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One simple equation over many fields

Consider
E : y2 + xy = x3 + 2x2 − 18x + 27

over a finite field Fq of q elements.

If q = 2256 + 9541 · 2127 + 6328903, then

I P = [4](1, 3) has prime order r = 2251 + 9544 · 2122 + 197857.

I The quadratic twist E ′ of E has order 16 times a prime.

I Starting from E or E ′ and using Fq-isogenies of degree
< 2126, can reach only 4 curves.

By varying q, can construct

I many more such examples,

I pairing-friendly curves,

I supersingular curves.
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One simple equation over many fields

Consider
E : y2 + xy = x3 + 2x2 − 18x + 27

over a finite field Fq of q elements.

By varying q, can construct

I many more such examples,

I pairing-friendly curves,

I supersingular curves.

If q = 2233, then E is the NIST standardized ECC curve “K-233”.
Same with 233 replaced with 283, 409, or 571.

If q 6= 7 is prime with 4q = u2 + 7v2 (u, v ∈ Z), then E and its
twist are ordinary and have q + 1− u and q + 1 + u points.
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Why did all of this work?

I Endomorphism ring End(E ) := {φ : E → E} ⊃ Z.

I Over Fq, have Frobenius Frobq ∈ End(E )

Frobq : (x , y) 7→ (xq, yq),

and #E (Fq) = p + 1− tr(Frobq).

I The curve on the previous slide has End(E ) ⊃ Z[
√
−7+1

2 ].

I “lack of space” often forces Frobq ∈ Z[
√
−7+1

2 ], hence

Frobq =
1

2
(u + v

√
−7) for some u, v ∈ Z.

I Then u2 + 7v2 = 4q and #E (Fq) = q + 1− u.
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Which curves allow us to repeat this trick?

Requirements:

I E/Q (for coefficients in Z)

I End(E ) ) Z (to force a “lack of space”)

2nd requirement is called Complex Multiplication (CM),
and the trick is well-known (CM method, Atkin-Morain)

Theorem (Heegner, 1952).
There are exactly 13 CM elliptic curves over Q.

They have End(E ) ∼= Z[
√
D+D

2 ] with D ∈
{−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163}.
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Hyperelliptic curves

I A (hyperelliptic) curve of genus 2 over Q (or Fq for odd q) is

C : y2 = f (x),

where f has degree 2g + 1 or 2g + 2 and no multiple roots.

I The Jacobian JC of C is the group of pairs of points of C (up
to some equivalence).

I More precisely JC (Fq) = Pic0(C ) = Div0(C )/Prin(C ).

I JC (Fq) can replace EC in ECC  hyperelliptic crypto.
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Can we repeat this trick in genus two?

Def. A hyperelliptic curve C has CM iff K := End(JC ,Q)⊗Q is a
number field of degree 4.

I Then K is a quartic CM-field,
i.e., K = K0(

√
α), were K0 = Q(

√
d), d > 0 and

α = −a + b
√
d ∈ K0 is totally negative.

I Compare to elliptic curve case:
K0 = Q, K = Q(

√
α), α ∈ Q negative.

I CM gives control over Frobq  genus-two CM method

Question:
Can we find all CM curves of genus two over Q?
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CM curves of genus two defined over the rationals

Van Wamelen (1997) gave a list of 19 curves of genus two over Q
with CM. (At least numerically to high precision.)

Theorem (Murabayashi-Umegaki, 2001).
Van Wamelen’s list is complete.

curves of genus two over Q with
CM by the maximal order of a quartic CM-field.

Claim. Van Wamelen’s list is incomplete

:

I restricting to Q eliminates the most interesting cases,

I the only reason to restrict to the maximal order is that it is
easier.
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Theorem (Murabayashi-Umegaki, 2001).
Van Wamelen’s list contains all curves of genus two over Q with
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Restricting to Q eliminates the most interesting cases

Van Wamelen observed that for C/Q with CM, the quartic
CM-field K always has 4 automorphisms over Q (Galois), while
generically it only has

√
α 7→ ±

√
α (non-Galois).

I In other words, the most natural CM-fields do not appear on
his list.

I Some types of curves are excluded by this (e.g., p-rank 1).

More precisely, if K = Q(
√
−a + b

√
d) is non-Galois, and C is

defined over L, then
√
a2 − b2d ∈ L.

