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Abstract

We study the well-posedness of initial value problems for scalar functional algebraic and differential functional

equations of mixed type. We provide a practical way to determine whether such problems admit unique

solutions that grow at a specified rate. In particular, we exploit the fact that the answer to such questions

is encoded in an integer n]. We show how this number can be tracked as a problem is transformed to a

reference problem for which a Wiener-Hopf splitting can be computed. Once such a splitting is available,

results due to Mallet-Paret and Verduyn-Lunel can be used to compute n]. We illustrate our techniques by

analytically studying the well-posedness of two macro-economic overlapping generations models for which

Wiener-Hopf splittings are not readily available.

Key words: functional differential equations, advanced and retarded arguments, overlapping generations

models, initial value problems, indeterminacy.

1 Introduction

In this paper we consider a class of initial value problems that includes the prototypes

ax′(ξ) = x(ξ) +
∫ 1

−1
x(ξ + σ)dσ for all ξ ≥ 0,

x(τ) = ψ(τ) for all − 1 ≤ τ ≤ 0,
(1.1)

in which a is allowed to be any real number, including zero. We wish to determine whether such
systems will admit bounded solutions for any initial condition ψ ∈ C([−1, 0],R) and whether such
solutions are unique. If a 6= 0, the first line of (1.1) is called a functional differential equation of
mixed type (MFDE), while if a = 0, we use the term functional algebraic equation of mixed type
(MFAE). The word ‘mixed’ refers to the fact that the nonlocal term in (1.1) involves shifts in the
argument of x that are both positive and negative.
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Notice that (1.1) with a 6= 0 differs from traditional initial value problems, in the sense that the
initial condition ψ does not provide sufficient information to calculate x′(0). The system (1.1) hence
cannot be interpreted as an evolution equation, requiring us to consider the behaviour of x on the
entire interval [0,∞) all at once.

In this sense, it seems reasonable to argue that the initial condition ψ should be taken from
C([−1, 1],R), which after all is a natural state space for (1.1) as it does allow x′(0) to be computed.
However, the resulting problem is highly ill-posed [13, 23]. For example, there is no guarantee that
ψ′(0) exists or agrees with the value for x′(0) computed from ψ. One might be tempted to incorporate
such a requirement into the state space, but this is just one of a sequence of increasingly intricate
incompatibilities that needs to be addressed. As we will see below, the choice to take ψ ∈ C([−1, 0],R)
is natural both from a mathematical and an applied perspective.

Macro-Economic Modelling

The primary motivation for this paper comes from the area of macro-economic research. To set the
stage, let us consider an isolated economy that starts at t = 0. We write k(t) for the production
capacity at time t, which is a measure for the amount of goods and services that can be produced.
At any point in time, this capacity must be divided between investments u(t) and consumption c(t).
The former leads to an increase in the production capacity, while the latter satisfies the immediate
needs of the population. The goal is to optimize the welfare of the population, which is assumed to
depend only on the consumption c(t). This can be formulated as the optimal control problem

max
∫ ∞

0

e−ρtW
(
c(t)
)
dt, (1.2)

in which the discount factor ρ reflects how future welfare is rated relative to present welfare, while
W measures the welfare associated to consumption.

Typically, time must pass before an investment actually increases the production capacity. Kyd-
land and Prescott [18] showed that is vital to include such time-lags in any realistic model, which
turns (1.2) into a delayed optimal control problem [1, 2, 24]. Hughes proved that the resulting Euler-
Lagrange optimality conditions are in fact MFDEs [14]. Once hence encounters problems of the form
(1.1) if one wishes to impose initial conditions at the start-up time t = 0.

The model (1.2) neglects the fact that populations typically consist of many individuals that have
competing interests. Since their introduction by Samuelson [25], overlapping generations models have
been used extensively to take this into account. Such models assume that the population can be split
into agegroups, that each make separate economic decisions based upon their expectations for the
future. To calculate the resulting macro-economic behaviour, one typically assumes that the decisions
that are made actually create economic conditions that are compatible with the anticipations on
which these decisions were based [6, 8, 11, 26].

As an illustrating example, let us discuss the work of d’Albis et al. [5], which models a population
of individuals that all live for a fixed time that we scale to unity. We write c(s, t) ≥ 0 for the
consumption at time t of an individual born at time s and similarly a(s, t) for the assets that such
an individual owns. Everybody earns an age-independent income w(t) and receives interest on their
assets at the rate r(t), which leads to the budget constraint

∂a(s, t)
∂t

= r(t)a(s, t) + w(t)− c(s, t). (1.3)

In addition, everybody is born with zero assets and may not die in debt, i.e., a(s, s+1) ≥ a(s, s) = 0.
Subject to these constraints, everybody acts to maximize his or her total life-time welfare

W (s) =
∫ s+1

s

ln
(
c(s, τ)

)
dτ . (1.4)
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Solving the above optimization problem shows that for any s ≥ 0 and t ∈ [s, s+ 1], the optimal
consumption is given by

c∗(s, t) =
∫ s+1

s

w(σ) exp[
∫ t

σ

r(τ)dτ ]dσ. (1.5)

Writing a∗(s, t) for the corresponding optimal asset allocation, we note that the total amount of
capital k(t) that is available in the economy is given by the sum of the assets of everybody that is
alive at time t, i.e.,

k(t) =
∫ t

t−1

a∗(σ, t)dσ. (1.6)

The economy features a unique commodity which can be used for both consumption and investments.
We will assume that the rate Q at which this commodity can be produced at time t depends on the
available amount of capital k(t) and labour l(t) via

Q
(
t, k(t), l(t)

)
= Ak(t)α

(
e(t)l(t)

)1−α
, (1.7)

for some constants A > 0 and 0 < α < 1. The factor e(t) is included to correct for the increase in
labour efficiency over time. At every time t, the interest rate r(t) can be interpreted as the price for
capital, while the wages w(t) can be seen as the price for labour. These prices can be determined by
partial differentiation of Q with respect to k(t) and l(t), yielding

r(t) = αAk(t)α−1
(
e(t)l(t)

)1−α
,

w(t) = (1− α)Ak(t)αe(t)1−αl(t)−α.
(1.8)

Choosing e(t) = k(t) and restricting ourselves to a fixed population size l(t) = 1, these expressions
reduce to

r(t) = αA,
w(t) = (1− α)Ak(t). (1.9)

In combination with (1.6), these identities can be used [5, Eq. A.7-A.9] to describe the dynamical
behaviour of the capital market by the MFDE

k′(t) = Ak(t)− (1− α)A
[ ∫ t

t−1

k(σ)(σ + 1− t)eαA(t−σ)dσ +
∫ t+1

t

k(σ)(t+ 1− σ)eαA(t−σ)dσ
]
.

(1.10)

This equation can be turned into an autonomous MFDE by considering the new variable e−αAtk(t).
To incorporate the fact that populations do not extend arbitrarily far into the past, we will

assume that (1.10) describes the dynamics of k(t) for all t ≥ 0. From the form of (1.10), it is clear
that we will need to supply initial values k(σ) for −1 ≤ σ ≤ 0 before our model can be used to
calculate k(t) for t > 0. It is not clear however, whether such an initial condition always leads to a
unique bounded solution k of (1.10).

Indeterminacy

Venditti and his coworkers [20] coined the term indeterminacy to describe the situation where several
different sequences of self-fulfilling expectations may exist simultaneously. The topic of indeterminacy
has attracted significant economic interest, since it may provide some insight into the mechanism
by which countries that have similar economic structures and initial conditions sometimes undergo
a completely different economic development.
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Many authors have considered the issue of indeterminacy in a two generation model, in which
the population is divided into an old and a young group [9–11, 27]. After a fixed amount of time, the
young group becomes old, the old group dies and a new young group is born. The resulting economic
models can be written as discrete dynamical systems on Rn for which m ≤ n initial conditions can be
freely chosen. The details depend heavily on parameters such as the number of different commodities
that can be exchanged and the role that pension and labour plays. Restricting oneself to trajectories
that converge to an equilibrium, the degree of indeterminacy can be readily computed by subtracting
the number of initial conditions m from the dimension of the stable manifold around the equilibrium
under consideration, assuming that suitable non-degeneracy conditions are satisfied.

The distinguishing feature of the model (1.10) is that births and deaths occur in continuous
time, rather than at discrete time intervals. First used by Cass and Yaari [3], even the simplest
of such continuum models admit economic features that can only be observed in discrete models
by incorporating relatively complex interactions. The price that needs to be paid is that dimension
counting arguments no longer suffice to study the indeterminacy of (1.10), since the dimension of the
space of initial conditions C([−1, 0],R) and the dimension of the natural state space C([−1, 1],R) are
both infinite. Nevertheless, using the techniques developed in this paper, the notion of indeterminacy
can be quantified and calculated for various economic models featuring a continuum of overlapping
generations.

Initial Value Problems

The initial value problems for MFDEs that we consider in this paper can be written in the general
form

x′(ξ) = L evξx for all ξ ≥ 0,
x(τ) = ψ(τ) for all rmin ≤ τ ≤ 0. (1.11)

Here x is a continuous real-valued function on the interval [rmin,∞) and the operator L is a bounded
linear map from C

(
[rmin, rmax],R) into R. We will use the notation evξx ∈ C([rmin, rmax],R) to

denote the state of x evaluated at ξ, defined by [evξx](θ) = x(ξ + θ) for all rmin ≤ θ ≤ rmax. We
require rmin ≤ 0 and rmax ≥ 0 and take the initial condition ψ from the set C([rmin, 0],R).

The algebraic problems that we study can be written as

0 = M evξx for all ξ ≥ 0,
x(τ) = ψ(τ) for all rmin ≤ τ ≤ 0, (1.12)

in which M is a special type of linear map from C
(
[rmin, rmax],R) into R. In particular, we will

require that a number of formal differentiations reduces the MFAE (1.12) to the MFDE (1.11). For
example, differentiating our prototype system (1.1) with a = 0 yields x′(ξ) = x(ξ − 1) − x(ξ + 1),
which can be written as (1.11) with Lφ = φ(−1)− φ(1).

