)Gλ(j + ct, j0 + ct0)dλ.
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Stability - 1d Linear Systems

Recall identity ( γ � 1 and t > t0 )

[G(t, t0)]jj0 =
−1
2πi

∫ γ+iπc

γ−iπc
eλ(t−t0)Gλ(j + ct, j0 + ct0)dλ.

Main goal: construct expressions for Gλ(ξ, ξ0) that can be extended
meromorphically in λ near poles of [L − λ]−1.

Can do this if translational eigenvalue λ = 0 is a simple eigenvalue [H. +
Sandstede]. In particular, if KerL = span{Φ′} and Φ′ /∈ RangeL.

One obtains

Gλ(ξ, ξ0) = λ−1Φ′(ξ)Ψ(ξ0) +O(e−ν|ξ−ξ0|),

where we have

KerL∗ = span{Ψ},

with L∗ the formal adjoint of L.
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Stability - 1d Linear Systems

Recall identity ( γ � 1 and t > t0 )

[G(t, t0)]jj0 =
−1
2πi

∫ γ+iπc

γ−iπc
eλ(t−t0)Gλ(j + ct, j0 + ct0)dλ.

Using meromorphic form

Gλ(ξ, ξ0) = λ−1Φ′(ξ)Ψ(ξ0) +O(e−ν|ξ−ξ0|),

we now obtain the key result

[G(t, t0)]jj0 = Φ(j + ct)Ψ(j0 + ct0)
+O
(
e−ν(t−t0)e−ν|j+ct−j0−ct0|

)
.

In particular, Green’s function for 1d lattice system can be ’read-off’ from
well-behaved spectral pictures.
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Stability - back to 2d

Remember: for ω = 0, writing wn(t) = v̂n(0, t), we had:

d
dtwn(t) = wn+σ1(t) + wn+σ2(t) + wn−σ1(t) + wn−σ2(t)− 4wn(t)

+g′(Φ(n+ ct))wn(t).

In this case, the relevant linear operator is:

[L0w](ξ) = −cw′(ξ) + w(ξ ± σ1) + w(ξ ± σ2)− 4w(ξ) + g′(Φ(ξ))w(ξ).

Remember L0Φ′ = 0. We also have: L∗0Ψ = 0 for the adjoint Ψ which has
Ψ(ξ) > 0 [Mallet-Paret].

For the Green’s function we hence get

[Gω=0(t, t0)]nn0 = Φ′(n+ ct)Ψ(n0 + ct0)
+O
(
e−ν(t−t0)e−ν|n+ct−n0−ct0|

)
.

Note: no temporal decay.
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Stability - Linear System

Back to ω 6= 0. Recall decoupled LDE

d

dt
v̂n(ω, t) = [∆̂×(ω)v̂(ω, t)]n + g′(Φ(n+ ct))v̂n(ω, t),

with

[∆̂×(ω)v]n = e+iωσ2vn+σ1 + e−iωσ1vn+σ2 + e−iωσ2vn−σ1 + eiωσ1vn−σ2 − 4vn.

Relevant operator now is:

[Lωw](ξ) = −cw′(ξ) + e±iωσ2w(ξ ± σ1) + e∓iωσ1w(ξ ± σ2)− 4w(ξ) + g′(Φ(ξ))w(ξ).

Need to understand spectrum of this operator.

What happens to zero eigenvalue for ω ≈ 0?
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Stability - Linear System

Recall ω-dependent linear operators

[Lωw](ξ) = −cw′(ξ) + e±iωσ2w(ξ ± σ1) + e∓iωσ1w(ξ ± σ2)− 4w(ξ) + g′(Φ(ξ))w(ξ).

There exists a branch

ω 7→ (λω, φω, ψω)

for ω ≈ 0 with

[Lω − λω]φω = 0, [L∗ω − λ∗ω]ψω = 0

Of course, λ0 = 0, φ0 = Φ′ and ψ0 = Ψ.

Key assumption:

Reλω ≤ −κω2, ω ≈ 0, κ > 0

For general directions (σ1, σ2) ∈ Z2, can only establish this with numerics.
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Stability - Linear System

Recall ω-dependent linear operators

[Lωw](ξ) = −cw′(ξ) + e±iωσ2w(ξ ± σ1) + e∓iωσ1w(ξ ± σ2)− 4w(ξ) + g′(Φ(ξ))w(ξ).

