Igusa class polynomials

Marco Streng

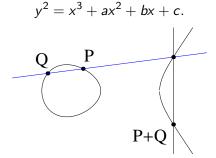
THE UNIVERSITY OF WARWICK

Pure Mathematics Seminar Exeter 11 November 2010

Marco Streng Igusa class polynomials the University of Warwick

Elliptic curves

An *elliptic curve* E/k (char(k) ≠ 2) is a smooth projective curve



・ロト ・日 ・ ・ モ ・ ・ 日 ・ うへぐ

the University of Warwick

Endomorphisms

- $End(E) = (ring of algebraic group morphisms E \rightarrow E)$
 - $(\phi + \psi)(P) = \phi(P) + \psi(P)$
 - $(\phi\psi)(P) = \phi(\psi(P))$
- Examples:
 - For n ∈ Z, have n : P → nP.
 For "most" E's in characteristic 0, have End(E) = Z.
 - If $E: y^2 = x^3 + x$ and $i^2 = -1$ in k, then we have

$$i:(x,y)\mapsto (-x,iy),$$

and $\mathbf{Z}[i] \subset \operatorname{End}(E)$.

• If #k = q, we have

$$\mathsf{Frob}:(x,y)\mapsto (x^q,y^q).$$

Marco Streng Igusa class polynomials the University of Warwick

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Hilbert class polynomial

The *j-invariant* is

$$j(E) = \frac{6912b^3}{4b^3 + 27c^2} \quad \text{for} \quad E : y^2 = x^3 + bx + c.$$
$$j(E) = j(F) \iff E \cong_{\overline{k}} F$$

Definition

Let K be an imaginary quadratic number field. Its Hilbert class polynomial is

$$H_{\mathcal{K}} = \prod_{\substack{E/\mathbf{C}\\ \mathsf{End}(E)\cong \mathcal{O}_{\mathcal{K}}}} (X - j(E)) \in \mathbf{Z}[X].$$

Application 1: roots generate the Hilbert class field of K over K. Application 2: make elliptic curves with prescribed order over $\mathbf{F}_{p_{\pm}}$

Marco Streng

Igusa class polynomials

Curves with prescribed order

- If $p = \pi \overline{\pi}$ in \mathcal{O}_K , then $(H_K \mod p)$ splits into linear factors.
- Let $j_0 \in \mathbf{F}_p$ be a root and let E_0/\mathbf{F}_p have $j(E_0) = j_0$.
- Then a twist *E* of E_0 has Frob = π .
- ► We get

$$\#E(\mathbf{F}_p)=N(\pi-1)=p+1-\mathrm{tr}(\pi).$$

the University of Warwick

Computing Hilbert class polynomials (1)

- Any *E* is complex analytically \mathbf{C}/Λ for a lattice Λ
- ► Endomorphisms induce C-linear maps $\alpha : \mathbf{C} \to \mathbf{C}$ with $\alpha(\Lambda) \subset \Lambda$
- ► If $\operatorname{End}(E) \cong \mathcal{O}_K$, then $\Lambda = c\mathfrak{a}$ for an ideal $\mathfrak{a} \subset \mathcal{O}_K$ and $c \in \mathbf{C}^*$.
- We get

$$\begin{array}{rcl} \mathsf{Cl}_{\mathcal{K}} & \longleftrightarrow & \frac{\{E/\mathsf{C}: \mathsf{End}(E) \cong \mathcal{O}_{\mathcal{K}}\}}{\cong} \\ [\mathfrak{a}] & \longmapsto & \mathsf{C}/\mathfrak{a}. \end{array}$$

the University of Warwick

Computing Hilbert class polynomials (2)

- Write $\mathfrak{a} = \tau \mathbf{Z} + \mathbf{Z}$ and let $q = \exp(2\pi i \tau)$.
- ► Then $j(\mathbf{C}/\mathfrak{a}) = j(q) = q^{-1} + 744 + 196884q + \cdots$.
- Compute

$$H_{\mathcal{K}} = \prod_{[\mathfrak{a}] \in \mathcal{CL}_{\mathcal{K}}} (X - j(\mathbf{C}/\mathfrak{a})) \in \mathbf{Z}[X].$$