We will consider the initial value problems (1.11) and (1.12) on exponentially weighted spaces.
In particular, let us choose an exponential weight η ∈ R and consider the function space

BC⊕η = {x ∈ C
(
[rmin,∞),R

)
| ‖x‖η := sup

ξ≥rmin

e−ηξ |x(ξ)| <∞}. (1.13)

Our goal in this paper is to develop a feasible approach to determine whether (1.11) and (1.12)
admit solutions x ∈ BC⊕η for every initial condition ψ ∈ C

(
[rmin, 0],R

)
and whether such solutions

are unique.
Let us emphasize here that well-posedness results for the linear systems (1.11) and (1.12) also

play an important role in nonlinear settings. Consider for example the nonlinear initial value problem

x′(ξ) = x(ξ + 1) + x(ξ − 1) + x(ξ)2 for all ξ ≥ 0,
x(τ) = ψ(τ) for all rmin ≤ τ ≤ 0. (1.14)
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Let us write Q for the set of bounded solutions to the linearized equation x′(ξ) = x(ξ+ 1) +x(ξ−1)
posed on R+. In addition, write

Q = ev0

(
Q
)
, Qε = {φ ∈ Q | ‖φ‖ ≤ ε}. (1.15)

Using techniques developed in [16, 17], one may show that there exists a function

u∗ : Qε → C([−1, 1],R), u∗(φ) = φ+O(φ)2, (1.16)

such that u∗(Qε) defines a local stable manifold for the equilibrium x = 0. We hence see that the
nonlinear initial value problem (1.14) admits solutions that decay to zero for all sufficiently small
initial data ψ ∈ C([−1, 0],R) if and only if the linear problem (1.11) with Lφ = φ(1) + φ(−1) is
well-posed with respect to BC⊕0 .

Characteristic Equations

In the special case that rmax = 0, the problem (1.11) reduces to an initial value problem for a retarded
functional differential equation (RFDE). Such systems have been studied extensively during the last
three decades, resulting in a rich and diverse literature on the subject. Using the theory described in
[12], the well-posedness of (1.11) can be read off directly from the characteristic function ∆L : C→ C,
that can be written as

∆L(z) = z − Lez·. (1.17)

Indeed, consider any η ∈ R with the property that the characteristic equation ∆L(z) = 0 admits no
roots with Re z ≥ η. It then follows from [12, Theorem 7.6.1] that any φ ∈ C([rmin, 0],R) can be
extended to a solution x ∈ BC⊕η . If this property fails, one can determine the codimension of the
set of initial conditions that can be extended by studying the number and multiplicity of the roots
of ∆L(z) = 0 that have Re z ≥ η.

Such a direct criterion no longer exists when rmax > 0. The investigation is complicated by the
fact that the characteristic equation ∆L(z) = 0 will in general have an infinite number of roots on
both sides of the imaginary axis. For example, for the prototype system (1.1) with a = 1 we have

z∆L(z) = z
[
z − 1−

∫ 1

−1

ezσdσ
]

= z2 − z − ez + e−z. (1.18)

This transcendental equation can no longer be bounded by a polynomial on the half plane Re z ≥ 0, as
is always possible for an RFDE. The reason that we may nevertheless expect to obtain well-posedness
results for (1.11) and (1.12) is that the space C([rmin, 0],R) containing the initial conditions now
differs from the natural state space C([rmin, rmax],R).

The key result that allows the well-posedness of (1.11) to be analyzed was obtained by Mallet-
Paret and Verduyn Lunel in [22]. In particular, under a non-degeneracy condition that roughly states
that the interval [rmin, rmax] cannot be decreased, the authors show that for every α ∈ R there exists
a Wiener-Hopf factorization

(z − α)∆L(z) = ∆L−(z)∆L+(z), (1.19)

in which ∆L− and ∆L+ are the characteristic functions associated to a retarded respectively advanced
functional differential equation, i.e. ∆L±(z) = z − L± exp(z·) for some pair of operators L− ∈
L(C([rmin, 0],C),C) and L+ ∈ L(C([0, rmax],C),C). For any η 6= α ∈ R for which ∆L(z) = 0 admits
no roots with Re z = η, one may compute an integer n]L(η) by counting the number of roots of the
equations ∆L±(z) = 0 that lie on the ’wrong’ side of the line Re z = η. It turns out that this integer
n]L(η) is independent of the specific factorization (1.19). In addition, all information concerning the
well-posedness of (1.11) with respect to BC⊕η can be determined from this invariant.
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In practice however, it is often intractable to actually find a factorization of the form (1.19)
for the symbol ∆L. In this paper, we show how n]L(η) can still be computed in such situations
by constructing a homotopy from a suitable reference system that can actually be factorized. This
computation requires one to count the number of roots of the characteristic equation ∆L(z) = 0
that cross the line Re z = η as the MFDE is transformed from the reference system to the system
under consideration. We will give examples in which this number can be computed analytically, but
remark that this counting can very easily be performed numerically.

As can be expected, the well-posedness of the MFAE (1.12) depends heavily on properties of the
related MFDE (1.11), since any solution to the first line of (1.12) will automatically satisfy (1.11).
The converse however is not true and care has to be taken to isolate the superfluous solutions to
(1.11). We will address this issue by using spectral projections and Laplace transform techniques.

Our main results are stated in §2 and proved in §4-§5. In §3.1 we discuss the well-posedness of the
overlapping generations model (1.10) and in §3.2 we consider an additional overlapping generations
model that leads to an algebraic initial value problem of the form (1.12).

2 Main Results

In this section we state our main results, which will be proved in §4-§5. We first discuss systems
that are governed by a differential equation and subsequently show how these results can be used
to study the class of algebraic problems that we are interested in.

2.1 Initial Value Problems for MFDEs

To set the stage, let us consider the autonomous linear homogeneous MFDE

x′(ξ) = L evξx, (2.1)

in which L is a bounded linear operator from C([rmin, rmax],Cn) into Cn. We require rmin ≤ 0 and
rmax ≥ 0 and recall the notation [evξx](θ) = x(ξ + θ) for rmin ≤ θ ≤ rmax. Later on we will restrict
ourselves to the scalar case n = 1, but for now we allow n ≥ 1. We write

∆L(z) = z − Lez·I (2.2)

for the characteristic matrix that is associated to (2.1), in which I is the n× n identity matrix.
Since we wish to consider (2.1) on the half-lines R±, let us introduce the exponentially weighted

function spaces

BC	η := {x ∈ C
(
(−∞, rmax],Cn

)
| supξ≤rmax

e−ηξ |x(ξ)| <∞},

BC⊕η := {x ∈ C
(
[rmin,∞),Cn

)
| supξ≥rmin

e−ηξ |x(ξ)| <∞}
(2.3)

and write ‖x‖η for the corresponding norms. We can now introduce the following solution sets for
(2.1),

PL(η) =
{
v ∈ BC	η | v′(ξ) = L evξv for all ξ ≤ 0

}
,

QL(η) =
{
v ∈ BC⊕η | v′(ξ) = L evξv for all ξ ≥ 0

}
.

(2.4)

As in [22], it is convenient to introduce the spaces

PL(η) =
{
φ ∈ C([rmin, rmax],Cn) | φ = ev0v for some v ∈ PL(η)

}
,

QL(η) =
{
φ ∈ C([rmin, rmax],Cn) | φ = ev0v for some v ∈ QL(η)

}
,

(2.5)
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which describe the initial segments of the solution sets PL and QL in the natural state space
C([rmin, rmax]). Let us also introduce the associated restriction operators

π+
PL(η) : PL(η)→ C

(
[0, rmax],Cn

)
φ 7→ φ|[0,rmax],

π−QL(η) : QL(η)→ C
(
[rmin, 0],Cn

)
φ 7→ φ|[rmin,0].

(2.6)

The well-posedness properties of the initial value problem (1.11) that we wish to understand
are entirely encoded in the family of restriction operators π−QL(η). Indeed, if Range

(
π−QL(η)

)
=

C
(
[rmin, 0],C) for some η ∈ R, then for any φ ∈ C

(
[rmin, 0],C) the initial value problem (1.11)

has a solution x ∈ BC⊕η . If Ker
(
π−QL(η)

)
= {0}, then such solutions are unique. We will say that

(1.11) is well-posed with respect to the space BC⊕η if and only if π−QL(η) is an isomorphism from
QL(η) onto C([rmin, 0],C).

The following proposition shows that for appropriate values of η, the state space C([rmin, rmax],Cn)
is decomposed by PL(η) and QL(η). In addition, the restriction operators (2.6) are Fredholm, which
means that their kernels are finite dimensional, while their ranges are closed and of finite codimen-
sion. We recall that the index of a Fredholm operator F is determined by the formula

ind(F ) = dim Ker(F )− codim Range(F ). (2.7)

We remark that these results can be easily obtained by applying exponential shifts to the theory
developed in [22, §3].

Proposition 2.1 (see [22, §3]). Consider the linear system (2.1) and choose η ∈ R in such a way
that the characteristic equation det ∆L(z) = 0 admits no roots with Re z = η. Then the spaces PL(η)
and QL(η) are closed and satisfy

C([rmin, rmax],Cn) = PL(η)⊕QL(η). (2.8)

In addition, there exist constants K > 0 and α > 0 such that

‖evξv‖ ≤ Ke(η+α)ξ ‖ev0v‖ (2.9)

for any v ∈ PL(η) and ξ ≤ 0, while also

‖evξw‖ ≤ Ke(η−α)ξ ‖ev0w‖ (2.10)

for any w ∈ QL(η) and ξ ≥ 0. Finally, the operators π+
PL(η) and π−QL(η) defined in (2.6) are Fredholm,

with

ind(π+
PL(η)) + ind(π−QL(η)) = −n. (2.11)

To obtain more detailed information on the restriction operators π+
PL(η) and π−QL(η), we need to

impose the following additional restriction on the linear operator L.

