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Introduction

A modular function is a meromorphic function on the upper half complex
plane H which is also "meromorphic at the cusps" and invariant under the
action on H of some matrix group Γ, called a "congruence subgroup". Mod-
ular functions play an essential role in number theory, for example modular
forms are extensively used in the proof of Fermat’s Last Theorem.

The quotient of the upper half complex plane H by the action of a congru-
ence subgroup Γ gives rise to a Riemann surface Y (Γ). We call its compact-
ification X(Γ) a "modular curve", which is obtained by adjoining to Y (Γ)
the Γ-orbits of the projective line P1(Q): the cusps. The main reason of
interest for the study of the modular curves is their moduli interpretation:
the points of these curves can be used to classify elliptic curves together with
some torsion data.

In 2014 Maarten Derickx and Mark van Hoeij gave upper bounds for the
gonality of the modular curve X1(N) for each N ≤ 250 using some par-
ticular functions obtained from the equation of X1(M), with M a positive
integer different from N (for more details look at [3]). These functions have
zeros and poles just on the cusps, therefore (as there are finitely many cusps)
Derickx and van Hoeij used these special functions to make the zeros and
poles cancel each other out and obtain lower degree functions on the mod-
ular curve X1(N), which they used to study its gonality. They furthermore
conjectured that this kind of functions freely generate the modular units of
Q(X1(N)), which are elements of Q(X1(N)) whose poles and zeros are cusps.
This conjecture was proved by Marco Streng in 2015 (for reference look at
[9]).

In this thesis we study the analogue of this issue for the modular curve
X0(N). Given two distinct positive integers M and N , we will prove that
the function on X0(N) obtained from the equation of X0(M) has zeros at
complex multiplication points of the modular curve X0(N) and poles at its
cusps. This disproves the analogue of the conjecture of Derickx and van Hoeij
for X0(N). In particular for all positive distinct integers M and N , we study



the function fM on the modular curve Y0(N) defined as follows:

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ)),

where ΦM(X, Y ) ∈ Z[X, Y ] is the M-th modular polynomial, which describes
the modular curveX0(M) and j is the j-invariant. We will prove the following
formula for the divisor of zeros of the function fM :

Theorem. Let M and N be two positive coprime integers not both squares
and let

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ)).

We have that

Div0(fM) =
∑

O⊂C imaginary
quadratic order

∑
[a]∈Pic(O)

∑
{α∈O : O/αO∼=Z/MNZ}/O∗

([(
a, a +

α

N
a
)])

.

Here
[(
a, a + α

N
a
)]

denotes the equivalence class under scalar complex
multiplication of the pair of C-lattices

(
a, a + α

N
a
)
, which corresponds to

a precise point of the modular curve Y0(N) through the bijection given in
Theorem 1.59.

From the theorem stated above we will derive in Chapter 3 that no non-
constant product of powers of this type of functions will give rise to a modular
unit of Q(X0(N)), since it will always have at least one zero or pole at a com-
plex multiplication point. Finally we will give a lower bound for the degree
of functions that we get multiplying and dividing by functions obtained from
the modular polynomials.
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Chapter 1

Prerequisites

1.1 The Riemann surface structure of the mod-
ular curve Y (Γ)

In this section we will give the basic definitions and we will show that the
modular curve Y (Γ) with the complex atlas that we will define is a Riemann
surface. A reference for this section is [4, Chapter 2].

Definition 1.1. The general linear group of degree 2, denoted by GL2(C) is
the group of 2×2 invertible matrices with coefficients in the complex numbers.
The modular group, denoted by SL2(Z), is the subgroup of GL2(C) given by
matrices with integer coefficients and determinant 1:

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The group GL2(C) acts on P1(C) by matrix-vector multiplication. Let us
identify C ∪ {∞} to P1(C) through the map

C ∪ {∞}! P1(C)

τ 7! [ τ1 ]

∞ 7! [ 1
0 ] .

This gives the following action on C ∪ {∞}:(
a b
c d

)
· τ =

aτ + b

cτ + d

for every ( a bc d ) ∈ GL2(C) and τ ∈ C ∪ {∞}.

1



2 Prerequisites

An easy computation shows that

Im(γ(τ)) = det (γ)
Im(τ)

|cτ + d|2

for all γ = ( a bc d ) ∈ GL2(R) and for all τ ∈ C (where if |cτ + d| = 0, we take
by convention Im(τ)

|cτ+d| =∞ and Im(∞) =∞).
In particular, if γ ∈ SL2(Z), then

Im(γ(τ)) =
Im(τ)

|cτ + d|2
.

This allows us to restrict to the upper half complex plane

H := {τ ∈ C : Im(τ) > 0},

since the modular group maps H to itself.

Lemma 1.2. Let τ ∈ H and

D :=

{
τ ∈ H : |Re(τ)| ≤ 1

2
, |τ | ≥ 1

}
.

Then there exists γ ∈ SL2(Z) such that γ(τ) ∈ D. Moreover let τ1, τ2 ∈ D
with Im(τ1) ≤ Im(τ2) and suppose that γτ1 = τ2 for some γ ∈ SL2(Z), then
one of the following is true:

1. τ1 = τ2 and γ = ±I,

2. Re(τ1) = 1
2
, τ2 = τ1 − 1 and γ = ± ( 1 −1

0 1 ),

3. Re(τ1) = −1
2
, τ2 = τ1 + 1 and γ = ± ( 1 1

0 1 ),

4. |τ1| = 1, τ2 = − 1
τ1

and γ = ± ( 0 −1
1 0 ),

5. τ1 = ζ3 = τ2 and γ ∈ 〈( 0 −1
1 1 )〉 or τ1 = ζ3, τ2 = ζ6 and γ = ± ( 1 0

1 1 ),

6. τ1 = ζ6 = τ2 and γ ∈ 〈( 0 1
−1 1 )〉 or τ1 = ζ6, τ2 = ζ3 and γ = ± ( 1 0

−1 1 ),

where ζ3 = e2πi/3 and ζ6 = e2πi/6.

Proof. For a proof of the fact that for every τ ∈ H there exists γ ∈ SL2(Z)
such that γ(τ) ∈ D look at [4, Lemma 2.3.1.]. Let τ1, τ2 ∈ D with Im(τ1) ≤
Im(τ2) such that γτ1 = τ2 for some γ = ( a bc d ) ∈ SL2(Z). Then Im(τ2) =
Im(τ1)
|cτ1+d|2 ≥ Im(τ1), which means that |cτ1 + d|2 ≤ 1. Consider the following
two cases:
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c = 0 : If c = 0, then d = ±1 = a. Thus γ =
( ±1 b

0 ±1

)
with b ∈ Z and τ2 = τ1±b.

On the other hand, |Re(τ1)| ≤ 1/2 ≥ |Re(τ2)|; as a consequence b = 0
and γ = ±I or |Re(τ1)| = 1/2. If Re(τ1) = 1/2, then τ2 = τ1 − 1, so
γ = ± ( 1 −1

0 1 ); if Re(τ1) = −1/2, then τ2 = τ1 + 1, so γ = ± ( 1 1
0 1 ).

c 6= 0 : From |cτ1 + d|2 ≤ 1 we deduce that c2Im(τ1)2 + Re(cτ1 + d)2 ≤ 1.
In particular c2Im(τ1)2 ≤ 1 and c2 ≤ 4/3 (because Im(τ1) ≥

√
3/2),

therefore c = ±1. As a consequence

Re(cτ1 + d)2 = (cRe(τ1) + d)2 ≤ 1− c2Im(τ1)2 ≤ 1/4

Hence |cRe(τ1) + d| ≤ 1/2 ⇒ |d| ≤ 1/2 + |Re(τ1)| ≤ 1. Consider the
following two possibilities for d:

d = 0 : In this case |cτ1 + d| = |τ1| ≤ 1, but τ1 ∈ D, hence |τ1| = 1.
Moreover γ = ± ( a −1

1 0 ) for some a ∈ Z, so τ2 = − 1
τ1

+ a. As
the transformation τ 7! − 1

τ
acts like the symmetry respect to the

imaginary axis on the circumference {τ ∈ C : |τ | = 1}, this leads
to other three possibilities for a:

• a = 0, γ = ± ( 0 −1
1 0 ) , |τ1| = 1 and τ2 = −1/τ1;

• a = 1, γ = ± ( 1 −1
1 0 ), and τ1 = ζ6 = τ2;

• a = −1, γ = ± ( −1 −1
1 0 ), and τ1 = ζ3 = τ2.

d = ±1 : Now we have |Re(τ1)| = 1/2 and Im(τ1) =
√

3/2. We have now
two possible cases:

cd = 1: γ = ± ( a a−1
1 1 ) and τ2 = − 1

τ1+1
+a with a ∈ Z. Therefore τ1 =

ζ3, τ2 = ζ6 and γ = ± ( 1 0
1 1 ) or τ1 = ζ3 = τ2 and γ = ± ( 0 −1

1 1 ).
cd = −1: γ = ±

(
a −a−1
1 −1

)
and τ2 = − 1

τ1−1
+ a for some a ∈ Z. Thus

τ1 = ζ6, τ2 = ζ3 and γ = ±
( −1 0

1 −1

)
or τ1 = ζ6 = τ2 and

γ = ±
(

0 −1
1 −1

)
.