- Other algorithms:
 - ▶ p-adic, [Couveignes-Henocq 2002, Bröker 2006]
 - Chinese remainder theorem. [Chao-Nakamura-Sobataka-Tsujii 1998, Agashe-Lauter-Venkatesan 2004]

Performance

- ► The Hilbert class polynomial is huge: the degree h_K grows like |D|^{1/2}, as do the logarithms of the coefficients.
- Small example: for $K = \mathbf{Q}(\sqrt{-17})$, get

$$H_{K} = x^{4} - 178211040000x^{3}$$
$$- 75843692160000000x^{2}$$
$$- 31850703872000000000x$$
$$- 208929750630400000000000$$

- Under GRH or heuristics, all three "quasi-linear" $O(|D|^{1+\epsilon})$.
- ► CRT (the underdog) is now the record holder: constructed a large finite field elliptic curve with -D > 10¹⁵, h_K > 10⁷. [Belding-Bröker-Enge-Lauter 2008, Sutherland 2009]

Curves of genus 2

Definition

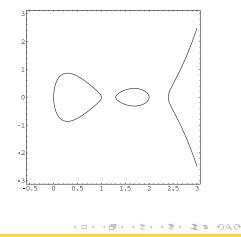
A curve of genus 2 is a smooth geometrically irreducible curve of which the genus is 2.

"Definition" (char. $\neq 2$)

A curve of genus 2 is a smooth projective curve that has an affine model

$$y^2 = f(x), \quad \deg(f) \in \{5, 6\},$$

where f has no double roots.



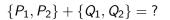
the University of Warwick

The group law on the Jacobian

റ2

The Jacobian: group of equivalence classes of pairs of points.

• More precisely, divisor class group $\operatorname{Pic}^{0}(C)(k)$ $\{P_{1}, P_{2}\} \mapsto [P_{1} + P_{2} - D_{\infty}]$



Marco Streng Igusa class polynomials the University of Warwick

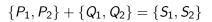
The group law on the Jacobian

Q2

S2

The Jacobian: group of equivalence classes of pairs of points.

• More precisely, divisor class group $\operatorname{Pic}^{0}(C)(k)$ $\{P_{1}, P_{2}\} \mapsto [P_{1} + P_{2} - D_{\infty}]$



SQA

Igusa class polynomials

- ► Elliptic curves E have CM if End(E) is an order in an imaginary quadratic field K = Q(√r) with r ∈ Q negative.
- Curves C of genus 2 have CM if End(J(C)) is an order in a CM field K of degree 4, i.e. $K = K_0(\sqrt{r})$ with K_0 real quadratic and $r \in K_0$ totally negative.
- ► Assume K contains no imaginary quadratic field.
- ► Igusa's invariants i_1, i_2, i_3 are the genus-2 analogue of j
- ► The *Igusa class polynomials* of a quartic CM field K are a set of polynomials of which the roots are the Igusa invariants of curves C of genus 2 with CM by O_K.

Applications

- Roots generate class fields.
 - ▶ not of *K*, but of its "reflex field" (no problem)
 - not the full Hilbert class field (but we know which field)
 - ► useful? efficient?

• If
$$p = \pi \overline{\pi}$$
 in \mathcal{O}_K , construct curve C with

$$\#J(C)(\mathbf{F}_p) = N(\pi-1)$$
 and $\#C(\mathbf{F}_p) = p+1-\operatorname{tr}(\pi).$

the University of Warwick

Algorithms

- 1. Complex analytic [Spallek 1994, Van Wamelen 1999]
- p-adic [Gaudry-Houtmann-Kohel-Ritzenthaler-Weng 2002, Carls-Kohel-Lubicz 2008]
- 3. Chinese remainder theorem [Eisenträger-Lauter 2005]

None of these had running time bounds:

- denominators
- not known how to bound $|i_n(C)|$.
- algorithms not explicit enough
- ▶ no rounding error analysis for alg. 1 (not even for genus 1!!)

Denominators

- ► CM elliptic curves have "potential good reduction", hence j(E) ∈ Z, hence Hilbert class polynomials are in Z[X]
- ► CM abelian varieties (such as J(C)) also have potential good reduction, but may have

 $(J(C) \mod \mathfrak{p}) = E_1 \times E_2 \text{ and } (C \mod \mathfrak{p}) = E_1 \cup E_2$

for supersingular elliptic curves E_1 , E_2 .