(HL) There exist quantities s± ≥ 0 and non-singular matrices J± such that the following asymptotic
expansions hold,

∆L(z) = z−s+ezrmax(J+ + o(1)) as z →∞,
∆L(z) = z−s−ezrmin(J− + o(1)) as z → −∞. (2.12)

We remark that (HL) is significantly weaker than the atomicity condition used in [22, Eq. (2.3)],
which requires s± = 0 to hold in (HL). Such a condition is violated by the economic models studied
in this paper. Nevertheless, the techniques developed in [22, §5] can still be used to obtain the
following result, which lies at the basis for a further understanding of π+

PL(η) and π−QL(η).
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Proposition 2.2 (see [22, Thm 5.2]). Consider the linear system (2.1) and suppose that (HL)
is satisfied. Then for any monic polynomial p of degree n, there exist linear operators

L− ∈ L(C([rmin, 0],Cn),Cn), L+ ∈ L(C([0, rmax],Cn),Cn), (2.13)

with associated characteristic matrices

∆L±(z) = zI − L±ez· I (2.14)

for which the splitting

p(z) det ∆L(z) = det ∆L−(z) det ∆L+(z) (2.15)

holds.

Proof. It suffices to show that the proof of [22, Thm. 5.2] still holds for the weaker condition (HL).
The atomicity condition [22, Eq. (2.3)] is only used to verify the conditions associated with a
Phragmén-Lindelöf theorem [19, Thm. I.21] that asserts that entire functions that grow at most
exponentially on C and polynomially on the real and imaginary axes, are in fact polynomials. Al-
lowing s± > 0 in (2.12) does not destroy these required growth estimates.

The splitting (2.15) is referred to as a Wiener-Hopf factorization for the symbol ∆L and we will
call any such triplet (p, L−, L+) a Wiener-Hopf triplet for L. In general, such triplets need not be
unique. Indeed, in [22] a mechanism is given by which pairs of roots of the characteristic equations
det ∆L±(z) = 0 may be interchanged. Nevertheless, it turns out to be possible to extract a quantity
that does not depend on the chosen splitting (2.15). To this end, let us consider any Wiener-Hopf
triplet (p, L−, L+) for L and pick an η ∈ R for which the equation p(z) = 0 admits no roots with
Re z = η. We now introduce the quantity

n]L(η) = n+
L+

(η)− n−L−(η) + n0
p(η) (2.16)

that is defined by

n−L−(η) = #{z ∈ C | det ∆L−(z) = 0 and Re z > η},

n+
L+

(η) = #{z ∈ C | det ∆L+(z) = 0 and Re z < η},

n0
p(η) = #{z ∈ C | p(z) = 0 and Re z > η}.

(2.17)

This quantity n]L(η) is invariant in the following sense.

Proposition 2.3 (see [22, Thm. 5.2]). Consider the linear system (2.1) and suppose that (HL)
is satisfied. Fix any η ∈ R for which the characteristic equation det ∆L(z) = 0 admits no roots with
Re z = η. Then the quantity n]L(η) is invariant across all Wiener-Hopf triplets (p, L−, L+) for L
that have p(η + iν) 6= 0 for all ν ∈ R.

Proof. The remarks made in the proof of Proposition 2.2 also apply here, ensuring that the proof of
[22, Thm. 5.2] remains valid.

In the special case that (2.1) is scalar, the quantities n]L(η) can be used to characterize the kernels
and ranges of the Fredholm operators π−QL(η) and π+

PL(η). This dimension restriction is related to the
fact that the splitting (2.15) only features the determinant of ∆L.

Proposition 2.4 (see [22, Thms. 6.1-2]). Consider a scalar version of the linear system (2.1)
and suppose that (HL) is satisfied. Fix any η ∈ R for which the characteristic equation ∆L(z) = 0
admits no roots with Re z = η. Then the following identities hold,

dim Kerπ+
PL(η) = max{−n]L(η), 0}, codim Rangeπ+

PL(η) = max{n]L(η), 0},
dim Kerπ−QL(η) = max{n]L(η)− 1, 0}, codim Rangeπ−QL(η) = max{1− n]L(η), 0}.

(2.18)
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Proof. To see that the proofs of [22, Thms. 6.1-2] still work with the weaker condition (HL), we
note that the stronger atomicity condition is only used once in a setting that is not related to the
application of a Phragmén-Lindelöf theorem. This occurs in the proof of [22, Lem. 5.9], where it
is needed to establish the non-degeneracy of the Hale inner product for delay equations. Careful
inspection however shows that [22, Lem. 5.9] is only needed in the special case m = 0. It therefore
suffices to show that the sets of generalized eigenfunctions associated to L± are complete. This can
be done by noting that the factorization (2.15) ensures that the asymptotic growth rates (2.12) are
shared by ∆L± and subsequently applying [12, Cor. 7.8.1].

In principle, we now have sufficient information to answer the well-posedness question for the scalar
initial value problem (1.11). Indeed, for any η for which ∆L(z) = 0 has no roots with Re z = η,
the problem (1.11) is well-posed with respect to the space BC⊕η if and only if n]L(η) = 1. However,
as discussed in the introduction, it is often intractable to find Wiener-Hopf triplets for a prescribed
operator L. This often prevents us from computing n]L(η) directly from (2.16).

Our first main result addresses this difficulty and allows n]L(η) to be calculated in settings where
a Wiener-Hopf triplet is not readily available for the system (2.1) under consideration. The only
requirement is that a Wiener-Hopf triplet is available for some reference system that can be contin-
uously transformed into the original system without violating (HL). Please note however that the
exponents s± appearing in this condition (HL) need not remain constant during this transformation.

Theorem 2.5 (see §4). Consider a continuous path

Γ : [0, 1]→ L
(
C([rmin, rmax],Cn),Cn

)
(2.19)

and suppose that the operators Γ(µ) satisfy (HL) for all 0 ≤ µ ≤ 1. Fix any η ∈ R and suppose that
the characteristic equation det ∆Γ(µ)(z) = 0 admits roots with Re z = η for only finitely many values
of µ ∈ [0, 1] and that µ ∈ (0, 1) for all such µ. Then we have the identity

n]Γ(1)(η)− n]Γ(0)(η) = −cross(Γ, η), (2.20)

in which the crossing number cross(Γ, η) denotes the net number of roots of the characteristic equation
det ∆Γ(µ)(z) = 0, counted with multiplicity, that cross the line Re z = η from left to right as µ
increases from 0 to 1.

We note that the formula [22, Eq. (6.7)] can be seen as a special case of this theorem, that applies
only to operators L : C([rmin, rmax],C)→ C that can be written as

Lφ =
N∑
j=0

Ajφ(rj) (2.21)

for some integer N , constants Aj ∈ C and shifts rmin ≤ rj ≤ rmax. This formula was obtained by
embedding Γ(0) and Γ(1) into a non-autonomous MFDE

x′(ξ) = L(ξ) evξx (2.22)

that has L(−∞) = Γ(0) and L(∞) = Γ(1) and subsequently invoking a spectral flow result [21,
Thm. C]. This latter result requires (2.21) to hold, while the restriction to scalar equations comes
from the fact that the identities (2.18) are used.

Our result is obtained using more direct techniques that also work when n > 1 and do not suffer
from the point-shift restriction (2.21). We remark that many examples, including the economic
models studied in this paper, violate this restriction. Of course, we have to admit that the ability to
calculate the invariant n]L(η) if n > 1 is of limited value at present, since no analogue of Proposition
2.4 is currently available. In future work we plan to remedy this situation. In particular, we are
hopeful that in situations where the characteristic equation det ∆L(z) = 0 does not admit high-
multiplicity eigenvalues, information on π−QL(η) and π+

PL(η) can still be obtained from n]L(η).
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2.2 Initial Value Problems for MFAEs

We will now turn our attention to algebraic equations of the form

0 = M evξx, (2.23)

in which M is a bounded linear operator from C([rmin, rmax],Cn) into Cn that can be closely related
to a differential system of the form (2.1). In order to clarify this relationship, we introduce the
characteristic matrix

δM (z) = −Mez·I (2.24)

that is associated to (2.23). The restriction on M that we need in this paper can now be captured
by the following condition on the characteristic matrices.

(HM) There exist an integer ` ≥ 1 and an operator L ∈ L
(
C([rmin, rmax],Cn),Cn

)
such that

β(z − α)`δM (z) = ∆L(z) (2.25)

for some α, β ∈ C with β 6= 0.

This condition is related to the fact that we require any solution to the MFAE (2.23) to also satisfy
the MFDE (2.1). The reader may wish to keep in mind the example MFAE

x(ξ) =
∫ 1

−1

x(ξ + σ)dσ, (2.26)

for which we have

Mφ = −φ(0) +
∫ 1

−1
φ(σ)dσ,

δM (z) = 1−
∫ 1

−1
ezσdσ = 1

z [z + e−z − ez],
(2.27)

which implies that (HM) is satisfied with ` = 1, α = 0, β = 1 and

Lφ = φ(1)− φ(−1). (2.28)

Indeed, a single differentiation of (2.26) easily yields that x′(ξ) = L evξx for this choice of L.
We will be interested in the solution spaces

pM (η) =
{
v ∈ BC	η | 0 = M evξv for all ξ ≤ 0

}
,

qM (η) =
{
v ∈ BC⊕η | 0 = M evξv for all ξ ≥ 0

}
.

(2.29)

Our second main result relates these spaces pM (η) and qM (η) to their counterparts PL(η) and QL(η)
that were defined for the differential equation (2.1). The result exploits the explicit constructions in
the proof of [15, Prp. 4.2], which show that if (2.25) holds for a single α ∈ C, it will in fact hold1 for
any α ∈ C. In particular, the operator L′ appearing in the result below can be computed explicitly
from the operator L appearing in (HM).