The action of the modular group gives rise to an equivalence relation
on H: if τ1, τ2 ∈ H, then τ1 ∼ τ2 if and only if there exists γ ∈ SL2(Z) such
that γ(τ1) = τ2. As a consequence, the set D with the suitable boundary
identification is a set of representatives of the equivalence classes of H un-
der the action of SL2(Z) and D is called the standard fundamental domain
for SL2(Z).

Definition 1.3. Let N be a positive integer. The principal congruence sub-
group of level N is the subgroup of SL2(Z) formed by the matrices congruent
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to the identity modulo N :

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

Definition 1.4. A subgroup Γ of SL2(Z) is a congruence subgroup if there
exists some positive integer N such that Γ(N) ⊆ Γ.

One of the most important congruence subgroups is

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Definition 1.5. For every congruence subgroup Γ of SL2(Z), we define the
modular curve

Y (Γ) := Γ\H = {Γτ : τ ∈ H}.

The modular curves for Γ(N) and Γ0(N) are denoted respectively Y (N)
and Y0(N).

For every congruence subgroup we define the quotient map

π : H! Y (Γ)

τ 7! Γτ.

The modular curve Y (Γ) inherits the quotient topology, so a subset U ⊂ Y (Γ)
is open in the modular curve if and only if its preimage under π is open in H.
Furthermore π is an open map, but in order to show this we need the following
result from complex analysis, which can be found in [6, Theorem 10.32.].

Theorem 1.6 (Open mapping theorem). Let U be a connected subset of C
and f : U ! C a non-constant holomorphic function. Then f is an open
map.

Let U ⊂ H be an open subset. Then for every γ ∈ SL2(Z) we get that
γ(U) is open by the open mapping theorem. As a consequence π(U) = ΓU
is open in Y (Γ) because π−1(ΓU) =

⋃
γ∈Γ γU , which is open. Consequently

π is open.

Definition 1.7. Let X be a topological space. A complex chart on X is a
homeomorphism φ : U ! V of an open subset U ⊂ X onto an open subset
V ⊂ C. Two complex charts φ1,2 : U1,2 ! V1,2 are holomorphically compatible
if the maps

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2)! φ2(U1 ∩ U2)

and
φ1 ◦ φ−1

2 : φ2(U1 ∩ U2)! φ1(U1 ∩ U2)
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are holomorphic. A complex atlas on X is a system U = {φi : Ui ! Vi, i ∈ I}
of charts which are holomorphically compatible and such that

⋃
i∈I Ui = X.

Two complex atlases U and U ′ on X are analytically equivalent if every chart
of U is holomorphically compatible with every chart of U ′.

Definition 1.8. A complex structure on a Hausdorff topological space X is
a class of analytically equivalent atlases on X.

Definition 1.9. A Riemann surface is a pair (X,Σ) where X is a connected
Hausdorff topological space and Σ is a complex structure on X.

Notice first of all that since π is continuous and H is connected, we have
that also Y (Γ) is connected.

We start by showing that the modular curve is Hausdorff, but first we
need some preliminary results.

Lemma 1.10. Let U1, U2 ⊂ H, then

π(U1) ∩ π(U2) = ∅ in Y (Γ)⇔ Γ(U1) ∩ U2 = ∅ in H.

The proof of this lemma is straightforward.

Proposition 1.11. Let τ1, τ2 ∈ H, then there exist neighbourhoods U1 of τ1

and U2 of τ2 such that for all γ ∈ SL2(Z),

γ(U1) ∩ U2 6= ∅ ⇒ γ(τ1) = τ2.

Proof. For a proof of this proposition look at [4, Proposition 2.1.1.].

Corollary 1.12. The modular curve Y (Γ) is Hausdorff.

Proof. Let Γτ1 and Γτ2 be distinct points of Y (Γ). By Proposition 1.11 we
know that there exist a neighbourhood U1 of τ1 and a neighbourhood U2 of
τ2 such that for every γ ∈ SL2(Z), if γ(U1) ∩ U2 6= ∅ then γ(τ1) = τ2. Since
γ(τ1) 6= τ2 for all γ ∈ Γ, we have that Γ(U1) ∩ U2 = ∅ and by Lemma 1.10
we get that π(U1)∩π(U2) = ∅. Since π is an open map, π(U1) and π(U2) are
disjoint neighbourhoods of Γτ1 and Γτ2 respectively.

In order to make Y (Γ) into a Riemann surface, we still need to define a
complex atlas on it. To do this, we have to distinguish two types of points
on the modular curve.

Definition 1.13. Let τ ∈ H and let Γ be a congruence subgroup of SL2(Z).
We define the isotropy subgroup of τ in Γ as the τ -fixing subgroup of Γ and
we denote it by Γτ :

Γτ = {γ ∈ Γ : γ(τ) = τ}.
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Definition 1.14. Let Γ be a congruence subgroup of SL2(Z). A point τ ∈ H
is an elliptic point for Γ if the inclusion {±I} ⊆ {±I}Γτ is proper. In this
case, also the point π(τ) ∈ Y (Γ) is called elliptic.

First of all we define local charts for Y (Γ) on neighbourhoods of points
which are not elliptic. Let τ ∈ H be a point such that Γτ = {±I}. By
Proposition 1.11 there exist neighbourhoods U1, U2 ⊂ H of τ such that for
every γ ∈ SL2(Z), if γ(U1) ∩ U2 6= ∅, then γ(τ) = τ . Hence if ±I 6= γ ∈ Γ,
we have that γ(U1)∩U2 = ∅ and in particular γ(U1∩U2)∩U1∩U2 = ∅. Thus
U := U1 ∩ U2 is a neighbourhood of τ with no Γ-equivalent points. We then
take the local inverse of π:

φ : π(U)! U,

which is a homeomorphism. Therefore we use φ as a complex chart. Notice
that for every γ ∈ Γ we have the local chart

φγ : π(U)! γ(U).

All these complex charts are holomorphically compatible, in fact for every
γ, γ′ ∈ Γ the transition map

φγ ◦ φ−1
γ′ : γ′(U)! γ(U)

τ 7! (γγ′−1)(τ)

is holomorphic because every element of SL2(Z) gives a holomorphic map
on H.

In order to proceed showing that the modular curve Y (Γ) is a Riemann
surface, we need to study the points that have non-trivial isotropy subgroup
in Γ.

Corollary 1.15. The elliptic points for SL2(Z) are the points in the SL2(Z)-
orbit of i and ζ3 where ζ3 = e2πi/3. Thus the modular curve Y (1) has two
elliptic points (SL2(Z)i and SL2(Z)ζ3) and the isotropy subgroups of i and
ζ3 in SL2(Z) are

SL2(Z)i = ±
〈(

0 −1
1 0

)〉
and SL2(Z)ζ3 =

〈(
0 −1
1 1

)〉
.

Finally for each elliptic point τ of SL2(Z), its isotropy subgroup SL2(Z)τ is
finite cyclic.
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Proof. Isotropy subgroups of elements of the same orbit are conjuate, so it
suffices to prove the corollary for elliptic points τ ∈ D. By Lemma 1.2 the
elliptic points in D are just i, ζ3 and ζ6, since τ = −1/τ if and only if τ = i.
From Lemma 1.2 we also deduce that ζ6 ∈ SL2(Z)ζ3 and that the isotropy
subgroup of i is ±〈( 0 −1

1 0 )〉 and the isotropy subgroup of ζ3 is 〈( 0 −1
1 1 )〉. As a

consequence, the elliptic points for SL2(Z) lie in SL2(Z)i and SL2(Z)ζ3 and
their isotropy subgroups are finite cyclic.

