Exercises for week 12

Hand in four out of the following nine exercises: 10, 11, 13, 14 from $\S 3$ of the notes and the five exercises below.

- 19. Determine the number of isomorphism classes of complex elliptic curves having endomorphism ring \mathcal{O}_D for
 - (a) D = -164;
 - (b) D = -163.
- **20.** (a) Let *E* be a complex elliptic curve with endomorphism ring $\mathbf{Z}[i]$. Show that *E* is isomorphic to the curve $Y^2 = X^3 + X$.

(b) Let *E* be a complex elliptic curve with endomorphism ring $\mathbf{Z}[\zeta_3]$, where ζ_3 is a primitive third root of unity. Show that *E* is isomorphic to the curve $Y^2 = X^3 + 1$.

- **21.** (a) Determine for which values of D the order \mathcal{O}_D contains an element α of norm $\alpha \bar{\alpha} = 2$.
 - (b) Show that for these D the only lattice (up to homothety) having $\mathcal{O}(\Lambda) \cong \mathcal{O}_D$ is \mathcal{O}_D itself. (c) Define

$$E: Y^2 = X(X^2 + aX + b)$$
 and $E': Y^2 = X(X^2 - 2aX + a^2 - 4b)$.

Let $\psi: E \to E'$ be the standard 2-isogeny from §4 of the notes. Suppose we have an isomorphism $E' \xrightarrow{\sim} E$ of the form

$$(x,y) \mapsto (u^{-2}x, u^{-3}y).$$

Show that we have either

$$a = 0$$
, $\operatorname{End}(E) \cong \mathbf{Z}[i]$, $u = \pm 1 \pm i$

or

$$a \neq 0, \quad a^2 = 8b, \quad u = \pm \sqrt{-2}$$

- (d) * Can you determine End(E) in the second case?
- **22.** Define E and E' as in Exercise 21.
 - (a) Prove that

$$j(E) = \frac{2^8(a^2 - 3b)^3}{b^2(a^2 - 4b)}$$
 and $j(E') = \frac{2^4(a^2 + 12b)^3}{b(a^2 - 4b)^2}$.

For which values of a^2/b are the curves E and E' isomorphic? Compute j(E) in each of these cases.

(b) Determine the endomorphism ring for each of these three isomorphism classes.