I So the smallest “generic” CM curves are defined
over K r

0 := Q(
√
a2 − b2d).
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Examples of CM curves of genus 2 defined over K r
0

(joint work with Florian Bouyer, arXiv:1307.0486)

I The Echidna database (Kohel et al)
contains many CM-fields K and Igusa
invariants of CM curves. (At least
numerically to high precision).

I Mestre’s algorithm: Igusa invariants  curves.

I Problem: 1000’s of digits in their coefficients

I Can make coefficients smaller using an algorithm based on
Stoll-Cremona (2003).

Theorem (Bouyer-S.) All of the ∼ 100 curves in our preprint have
CM by the maximal order of a quartic CM-field and are defined
over K r

0 .
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Examples of CM curves of genus 2 defined over K r
0

(joint work with Florian Bouyer, arXiv:1307.0486)

Theorem (Bouyer-S.) All of the ∼ 100 curves
in our preprint have CM by the maximal order
of a quartic CM-field and are defined over K r

0 .

Examples

Let a =
√

2, b =
√

89−1
2 , K = Q(

√
−5 + b), K r = Q(

√
−11 + 4a).

Then

y2 = x5+(4a− 2) x4−21x3+(16a− 64) x2+160x+(−142a+190)

has CM by OK , and

y2 = (b − 4) x6 + (8b − 36) x5 + (16b − 62) x4 + (−13b + 57) x3

+ (−17b + 73) x2 + (13b − 57) x + (−b + 5)

has CM by OK r .
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Examples of CM curves of genus 2 defined over K r
0

(joint work with Florian Bouyer, arXiv:1307.0486)

Theorem (Bouyer-S.) All of the ∼ 100 curves
in our preprint have CM by the maximal order
of a quartic CM-field and are defined over K r

0 .

Proof. Implementation of denominator bounds of Lauter-Viray +
interval arithmetic.

First bounds that are general, sharp, and fast enough for our list.

Open problems relating to Lauter-Viray:

I make bounds on “J ” sharper,

I work directly with OK rather than with OK0 [η] ⊂ OK ,

I generalize to arbitrary orders.
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Cryptographic application?

Genus-two CM method as it has
been for 20 years (Spallek 1994):

CM Igusa invariants over Q
(i.e., Igusa class polynomials)

reduction

��
CM Igusa invariants over Fq

Mestre��
CM curve over Fq

(huge random-looking
coefficients)

Alternative:

Our list

reduction��
CM curve over Fq

(small coefficients)
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Cryptographic application? Example

K = Q(
√
−26 +

√
20), K r

0 = Q(
√

41) = Q(a), a2 + a− 10 = 0.

p =1420038565958074827476353870489770880715201360323415690146120568640497097601436466369567

2498066437749119607973051961772352102985564946217214869939395896863865210769614727743634

5811056227385195781997362304851932650270514293705125991379

∃ curve C of genus two over Fp2 with CM by OK and a subgroup
of order 2192 + 18513 suitable for pairing-based cryptography.

Write C : y2 = a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0.

Scale a6 ≈ 1, translate a5 = 0. Still have a4, a3, a2, a1, a0 ∈ Fp2 ,
each with twice as many digits as p.

These coefficients seem “random”, and there is no efficient way to
make them smaller.

However, this CM curve can be defined over K r
0 , where “size”

makes more sense.
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Cryptographic application? Example

K = Q(
√
−26 +

√
20), K r

0 = Q(
√

41) = Q(a), a2 + a− 10 = 0.

p =1420038565958074827476353870489770880715201360323415690146120568640497097601436466369567

2498066437749119607973051961772352102985564946217214869939395896863865210769614727743634

5811056227385195781997362304851932650270514293705125991379

However, this CM curve can be defined over K r
0 , where “size”

makes more sense.

Get equation

y 2 = (−a + 3) x6+(4a− 8) x5+10x4+(−a + 20) x3+(4a + 5) x2+(a + 4) x+1.

Work in ring Fp[A]/(A2 +A− 10) = Fp2 , all coefficients are small.

I Save bandwidth, carries, and reductions mod p.

I Make it possible to print examples in a journal or on slides.
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Is this list complete? First: what is K r
0 ?

End(JC )⊗Q K

NΦ

AAK
r ⊂ C

NΦr

��

K0 K r
0

Geometrically

I NΦ(x) is the determinant of the action of the endomorphism
x on tangent spaces.