Corollary 1.16. For every congruence subgroup Γ the modular curve Y (Γ)
has finitely many elliptic points τ and their isotropy subgroups Γτ are finite
cyclic.

Proof. LetN be a positive integer. First of all notice that the homomorphism

SL2(Z)! SL2(Z/NZ)(
a b
c d

)
7!

((
a b
c d

)
mod N

)
has kernel Γ(N), thus [SL2(Z) : Γ(N)] is finite. As a consequence, every
congruence subgroup Γ has finite index in SL2(Z). Hence we have SL2(Z) =⋃d
j=i Γγj for some suitable γ1, . . . , γd ∈ SL2(Z). Then the elliptic points of

Y (Γ) are a subset of {Γγj(i),Γγj(ζ3) : j = 1, . . . , d}, so they are finitely
many. Besides Γτ is a subgroup of SL2(Z)τ for every elliptic point τ , so Γτ
is finite cyclic by Corollary 1.15.

Definition 1.17. Let Γ be a congruence subgroup and τ ∈ H. We define
the period of τ to be

hτ = |{±I}Γτ/{±I}| =

{
|Γτ |/2 if − I ∈ Γ

|Γτ | if − I /∈ Γ
.

Notice that hτ > 1 if and only if τ is an elliptic point. Moreover if τ ∈ H
and γ ∈ SL2(Z), then the period of γτ under γΓγ−1 is equal to the period
of τ under Γ. This tells us that the period of a point τ is Γ-invariant and it
is therefore well-defined in Y (Γ). We also observe that, since γ and −γ give
the same fractional linear transformation for every γ ∈ SL2(Z), the period
hτ correctly counts the fractional linear transformation fixing the point τ .

Now we continue the study of finding complex charts for elliptic points.
Let τ ∈ H and π(τ) the corresponding point in Y (Γ). We begin taking the
point τ to the origin and its conjugate τ̄ to ∞ thanks to the map δτ :=(

1 −τ
1 −τ̄

)
∈ GL2(C). As we have already seen, the isotropy subgroup of 0 in
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the conjugated congruence subgroup is the conjugate of the isotropy group
of τ , in other words (δτΓδ

−1
τ )0 = δτΓτδ

−1
τ . Observe that if a linear fractional

transformation γ ∈ SL2(Z) fixes τ ∈ H, then it also fixes τ̄ and so the group
(δτ{±I}Γδ−1

τ )0/{±I} is cyclic of order hτ and consists of linear fractional
transformations fixing 0 and ∞. Thus these maps must be of the form
z 7! αz for some α ∈ C and since they form a cyclic group of order hτ , they
must be rotations of angle k 2π

hτ
about the origin for some k ∈ {0, . . . , hτ −1}.

Proposition 1.18. Let Γ be a congruence subgroup of SL2(Z). For every
point τ ∈ H there exists a neighbourhood U of τ in H such that

for all γ ∈ Γ, if γ(U) ∩ U 6= ∅ then γ ∈ Γτ .

Moreover U does not contain any elliptic point for Γ except possibly τ .

Proof. By Proposition 1.11 there exists a neighbourhood U of τ such that
for all γ ∈ SL2(Z), γ(U) ∩ U 6= ∅ ⇒ γ(τ) = τ . Thus in particular, if γ ∈ Γ
and γ(U) ∩ U 6= ∅, then γ ∈ Γτ . For every point τ ′ ∈ U that is elliptic for Γ
there exists ±I 6= γ′ ∈ Γτ ′ . Then γ′(U) ∩ U 6= ∅ because τ ′ ∈ γ′(U) ∩ U , but
this means that γ′ ∈ Γτ . Since every ±I 6= γ = ( a bc d ) ∈ SL2(Z) fixes at most
one point in H (the root of the polynomial cz2 + (d − a)z − b with positive
imaginary part), we have that τ = τ ′ and the proof is concluded.

We are now ready to define the local charts on neighbourhoods of elliptic
points of the modular curve. Consider τ ∈ H and a neighbourhood U of τ
as in Proposition 1.18; let us define

ψ̃ := ρτ ◦ δτ : H! C,

where ρτ (z) = zhτ . Let V := ρτ ◦ δτ (U). By the open mapping theorem, V
is an open subset of C.

Consider now the quotient map π : U ! π(U) ⊂ Y0(N) and the restric-
tion of ψ̃ to U and V :

ψ : U ! V ⊂ C.
Let τ1, τ2 ∈ U . We prove that τ1 and τ2 have the same image under π if
and only if they have the same image under ψ: we have that π(τ1) = π(τ2)
if and only if there exists γ ∈ Γ such that τ1 = γτ2. Hence τ1 ∈ γ(U) ∩ U .
By Proposition 1.18, this implies that γ ∈ Γτ . Thus τ1 ∈ Γττ2, so δτ (τ1) ∈
(δτΓτδ

−1
τ )(δττ2). This means that ⇔ δτ (τ1) = ζkhτ δτ (τ2) where ζhτ = e2πi/hτ

and k ∈ {0, . . . , hτ − 1}, as we have already observed that the group δτΓτδ−1
τ

consists of all the rotations of angle 2πk/hτ . Therefore

π(τ1) = π(τ2)⇔ (δτ (τ1))hτ = (δτ (τ2))hτ ⇔ ψ(τ1) = ψ(τ2).

Hence there exists an injective map φ : π(U)! V such that the diagram
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U V

π(U)

ψ

π
φ

commutes. Notice that φ is also a surjection, since ψ surjects by definition
of V . Moreover φ is bicontinuous because ψ is open by the open mapping
theorem and we know that π is open. Concluding, φ is a homeomorphism,
so it is the local chart we were looking for.

To show that these local charts give a complex structure on Y (Γ), we still
need to verify that the transition maps are holomorphic and a proof of this
can be found in [4, Chapter 2].

We have therefore showed the following:

Theorem 1.19. The modular curve Y (Γ) with the complex structure con-
structed above is a Riemann surface.

Since we will study some special functions on the modular curve Y0(N),
we give some notions about functions on Riemann surfaces.

Definition 1.20. Let X be a Riemann surface and C(X) the field of mero-
morphic functions on X:

C(X) = {f : X ! C ∪ {∞} : f is meromorphic}.

Let x ∈ X and let φ : U ! V ⊂ C, x 7! 0 be a coordinate chart on a
neighbourhood U of x. Then every f ∈ C(X)∗ can be uniquely written as
φng where n ∈ Z and g ∈ C(X) such that g(x) 6= 0. Thus we define a
valuation

ordx : C(X)∗ ! Z
f = φng 7! n.

The number ordx(f) is called order of f at x and it does not depend on the
choice of φ.

Definition 1.21. Let X,Y be two Riemann surfaces, x ∈ X and F : X ! Y
be a non-constant holomorphic map. Then the ramification index of F at x
is

eF (x) := ordx(η ◦ F )

where η : U ! V ⊂ C, F (x) 7! 0 is a coordinate chart on a neighbourhood
U of F (x). The ramification index is independent of the coordinate chart
chosen.
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Consider now a positive integer N and the quotient map

πN : H! Y0(N)

τ 7! Γ0(N)τ.

Its ramification index at a point of H will be useful in later computations, so
we are now going to study it.

Lemma 1.22. Let τ ∈ H. We have that

eπN (τ) = hτ .

Proof. Let τ ∈ H and let U be an open neighbourhood of τ in H; consider the
coordinate chart φ : πN(U)! V ⊂ C as previously defined and observe that
φ(πN(τ)) = ψ(τ) = 0 where ψ is defined as before to be ρτ ◦δτ : U ! V ⊂ C.
Furthermore notice that δτ : U ! V ⊂ C is a coordinate chart on the
neighbourhood U of τ such that δτ (τ) = 0. Consequently

eπN (τ) = ordτ (φ ◦ πN) = ordτ (ψ) = ordτ (ρτδτ ) = ordτ (δ
hτ
τ ) = hτ .

Thus the ramification index of πN in a point τ is its period hτ .

1.2 Modular functions
In this section we introduce some notions on modular functions, but first we
define the j-invariant, which is the most important modular function.

Definition 1.23. For every τ ∈ H, we define

g2(τ) = 60
∑

(m,n)∈Z2,
(m,n)6=(0,0)

1

(m+ nτ)4

and

g3(τ) = 140
∑

(m,n)∈Z2,
(m,n)6=(0,0)

1

(m+ nτ)6
.