- In that case, $\exists \iota : \mathcal{O}_K \to \operatorname{End}(E_1 \times E_2)$.
- Can bound denominators by studying the "embedding problem" [Goren-Lauter 2007], [Goren-Lauter (preprint 2010)]

Step 1: Enumerating \cong -classes

$$K \otimes \mathbf{R} \cong_{\mathbf{R}-\mathsf{alg.}} \mathbf{C}^2$$

- ► For Φ an isomorphism and $\mathfrak{a} \subset \mathcal{O}_{K}$, get a lattice $\Lambda = \Phi(\mathfrak{a}) \subset \mathbf{C}^{2}$ and $\operatorname{End}(\mathbf{C}^{2}/\Lambda) = \mathcal{O}_{K}$.
- ► Also need a polarization, given by $\xi \in K^*$ with $\xi \mathfrak{a} \overline{\mathfrak{a}} \mathcal{D}_{K/\mathbf{Q}} = \mathcal{O}_K$ and $\phi(\xi) \in i \mathbf{R}_{>0}$ for both $\phi \in \Phi$. Then

$$\frac{\{(\Phi, \mathfrak{a}, \xi)\}}{\sim} \quad \longleftrightarrow \quad \frac{\{C/\mathbf{C} : \operatorname{End}(J(C)) \cong \mathcal{O}_{\mathcal{K}}\}}{\cong}.$$

symplectic basis gives Λ = τZ² + Z² with τ ∈ Mat₂(C) symmetric with pos. def. imaginary part.

Step 2: Reduction (elliptic case)

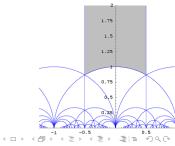
For $E = \mathbf{C}/(\tau \mathbf{Z} + \mathbf{Z})$, the number τ is unique up to

 $SL_2(\mathbf{Z})$

acting via

$$\left(egin{array}{c} {a} & {b} \\ {c} & {d} \end{array}
ight) au = (a au+b)(c au+d)^{-1}.$$

We make au reduced: 1. $|\operatorname{Re} au| \le 1/2$, 2. $| au | \ge 1$



the University of Warwick

Step 2: Reduction (elliptic case)

For $E = \mathbf{C}/(\tau \mathbf{Z} + \mathbf{Z})$, the number τ is unique up to

$$\mathsf{SL}_2(\mathbf{Z}) = \{ M \in \mathsf{GL}_2(\mathbf{Z}) : M^{\mathsf{t}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \},$$

acting via

$$\left(egin{array}{c} \mathsf{a} & b \ c & d \end{array}
ight) au = (\mathsf{a} au + b)(c au + d)^{-1}.$$

We make τ reduced: 1. $|\operatorname{Re} \tau| \le 1/2$, 2. $|c\tau + d| \ge 1$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z})$

the University of Warwick

Step 2: Reduction

For $J(C) = \mathbf{C}^2/(\tau \mathbf{Z}^2 + \mathbf{Z}^2)$, the matrix τ is unique up to

$$\operatorname{Sp}_4(\mathbf{Z}) = \{ M \in \operatorname{GL}_4(\mathbf{Z}) : M^t \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \},$$

acting via

Marco Streng

Igusa class polynomials

$$\left(egin{array}{c} {\sf a} & {\sf b} \\ {\sf c} & {\sf d} \end{array}
ight) au = ({\sf a} au+{\sf b})({\sf c} au+{\sf d})^{-1}.$$

We make τ reduced:

1. entries of Re au have absolute value $\leq 1/2$,

2.
$$|\det(c\tau + d)| \ge 1$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_4(\mathbf{Z})$,
3. $\operatorname{Im} \tau = \begin{pmatrix} y_1 & y_3 \\ y_3 & y_2 \end{pmatrix}$ is reduced: $0 \le 2y_3 \le y_1 \le y_2$.

the University of Warwick

Step 3: Numerical evaluation

 Thomae's formula [1870] gives an equation for C, given τ, in terms of theta constants

$$\theta[c_1, c_2](\tau) = \sum_{v \in \mathbf{Z}^2} \exp(\pi i (v + c_1) \tau (v + c_1)^{t} + 2\pi i (v + c_1) c_2^{t})$$

with $c_1, c_2 \in \{0, \frac{1}{2}\}^2$.