I K r , K r
0 , NΦr appear naturally too.

Explicitly

I For elliptic curves, K r = K , K0 = K r
0 = Q, NΦ = NΦr = idK .

I if K = Q(
√
−a + b

√
d), then K r = Q(

√
−2a +

√
a2 − b2d),

K0 = Q(
√
d), and K r

0 = Q(
√
a2 − b2d).
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The class group from the title

End(JC )⊗Q K K r ⊂ C
NΦroo

I if K = Q(
√
−a + b

√
d), then K r = Q(

√
−2a +

√
a2 − b2d)

Fact: NΦr is a “half norm”, i.e., NΦ(x)NΦ(x) = N(x).

Let

CΦr =
{ideals a of OK r }

{a : NΦr (a) = (µ) for some µ ∈ K ∗ with µµ ∈ Q}
.

I This is a group of `-isogenies up to endomorphisms.
I For elliptic curves, K r = K , NΦr is the identity map, CΦr is

the class group of K .
I For principal ideals a = xOK r , can take µ = NΦr (x) with
µµ = N(x) ∈ Q.
So CΦr is a quotient of the class group of K r .
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The class group from the title

Let

CΦr =
{ideals a of OK r }

{a : NΦr (a) = (µ) for some µ ∈ K ∗ with µµ ∈ Q}
.

I This is a group of `-isogenies up to endomorphisms.

I For principal ideals a = xOK r , can take µ = NΦr (x) with
µµ = N(x) ∈ Q.
So CΦr is a quotient of the class group of K r .

Main Theorem 1 of Complex Multiplication (Shimura-Taniyama)
The subfield of C generated over K r by the Igusa invariants of C
has Galois group CΦr .

Corollary: If C is defined over K r , then CΦr is trivial.

CM class number one problem: find all K with CΦr = 1.
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CM class number one problem
(work in progress of Pınar Kılıçer)

The list is complete: all genus-two curves with
CM by a maximal order that are defined
over K r

0 .

Ingredients:
I Bounds from analytic number theory devised for solving

“easier” class number one problems (Louboutin).

I Genus theory and explicit manipulations with CM-types and
ideals (to relate the class groups).

I Many hours of CPU time.

Next stops:
I CM hyperelliptic curves of genus 3

I CM Picard curves y3 = quartic

I arbitrary CM curves genus 3
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Arbitrary orders
(joint work with Gaetan Bisson, arXiv:1302.3756)

I O := End(JC ) is an order in K stable
under complex conjugation.

I Take F such that FOK ⊂ O
(e.g., F = [OK : O]).

Let

CΦr,O =
{ideals a of OK r coprime to F}

{a : NΦr (a) = (µ), µµ ∈ Q, µO coprime to FO as O-ideal}
.

In case of elliptic curves, CΦr,O = Pic(O).

Main Theorem 3 of Complex Multiplication (Shimura-Taniyama)
The subfield of C generated over K r by the Igusa invariants of C
has Galois group CΦr,O over K r.
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Arbitrary orders
(joint work with Gaetan Bisson, arXiv:1302.3756)

I O := End(JC ) is an order in K stable
under complex conjugation.

I Take F such that FOK ⊂ O
(e.g., F = [OK : O]).

Let

CΦr,O =
{ideals a of OK r coprime to F}

{a : NΦr (a) = (µ), µµ ∈ Q, µO coprime to FO as O-ideal}
.

Main Theorem 3 of Complex Multiplication (Shimura-Taniyama)
The subfield of C generated over K r by the Igusa invariants of C
has Galois group CΦr,O over K r.

Corollary: If C is defined over K r, then CΦr,O = 1.
Goal: Find all O with CΦr,O = 1.
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Relating the orders

Given two orders O ⊂ O′ ⊂ K stable under complex conjugation.

Recall

CΦr,O =
{ideals a of OK r coprime to F}

{a : NΦr (a) = (µ), µµ ∈ Q, µO coprime to FO}
.

So CΦr,O � CΦr,O′ with kernel

A =
{a : NΦr (a) = (µ), µµ ∈ Q, µO′ coprime to FO′}
{a : NΦr (a) = (µ), µµ ∈ Q, µO coprime to FO}

.