In special case (σ1, σ2) = (1, 0) we get

[Lωw](ξ) = −cw′(ξ) + w(ξ ± 1) + 2 cosωw(ξ)− 4w(ξ) + g′(Φ(ξ))w(ξ)
= [L0w](ξ) + 2(cosω − 1)w(ξ).

This immediately gives λω = 2(cosω − 1) and φω = Φ′.

Eigenfunctions φω now independent of ω.
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Stability - Linear System

Recall ω-dependent linear operators

[Lωw](ξ) = −cw′(ξ) + e±iωσ2w(ξ ± σ1) + e∓iωσ1w(ξ ± σ2)− 4w(ξ) + g′(Φ(ξ))w(ξ).

In special case (σ1, σ2) = (1, 1) we get

[Lωw](ξ) = −cw′(ξ) + (2 cosω)w(ξ ± 1)− 4w(ξ) + g′(Φ(ξ))w(ξ)

This gives [∂ωλω]ω=0 = 0 and [∂ωφω]ω=0 = 0.

Eigenfunctions φω now dependent on ω. But everything is quadratic in ω.
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Stability - Linear System

Recall decoupled LDE

d

dt
v̂n(ω, t) = [∆̂×(ω)v̂(ω, t)]n + g′(Φ(n+ ct))v̂n(ω, t).

For the Green’s function we get

[Gω(t, t0)]nn0 = eλω(t−t0)φω(n+ ct)ψ∗ω(n0 + ct0)
+O
(
e−ν(t−t0)e−ν|n+ct−n0−ct0|

)
.

Note: temporal decay of order O(e−κω
2∆t) since Reλω ≤ −κω2.

In particular, expect heat-kernel type decay in transverse direction.
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Stability - Linear System

Return to full 2d linear system

v̇nl(t) = [∆×v(t)]nl + g′
(
Φ(n+ ct)

)
vnl(t).

Look at initial condition

vnl(0) = v0
nl = (v0

n)l

with v0 ∈ `∞(Z; `1(Z;R)).

Norm on v0: `∞ in direction parallel to wave and `1 in direction transverse to
wave.

We get for `2 norm in transverse direction:

‖v(t)‖`∞(Z;`2(Z;R)) ∼ (1 + t)−1/4
∥∥v0
∥∥
`∞(Z;`1(Z;R))

.

For `∞ norm in transverse direction get extra decay:

‖v(t)‖`∞(Z;`∞(Z;R)) ∼ (1 + t)−1/2
∥∥v0
∥∥
`∞(Z;`1(Z;R))

.
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Stability - Naive Ansatz

Substituting naive perturbation Ansatz

unl(t) = Φ(n+ ct) + vnl(t)

led to

v̇nl(t) = [∆×v(t)]nl + g′
(
Φ(n+ ct)

)
vnl(t)

+O
(
|vnl(t)|2

)
.

Linear decay of t−1/4 much too weak to close nonlinear argument.

However, we understand precisely the terms in Green’s function leading to slow
decay:

[Gω(t, t0)]nn0 ∼ e
λω(t−t0)φω(n+ ct)ψ∗ω(n0 + ct0).

Since φ0 = Φ′, deformations in wave profile are the main culprit of slow decay.
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Stability - Refined Ansatz

Refined perturbation Ansatz

unl(t) = Φ
(
n+ ct+ θl(t)

)
+ vnl(t).

Here θl(t) measures deformation of wave profile (expect slow decay).

Remainder included in v(t) (expect faster decay).
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Stability - Refined Ansatz

Refined perturbation Ansatz

unl(t) = Φ
(
n+ ct+ θl(t)

)
+ vnl(t).

Normalization conditions:∑
n∈Z

Ψ(n+ ct)vnl(t) = 0, for all l ∈ Z.

Let us shorten this to:

Qctv(t) = 0 ∈ `∞(Z;R).

Reminder: we had L0Φ′ = 0 and L∗0Ψ = 0 with∑
n∈Z

Ψ(n+ ct)Φ′(n+ ct) = 1.
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Stability - Refined Ansatz

Need notation:

θ�l =
(
θl+σ2 − θl, θl−σ2 − θl, θl−σ1 − θl, θl+σ1 − θl

)
.