Theorem 2.6 (see §5). Consider the algebraic equation (2.23) and suppose that (HM) is satisfied.
Choose any η ∈ R for which the characteristic equation det δM (z) = 0 admits no roots with Re z = η.
Then there exists a bounded linear operator L′ : C([rmin, rmax],Cn)→ C

n such that

β(z − η)`δM (z) = ∆L′(z), (2.30)

in which ` and β are the constants appearing in (HM). In addition, for every sufficiently small ε > 0
we have

pM (η) = PL′(η + ε), qM (η) = QL′(η − ε). (2.31)

With this result in hand, the theory developed above to describe the spaces PL and QL associated
to the MFDE (2.1) can also be utilized for the algebraic system (2.23).

1After suitably modifying L, but keeping ` and β fixed.
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3 Examples

In this section, we consider two example initial value problems that arise from economic overlapping
generations models. The first example will be an MFDE problem of the form (1.11), the second
example will be an MFAE problem of the form (1.12). For both examples, we will find suitable
reference systems that admit an explicit Wiener-Hopf factorization. It will be possible to analytically
track the roots of the characteristic equations that cross the imaginary axis, as we move from the
reference systems to the original systems.

3.1 Well-posedness of an MFDE

As our first example, we consider the MFDE (1.10), which describes the dynamics of the capital
market for the overlapping generations model discussed in the introduction. For ease of notation, we
introduce the parameter β = (1− α)A and consider the new variable x(ξ) = k(ξ)e−αAξ. In terms of
this new variable, (1.10) reduces to the linear autonomous MFDE

x′(ξ) = L evξx := βx(ξ)− β
∫ 0

−1

(1 + σ)x(ξ + σ)dσ − β
∫ 1

0

(1− σ)x(ξ + σ)dσ. (3.1)

We will impose the following condition on the model parameters, which basically states that in the
economy under consideration, the reward for labour is high relative to the return rate on capital.

(HP) We have 0 < αA < 1 and β > 1.

The characteristic matrix ∆L associated to (3.1) can be written as

∆L(z) = z − β + β

∫ 0

−1

∫ σ+1

σ

ezτdτdσ. (3.2)

Lemma 3.1. Assume that (HP) holds. Then the characteristic equation ∆L(z) = 0 admits precisely
two real roots, namely z = z− < 0 and z = 0. These two roots are the only solutions to ∆L(z) = 0
in the vertical strip z− ≤ Re z ≤ 0.

Proof. It is easy to verify the limits limp→±∞∆L(p) =∞ and check that ∆L(0) = 0 and ∆′L(0) = 1.
Using

∆′′L(z) = β

∫ 0

−1

∫ σ+1

σ

τ2ezτdτdσ (3.3)

we see that ∆′′L(p) > 0 for p ∈ R, which completes the proof of the statements concerning the real
roots of the characteristic equation.

Suppose now that ∆L(p+ iq) = 0 for some q ∈ R and z− ≤ p ≤ 0. Isolating the real part of this
equation, we find

β

∫ 0

−1

∫ σ+1

σ

epτ cos(qτ)dτdσ = β − p. (3.4)

However, properties of the cosine together with the observation ∆L(p) ≤ 0 yield the inequalities

β

∫ 0

−1

∫ σ+1

σ

epτ cos(qτ)dτdσ ≤ β
∫ 0

−1

∫ σ+1

σ

epτdτdσ ≤ β − p. (3.5)

Observing that equality can hold only when p ∈ {z−, 0} and q = 0 completes the proof.
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Since a Wiener-Hopf triplet is not readily available for L, let us incorporate the system (3.1) into
the family of MFDEs

x′(ξ) = Γ(µ)evξ := βx(ξ)− β
∫ 0

−1
(1 + σ)x(ξ + σ)dσ − β

∫ 1

0
(1− σ)x(ξ + σ)dσ

−(1− µ)
[
βx(ξ + 1)− 1

βx(ξ − 1)
]

= L evξx− (1− µ)
[
βx(ξ + 1)− 1

βx(ξ − 1)
]
,

(3.6)

parametrized by µ ∈ [0, 1]. We easily find

∆Γ(µ)(z) = ∆L(z) + (1− µ)
[
βez − 1

β
e−z
]
. (3.7)

Notice that Γ(1) = L, while Γ(0) admits the Wiener-Hopf factorization

z∆Γ(0)(z) = ∆L−(z)∆L+(z), (3.8)

in which the characteristic matrices

∆L−(z) = z +
∫ 0

−1
ezσdσ − 1

β e
−z,

∆L+(z) = z − β + βez,
(3.9)

correspond, respectively, to the delayed equation

w′(ξ) = L− evξw := −
∫ 0

−1

w(ξ + σ)dσ +
1
β
w(ξ − 1) (3.10)

and the advanced equation

v′(ξ) = L+ evξv := βv(ξ)− βv(ξ + 1). (3.11)

We now set out to compute n]Γ(0)(η) for sufficiently small |η|. We will need to use the following
two results.

Lemma 3.2. Assume that (HP) holds and that ∆L+(z) = 0 for some z ∈ C. Then either z = 0 or
z /∈ R with Re z > 0.

Proof. It is easy to check that ∆L+(0) = 0. Since ∆′L+
(p) = 1 + βep > 0 for all p ∈ R, this is the

only real root. Now suppose that ∆L+(p+ iq) = 0 for some pair p ≤ 0 and q ∈ R. Isolating the real
part of the characteristic equation, we find

βep cos q = β − p. (3.12)

On the other hand, using ∆L+(p) ≤ 0, we find

βep cos q ≤ βep ≤ β − p, (3.13)

with equality only when p = 0 and q ∈ 2πN. Noticing that Im ∆L+(2πi`) = 2π` for any integer `
completes the proof.

Lemma 3.3. Assume that (HP) holds and that ∆L−(z) = 0 for some z ∈ C. Then we have Re z < 0.

Proof. Notice first that ∆L−(0) = 1− 1
β > 0. Second, observe that

∆′L−(z) = 1 +
1
β
e−z +

∫ 0

−1

σezσdσ. (3.14)
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An easy computation shows that for p ≥ 0 we have

−1
2
≤
∫ 0

−1

σepσdσ < 0, (3.15)

which means that ∆′L−(p) > 0 and also ∆L−(p) > 0 for all p ≥ 0. In addition, for any q 6= 0 we have

q−1 Im ∆L−(p+ iq) = 1 + 1
β e
−p sin q

q +
∫ 0

−1
epσ sin qσ

q dσ. (3.16)

For the remainder of the proof, let us fix p ≥ 0. This allows us to obtain the estimate

q−1 Im ∆L−(p+ iq) ≥ 1 + 1
β e
−p sin q

q −
∣∣∣∫ 0

−1
epσ sin qσ

q dσ
∣∣∣

≥ 1 + 1
β e
−p sin q

q −
∣∣∣∫ 0

−1
σepσdσ

∣∣∣
≥ 1

2 + 1
β e
−p sin q

q .

(3.17)

For 0 < q < π we have sin q > 0 and hence also q−1 Im ∆L−(p+ iq) > 0. For q ≥ π we find

q−1∆L−(p+ iq) ≥ 1
2
− 1
πβ

e−p >
1
2
− 1
π
> 0, (3.18)

which in view of the symmetry q 7→ −q completes the proof.

The formula (2.16) can now be used to conclude that n]Γ(0)(η) = 1 for all sufficiently small |η|. Before

Theorem 2.5 can be applied to calculate n]L(η), we will need to check whether ∆Γ(µ)(z) = 0 admits
roots in the vicinity of the imaginary axis as the parameter µ is varied.

Lemma 3.4. Assume that (HP) holds. For every µ ∈ [0, 1), the characteristic equation ∆Γ(µ)(z) = 0
has no roots with Re z = 0.

Proof. For convenience, let us write µ = 1− µ. Note that ∆Γ(µ)(0) = µ(β − β−1) > 0 for all µ > 0.
It therefore suffices to show that ∆Γ(µ)(iq) 6= 0 for all q > 0 and µ ∈ [0, 1). Assuming the contrary,
we obtain the system

βq2 = 2β − 2β cos q + µq2(β − β−1) cos q,
q = −µ(β + β−1) sin q. (3.19)

In view of β > 1 and q > 0, the second line implies that we must have sin q < 0 and hence q > π.
Using sin q = −

√
1− cos2 q, this implies

µ2β−2(β2 + 1)2[1− cos2 q] > π2. (3.20)

Furthermore, substituting the second line of (3.19) into the first line and using the fact that sin q 6= 0,
we find the second order equation

µ3(β2 − 1)(β2 + 1)2 cos2 q + (β2 + 1)2µ2(µ(β2 − 1)− β2) cos q + 2β4 − β2µ2(β2 + 1)2 = 0. (3.21)

This implies that

1− cos2 q = 1 + 2β4−β2µ2(β2+1)2

µ3(β2−1)(β2+1)2 + µ(β2−1)−β2

µ(β2−1) cos q

= (µ3(β2−1)−µ2β2)(β2+1)2+2β4

µ3(β2−1)(β2+1)2 + µ(β2−1)−β2

µ(β2−1) cos q

= µ(β2−1)−β2

µ(β2−1) (1 + cos q) + 2β4

µ3(β2−1)(β2+1)2

(3.22)

and leads to the inequality

µ(µ(β2 − 1)− β2)(β2 + 1)2

β2(β2 − 1)
(1 + cos q) +

2β2

µ(β2 − 1)
> π2. (3.23)
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Solving the quadratic equation (3.21) yields

1 + cos q = β2+µ(β2−1)
2µ(β2−1)

[
1±

√
1− 8 β4

(β2+1)2(β2+µ(β2−1))2
β2−1
µ

]
> 2β4

µ2(β2+1)2(β2+µ(β2−1))
.

(3.24)

Here we have used the inequality

1 +
√

1− x ≥ 1−
√

1− x > 1
2
x, (3.25)

which holds for any 0 < x ≤ 1. Since µ(β2 − 1) < β2, the inequality (3.23) now leads to

π2 <
2β2

µ(β2 − 1)

[µ(β2 − 1)− β2

β2 + µ(β2 − 1)
+ 1

]
=

4β2

β2 + µ(β2 − 1)
< 4, (3.26)

which clearly is a contradiction.