The j-function or j-invariant j : H! C is defined as

j(τ) := 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
.
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Theorem 1.24.

1. The j-function is holomorphic on H;

2. if τ, τ ′ ∈ H, then j(τ) = j(τ ′)⇔ τ ′ = γτ for some γ ∈ SL2(Z);

3. the j-function j : H! C is surjective.

For a proof of this theorem we refer to [2, Theorem 11.2.].

Observe that j(τ + 1) = j (( 1 1
0 1 ) τ) = j(τ), so j is Z-periodic. Consider

now D′ := {q ∈ C : |q| < 1} \ {0} and the Z-periodic holomorphic function
τ 7! e2πiτ = q(τ) taking H to D′. Let g : D′ ! C be the map g(q) :=
j(log(q)/2πi)), so that j(τ) = g(e2πiτ ). Since j is holomorphic on H, the
function g is holomorphic on D′, thus j is a holomorphic function in q =
e2πiτ ∈ D′ and it has a Laurent expansion

j(τ) =
∞∑

n=−∞

cnq(τ)n,

which converges absolutely on every compact subset of H and that we will
call the q-expansion of j.

Theorem 1.25. The q-expansion of j(τ) is of the form

j(τ) =
1

q(τ)
+
∞∑
n=0

cnq(τ)n,

where cn ∈ Z for every n ≥ 0.

The reader can find in [2, Theorem 11.8.] a proof of this theorem.

Let Γ be a congruence subgroup and let f : H ! C be a meromorphic
function on H that is invariant under Γ, so f(γ′τ) = f(τ) for all γ′ ∈ Γ and
τ ∈ H. Let N ∈ Z≥1 such that Γ(N) ⊆ Γ. Let U := ( 1 N

0 1 ) and observe that
τ +N = Uτ . If γ ∈ SL2(Z), then γUγ−1 ∈ Γ, thus we have

f(γ(τ +N)) = f(γUτ) = f(γUγ−1γτ) = f(γτ).

Hence f ◦ γ is NZ-periodic. Consider the NZ-periodic holomorphic function
τ 7! e2πiτ/N =: q(τ)1/N taking H to D′. Let g : D′ ! C be the map
g(q) := f(γ(N log(q)/2πi)), so that f(γτ) = g(e2πiτ/N) = g(q(τ)1/N). Since



12 Prerequisites

fγ is meromorphic on H, the function g is meromorphic on D′, thus fγ
admits a Fourier expansion

f(γτ) =
∞∑

n=−∞

anq(τ)n/N ,

which we will call the q-expansion of f(γτ).

Definition 1.26. Let Γ be a congruence subgroup and let f : H ! C be
a meromorphic function on H that is Γ-invariant. Then we say that f is
meromorphic at the cusps if for all γ ∈ SL2(Z), the q-expansion of f(γτ) has
only finitely many non-zero coefficients for negative exponents.

Definition 1.27. Let Γ be a congruence subgroup and let f : H! C∪{∞}
be a complex-valued function on H such that

1. f is meromorphic on H;

2. f(τ) is Γ-invariant;

3. f(τ) is meromorphic at the cusps.

Then we say that f is a modular function for Γ.

The j-function is a modular function for SL2(Z) because it is holomorphic
on H, it is SL2(Z)-invariant and by Theorem 1.25 it is also meromorphic at
cusps.

Definition 1.28. We say that a modular function for SL2(Z) is holomorphic
at ∞ if its q-expansion involves only non-negative powers of q.

Observe that if we consider ∞ as lying in the imaginary direction, then
τ !∞ if and only if q = e2πiτ ! 0, since |q| = e−2πIm(τ). Hence proving that
a modular function is holomorphic at∞ is equivalent to proving that the limit
of the q-expansion of f for q ! 0 exists and it is a complex number, which
is the same as showing that limIm(τ)!∞ f(τ) exists as a complex number.

Lemma 1.29.

1. Every holomorphic modular function for SL2(Z) that is also holomor-
phic at ∞ is constant.

2. Every holomorphic modular function for SL2(Z) is a polynomial in j(τ).

Proof. For a proof of this lemma look at [2, Lemma 11.10.]
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Theorem 1.30.

1. The j-function is a modular function for SL2(Z) and every modular
function for SL2(Z) is a rational function in j(τ).

2. Let N be a positive integer; the functions j(τ) and j(Nτ) are modular
functions for Γ0(N) and every modular function for Γ0(N) is a rational
function in j(τ) and j(Nτ).

Proof. The reader may find the proof in [2, Theorem 11.9.]

1.3 The modular polynomial ΦN(X, Y )

First of all we prove the following result, which will be useful later:

Lemma 1.31. Let N be a positive integer and consider

C(N) :=

{(
a b
0 d

)
: ad = N, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1

}
.

Let σ0 := (N 0
0 1 ) ∈ C(N). For every σ ∈ C(N) the set

(σ−1
0 SL2(Z)σ) ∩ SL2(Z)

is a right coset of Γ0(N) in SL2(Z). This induces a one-to-one correspon-
dence between elements of C(N) and the right cosets of Γ0(N).

Lemma 1.31 is a result from [2] left to the reader as an exercise, so we
are now going to give a proof of it.

Proof. First of all we show that Γ0(N) = (σ−1
0 SL2(Z)σ0) ∩ SL2(Z):

(⊆) let A = ( a bc d ) ∈ Γ0(N), then A = σ−1
0

(
a bN
c/N d

)
σ0 and

(
a bN
c/N d

)
∈

SL2(Z), so A ∈ (σ−1
0 SL2(Z)σ0) ∩ SL2(Z);

(⊇) now let B ∈ (σ−1
0 SL2(Z)σ0) ∩ SL2(Z), so there exists B′ =

(
a′ b′

c′ d′

)
∈

SL2(Z) such that B = σ−1
0 B′σ0 =

(
a′ b′/N
c′N d′

)
, which is of course in

Γ0(N).

Now we want to prove that for every σ ∈ C(N), the set (σ−1
0 SL2(Z)σ) ∩

SL2(Z) is a right coset of Γ0(N) in SL2(Z), so we have to prove that
it is a non-empty stable set under the left multiplication by Γ0(N) and
that this action is transitive. Notice that for every γ ∈ Γ0(N) we have
that σ0γσ

−1
0 ∈ SL2(Z), so for every σ−1

0 Mσ ∈ (σ−1
0 SL2(Z)σ) ∩ SL2(Z)
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and γ ∈ Γ0(N), we have γσ−1
0 Mσ = σ−1

0 σ0γσ
−1
0 Mσ = σ−1

0 M ′σ where
M ′ = σ0γσ

−1
0 M ∈ SL2(Z). This means that the set (σ−1

0 SL2(Z)σ)∩ SL2(Z)
is Γ0(N)-stable. We now show that the set (σ−1

0 SL2(Z)σ) ∩ SL2(Z) is non-
empty. Let σ := ( a b0 d ) and let k ∈ Z such that gcd(dk, a − kb) = 1. As
a consequence there exist x, y ∈ Z such that xdk − y(a − kb) = 1. Then
σ−1

0

(
dk a−kb
y x

)
σ =

(
k 1
ya yb+xd

)
∈ (σ−1

0 SL2(Z)σ) ∩ SL2(Z). As for transitivity,
let σ−1

0 Mσ, σ−1
0 M ′σ ∈ (σ−1

0 SL2(Z)σ) ∩ SL2(Z) with M,M ′ ∈ SL2(Z). It is
sufficient to show that there is γ ∈ Γ0(N) such that σ−1

0 Mσ = γσ−1
0 M ′σ, i.e.

(σ−1
0 Mσ)(σ−1

0 M ′σ)−1 ∈ Γ0(N). Since

(σ−1
0 Mσ)(σ−1

0 M ′σ)−1 = σ−1
0 M(M ′)−1σ0

∈ (σ−1
0 SL2(Z)σ0) ∩ SL2(Z) = Γ0(N),

we have that (σ−1
0 SL2(Z)σ)∩SL2(Z) is a right coset of Γ0(N) in SL2(Z). In

order to prove that there is a bijection between C(N) and the right cosets of
Γ0(N), we finally need to show that different σ’s give rise to different cosets
and that all cosets of Γ0(N) in SL2(Z) arise in this way. Suppose there exist
σ1 =