▶ Write out, get [Bolza 1887, Spallek 1994]

$$i_k(au) = rac{ ext{pol. in } heta ext{'s}}{(\prod ext{ all } heta ext{'s}
eq 0)^4}.$$

Evaluate Igusa class polynomials numerically.

Marco Streng Igusa class polynomials the University of Warwick

Bounds on Igusa invariants

► For running time bound, need upper bound on

$$|i_k(\tau)| = rac{| ext{pol. in } heta' ext{s}|}{(\prod ext{ all } | heta|' ext{s}
eq 0)^4}.$$

- Have |θ(τ)| < 2 for reduced τ, so only need lower bound on |θ(τ)|.
- Write $\tau = \begin{pmatrix} z_1 & z_3 \\ z_3 & z_2 \end{pmatrix}$ and $z_j = x_j + iy_j$. Got a bound in terms of
 - 1. upper bound on y_2
 - 2. lower bound on $|z_3|$ (allowed to be weak)
- ▶ part 2 for free from detailed analysis of Steps 1 and 2.

Bounds on y₂

- det Im $\tau = \operatorname{covol}(\tau \mathbf{Z}^2 + \mathbf{Z}^2)$
- ► $\tau Z^2 + Z^2 = \varphi(\Phi(\mathfrak{a}))$ for a C-linear map $\varphi : C^2 \to C^2$
- write $(1,0) = \varphi(\Phi(x))$ and $(0,1) = \varphi(\Phi(y))$ with $x, y \in \mathfrak{a}$.
- Use $\mathfrak{a} \supset x\mathcal{O}_{\mathcal{K}} + y\mathcal{O}_{\mathcal{K}}$ to get various upper bounds on det Im τ .
- Note det Im $\tau = y_1 y_2 y_3^2 \ge y_1 y_2 (1 \frac{1}{4}) \ge \sqrt{3} \frac{3}{8} y_2$.

the University of Warwick

Result

Theorem

Algorithm computes the Igusa class polynomials of K in time less than

cst.
$$(D_1^{7/2}D_0^{11/2})^{1+\epsilon}$$
,

where $D_0 = \text{disc } K_0$ and $D_1 D_0^2 = \text{disc } K$. The bit size of the output is between

$$\mathrm{cst.}(D_1^{1/2}D_0^{1/2})^{1-\epsilon}$$
 and $\mathrm{cst.}(D_1^2D_0^3)^{1+\epsilon}$

Bottlenecks:

- quasi-quadratic time theta evaluation (quasi-linear method not proven [Dupont 2006])
- 2. denominator bounds not optimal (special cases/conjectures [Bruinier-Yang 2006, Yang (to appear)])

What's next?

- g = 1: In practice, one does not use j, but uses "smaller functions" such as $\sqrt[3]{j}$, Weber functions, and (double) eta quotients.
- g = 2: Still stuck with Igusa's invariants.
- g = 1: Useful tool: explicit version of Shimura's reciprocity law, relating Galois action of \widehat{K}^* on values of modular functions to the action of $GL_2(\widehat{\mathbf{Q}})$ on the modular functions themselves.
- g = 2: I have been making Shimura's reciprocity law for g = 2 more explicit and have some ideas for "smaller functions"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ののの

The "embedding problem" (Goren-Lauter)

Given a quartic CM field K (not containing an imag. quadr. field). What are the primes p such that the following exist?

- ► a maximal order R in the quaternion algebra $B_{p,\infty}/\mathbf{Q}$,
- ► a fractional right *R*-ideal \mathfrak{a} with left order *R'*, and
- \blacktriangleright an embedding of $\mathcal{O}_{\mathcal{K}}$ into the matrix algebra

$$\left(\begin{array}{cc} R & \mathfrak{a}^{-1} \\ \mathfrak{a} & R' \end{array} \right)$$

such that complex conjugation on $\mathcal{O}_{\mathcal{K}}$ coincides with

$$\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right) \mapsto \left(\begin{array}{cc} \overline{\alpha} & \overline{\gamma} N(\mathfrak{a})^{-1} \\ \overline{\beta} N(\mathfrak{a}) & \overline{\delta} \end{array}\right)$$

Partial answer: we know the splitting behaviour of p in the normal closure of K and we know $p < cD_K$. [GL 2006]

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □