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NOTES ON CM DIVISION POLYNOMIALS

MARCO STRENG

Abstract. It was suggested by Chudnovsky and Chudnovsky ([CC86]) to de-

fine elliptic divisibility sequences indexed by the endomorphism ring of an

elliptic curve using generalized division polynomials. The special cases where
the curve has complex multiplication by

√
−1 or a primitive third root of unity

had already been studied by Ward ([War50]) and Durst ([Dur52]) respectively.
Takakazu Satoh ([Sat04]) has shown that the Chudnovskys’ division polynomi-

als have algebraic integers as coefficients. Recently, the author ([Str06], [Str07])

has defined elliptic divisibility sequences using the denominators of multiples
of a point and shown that they have primitive divisors. In these notes, we show

how CM-indexed division polynomials relate to denominators of multiples of a

point.

1. Division Polynomials

Let E be an elliptic curve over a field L of characteristic 0 and denote the point
at infinity by O. Let f be an L-isogeny from E to an elliptic curve E′. Consider
the divisor

Df =
∑

P∈ker(f)

(P −O).

This is a divisor of degree deg(f) − 1 since one term is 0. If Df is principal, then
we let ψf be a function such that div(ψf ) = Df . We normalize ψf later in some
cases. Notice that 2Df is always principal, since it is the divisor of∏

P∈ker(f)
P 6=O

(x− x(P )) ∈ L[x] ⊂ L(E),

where (x, y) are Weierstrass coordinates of E. If f has degree 2, then Df cannot
be principal, since it has only one pole and one zero.

Now suppose that we have chosen Weierstrass models for both E and E′. Then
we have a preferred invariant differential on E, given by

ω =
dx

2y + a1x+ a3
.

This gives us the constant
f∗ω′/ω

that we will use for the normalization. We define the polynomials φf and ψ2
f by

φf (x) =
∏

P∈E(L)
fP=Q

(x− x(P )) ∈ L[x] ⊂ L(E) and

ψ2
f =

(
f∗ω′

ω

)2 ∏
P∈ker(f)
P 6=O

(x− x(P )) ∈ L[x] ⊂ L(E),

Lemma 1.1. We have the following identity of elliptic functions:

(1.2) f∗x =
φf
ψ2
f

.

Moreover, there is no cancellation of zeroes on the right hand side.
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Proof. It is easily checked that the divisors are the same. Therefore, we have equal-
ity up to a multiplicative constant c. Next, we expand both sides of (1.2) as formal
Laurent series in a local parameter around the point O. In the notation of [Str07,
§2], the left hand side becomes Ff (T )/w(Ff (T )), which has 1/(f∗ω′/ω)2 as its first
non-zero coefficient. The first non-zero coefficient of the right hand side is the same,
hence c = 1. �

2. Endomorphisms

Now suppose E = E′, i.e. f = α ∈ EndL(E) is an endomorphism. Lemma 1.1
implies in particular that for α ∈ Z, our definition of the division polynomials φα
and ψα coincides with the usual definitions as found for example in [Sil86], [Aya92]
and [Was03].

We can also use Lemma 1.1 to compute how the division polynomials behave
under composition of endomorphisms:

φαβ(x) = ψ2N(β)
α (x)φβ(

φα(x)
ψ2
α(x)

) ∈ L[x] and(2.1)

ψ2
αβ(x) = ψ2N(β)

α (x)ψ2
β(
φα(x)
ψ2
α(x)

) ∈ L[x].(2.2)

If α is coprime to 2, then we define ψα by

ψα = α
∏

P∈E[α]/±1
P 6=O

(x− x(P )) ∈ L[x] ⊂ L(E).

If α is divisible by 2, then we set

ψα = α (y +
1
2

(a1x+ a3))
∏

P∈E[α]/±1
P 6∈E[2]

(x− x(P )) ∈ L[x, y] ⊂ L(E).

If α is neither divisible by 2, nor coprime to 2, then we leave ψα undefined for now.
We will define it as a meromorphic function on C below.