Conclusion:
#CΦr,O = #A ·#CΦr,O′ ,
so If CΦr,O = 1, then both CΦr,O′ and A are trivial.
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Relating the orders

A =
{a : NΦr (a) = (µ), µµ ∈ Q, µO′ coprime to FO′}
{a : NΦr (a) = (µ), µµ ∈ Q, µO coprime to FO}

.

Conclusion:
#CΦr,O = #A ·#CΦr,O′ ,

Let O′0 = O′ ∩ K0, O0 = O ∩ K0, and

ψ :
(O′/fOK )×

(O/fOK )×µO′
−→ (O′0/fOK0)×

(O0/fOK0)×
: x 7→ xx .

We get A ↪→ ker(ψ) : a 7→ µ.

Can prove:
If ker(ψ) = 1, then A = 1, so CΦr,O = CΦr,O′ .
If ker(ψ) has an element of order > 2, then A 6= 1, so
#CΦr,O > #CΦr,O′ .
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Example

ψ :
(O′/fOK )×

(O/fOK )×µO′
−→ (O′0/fOK0)×

(O0/fOK0)×
: x 7→ xx .

Example:

If OK = Z[β], where β =
√
α =

√
−a + b

√
d take F ∈ Z>0 odd,

let O = Z + F 2βZ + F 2β2Z + F 2β3Z ⊂
O′ = Z + F 2βZ + F β2Z + F 2β3Z,

so O0 = Z + F 2α2Z,

(O/F 2OK ) = (O0/F
2OK0),

O′0 = Z + F α2Z,

(O′/F 2OK ) = (O′0/F 2OK0).

I Unit groups have order (F − 1)F 3 and (F − 1)F .

I So ψ is x 7→ xx = x2 on a group of odd order F 2.

I So ker(ψ) = 1, hence CΦr,O = CΦr,O′ .
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Relating the orders

Theorem (Bisson-S.)
If CΦr,O ∼= CΦr,O′ and O′ 6∼= Z[ζ5], then [O′ : O]/[O′0 : O0]
divides 21034.

Example shows division by [O′0 : O0] is necessary.

Theorem (Bisson-S.)
If CΦr,O ∼= CΦr,OK

and OK 6∼= Z[ζ5], then [OK : O]2 divides
240316NK0/Q(∆K/K0

).

Corollary
For each K , only finitely many orders O with CΦr,O = 1, and it is
possible to enumerate them.

Open question
Is the factor NK0/Q(∆K/K0

) necessary?
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More CM curves over Q

Theorem (Bisson-S.)

I The curve

C : y2 = x6 − 4x5 + 10x3 − 6x − 1

has endomorphism ring Z + 2ζ5Z + (ζ2
5 + ζ3

5 )Z + 2ζ3
5Z,

I There exists a unique genus-two curve D with endomorphism
ring Z + (ζ5 + 3ζ3

5 )Z + (ζ2
5 + ζ3

5 )Z + 5ζ3
5Z.

I Assuming Kılıçer’s work in progress, this completes the list of
curves over Q.

Conjecture:

D : y2 = 4x5 + 40x4 − 40x3 + 20x2 + 20x + 3.
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Computing endomorphism rings

Gaetan Bisson at ECC 2011:
Compute endomorphism rings in heuristic subexponential time.

Application:
p-adic and CRT methods for computing Igusa class polynomials.

Method:
I Test whether a is in the trivial class of CΦr,End(JC ) by

computing the corresponding `-isogenies for ` | N(a).

I This allows one to test whether CΦr,End(JC ) = CΦr,O.

I Finitely many possibilities for O.

One of his assumptions:
If CΦr,O = CΦr,O′ , then ‘almost’ O = O′
(in the sense that [O +O′ : O ∩O′] < cst).

Our example shows this is false, index can be any F .
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Computing endomorphism rings

Gaetan Bisson at ECC 2011:
Compute endomorphism rings in heuristic subexponential time.

One of his assumptions:
If CΦr,O = CΦr,O′ , then ‘almost’ O = O′
(in the sense that [O +O′ : O ∩O′] < cst).

Our example shows this is false, index can be any F .

But our theorems show that it does not fail by much.

Conclusion (Bisson-S.):
If [OK : Z[π, π]] behaves as a random integer, then can compute
endomorphism rings in heuristic subexponential average time.
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