(
a1 b1
0 d1

)
, σ2 =

(
a2 b2
0 d2

)
∈ C(N) such that σ−1

0 Mσ1 = σ−1
0 M ′σ2 = A ∈

SL2(Z) for some M,M ′ ∈ SL2(Z). As a consequence σ1σ
−1
2 = M−1M ′ ∈

SL2(Z). On the other hand an easy computation shows that

σ1σ
−1
2 =

(
a1d2/N (−a1b2 + a2b1)/N

0 d1a2/N

)
,

so σ1σ
−1
2 ∈ SL2(Z) if and only if a1 = a2, d1 = d2 and d1 | b1 − b2. Since

0 ≤ b1 and b2 < d1, we get that σ1σ
−1
2 ∈ SL2(Z) if and only if σ1 = σ2. Let

A = ( a bc d ) ∈ SL2(Z). We now show that there exists σ =
(
α β
0 δ

)
∈ C(N)

such that A ∈ σ−1
0 SL2(Z)σ. Therefore we have to prove that σ0Aσ

−1 =(
aδ αb−aβ
cδ/N (αd−βc)/N

)
∈ SL2(Z). Define α to be gcd(N, c) and δ := N/α. Notice

that δ and c/α are coprime, thus c/α is an invertible element of Z/δZ. Let
β be the unique number such that 0 ≤ β < δ and β ≡ d(c/α)−1 (mod δ).
To prove that the matrix σ =

(
α β
0 δ

)
is an element of C(N) we just have to

prove that gcd(α, β, δ) = 1. Let n := gcd(α, β, δ). We have that n | α | c,
n | δ and n | β, so n | d. On the other hand ad− bc = 1, which means that c
and d are coprime, consequently n = 1. Hence σ :=

(
α β
0 δ

)
∈ C(N). Now we

just have to show that N | cδ and N | αd − βc: N = αδ | cδ if and only if
α | c, which is true by definition of α. Finally N = αδ | αd−βc if and only if
δ | d− β(c/α), which is satisfied thanks to the way we defined β. Therefore
A ∈ (σ−1

0 SL2(Z)σ)∩SL2(Z), which proves that all the right cosets of Γ0(N)
are of this type.
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As a consequence, for every right coset representative Γ0(N)γ there exists
a unique σ ∈ C(N) such that γ = σ−1

0 Aσ for some A ∈ SL2(Z). Therefore

j(Nγτ) = j(σ0γτ) = j(Aστ) = j(στ) (1.1)

for every τ ∈ H.

Lemma 1.32. Let N be a positive integer and let C(H) be the set of mero-
morphic functions on H. We define the following polynomial:

ΦN(τ, Y ) :=
∏

γ∈Γ0(N)\SL2(Z)

(Y − j(Nγiτ)) ∈ C(H)[Y ].

Then ΦN(τ, Y ) is a polynomial in Y and j(τ).

Proof. We want to prove that the coefficients of ΦN(τ, Y ) are polynomials
in j(τ). Therefore we show that they are holomorphic modular functions for
SL2(Z) so that we conclude by Lemma 1.29. Consider {γ1, . . . , γ|C(N)|} a set
of representatives of right cosets of Γ0(N) in SL2(Z). Notice first of all that
the coefficients of ΦN(τ, Y ) are symmetric polynomials in the j(Nγiτ)’s and
they are thus holomorphic. We now show the SL2(Z)-invariance: let γ ∈
SL2(Z), then the cosets Γ0(N)γiγ are just a permutation of the Γ0(N)γi’s.
Furthermore, since j(Nτ) is Γ0(N)-invariant, we get that the j(Nγiγτ)’s are a
permutation of the j(Nγiτ)’s; as the coefficients are symmetric polynomials
in the j(Nγiτ)’s, they stay the same if we replace j(Nγiτ) by j(Nγiγτ).
Finally we need to show that the coefficients are meromorphic at the cusps.
By (1.1), we have that j(Nγiτ) = j(στ) for some σ = ( a bc d ) ∈ C(N). Then
we have that the q-expansion of j(Nγiτ) is

j(Nγiτ) =
ζ−abN

(q1/N)a2 +
∞∑
n=0

cnζ
abn
N (q1/N)a

2n (1.2)

(a proof of this can be found in [2, Chapter 11, Section B]). We have thus
proved that the coefficients of ΦN(τ, Y ) are modular functions for SL2(Z)
that are holomorphic on H and we conclude the proof thanks to Lemma 1.29.

As a consequence of Lemma 1.32, there exists a polynomial ΦN(X, Y ) ∈
C[X, Y ] of degree |C(N)| in Y such that the coefficient of Y |C(N)| is 1 and

ΦN(j(τ), Y ) =

|C(N)|∏
i=1

(Y − j(Nγiτ)) (1.3)



16 Prerequisites

for every τ ∈ H. Observe that

ΦN(j(τ), j(Nτ)) = 0, (1.4)

for every τ ∈ H, since j(Nτ) is equal to j(Nγτ) when γ ∈ Γ0(N).

Lemma 1.33. The polynomial ΦN(X, Y ) is irreducible over C.

Proof. Let γi with i = 1, . . . , |C(N)| be coset representatives for Γ0(N)
in SL2(Z). Let also F be the field of meromorphic functions on H and
FN := C(j, j ◦ (N 0

0 1 )) be the smallest subfield of F containing the functions
j and j ◦ (N 0

0 1 ). As we have previously seen,

ΦN(j(τ), Y ) =

|C(N)|∏
i=1

(Y − j(Nγiτ)).

Moreover ΦN(j, Y ) has coefficients in C(j) and ΦN(j, j ◦ (N 0
0 1 )) = 0, hence

[FN : C(j)] ≤ |C(N)|. We now want to prove that [FN : C(j)] = |C(N)|,
so that ΦN(j, Y ) is the minimal polynomial of j ◦ (N 0

0 1 ) over C(j) and it is
therefore irreducible. For every γ ∈ SL2(Z), consider the map

ιγ : FN ! F
f 7! f ◦ γ,

which is an embedding of FN in F fixing the subfield C(j). Let γ ∈ SL2(Z);
by Lemma 1.31 there exists σ = ( a b0 d ) ∈ C(N) such that γ ∈ (σ−1

0 SL2(Z)σ)∩
SL2(Z). We have already seen in (1.2) that the q-expansion of j(Nγτ) is

j(Nγτ) =
ζ−abN

(q1/N)a2 +
∞∑
n=0

cnζ
abn
N (q1/N)a

2n.

From (1.2) we notice that if i 6= j, then (τ 7! j(Nγiτ)) 6= (τ 7! j(Nγjτ)),
because the two Laurent series are different: let σi = ( ai bi0 di

), σj = (
aj bj
0 dj

) ∈
C(N) such that γi ∈ (σ−1

0 SL2(Z)σi) ∩ SL2(Z) and γj ∈ (σ−1
0 SL2(Z)σj) ∩

SL2(Z), then the first terms of the two q-expansions ζ
−aibi
N

(q1/N )
a2
i
and ζ

−ajbj
N

(q1/N )
a2
j
are

the same if and only if ai = aj and bi = bj, which implies that σi = σj
and thus γi = γj. As a consequence ιγ1 , . . . , ιγ|C(N)| are |C(N)| different
embeddings of FN in F fixing C(j), so [FN : C(j)] ≥ |C(N)|. This proves
that ΦN(X, Y ) is irreducible over C.

Proposition 1.34. Let N > 1 be a positive integer. Then ΦN(X, Y ) = ΦN(Y,X).
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Proof. As seen in (1.1), for every coset representative Γ0(N)γ there exists a
unique σ ∈ C(N) such that j(Nγτ) = j(στ). Hence we get

ΦN(j(τ), Y ) =
∏

σ∈C(N)

(Y − j(στ)). (1.5)

Consider the matrix σ = ( 1 0
0 N ) ∈ C(N). By (1.5) we have

0 = ΦN(j(τ), j(στ)) = ΦN(j(τ), j(τ/N))

for every τ ∈ H. Hence ΦN(j(Nτ), j(τ)) = 0 for every τ ∈ H. On the other
hand we also have that ΦN(j(τ), j(Nτ)) = 0. Thus j ◦ (N 0

0 1 ) is a root of both
ΦN(Y, j) and ΦN(j, Y ). By the irreducibility of ΦN(j, Y ), we get that

ΦN(Y, j) = g(Y, j)ΦN(j, Y ) = g(Y, j)g(j, Y )ΦN(Y, j)

for some polynomial g(Y, j) ∈ C[Y, j]. This means that g(Y, j)g(j, Y ) = 1,
therfore the function g is a constant. From this we deduce that g(Y, j) =
g(j, Y ), so g(Y, j) = ±1. If g(Y, j) = −1, then ΦN(j, j) = −ΦN(j, j) and as
a consequence j is a root of ΦN(j, Y ), which is irreducible over C(j). Hence
Y − j = ΦN(j, Y ), which implies that N = 1, leading to a contradiction.
Therefore we have ΦN(Y, j) = ΦN(j, Y ).