3. The complex case and recurrence

Suppose now on that L is contained in C. There is also a complex analytic
definition of the division polynomials ψα for arbitrary endomorphisms α. If E(C) ∼=
C/Λ complex-analytically, then [CC86] gives a meromorphic function ψα on C which
is almost Λ-periodic: for all α ∈ C and λ ∈ Λ, we have that ψα(z + λ) = ±ψα(z),
where the sign is −1 if and only if the following three conditions are satisfied:

2|N(α), 2 6 | α and
αλ

2
6∈ Λ.

In particular, ψ2
α is a meromorphic function on C/Λ and if 2|α or 2 6 | N(α), then

so is ψα. Under the isomorphism E(C) ∼= C/Λ, the function ψ2
α corresponds to our

division polynomial ψ2
α (as can be checked by counting the zeroes) and if 2|α or

26 | N(α), then the same holds for ψα. Moreover, the functions ψα of [CC86] satisfy
the recurrence relation

(3.1) ψm+nψm−n = ψm+1ψm−1ψ
2
n − ψn+1ψn−1ψ

2
m m,n ∈ Z.

4. Integers

Suppose that the coefficients of E are in the ring of integers of the number field
L.

Lemma 4.1. The polynomials φα and ψ2
α have coefficients in the ring of integers

of L. The same holds for ψα if α is coprime to or divisible by 2.
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Proof. If α is coprime to or divisible by 2 and E is in short Weierstrass form
y2 = x3 + ax + b, then [Sat04, Corollary 4.3] says that the coefficients of ψα are
algebraic integers. We give a proof of the general case below.

We already know that the coefficients are in L, so we only have to show that
they are algebraic integers. First, we show this for φα(x).

Extend L such that it contains the roots of φα and the y-coordinate of a point
Q ∈ E(Q) such that x(Q) = 0. Let v be any discrete valuation of L. Recall that
the set E1(Lv) of Lv-valued points that are not v-integral is an O-module ([Str07])
and notice that Q is not in that set. Therefore every P ∈ α∗Q is v-integral, hence
so is every zero of φα, hence every coefficient.

For ψα, we will use the power series of [Str07, §2], so letRv be the ring of v integers
of a non-archimedean completion Lv of L. Notice first that P∗(1/x) = w(T )/T =
T 2 + · · · , hence both p(T ) := P∗(1/x) and P∗(x) are in Rv((T )). We know from
[Str07] that Fα(T ) has coefficients inRv, hence so does p(Fα(T )) = P∗((α∗x)−1). At
the same time, P∗(φα(x)) = φα(P∗(x)) has integral coefficients and α∗x = φαψ

−2
α ,

hence P∗(ψ2
α) = P∗(φα(α∗x)−1) also has integral coefficients.

Write ψ2
α(T ) = bnx

n+bn−1x
n−1 + · · ·+b0. We prove by induction on k that bn−k

is an algebraic integer. So suppose that bn−k is an algebraic integer for all k < l.
The −2(n− k)-th coefficient of P∗(ψα) is bn−l + · · · , where · · · is a polynomial in
bn−k for k < l and the coefficients of w(T ), hence bn−l is v-integral.

The final statement follows from the fact that OL[x] is integrally closed in L[x].
�

Applying Lemma 4.1 to (2.1) and (2.2), we find

Corollary 4.2. As polynomials with coefficients in OL, we have ψ2
α|ψ2

αβ and φαβ ≡
φ
N(β)
α (mod ψ2

α). �

5. Elliptic divisibility sequences

We will now define elliptic divisibility sequences of division polynomial type. For
a fixed non-torsion point P ∈ E(L), let

ψ̂2
α = B

2(N(α)−1)
1 ψ2

α(P ) and φ̂α = B
2N(α)
1 φα(P ).