Corollary 3.5. Assume that (HP) holds. Then for any sufficiently small ε > 0, we have the iden-
tities

n]L(−ε) = 0, n]L(+ε) = 1. (3.27)

Proof. Lemma 3.4 guarantees that we only have to consider the trajectory of the simple root z = 0
of the characteristic equation ∆Γ(µ)(z) = 0 at µ = 1 as this parameter is varied. Writing this root
as z∗(µ), we may use the implicit function theorem to compute

dz∗
dµ
|µ=1= −[∆′Γ(1)(0)]−1[

d

dµ
∆Γ(µ)(0)]|µ=1 = β − β−1 > 0. (3.28)

Thus as µ increases to one, the root z∗(µ) crosses the line Re z = −ε from left to right for all
sufficiently small ε > 0, but it does not cross the line Re z = +ε. In the terminology of Theorem 2.5,
this means that cross(Γ,−ε) = 1 and cross(Γ,+ε) = 0, which concludes the proof.

We conclude from Proposition 2.4 that the initial value problem (1.11) with L as in (3.1) is well-posed
with respect to the space BC⊕+ε for every small ε > 0. Notice that the equation ∆L(z) = 0 admits
only the simple root z = 0 on the imaginary axis, which contributes a constant eigenfunction. This
allows us to use Lemma 5.4 to strengthen our result slightly and state that (1.11) is also well-posed
with respect to BC⊕0 .

3.2 Well-posedness of an MFAE

Our second example features the algebraic equation

0 = M evξ x := −A(ρ)x(ξ) +
∫ 0

−1

x(ξ + σ)(1 + σ)dσ +
∫ 1

0

x(ξ + σ)(1− σ)dσ (3.29)

with ρ > 0, in which the constant A(ρ) is given by

A(ρ) =
∫ 1

0

e−ρσdσ

∫ 1

0

eρσdσ = 2ρ−2(cosh ρ− 1) > 1. (3.30)

This equation is encountered [4, 8] when one studies an overlapping generations model that is similar
to the one described in the introduction, but now with a discounted welfare function

W (s) =
∫ s+1

s

e−ρτ ln c(s, τ)dτ, (3.31)
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fixed wages w(t) = 1 and a population that grows at the rate eρt. Nonlinear versions of this model
are discussed in [8], but we restrict ourselves to the linear case here. The function p appearing in
(3.29) is related to the interest rate by means of

x(ξ) = exp[−
∫ ξ

0

r(τ)dτ ]. (3.32)

The characteristic equation associated to (3.29) is given by

δM (z) = A(ρ)−
∫ 0

−1

(1 + σ)ezσdσ −
∫ 1

0

(1− σ)ezσdσ. (3.33)

Lemma 3.6. There exists η∗ > 0 such that the characteristic equation δM (z) = 0 has precisely two
real roots z = ±η∗ and no other complex roots in the strip −η∗ ≤ Re z ≤ η∗.

Proof. Notice first that δM (−z) = δM (z) and δM (0) = A(ρ) − 1 > 0. For z 6= 0, we will use the
representation

δM (z) = A(ρ)− z−2
[
ez + e−z − 2

]
. (3.34)

Differentiation yields

−z3e−zδ′M (z) = ℘(z) := z − 2 + 4e−z − (2 + z)e−2z. (3.35)

Since ℘(0) = ℘′(0) = 0 and

℘′′(p) = 4e−2p(ep − p− 1) > 0 (3.36)

for all p > 0, Taylor’s formula implies that δ′M (p) < 0 for p > 0, which establishes that δM (z) = 0
has precisely two real roots z = ±η∗, for some η∗ > 0.

Let us now write δ̃M (z) = z2δM (z) and compute

Re δ̃M (p+ iq) = A(ρ)(p2 − q2) + 2− (ep + e−p) cos q,
Im δ̃M (p+ iq) = 2A(ρ)pq − (ep − e−p) sin q.

(3.37)

It is not hard to verify that δ̃M (iq) 6= 0 for all q 6= 0. Let us assume therefore that δ̃M (p+ iq) = 0 for
some 0 < p ≤ η∗. The second line of (3.37) can be used to isolate an expression for q. Substituting
this into the q2 term in the first line of (3.37) and using sin2 q + cos2 q = 1, we see that

(ep − e−p)2 cos2 q − 4A(ρ)p2(ep + e−p) cos q +
[
4p4A(ρ)2 + 8A(ρ)p2 − (ep − e−p)2

]
= 0, (3.38)

which can be solved to yield the solutions cos q = c∗±, with

c∗± = ±1 + 2p2A(ρ)
(e

1
2p ∓ e− 1

2p)2

(ep − e−p)2
. (3.39)

Since c∗+ > 1, we need only consider c∗−. Our assumption on p implies δ̃M (p) ≥ 0, which means

p2A(ρ) ≥ (e
1
2p − e− 1

2p)2. (3.40)

We thus find c∗− ≥ 1 with equality if and only if p = η∗, in which case the second line of (3.37)
immediately yields q = 0.
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An easy integration by parts yields

zδM (z) = A(ρ)∆L(z) = A(ρ)z −
∫ −1

0

ezσdσ −
∫ 1

0

ezσdσ, (3.41)

which shows that (3.30) is closely related to the MFDE

x′(ξ) = L evξx := A(ρ)−1

∫ −1

0

x(ξ + σ)dσ +A(ρ)−1

∫ 1

0

x(ξ + σ)dσ. (3.42)

In view of Theorem 2.6, we now set out to compute n]L(−ε) for sufficiently small ε > 0. Noting the
symmetry δM (−z) = δM (z), let us consider the retarded differential equation

v′(ξ) = L−evξv := iA(ρ)−
1
2 [v(ξ − 1)− v(ξ)], (3.43)

together with the advanced differential equation

v′(ξ) = L+evξv := iA(ρ)−
1
2 [v(ξ)− v(ξ + 1)]. (3.44)

The associated characteristic functions satisfy

∆L−(z) = z − iA(ρ)−
1
2 (e−z − 1),

∆L+(z) = z + iA(ρ)−
1
2 (ez − 1)

(3.45)

and obviously ∆L−(−z) = −∆L+(z). A simple computation yields

∆L−(z)∆L+(z) = z2 − izA(ρ)−
1
2
(
e−z − ez

)
+A(ρ)−1

[
2− ez − e−z

]
= z2 − izA(ρ)−

1
2
(
e−z − ez

)
− zA(ρ)−1[

∫ −1

0
ezσdσ +

∫ 1

0
ezσdσ]

= z
[
∆L(z)− iA(ρ)−

1
2
(
e−z − ez

)]
.

(3.46)

Let us therefore embed (3.42) into the family of MFDEs

p′(ξ) = Γ(µ)evξp := A(ρ)−1
∫ −1

0
p(ξ + σ)dσ +A(ρ)−1

∫ 1

0
p(ξ + σ)dσ

+i(1− µ)A(ρ)−
1
2 p(ξ − 1)− i(1− µ)A(ρ)−

1
2 p(ξ + 1).

(3.47)

Notice that Γ(1) = L, while

∆Γ(µ) = ∆L(z)− i(1− µ)A(ρ)−
1
2
(
e−z − ez

)
(3.48)

and Γ(0) admits the Wiener-Hopf factorization

z∆Γ(0) = ∆L−(z)∆L+(z). (3.49)

Lemma 3.7. Suppose that ∆L−(z) = 0 for some z ∈ C. Then either z = 0 or Re z < 0. The root
at z = 0 is a simple root, i.e., ∆′L−(0) 6= 0.

Proof. The identities ∆L−(0) = 0 and ∆′L−(0) = 1 + iA(ρ)−
1
2 6= 0 can be verified directly. Observe

furthermore that

Re ∆L−(p+ iq) = p−A(ρ)−
1
2 e−p sin q,

Im ∆L−(p+ iq) = q +A(ρ)−
1
2
[
1− e−p cos q

]
.

(3.50)

Looking for solutions to ∆L−(z) = 0, we may use the identity sin2 q + cos2 q = 1 to find

e2p
(
A(ρ)q2 + 2A(ρ)

1
2 q +A(ρ)p2 + 1− e−2p

)
= 0, (3.51)

16



which can be solved to yield

q = q±(p) = −A(ρ)−
1
2
[
1±

√
e−2p −A(ρ)p2

]
. (3.52)

Let us now suppose that p ≥ 0 and that q±(p) ∈ R. Recalling that A(ρ) > 1, we may estimate

0 ≥ q±(p) = −A(ρ)−
1
2

∣∣∣1±√e−2p −A(ρ)p2
∣∣∣ ≥ −2A(ρ)−

1
2 > −2 > −π, (3.53)

which in view of the requirement

sin q = pepA(ρ)
1
2 ≥ 0 (3.54)

implies that q = 0 and hence also p = 0.

In view of the symmetry ∆L−(z) = −∆L+(−z), we may now conclude that

n]Γ(0)(−ε) = n+
L+

(−ε)− n−L−(−ε) + n0
z(−ε) = 0− 1 + 1 = 0 (3.55)

for any sufficiently small ε > 0. The transition from Γ(0) to Γ(1) is studied in the following result.

Lemma 3.8. Besides the simple root at z = 0, the characteristic equation ∆Γ(µ)(z) = 0 has no
roots on the imaginary axis for any µ ∈ [0, 1].

Proof. The statement concerning the simple root at z = 0 can be verified directly. Let us therefore
suppose that ∆Γ(µ)(iq) = 0 for some µ ∈ [0, 1] and q ∈ R \ {0}, i.e.,

A(ρ)∆Γ(µ)(iq) = −2(1− µ)A(ρ)
1
2 sin q + iq−1

[
q2A(ρ)− 2 + 2 cos q] = 0. (3.56)

Using a Taylor expansion, we find that for any q > 0 there exists 0 < q′ < q such that

q2A(ρ)− 2 + 2 cos q =
1
2
q2[2A(ρ)− 2 cos q′] > 0. (3.57)

A similar argument works for q < 0.