This expression contains only differences in θ. Fourier symbol for difference:
e±iωσi − 1 = O(ω).

Linear evolution for θ can be written as:

θ̇l(t) = QctL(ct+ θ)v(t) +QctM(ct+ θ)θ�(t) + cQ′ctv(t)

Here we have [Very similar to naive linearization]:

[L(ct+ θ)v]nl = [∆×v]nl + g′
(
Φ(n+ ct+ θl)

)
vnl.

New term [Measures effect of profile mismatches]:

[M(ct+ θ)θ�]nl = Φ′(n+ ct+ θl ± σ1)[θl±σ2 − θl]
+Φ′(n+ ct+ θl ± σ2)[θl∓σ1 − θl].
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Stability - Refined Ansatz

Recall linear evolution for θ:

θ̇l(t) = QctL(ct+ θ)v(t) +QctM(ct+ θ)θ�(t) + cQ′ctv(t)

with mismatch term

[M(ct+ θ)θ�]nl = Φ′(n+ ct+ θl ± σ1)[θl±σ2 − θl]
+Φ′(n+ ct+ θl ± σ2)[θl∓σ1 − θl].

Special case (σ1, σ2) = (1, 0):

[M(ct+ θ)θ�]nl = Φ′(n+ ct+ θl)[θl+1 + θl−1 − 2θl]

= [M̃(ct+ θ)θ��]nl

with second-difference operator

θ��l = (θl+1 + θl−1 − 2θl).

Similar reduction to second differences also possible for (σ1, σ2) = (1, 1).
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Stability - Refined Ansatz

Recall linear evolution for θ:

θ̇l(t) = QctL(ct+ θ)v(t) +QctM(ct+ θ)θ�(t) + cQ′ctv(t).

Write Lct = L(ct+ 0) and Mct = M(ct+ 0). Now obtain

θ̇l(t) = QctLctv(t) +QctMctθ
�(t) + cQ′ctv(t) + h.o.t.

Worst higher order terms given by θv and θθ�.

In special directions (1, 0) and (1, 1), worst higher order terms given by θv, θθ��

and (θ�)2. No θθ� term.
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Stability - Refined Ansatz

Full linear system for v and θ:

v̇(t) = [I − Pct]Lctv(t) + [I − Pct]Mctθ
� − cP ′ctv(t),

θ̇(t) = QctLctv(t) +QctMctθ
�(t) + cQ′ctv(t),

with Pct = Φ′(·+ ct)Qct. Note P 2
ct = Pct.

Write G(t, t0) for Green’s function. Also write G(t, t0) for Green’s function for:

ẇnl(t) = [Lctw(t)]nl = [∆×w(t)]nl + g′
(
Φ(n+ ct)

)
wnl(t)

[We have already studied this system].

We then have:

G(t, t0) =
(

[I − Pct]G(t, t0)[I − Pct0] [I − Pct]G(t, t0)Φ′(·+ ct0)
QctG(t, t0)[I − Pct0] QctG(t, t0)Φ′(·+ ct0)

)
.
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Stability - Refined Ansatz

Recall Green’s function:

G(t, t0) =
(

[I − Pct]G(t, t0)[I − Pct0] [I − Pct]G(t, t0)Φ′(·+ ct0)
QctG(t, t0)[I − Pct0] QctG(t, t0)Φ′(·+ ct0)

)
.

We know the slow parts of G(t, t0). In Fourier space tbese are given by

[Gω(t, t0)]nn0 ∼ e
λω(t−t0)φω(n+ ct)ψ∗ω(n0 + ct0).

Now, [I − Pct] projects away φ0(n+ ct). In addition, ψ0(n0 + ct0) can be seen as
Qct0, and we have Qct0[I − Pct0] = 0.

Roughly speaking, in Fourier space:

Gω(t, t0) =

(
ω2e−κω

2(t−t0) ωe−κω
2(t−t0)

ωe−κω
2(t−t0) e−κω

2(t−t0)

)
.
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Stability - Refined Ansatz

In special direction and (1, 1) we have better expansion:

Gω(t, t0) =

(
ω4e−κω

2(t−t0) ω2e−κω
2(t−t0)

ω2e−κω
2(t−t0) e−κω

2(t−t0)

)
.