Thanks to the irreducibility of the polynomial ΦN(X, Y ) we now state its
uniqueness:

Definition 1.35. From Lemma 1.33 and Proposition 1.34 there exists a
unique polynomial ΦN(X, Y ) ∈ C[X, Y ] of degree |C(N)| in X and Y such
that the coefficients of Y |C(N)| and X |C(N)| are 1 and

ΦN(j(τ), Y ) =

|C(N)|∏
i=1

(Y − j(Nγiτ)).

The equation ΦN(X, Y ) = 0 is called modular equation and the polynomial
ΦN(X, Y ) is called modular polynomial.

We now show that the modular equations describes the curve (j(τ), j(Nτ)) ⊂
A2(C) with τ ∈ H, which we will denote by CN : let (u, v) ∈ A2

C such that
ΦN(u, v) = 0. Since j is surjective, u = j(τ) for some τ ∈ H. Consequently

0 = ΦN(j(τ), v) =
∏

γ∈Γ0(N)\SL2(Z)

(v − j(Nγiτ)),

which means that v = j(Nγτ) for some γ ∈ SL2(Z). Finally u = j(τ) =
j(γτ), so (u, v) = (j(γτ), j(Nγτ)) for some τ ∈ H and γ ∈ SL2(Z).

Theorem 1.36. Let N be a positive integer. Then ΦN(X, Y ) ∈ Z[X, Y ].

A proof of this result can be found in [2, Theorem 11.18.]
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1.4 C-lattices
We will show later the connection between modular curves and C-lattices, so
we now give some basic knowledge on lattices in C.

Definition 1.37. A lattice in C is a set L = ω1Z+ω2Z with {ω1, ω2} a basis
for C over R. Two lattices L and L′ are homothetic if there exists m ∈ C∗
such that mL = L′.

Definition 1.38. Let n be a positive integer, L a lattice of C and L′ a
sublattice of L such that

• [L : L′] = n;

• the quotient L/L′ is a cyclic group.

Then we say that L′ is a cyclic sublattice of L of index n.

Lemma 1.39. Consider two lattices L = ω1Z + ω2Z and L′ = ω′1Z + ω′2Z
with ω1

ω2
, ω′1
ω′2
∈ H. Then L = L′ if and only if(
ω′1
ω′2

)
=

(
a b
c d

)(
ω1

ω2

)
for some

(
a b
c d

)
∈ SL2(Z).

Proof. (⇒) Let {e1, e2} be a basis for Z2 and consider the homomorphisms
of Z-modules:

φ : Z2 ! L

and
φ′ : Z2 ! L′

of matrices respectively ( ω1 ω2 ) and ( ω′1 ω′2 ). If L = L′, then φ−1φ′ ∈
Aut(Z2) = GL2(Z). Hence ( ω1 ω2 )A = ( ω′1 ω′2 ) for some A = ( a bc d ) ∈
GL2(Z). From this we obtain

(
ω′1
ω′2

)
= At

(
ω1

ω2

)
. Finally det(At) > 0

because
0 < Im(ω′1/ω

′
2) =

1

det(At)

Im(ω1/ω2)

|c(ω1/ω2) + d|2
.

Hence At ∈ SL2(Z).

(⇐) Suppose there exists A ∈ SL2(Z) such that
(
ω′1
ω′2

)
= A

(
ω1

ω2

)
. We have

that

L′ =
(
ω′1 ω′2

)
Z2 =

(
ω1 ω2

)
AtZ2 =

(
ω1 ω2

)
Z2 = L.
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Theorem 1.40. (Elementary Divisor Theorem) Let L′ be a Z-submodule
of a free module L of the same rank. Then there exist positive integers
d1, . . . , dn (called the elementary divisors of L′ in L) satisfying the follow-
ing conditions:

1. For every i such that 1 ≤ i < n we have di+1 | di.

2. As Z-modules, we have the isomorphism

L/L′ ∼=
⊕

1≤i≤n

(Z/diZ)

and in particular [L : L′] = d1 · · · dn.

3. There exists a Z-basis (v1, . . . , vn) of L such that (d1v1, . . . , dnvn) is a
Z-basis of L′.

Moreover the di’s are uniquely determined by L and L′.

This theorem can be found in [5, Theorem 7.8.].

Definition 1.41. Let L be a lattice of C, so L = ω1Z + ω2Z and suppose
ω1/ω2 ∈ H. Then we define j(L) to be j(ω1/ω2). From Lemma 1.39 we have
that j(L) is independent of the chosen basis.

For simplifying the notation from now on we will refer to the lattice τZ+Z
as Λτ .

1.5 The multiplier ring
Definition 1.42. Let L be a lattice. We define its multiplier ring as

O(L) := {α ∈ C : αL ⊆ L}.

Theorem 1.43. Let L be a lattice. The multiplier ring O(L) is Z unless L
is homothetic to a lattice of the form Λτ for some τ ∈ C \R such that τ is a
zero of an irreducible quadratic polynomial ax2 + bx+ c ∈ Z[x] with negative
discriminant D. In this case O(L) = Z[D+

√
D

2
].

Proof. Obviously Z ⊆ O(L) for every lattice L. Notice that every lattice
L is homothetic to a lattice Λτ for some τ ∈ H. Moreover O(L) = O(Λτ ).
Suppose now that there exists α ∈ O(L) \ Z. This means that α ∈ Λτ and
α ·τ ∈ Λτ , hence there exist z1, z2, z3, z4 ∈ Z such that α = z1τ+z2 and ατ =
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z3τ+z4. From this we deduce that z3τ+z4 = ατ = (z1τ+z2)τ and τ is a root
of the polynomial z1x

2 + (z2− z3)x− z4 = 0 ∈ Z[x]. Consider the polynomial
ax2 + bx + c obtained dividing the coefficients of z1x

2 + (z2 − z3)x − z4 by
their greatest common divisor. Thus τ is a root of ax2 + bx + c ∈ Z[x],
which is irreducible over Z and with negative discriminant D because τ ∈ H.
Consider now τ ∈ H be a root of an irreducible polynomial ax2+bx+c ∈ Z[x]

with discriminant D := b2 − 4ac < 0 and we show that O(Λτ ) = Z[D+
√
D

2
].

Notice that τ = −b+
√
D

2a
, therefore Z[D+

√
D

2
] = Z[aτ ]. From this, it easy to

verify through simple computations that Z[aτ ] = O(Λτ ): of course Z[aτ ] ⊆
O(Λτ ) because aτ 2 = −bτ − c ∈ Λτ . On the other hand if α ∈ O(Λτ ),
then α = z1τ + z2 and ατ = z3τ + z4 for some z1, z2, z3, z4 ∈ Z. Hence
z3τ + z4 = ατ = z1τ

2 + z2τ = z1(− b
a
τ − c

a
) + z2τ = (z2 − z1b

a
)τ − z1c

a
, from

which we deduce that a | z1b and a | z1c. Since the polynomial ax2 + bx+ c
is an irreducible polynomial, we have that gcd(a, b, c) = 1. As a consequence
a | z1, implying that α ∈ Z[aτ ].

Notice that if τ, τ ′ ∈ H are such that τ = γτ ′ for some γ ∈ SL2(Z), then
Λτ ′ = zΛτ for some z ∈ C∗, consequently O(Λτ ) = O(Λτ ′).

Definition 1.44. Let τ ∈ H. We say that τ is a complex multiplication point
if O(Λτ ) 6= Z.

We now define a special kind of homomorphisms between C-lattices.

Definition 1.45. We say that a map φ : L1 ! L2 between two C-lattices is
an isogeny if there exists m ∈ C∗ such that mL1 ⊆ L2 and φ(x) = mx for
every x ∈ L1.

Notice that there exists an invertible isogeny between two C-lattices if
and only if they are homothetic. Moreover a homomorphism φ : L ! L is
an isogeny if and only if φ(x) = αx for some α ∈ O(L)∗.