Using Theorem 2.5 we hence conclude that n]L(−ε) = 0 for all sufficiently small ε > 0. In view of
Theorem 2.6, this means that the initial value problem (1.12) with M as in (3.29) is not well-posed
with respect to the space BC⊕0 .

To repair this, let us recall the constant η∗ that appears in Lemma 3.6. We consider any η > η∗
that is sufficiently close to η∗ to ensure that δM (z) = 0 only has the simple root z = η∗ in the strip
0 ≤ Re z ≤ η. Writing L′ for the operator L′φ = Lφ− ηA(ρ)−1Mφ, we find

(z − η)δM (z) = A(ρ)∆L(z)− ηδM (z) = A(ρ)∆L′(z). (3.58)

Notice that there is a bijective correspondence between the roots of the equation ∆L′(z) = 0 and
those of ∆L(z) = 0. The simple root at z = 0 of the latter equation is moved to z = η, but the rest
of the roots remain fixed. An application of Theorem 2.5 hence yields

n]L′(η − ε) = 1 + n]L(−ε) = 1 (3.59)

for all sufficiently small ε > 0. We hence see that the initial value problem (1.12) with M as in
(3.29) is well-posed with respect to the space BC⊕η . Since z = η∗ is a simple root of ∆L′(z) = 0, we
can argue as for the previous example that this well-posedness also holds with respect to the space
BC⊕η∗ .
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4 Continuity of n]

In this section we prove Theorem 2.5. We will proceed much along the lines of [22, §5] and show how
the Wiener-Hopf splitting (2.15) can be obtained in a fashion that is robust under small perturbations
of L. Let us start by considering the equation

x′(ξ) = L evξx (4.1)

for some bounded linear operator L : C([rmin, rmax],Cn) → C
n. Our first result implies that

once n]L(η) is known for a specific value of η, one only needs to study the characteristic equa-
tion det ∆L(z) = 0 to obtain n]L(η) for all other appropriate values of η. In particular, one does not
need to have a Wiener-Hopf triplet for L.

Lemma 4.1. Consider the system (4.1) and suppose that (HL) is satisfied. Pick any two real num-
bers η1 < η2 and suppose that the characteristic equation det ∆L(z) = 0 has m roots in the vertical
strip η1 ≤ Re z ≤ η2, in which each root is counted according to its multiplicity. Suppose furthermore
that each of these roots has η1 < Re z < η2. Then we have the identity

n]L(η2) = n]L(η1) +m. (4.2)

Proof. Choose a monic polynomial p that has degree n and has p(z) 6= 0 for all Re z ≥ η1. Propo-
sition 2.2 guarantees that there exist linear operators L− ∈ L(C([rmin, 0],Cn),Cn) and L+ ∈
L(C([0, rmax],Cn),Cn) such that

p(z) det ∆L(z) = det ∆L−(z) det ∆L+(z). (4.3)

Using n0
p(η1) = n0

p(η2) = 0, this allows us to compute

n]L(ηi) = n+
L+

(ηi)− n−L−(ηi) (4.4)

for i = 1, 2. Let us write m+ for the number of roots of the characteristic equation det ∆L+(z) = 0
that have η1 < Re z < η2 and m− for the analogous quantity associated to the equation det ∆L− = 0.
As usual, each root should be counted according to its multiplicity. In view of (4.3), we must have
m = m+ +m−. It is easy to see that n+

L+
(η2) = n+

L+
(η1) +m+ and n−L−(η2) = n−L−(η1)−m−. The

identity (4.2) now follows immediately from (4.4).

We now move on to study parameter-dependent versions of (4.1). To set the stage, let us pick
any µ0 ∈ R and consider a C0-smooth map

L : U → L
(
C([rmin, rmax],Cn),Cn

)
, (4.5)

in which U is an open interval containing µ0. We will assume that L(µ) satisfies (HL) for every
µ ∈ U .

The next result states that for sufficiently negative η, solutions in QL(µ)(η) automatically satisfy a
retarded differential equation that depends continuously on the parameter µ. Of course an analogous
result holds for the space PL(η) if η is sufficiently large. We remark that we will use the notation

π− : C
(
[rmin, rmax],Cn

)
→ C

(
[rmin, 0],Cn

)
, φ 7→ φ|[rmin,0]. (4.6)

Lemma 4.2. Pick any sufficiently negative η ∈ R. Then there exists an open set U ′ ⊂ U with
µ0 ∈ U ′, together with a C0-smooth map

L− : U ′ → L
(
C([rmin, 0],Cn),Cn

)
(4.7)

such that the differential equation

v′(ξ) = L−(µ)π−evξv, ξ ≥ 0, (4.8)

holds for any µ ∈ U ′ and v ∈ QL(µ)(η).
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Proof. For convenience, let us use the shorthand L0 = L(µ0). As established in [22, Lem. 5.5], we
can ensure that the map

π−QL0 (η) : QL0(η)→ C([rmin, 0],Cn) (4.9)

is injective by choosing η to be sufficiently close to −∞. Without loss of generality, we may assume
that det ∆L0(z) = 0 has no roots with Re z = η. Using techniques very similar to those developed
in [16, §5], we can construct a C0-smooth operator

u∗ : U ′ → L
(
QL0(η), C([rmin, rmax],Cn)

)
, (4.10)

with u∗(µ0) = I, in such a way that QL(µ)(η) = u∗(µ)
(
QL0(η)).

Write R = Range
(
π−QL0 (η)

)
⊂ C([rmin, 0],Cn) and observe that the Fredholm properties in

Proposition 2.1 imply that this space is closed and of finite codimension. This allows us to fix a
finite dimensional complement R⊥ such that R⊕R⊥ = C([rmin, 0],Cn). We will write πR and πR⊥
for the accompanying projections.

We now introduce, for any µ ∈ U ′, the linear map Ψ(µ) : R⊕R⊥ → R⊕R⊥ that acts as

Ψ(µ)
(
ψ,ψ⊥

)
=
(
πRπ

−u∗(µ)[π−QL0 (η)]
−1ψ,ψ⊥ + πR⊥π

−u∗(µ)[π−QL0 (η)]
−1ψ

)
. (4.11)

Note that Ψ depends C0-smoothly on µ when viewed as a map from U ′ → L
(
C([rmin, 0],Cn)

)
, with

Ψ(µ0) = I. This means that Ψ(µ) is invertible for all µ ∈ U ′, possibly after decreasing the size of
U ′.

As in [22, §5], we define L−(µ0) by writing L−(µ0)φ = L0[π−QL0 (η)]
−1φ for φ ∈ R and arbitrarily

extending L−(µ0) to a bounded linear map on C([rmin, 0],Cn). We are now in a position to define

L−(µ)φ = L−(µ0)πR⊥ [Ψ(µ)]−1φ+ L(µ)u∗(µ)[π−QL0 (η)]
−1πR[Ψ(µ)]−1φ. (4.12)

Recall that for any ϕ ∈ QL(µ)(η), there exists ρ ∈ QL0(η) such that ϕ = u∗(µ)ρ. Writing ψ =
π−ρ ∈ R, we obviously have ρ = [π−QL0 (η)]

−1ψ and hence ϕ = u∗(µ)[π−QL0 (η)]
−1ψ. This means

π−ϕ = Ψ(ψ, 0) and hence L−(µ)π−ϕ = L(µ)ϕ, as desired.

We are now ready to study the characteristic equations

∆L(µ)(z) = zI − L(µ)ez·I,
∆L±(µ)(z) = zI − L±(µ)ez·I, (4.13)

in which the operators L±(µ) are those that are defined by Lemma 4.2 and its analogue for PL(η). As
a consequence of this result, the functions (z, µ) 7→ ∆L(µ)(z) and (z, µ) 7→ ∆′L(µ)(z) are continuous,
as are (z, µ) 7→ ∆L±(µ)(z) and (z, µ) 7→ ∆′L±(µ)(z). Notice in addition that

∆L(µ)(z) = zI +O(1), Im z → ±∞, (4.14)

uniformly for z in vertical strips of the complex plane and µ in compact subsets of U ′. Such estimates
also hold for the characteristic matrices ∆L±(µ).

Let us pick η− sufficiently close to −∞ and η+ sufficiently close to +∞ in such a way that
η− < η+ holds, that π−QL(µ0)(η−) and π+

PL(µ0)(η+) are both injective and that det ∆L±(µ0)(z) 6= 0 and
det ∆L(µ0)(z) 6= 0 for all z with Re z ∈ {η−, η+}. This choice enables us to define the sets

Σµ = {z ∈ C | det ∆L(µ)(z) = 0 and η− ≤ Re z ≤ η+},
Σ±µ = {z ∈ C | det ∆L±(µ)(z) = 0 and η− ≤ Re z ≤ η+},

(4.15)
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for µ ∈ U ′, in which each root is included according to its multiplicity, together with the associated
polynomials

℘µ(z) =
∏
λ∈Σµ

(z − λ),
℘±µ (z) =

∏
λ∈Σ±µ

(z − λ). (4.16)

We also write

%µ(z) = [det ∆L(µ)(z)]−1 det ∆L+(µ)(z) det ∆L−(µ)(z)
℘µ(z)

℘+
µ (z)℘−µ (z)

. (4.17)

Lemma 4.3. There exists an open subset U ′ ⊂ U , with µ0 ∈ U ′, such that the elements of Σµ and
Σ±µ depend continuously on µ ∈ U ′, with

#Σµ = #Σµ0 , #Σ±µ = #Σ±µ0
. (4.18)

In addition, for every µ ∈ U ′, the function %µ is a polynomial of degree

deg %µ = n+ #Σµ0 −#Σ+
µ0
−#Σ−µ0

. (4.19)

The roots of this polynomial vary continuously with µ.

Proof. The estimate (4.14) ensures that the elements in the sets Σ±µ and Σµ can be a-priori bounded.
The identities (4.18) now follow immediately from the argument principle.

To see that %µ is an entire function, it suffices to check that this function has no poles λ with
Reλ < η− or Reλ > η+. Supposing to the contrary that such a pole does exist, we have that
z = λ is a root of order ` ≥ 1 for the characteristic equation det ∆L(µ)(λ) = 0. Without loss of
generality, we will assume that Reλ < η−. Let us now consider any polynomial p for which the
function x(ξ) = eλξp(ξ) satisfies x ∈ QL(µ)(η−). Lemma 4.2 implies that x also satisfies the delay
equation x′(ξ) = L−(µ)π−evξx, which implies that z = λ is a root of the characteristic equation
det ∆L−(µ)(z) = 0 of order ` or greater. This yields a contradiction.

Proceeding similarly as in the proof of [22, Thm 5.1], a theorem of Phragmén-Lindelöf type
ensures that for each µ ∈ U ′, the function

z 7→ rµ(z) := z−n%µ(z)
℘+
µ (z)℘−µ (z)
℘µ(z)

(4.20)

is a rational function with rµ(∞) = 1. Combining (4.20) with (4.18) now shows that %µ must be
a polynomial of the degree specified by (4.19). An additional application of the argument principle
shows that the roots of this polynomial depend continuously on µ.

Notice that the identity (4.17) resembles the Wiener-Hopf factorization (2.15). Using the root-
swapping techniques developed in [22, §5], the superfluous polynomial factors in (4.17) can be sys-
tematically eliminated. We describe this process in the proof of the next result, which essentially
tells us how n]L(µ)(η) can be determined directly from (4.17). The continuity of the elements of Σµ
and Σ±µ can subsequently be used to show that n]L(µ)(η) is invariant under small changes of µ, as
long as the line Re z = η avoids the eigenvalues associated to L(µ) and L±(µ).

Lemma 4.4. Consider any η ∈ R for which the characteristic equations det ∆L(µ0)(z) = 0 and
det ∆L±(µ0)(z) = 0 have no roots with Re z = η. Then there exists an open set U ′ ⊂ U , with µ0 ∈ U ,
such that

n]L(µ)(η) = n]L(µ0)(η) (4.21)

for all µ ∈ U ′.
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Proof. Pick any monic polynomial p of degree n such that p(z) = 0 admits no roots with Re z ≥ η.
For the moment, we fix a µ ∈ U that is sufficiently close to µ0. Our goal is to define, for some
integer `∗ > 1, a sequence of monic polynomials q`in and q`out together with a sequence of operators
L`− ∈ L(C([rmin, 0],Cn),Cn) and L`+ ∈ L(C([0, rmax],Cn),Cn), that are indexed by 1 ≤ ` ≤ `∗ and
satisfy the following properties.

(i) For every 1 ≤ ` < `∗ we have

deg q`+1
in = deg q`+1

out < deg p`in = deg p`out. (4.22)

(ii) For every 1 ≤ ` ≤ `∗, the equations q`in(z) = 0 and q`out(z) = 0 do not admit roots with
Re z = η.

(iii) We have deg q`∗in = deg q`∗out = 0.

(iv) For every 1 ≤ ` ≤ `∗, the following factorization holds,

p(z) det ∆L(µ)(z) =
det ∆L`−

(z) det ∆L`+
(z)q`in(z)

q`out(z)
. (4.23)

Notice that once we have found such a sequence, items (iii) and (iv) imply that the set (p, L`∗− , L
`∗
+ )

is a Wiener-Hopf triplet for L, which will allow us to compute n]L(µ)(η).
Let us introduce the quantities

ñ`+ = #{z ∈ C | det ∆L`+
(z) = 0 and Re z < η},

ñ`− = #{z ∈ C | det ∆L`−
(z) = 0 and Re z > η}, (4.24)

together with

m̃`
+,in = #{z ∈ C | q`in(z) = 0 and Re z > η},

m̃`
−,in = #{z ∈ C | q`in(z) = 0 and Re z < η},

m̃`
+,out = #{z ∈ C | q`out(z) = 0 and Re z > η},

m̃`
−,out = #{z ∈ C | q`out(z) = 0 and Re z < η}.

(4.25)

We claim that we can define the sequences mentioned above in such a way that the following identity
holds for all 1 ≤ ` ≤ `∗,

n]L(µ)(η) = ñ`+ − ñ`− −
1
2
[
m̃`

+,in − m̃`
−,in + m̃`

−,out − m̃`
+,out

]
. (4.26)

The definition of n]L(µ)(η) given in (2.16) implies that (4.26) certainly holds for ` = `∗, so we will
only need to prove that the right hand side of (4.26) is invariant.

To establish our claims, we start by remarking that (iv) is satisfied for ` = 1 if we write L1
± =

L±(µ) and

q1
in(z) = ℘µ(z)p(z),
q1
out(z) = ℘+

µ (z)℘−µ (z)%µ(z). (4.27)

Lemma 4.3 implies that q1
in and q1

out have the same degree and that (ii) holds for ` = 1.
We now iteratively define q`+1

in , q`+1
out and L`+1

± by arbitrarily choosing a root z = λout of the
equation q`out(z) = 0 and writing

q`+1
out (z) = q`out(z)/(z − λout). (4.28)

Since the left hand side of (4.23) is analytic in z, at least one of the following three recipes can be
followed.
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(A) Suppose that q`in(λout) = 0. Write q`+1
in (z) = q`in(z)/(z − λout) and keep L`+1

± = L`± fixed. If
λ > η, both m̃+,in and m̃+,out will decrease by one, which ensures that the right hand side of
(4.26) does not change. A similar argument works if λ < η.

(B) Suppose that det ∆`
L`−

(λout) = 0. In view of (i), there exists λin ∈ C for which q`in(λin) = 0.

We may now use [22, Lem. 5.8] to construct L`+1
− in such a way that

det ∆L`+1
−

(z) =
z − λin

z − λout
det ∆L`−

(z). (4.29)

Furthermore, we keep L`+1
+ = L`+ fixed and write

q`+1
in (z) = q`in(z)/(z − λin). (4.30)

If λout and λin lie on the same side of η, none of the quantities in (4.24) and (4.25) change. If
λin < η < λout, then ñ− will decrease by one. However, both m̃−,in and m̃+,out will decrease
by one, ensuring that the right hand side of (4.26) remains invariant. The remaining case
λout < η < λin can be treated similarly.

(C) Suppose that det ∆`
L`+

(λ) = 0. One can proceed similarly as in (B), now applying [22, Lem.

5.8] to construct L`+1
+ .

To complete the proof, it now suffices to observe that our choice (4.27) allows Lemma 4.3 to be
invoked. This allows us to establish that the quantities ñ1

±, m̃1
±,in and m̃1

±,out will not depend on
µ ∈ U ′ as long as U ′ is chosen to be sufficiently small.

Proof of Theorem 2.5. For every µ ∈ [0, 1], one may choose a suitable ηµ ∈ R and use Lemma 4.4
to find an open neighbourhood U ′µ ⊂ [0, 1], with µ ∈ U ′, for which the identity

n]Γ(µ′)(ηµ) = n]Γ(µ)(ηµ) (4.31)

holds for all µ′ ∈ U ′µ. The intervals U ′µ ⊂ [0, 1] clearly form an open covering of [0, 1], allowing us to
extract a finite set µ1 < µ2 < . . . < µN with the property that [0, 1] = U ′µ1

∪ . . . ∪ U ′µN . In view of
Lemma 4.1, we will assume that µ1 = 0 and µN = 1, with ηµ1 = ηµN = η. Since the interval [0, 1] is
connected, we may choose µj+ 1

2
for j = 1, . . . , N − 1 that satisfy µj+ 1

2
∈ U ′µj ∩U

′
µj+1

. Using Lemma
4.1 we may compute

n]Γ(1)(η)− n]Γ(0)(η) =
∑N−1
j=1 #{z ∈ C | det ∆Γ(µ

j+ 1
2

)(z) = 0 and ηµj < Re z < ηµj+1}
−
∑N−1
j=1 #{z ∈ C | det ∆Γ(µ

j+ 1
2

)(z) = 0 and ηµj+1 < Re z < ηµj},
(4.32)

in which each root is counted according to its multiplicity. The formula (2.20) can now be easily
verified.

5 Functional algebraic equations of mixed type

In this section, we set out to prove Theorem 2.6. To this end, we will study the algebraic equation

0 = M evξx (5.1)

for some bounded linear operator M : C([rmin, rmax],Cn)→ C
n. Let us first introduce the exponen-

tially weighted space

BC+
η := {x ∈ C

(
[0,∞),Cn

)
| supξ≥0 e

−ηξ |x(ξ)| <∞}. (5.2)
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In addition, let us recall the space NBV([rmin, rmax],Cn×n) that contains all Cn×n-valued functions
µ that are defined on the interval [rmin, rmax], are right-continuous on the interval (rmin, rmax), have
bounded total variation and have µ(rmin) = 0.

As a consequence of the Riesz representation theorem, there exists a unique

µ ∈ NBV([rmin, rmax],Cn×n) (5.3)

for which the representation

Mφ =
∫ rmax

rmin

dµ(σ)φ(σ) (5.4)

holds for all φ ∈ C([rmin, rmax],Cn).
Throughout this section, we will assume that for some integer ` ≥ 1, the function µ appearing

in (5.4) can be embedded into a sequence

µi ∈ NBV([rmin, rmax],Cn×n), i = 1, . . . , `, (5.5)

that has µ` = µ and satisfies the following properties.

(hµ1) For any integer 1 ≤ i ≤ `− 1 and σ ∈ [rmin, rmax], we have

µi(σ) = −Dµi+1(σ). (5.6)

(hµ2) For any integer 1 ≤ i ≤ `− 1, we have µi(rmax) = 0.

(hµ3) There exists ζ ∈ NBV([rmin, rmax],Cn×n) for which

µ1(σ) = −H(σ) +
∫ σ
rmin

ζ(τ)dτ, (5.7)

with H(σ) = 1 for all σ ≥ 0 and H(σ) = 0 for all σ < 0.

We remark that [15, Prop. 3.1] shows that, up to a multiplicative constant, the linear operator M
satisfies these criteria if and only if M satisfies the condition (HM) appearing in §2.

Using the function ζ appearing in (hµ3), we introduce the function µ∗ ∈ NBV([rmin, rmax],Cn×n)
that is given by

µ∗(σ) = −ζ(σ) + ζ(rmax)H(σ − rmax) (5.8)

and consider the associated MFDE

x′(ξ) = L evξx :=
∫ rmax

rmin

dµ∗(σ)x(ξ + σ) = ζ(rmax)x(ξ + rmax)−
∫ rmax

rmin

dζ(σ)x(ξ + σ). (5.9)

Introducing the characteristic matrices

δi(z) = −
∫ rmax

rmin

dµi(σ)ezσ (5.10)

together with

∆L(z) = z −
∫ rmax

rmin

dµ∗(σ)ezσ = z − ermaxzζ(rmax) +
∫ rmax

rmin

dζ(σ)ezσ, (5.11)

we can clarify the relationship between the different measures that we have introduced.
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Lemma 5.1. For any integer 1 ≤ i ≤ `, we have the identity

ziδi(z) = ∆L(z). (5.12)

Proof. Using (Hµ3), we see that

δ1(z) = 1−
∫ rmax

rmin

ζ(σ)ezσdσ. (5.13)

Integrating by parts, we compute∫ rmax

rmin

ezσdζ(σ) = ζ(rmax)ermaxz − z
∫ rmax

rmin

ezσζ(σ)dσ, (5.14)

which in combination with (5.11) establishes the claim for i = 1. If 1 < i ≤ `, a further integration
by parts using (hµ1) and (hµ2) yields

δi−1(z) = −
∫ rmax

rmin
dµi−1(σ)ezσ = z

∫ rmax

rmin
µi−1(σ)ezσdσ = −z

∫ rmax

rmin
dµi(σ)ezσ

= zδi(z),
(5.15)

which completes the proof.

Lemma 5.2. Consider any φ ∈ C([rmin, rmax],Cn). We have the identity

z
∫ rmax

rmin
dµ1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ = φ(0) +

∫ rmax

rmin
dµ1(σ)φ(σ)

+
∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ.

(5.16)

In addition, for any integer 1 < i ≤ ` we have

z
∫ rmax

rmin
dµi(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ =

∫ rmax

rmin
dµi(σ)φ(σ)

+
∫ rmax

rmin
dµi−1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ.

(5.17)

Proof. Setting out to establish (5.16), we observe that∫ rmax

rmin
dµ1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ =

∫ rmax

rmin
ζ(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτdσ. (5.18)

An integration by parts shows that∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ = −

∫ rmax

rmin
ζ(σ)φ(σ)dσ

+z
∫ rmax

rmin
ζ(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτdσ.

(5.19)

Noticing that ∫ rmax

rmin

dµ1(σ)φ(σ) =
∫ rmax

rmin

ζ(σ)φ(σ)dσ − φ(0) (5.20)

completes the proof of (5.16).
For 1 < i ≤ `, we may use the boundary condition µi−1(rmax) = 0 to compute∫ rmax

rmin
dµi−1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ = −z

∫ rmax

rmin
µi−1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτdσ

+
∫ rmax

rmin
µi−1(σ)φ(σ)dσ

= z
∫ rmax

rmin
dµi(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ

−
∫ rmax

rmin
dµi(σ)φ(σ),

(5.21)

which establishes (5.17).
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We remark that repeated application of Lemma 5.2 yields the identity

φ(0) +
∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ = z`

∫ rmax

rmin
dµ`(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ

−
∑`−1
i=0 z

i
∫ rmax

rmin
dµi+1(σ)φ(σ).

(5.22)

This identity can be used to study the relation between the algebraic equation (5.1) and the differ-
ential equation (5.9).

Lemma 5.3. Consider any η ∈ R and a function x ∈ BC⊕η . Then x solves the algebraic equation
(5.1) for all ξ ≥ 0 if and only if x solves the differential equation (5.9) for ξ ≥ 0 and in addition
satisfies the identities ∫ rmax

rmin

dµi(σ)x(σ) = 0 (5.23)

for all integers 1 ≤ i ≤ `.

Proof. Let us consider any x ∈ BC⊕η and define the function v ∈ BC+
η via

v(ξ) = −
∫ rmax

rmin

dµ`(σ)x(ξ + σ). (5.24)

For any z with Re z > η, the Laplace transform ṽ(z) is well-defined and given by

ṽ(z) =
∫∞

0
e−zξv(ξ)dξ = −

∫ rmax

rmin

∫∞
0
dµ`(σ)x(ξ + σ)dξ

= −
∫ rmax

rmin
dµ`(σ)ezσ

(
x̃(z) +

∫ 0

σ
e−zτx(τ)dτ

)
= δ`(z)x̃(z)−

∫ rmax

rmin
dµ`(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ,

(5.25)

in which we have used Fubini’s theorem to change the order of integration. Similarly, if x ∈ BC⊕η
and x′ ∈ BC+

η , then we may write

w(ξ) = x′(ξ)−
∫ rmax

rmin

dµ∗(σ)x(ξ + σ) (5.26)

and compute the Laplace transform w̃(z) for any z with Re z > η. A similar computation as above
and an application of (5.22) yields

w̃(z) = ∆L(z)x̃(z)− x(0)−
∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ

= ∆L(z)x̃(z)− z`
∫ rmax

rmin
dµ`(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ +

∑`−1
i=0 z

i
∫ rmax

rmin
dµi+1(σ)x(σ).

(5.27)

Now, suppose that x ∈ BC⊕η satisfies the algebraic equation (5.1). The identities (5.23) can
be easily verified by differentiating (5.1) and subsequently using integration by parts together with
the boundary condition (hµ3). Using [15, Prop 4.2(iii)], we may conclude that x′ ∈ BC+

η . This
means that the Laplace transform w̃(z) is well-defined for Re z > η. Comparing (5.25) and (5.27),
noting that ṽ(z) = 0 and using (5.23), we see that also w̃(z) = 0, which implies that x satisfies the
differential equation (5.9). The converse statement can be easily established by inspection of (5.23),
(5.25) and (5.27).

In order to establish Theorem 2.6, we will need to improve our understanding of the criteria
(5.23). To do this, we will use the spectral projection Πsp ∈ L

(
C([rmin, rmax],Cn)

)
that is associated

to the root z = 0 of the characteristic equation det ∆L(z) = 0. We recall from [17, §4] that this
spectral projection is given by

[Πspφ](θ) = Resz=0 e
zθ∆L(z)−1

[
φ(0) +

∫ rmax

rmin

dµ∗(σ)ezσ
∫ 0

σ

e−zτφ(τ)dτ
]
. (5.28)

This projection can be used to characterize the difference between the two spaces QL(±ε).

25



Lemma 5.4. Suppose that the characteristic equation det ∆L(z) = 0 admits no roots on the imagi-
nary axis besides z = 0. Then for any sufficiently small ε > 0, we have the characterization

QL(−ε) = {φ ∈ QL(ε) | Πspφ = 0}, (5.29)

together with the direct sum decomposition

QL(ε) = QL(−ε)⊕ Range(Πsp). (5.30)

Proof. Since QL(−ε) is closed and Range(Πsp) is a finite dimensional subspace of QL(ε) that in-
tersects trivially with QL(−ε), it suffices to show that (5.29) holds. Let us therefore consider any
x ∈ QL(ε). Using (5.27) and applying the inverse Laplace transform, we find that x satisfies

x(ξ) = 1
2πi

∫ 2ε+i∞
2ε−i∞ ezξ∆L(z)−1

[
x(0) +

∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ

]
. (5.31)

Let us suppose that Πspev0x = 0. Comparing (5.31) with (5.28), we see that the residue at zero
vanishes, allowing the integration contour in (5.31) to be shifted to the line −2ε + iR. Arguing
similarly as in the proof of [7, Lem. I.5.3.], we may now conclude that x decays exponentially, which
implies x ∈ QL(−ε).

On the other hand, suppose that φ ∈ QL(−ε) satisfies Πspφ = ψ 6= 0. Since ψ is a polynomial,
we see that φ − ψ ∈ QL(ε) \ QL(−ε) and by construction Πsp(φ − ψ) = 0. This contradicts our
conclusion above.

Comparing the characterization (5.29) with the identity (2.31) that we wish to establish, we
see that it now suffices to relate the spectral projection Πsp to the integral criteria (5.23). This is
clarified in the following result.

Lemma 5.5. Suppose that det δM (0) 6= 0. Then any φ ∈ C([rmin, rmax],Cn) satisfies Πspφ = 0 if
and only if ∫ rmax

rmin

dµi(σ)φ(σ) = 0 (5.32)

holds for all integers 1 ≤ i ≤ `.

Proof. Since ∆L(z) = z`δM (z), we find that ∆L(z)−1 can be written as

∆∗(z)−1 = z−`(A0 +A1z + . . .+A`−1z
`−1) +O(1) (5.33)

as z → 0, with detA0 6= 0. Inspecting the representation (5.28) for the spectral projection Πsp and
applying the identity (5.22), we find

−[Πspφ](θ) = Resz=0 z
−`[
∑`−1
j=0

1
j!z

jθj ][
∑`−1
k=0Akz

k][
∑`−1
m=0 z

m
∫ rmax

rmin
dµm+1(σ)φ(σ)]

=
∑`−1
j=0 bjθ

j
(5.34)

for some set {b0, . . . , b`−1} ⊂ Cn. Matching powers shows that for any integer 0 ≤ i ≤ `−1, we have

bi =
`−1−i∑
k=0

Ak

∫ rmax

rmin

dµ`−i−k(σ)φ(σ). (5.35)

In view of the fact that A0 is invertible, the condition b0 = . . . = b`−1 = 0 is equivalent to the
requirement that (5.32) holds for all integers 1 ≤ i ≤ `, which completes the proof.

Proof of Theorem 2.6. For η = 0, the statement follows by combining Lemma’s 5.3, 5.4 and 5.5. The
case η 6= 0 can be treated by applying exponential shifts to the system (2.23).
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