Each ω gives t−1/2 extra decay. We hence expect, for initial condition (v0, θ0)
that are `1 in transverse direction:

‖θ(t)‖`2(Z;R) ∼ (1 + t)−1/4

‖θ�(t)‖`2(Z;R) ∼ (1 + t)−3/4

‖θ��(t)‖`2(Z;R) ∼ (1 + t)−5/4

‖v(t)‖`∞(Z;`2(Z;R)) ∼ (1 + t)−5/4,

Since worst nonlinear terms are θv, θθ�� and (θ�)2, which all decay in `1 as
(1 + t)−3/2, a nonlinear argument closes easily.

Situation for (1, 0) is even better, since φω = Φ′ for all ω.
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Stability - Refined Ansatz

Recall rough expansion

Gω(t, t0) =

(
ω2e−κω

2t ωe−κω
2t

ωe−κω
2t e−κω

2t

)
.

Each ω gives t−1/2 extra decay. We hence expect, for initial condition (v0, θ0)
that are `1 in transverse direction:

‖θ(t)‖`2(Z;R) ∼ (1 + t)−1/4

‖θ�(t)‖`2(Z;R) ∼ (1 + t)−3/4

‖v(t)‖`∞(Z;`2(Z;R)) ∼ (1 + t)−3/4,

Worst nonlinear terms now vθ and θθ�. Both are O(t−1) in `1-transverse.

Need delicate non-linear argument.
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Stability - Refined Ansatz

Need to deal with θθ� and vθ terms.

Key trick:

θl(θl+1 − θl) =
1
2
(
θ2
l+1 − θ2

l − (θl+1 − θl)2
)
.

This is discrete version of

uux =
1
2

(u2)x,

heavily exploited in study of conservation laws.

Key point: (θl+1 − θl)2 decays very fast (t−3/2). Difference θ2
l+1 − θ2

l decays very

slow (t−1/2), but gives an extra ω in Fourier space which leads to more decay on
Green’s function (t−3/4 instead of t−1/4).

∫ t
0
(1 + t− t0)−1/4(1 + t0)−1 dt0 ∼ ln(1 + t)(1 + t)−1/4 BAD∫ t

0
(1 + t− t0)−3/4(1 + t0)−1/2 dt0 ∼ (1 + t)−1/4 GOOD.
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Stability - Refined Ansatz

Final term to deal with: θv.

Key trick: isolate slowest decaying part of v from Taylor expansion of Fourier
symbol. Taylor expansion not in ω but in eiω − 1 in order to exploit difference
structure!

Slowest decaying part of v directly proportional to slowest decaying part of θ�.
Can decompose:

vnl(t) = wnl(t)− i[I − Pct][∂ωφ(·+ ct)]ω=0

(
θl+1(t)− θl(t)

)
.

New variable w(t) decays faster than v, at rate t−5/4.

Slow part of v(t) proportional to θ�. Can treat in same way as O(θθ�) term!

Notice that in special directions (1, 0) and (1, 1), we have v(t) = w(t).
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Stability in 2d

Recall Ansatz

unl(t) = Φ(n+ ct+ θl(t)) + vnl(t).

Thm. [H., Hoffman, Van Vleck, 2012] Travelling wave (c 6= 0) in any rational
direction is nonlinearly stable under small perturbations∑

l∈Z |θl(0)| � 1

supn∈Z[
∑
l∈Z |vnl(0)|] � 1.

Note: perturbations need to be summable in transverse direction.

We have θl(t)→ 0 and vnl(t)→ 0 as t→∞.

In other words, deformations of interface diffuse in transverse direction.

It does NOT lead to a shift in the wave.
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Stability in 2d

Recall Ansatz

unl(t) = Φ(n+ ct+ θl(t)) + vnl(t).

Algebraic decay rates depend on direction of propagation!

Horizontal waves (θ = 0):

θl(t) ∼ t−1/2, vnl(t) ∼ t−7/4.

Diagonal waves (θ = π
4):

θl(t) ∼ t−1/2, vij(t) ∼ t−3/2.

Other rational directions: (very slow decay - delicate nonlinear analysis needed)

θl(t) ∼ t−1/2, vij(t) ∼ t−1.
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Summary

• Obtained stability in 2d for rational directions

• Only spectral conditions imposed on wave.

• Works even in absence of comparison principles.

Outlook:

• What about irrational directions ?

• What about standing waves (c = 0) ?

47