The L-ideals ψ̂2
α and φ̂α are integral since ψ2

α is a polynomial in x of degree N(α)−1
and φα is a polynomial of degree N(α). If B2

1 is principal, then we fix a generator
of B2

1 and view ψ̂2
α and φ̂α as elements of OL.

We call the sequence (ψ̂2
α)α an elliptic divisibility sequence of division polynomial

type. Notice that Corollary 4.2 implies that such a sequence satisfies the divisibility
property ψ̂2

α|ψ̂2
αβ (α, β ∈ O). Moreover,

(5.1)
φ̂α

B2
1 ψ̂

2
α

= x(αP )OL = AαB
−2
α .

Since Aα and Bα are coprime by definition, it follows that

(5.2) B2
α | B2

1 ψ̂
2
α,

but even more is true:

Proposition 5.3. The point P reduces to a singular point modulo v if and only if
there is an α ∈ O such that both

(5.4) v(φα(P )) > 0 and v(ψ2
α(P )) > 0.

Proof. [Aya92] proves this statement with O replaced by Z, so we only have to
prove the “if” part. Suppose that (5.4) holds for some α ∈ O. Then Corollary 4.2
shows that (5.4) also holds with α replaced by N(α). But then Ayad’s result shows
that P is singular modulo v. �



4 MARCO STRENG

Corollary 5.5. If P is non-singular modulo v, then v(B2
α) = v(B2

1 ψ̂
2
α) for every α.

Proof. If v(B2
α) 6= v(B2

1 ψ̂
2
α), then by (5.1), we have v(B2

1 ψ̂
2
α) > 0 and v(φ̂α) > 0.

In the case v(B1) > 0, the valuation of v(φ̂α) > 0 is made exactly 0 by the factor
B

2N(α)
1 in φ̂α. Therefore, we only have to consider the case v(B1) = 0. But then

Proposition 5.3 says that P is singular modulo v. �

This result allows us to transfer results from one kind of sequence to the other.
For example, it follows that almost every term in an elliptic divisibility sequence of
division polynomial type has a primitive divisor. On the other hand, if 2 does not
split in O and E is non-singular modulo every prime of L, then Bα = B

N(α)
1 ψα(P )

for every α, hence the ideal class of Bα is N(α) times the ideal class of B1. If in
addition B1 is principal and we pick a generator γ, then Bα = γN(α)ψα(P )OL,
where γN(α)ψα(P ) satisfies the recurrence relation (3.1).

References

[Aya92] Mohamed Ayad, Points S-entiers des courbes elliptiques, manuscripta mathematica 76
(1992), 305–324.

[CC86] D.V. Chudnovsky and G.V. Chudnovsky, Sequences of numbers generated by addition in

formal groups and new primality and factorization tests, Advances in Applied Mathe-
matics 7 (1986), 385–434.

[Dur52] L.K. Durst, The apparition problem for equianharmonic divisibility sequences, Prod. Natl.
Acad. Sci. U.S.A. 38 (1952), 330–333.

[Sat04] Takakazu Satoh, Generalized division polynomials, Mathematica Scandinavica 94 (2004),

161–184.
[Sil86] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics,

vol. 106, Springer, 1986.

[Str06] Marco Streng, Elliptic divisibility sequences with complex multiplication, Master’s thesis,
http://www.math.leidenuniv.nl/∼streng, 2006.

[Str07] , Divisibility sequences for elliptic curves with complex multiplication, preprint,

http://www.math.leidenuniv.nl/∼streng, 2007.
[War48] Morgan Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 7 (1948), 31–74.

[War50] , Arithmetical properties of the elliptic polynomials associated with the lemniscate

elliptic functions, Proc. Natl. Acad. Sci. U.S.A. 36 (1950), 359–362.
[Was03] Lawrence C. Washington, Elliptic curves: Number theory and cryptography, Chapmann

& Hall / CRC, 2003.

Universiteit Leiden, P.O. box 9512, 2300 RA Leiden, The Netherlands
E-mail address: streng@math.leidenuniv.nl