We will now prove that C-lattices are homothetic to invertible fractional
ideals of their multiplier rings, which will be very useful later, since ideals
are easier then lattices to study.

Definition 1.46. Let R be an integral domain. We define the following
equivalence relation on R× (R \ {0}):

(m1, n1) ∼ (m2, n2)⇔ m1n2 = m2n1.

The field of fractions of R is the set

Frac(R) :=
{m
n
| m,n ∈ R, n 6= 0

}
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where m
n

denotes the equivalence class of the pair (m,n) ∈ R × (R \ {0})
under ∼.

Corollary 1.47. Let L be a lattice in C and O(L) its multiplier ring. If
O(L) 6= Z, then L = za for some z ∈ C∗ and a an invertible fractional
O(L)-ideal.

Proof. Consider a C-lattice L such that O(L) 6= Z. By Theorem 1.43 we
know that L = zΛτ for some z ∈ C∗ and some τ ∈ H root of an irreducible
polynomial ax2 + bx+ c ∈ Z[x]. Moreover O(L) = O(Λτ ) = Z[aτ ], as showed
in the proof of Theorem 1.43. Thus if we prove that Λτ is an invertible
fractional ideal of Z[aτ ] we are done. Of course Λτ is a fractional ideal of
Z[aτ ] because aΛτ = aτZ + aZ, which is an ideal of Z[aτ ]. Now to show
that Λτ is invertible, we have to find another fractional ideal b such that
Λτb = Z[aτ ]. Notice that, since aΛτ is an ideal of Z[aτ ], we have that
aΛτ = aΛτ̄ is an ideal of Z[aτ ] = Z[aτ ]. Keeping in mind that τ + τ̄ = −b/a
and τ τ̄ = c/a, we are able to conclude that Λτ is an invertible fractional
Z[aτ ]-ideal:

aΛτ̄Λτ = a(τ τ̄Z+ τZ+ τ̄Z+ Z) = a

(
τZ+

b

a
Z+

c

a
Z+ Z

)
= aτZ+ aZ+ bZ+ cZ = Z[aτ ],

since gcd(a, b, c) = 1.

Given an integral domain R, we will denote by I(R) the set of invertible
fractional R-ideals.

At this point we define a notion of index between C-lattices and we study
its properties.

Definition 1.48. Let L and L′ be two C-lattices such that L ∩ L′ is a C-
lattice. We define the index of L over L′ to be

[L : L′] =
[L : L ∩ L′]
[L′ : L ∩ L′]

.

Lemma 1.49. Given three C-lattices L,L′ and L′′ such that L∩L∩L′′′ is a
C-lattice, we have

[L : L′][L′ : L′′] = [L : L′′].

Proof. We have that L∩L′ is a Z-submodule of L and it is free because L is
a free Z-module. Therefore we just have to show that the rank of L∩L′ is 2.
Since L ∩ L′ ∩ L′′ is a C-lattice, it is a Z-submodule of L ∩ L′ of rank 2, so:

2 = rk(L ∩ L′ ∩ L′′) ≤ rk(L ∩ L′) ≤ rk(L) = 2.
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Therefore L ∩ L′ is a C-lattice and analogously we deduce that also L ∩ L′′
and L′ ∩ L′′ are C-lattices. Hence

[L : L′][L′ : L′′] =
[L : L ∩ L′]
[L′ : L ∩ L′]

· [L′ : L′ ∩ L′′]
[L′′ : L′ ∩ L′′]

=
[L : L ∩ L′ ∩ L′′]
[L′ : L ∩ L′ ∩ L′′]

· [L′ : L ∩ L′ ∩ L′′]
[L′′ : L ∩ L′ ∩ L′′]

=
[L : L ∩ L′′][L ∩ L′′ : L ∩ L′ ∩ L′′]
[L′′ : L ∩ L′′][L ∩ L′′ : L ∩ L′ ∩ L′′]

=
[L : L ∩ L′′]
[L′′ : L ∩ L′′]

= [L : L′′].

Definition 1.50. Let O(L) be the multiplier ring of some C-lattice L and
let a be an invertible fractional O(L)-ideal. We define the norm of a to be

N(a) := [O(L) : a].

Lemma 1.51. Let O = Z[u] be an order in an imaginary quadratic number
field. Consider 0 6= α ∈ O, so uα = au + b and α = cu + d for some
a, b, c, d ∈ Z. Then N(α) = αᾱ = ad− bc.

Proof. Consider O as a vector space over Z with basis {u, 1} and let λ be
the linear transformation

λ : O ! O
x 7! αx,

which is described by the matrix ( a cb d ). If α ∈ Z, then the matrix that
we obtain is simply ( α 0

0 α ), so ad − bc = α2 = N(α). If instead 0 6= α ∈
O \ Z, consider the characteristic polynomial of the matrix ( a cb d ), which is
x2 − (a + d)x + ad − bc. Since λ is the multiplication by α, we have that
α2 − (a+ d)α + ad− bc = 0, therefore ad− bc = N(α) = αᾱ.

Proposition 1.52. Let O be the multiplier ring of some C-lattice L and let
0 6= α be an element of the field of fractions of O. Then

αᾱ = [O : αO] = [L : αL].

Proof. Write O = Z[u] and for now let 0 6= α ∈ O, so α = au + b and
uα = cu + d for some a, b, c, d ∈ Z. Using the Elementary Divisor Theorem
we know

|O/αO| =
∣∣∣∣det

(
a c
b d

)∣∣∣∣ .
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By Lemma 1.51 we conclude that [O : αO] = N(α). Moreover by Lemma 1.49

[L : αL] = [L : O][O : αO][αO : αL] = [L : O][O : αO][O : L] = [O : αO].

Consider now an element α ∈ Frac(O)∗, hence α = α1

α2
for some α1, α2 ∈ O.

Notice that αO/α1O ∼= O/α2O and that O ∩ α1O ∩ αO = α1O so we can
apply Lemma 1.49. Therefore we obtain

[O : αO] = [O : α1O][α1O : αO] =
[O : α1O]

[O : α2O]

=
α1ᾱ1

α2ᾱ2

= αᾱ.

Finally since αL/α1L ∼= L/α2L and L ∩ α1L ∩ αL = α1L, we have

[O : αO] =
[O : α1O]

[O : α2O]
=

[L : α1L]

[L : α2L]

=
[L : α1L]

[αL : α1L]
= [L : α1L][α1L : αL]

= [L : αL].

1.6 Orders in imaginary quadratic fields
Since we have shown that the multiplier ring of some C-lattices is of the form
Z[D+

√
D

2
] where D is a negative integer, it is useful to introduce some notions

about imaginary quadratic orders.

Definition 1.53. An order in a quadratic field K is a subset O ⊂ K such
that

1. O is a subring of K;

2. O is a finitely generated Z-module;

3. O contains a Q-basis of K.

Notice that this means that O is a free Z-module of rank 2 in K and K is
the field of fractions of O. Recall that, given a quadratic field K = Q(

√
N)

with N 6= 0, 1 a squarefree integer, one of its invaraints is the discriminant
dK , defined as

dK =

{
N if N ≡ 1 (mod 4)

4N otherwise
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and the ring of integers OK of K is Z[dK+
√
dK

2
]. Therefore OK is an order of

K and in particular it is the maximal order of K. In fact all the elements of
an order are algebraic integers (we derive this from [8, Lemma 3.16.]).

Lemma 1.54. Let O be an order in a quadratic field K of discriminant dK.
We have that O has finite index in OK and if we set f := [OK : O], then

O = Z+ fOK .

Moreover let D := f 2dK; we get that

O = Z

[
D +

√
D

2

]
.

A proof of this lemma can be found in [2, Lemma 7.2.]

Definition 1.55. Given an order O in a quadratic field K of discrimi-
nant dK , the index f := [OK : O] is called the conductor of O and the
integer D := f 2dK is called its discriminant.

Proposition 1.56. If O is an order in an imaginary quadratic field K ⊂ C,
then either

• O = Z[i] and |O∗| = 4, or

• O = Z[ζ3] and |O∗| = 6, or

• O∗ = {1,−1}.

Proof. Of course |Z[i]∗| = 4 and |Z[ζ3]∗| = 6. Consider O an order in an
imaginary quadratic field K. Let ζm be a primitive m-th root of unity for
every m ∈ Z≥1. Suppose that ζm ∈ O∗ for some m ∈ Z≥3. Thus 2 = [K :
Q] ≥ [Q(ζm) : Q] = φ(m). As a consequence φ(m) ≤ 2, so m | 4 or m | 6.
Therefore if O 6= Z[i],Z[ζ3], we have that O∗ = {1,−1}.

Proposition 1.57. Let O be an order in an imaginary quadratic number
field and let D be the discriminant of O. For every element α ∈ O \ Z, we
have that N(α) ≥ |D|

4
.

Proof. Let α ∈ O \ Z. Consider Z[α] ⊆ O and let D be the discriminant
of O and D′ the discriminant of Z[α]. Of course we have |D| ≤ |D′|. The
discriminant D′ of Z[α] is the square of the discriminant of the minimal
polynomial of α over Q, so

|D| ≤ |D′| = |(α− ᾱ)2| ≤ |(2
√
αᾱ)2| = 4N(α).



Orders in imaginary quadratic fields 25

Lemma 1.58. Let O be an order in a number field, let b be an invertible
fractional ideal of O and let c be an ideal of O. Then

b/bc ∼= O/c

as O-modules.

Proof. Let b be an invertible fractional ideal of O, so there exists r ∈ O such
that rb ⊆ O. Since b/bc ∼= (rb)/(rbc), we assume without loss of generality
that b is an ideal of O. Our goal is to find an isomorphism of O-modules

O/c! b/bc,

so we just have to find the image of the element 1 + c ∈ O/c, which must
be an element x ∈ b such that xb−1 is coprime to c. In order to find such
an element x we first prove that for every non-zero prime ideal p of O there
exists an element xp ∈ b such that the O-ideal xpb−1 is coprime to p. First
of all notice that O is a number ring and has therefore Krull dimension 1.
This implies that prime ideals are also maximal ideals. Therefore an ideal is
coprime to a prime ideal p if and only if it is not contained in p. Suppose that
for every element x ∈ b, we have xb−1 ⊆ p. As a consequence O = bb−1 =
{x1y1 + · · · + xnyn : x1, . . . , xn ∈ b, y1, . . . , yn ∈ b−1, n ∈ N≥1} ⊆ p, which is
a contradiction. For every prime ideal p we have thus proved the existence
of an element xp ∈ b such that xpb−1 is coprime to p. Let p1, . . . , pn be all
the prime ideals containing c and define Ik :=

∏
i≤k pi for every k ≤ n. We

claim that for every k ≤ n there exists xk ∈ b such that for every i ≤ k we
have that xkb−1 is coprime to pi. We proceed by induction on k.

k=0: It is sufficient to choose an arbitrary x ∈ b.

k≥1: Since pk and Ik−1 are coprime ideals, there exist y1 ∈ pk and y2 ∈
Ik−1 such that y1 + y2 = 1. We define xk to be y1xk−1 + y2xpk ∈ b,
where the element xpk ∈ b is such that xpkb−1 is coprime to pk. We
now show that xkb−1 is coprime to pi for every i ≤ k. Notice that
xk − xpk = (xk − y2xpk) + (y2− 1)xpk = y1xk−1− y1xpk ∈ pkb, therefore
xkb

−1 + pk = xpkb
−1 + pk = O. On the other hand xk − xk−1 =

(xk − y1xk−1) + (y1− 1)xk−1 = y2xpk − y2xk−1 ∈ Ik−1b, so xkb−1 + pi =
xk−1b

−1 + pi = O for every i ≤ k.

Let x := xn ∈ b. We prove that xb−1 is coprime to c. Suppose by contradic-
tion that xb−1 is not coprime to c. This means that there exists a prime ideal
p dividing xb−1 + c, so xb−1 + c ⊆ p. As a consequence c ⊆ p and xb−1 ⊆ p,
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leading to a contradiction by the way we defined x. We are now ready to
define the isomorphism we were looking for:

φ : O/c! b/bc

r + c 7! xr + bc.

The multiplication by an element is a morphism of O-modules, so we just
have to show that φ is a bijection. For the injectivity, let y ∈ ker(φ). Then
xy ∈ bc, so (xb−1)y ⊆ c. Moreover 1 = qx + r for some q ∈ b−1 and r ∈ c.
Thus y = yqx + yr ∈ c because yqx ∈ (xb−1)y ⊆ c. For the surjectivity let
z ∈ b. Then z = qxz + rz ≡ x(qz) (mod bc), so z = φ(qz).

1.7 The modular curve Y0(N) and lattices
Theorem 1.59. Let N be a positive integer and define

LN := {[(L,L′)] : L ⊆ L′ are C-lattices, L′/L ∼= Z/NZ}/C∗ .

Then we have the following bijection

Y0(N)! LN

Γ0(N)τ 7!

[(
Λτ ,

1

N
ΛNτ

)]
,

where
[(

Λτ ,
1
N

ΛNτ

)]
denotes the equivalence class of the pair

(
Λτ ,

1
N

ΛNτ

)
under complex scalar multiplication.

Proof. First of all we prove that we have a well-defined map. Let τ1, τ2 ∈ H
such that Γ0(N)τ1 = Γ0(N)τ2, so there is γ = ( a bc d ) ∈ Γ0(N) such that
τ1 = γτ2. Consider γ′ :=

(
a bN
c/N d

)
∈ SL2(Z) and notice that γ′(Nτ2) = Nτ1.

Therefore by Lemma 1.39, (cτ2 + d)Λτ1 = Λτ2 and (cτ2 + d)ΛNτ1 = (c/N ·
Nτ2 + d)ΛNτ1 = ΛNτ2 . We now prove that the map is injective. Consider
Γ0(N)τ1,Γ0(N)τ2 ∈ Y0(N) such that [(Λτ1 ,

1
N

ΛNτ1)] = [(Λτ2 ,
1
N

ΛNτ2)]. This
means that there exists m ∈ C∗ such that m

N
ΛNτ1 = 1

N
ΛNτ2 and mΛτ1 = Λτ2 .

Thus mτ1 = aτ2 + b and m = cτ2 + d for some a, b, c, d ∈ Z such that
γ := ( a bc d ) ∈ SL2(Z). Moreover, since m

N
= cτ2+d

N
∈ τ2Z + 1

N
Z, we have

that N | c and γ ∈ Γ0(N). As a consequence Γ0(N)τ1 = Γ0(N)τ2, because
τ1 = γτ2. Finally, let [(L,L′)] ∈ LN , we show that there exists τ ∈ H
such that [(L,L′)] = [(Λτ , τZ + 1

N
Z)]. By the Elementary Divisor Theorem,

we know that there exists a Z-basis {v1, v2} of L′ such that {Nv1, v2} is a
Z-basis for L, therefore L′ = Nv1( v2

Nv1
Z + 1

N
Z), L = Nv1( v2

Nv1
Z + Z) and

τ = v2/Nv1.



The modular curve Y0(N) and lattices 27

In particular the special case N = 1 gives that Y (1) is in bijection with
the set

{C-lattices}/C∗ .





Chapter 2

The zeros of modular functions
obtained from modular
polynomials

Let M and N be two positive distinct integers. Recall the following maps:

πN : H! Y0(N)

τ 7! Γ0(N)τ

and
φN : Y0(N)! CN

Γ0(N)τ 7! (j(τ), j(Nτ)).

Let fM be the holomorphic function on the modular curve Y0(N) defined
as follows:

fM : Y0(N)! C
Γ0(N)τ 7! (ΦM ◦ φN)(Γ0(N)τ) = ((ΦM mod ΦN) ◦ φN)(Γ0(N)τ)

= ΦM(j(τ), j(Nτ)).

Our goal is to find the divisor of zeros of fM . Thus we want to compute

Div0(fM) =
∑

Γ0(N)τ∈Y0(N)

ordΓ0(N)τ (fM) · (Γ0(N)τ).

In this chapter we will prove the following theorem:

Theorem 2.1. Let M and N be two positive coprime integers not both
squares and let

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ)).

29
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polynomials

We have that

Div0(fM) =
∑

O⊂C imaginary
quadratic order

∑
[a]∈Pic(O)

∑
{α∈O : O/αO∼=Z/MNZ}/O∗

([(
a, a +

α

N
a
)])

.

By definition of divisor of zeros we get

Div0(fM) =
∑

Γ0(N)τ∈Y0(N)

ordΓ0(N)τ (fM) · (Γ0(N)τ).

Therefore we want to compute ordΓ0(N)τ0(fM) for every Γ0(N)τ0 ∈ Y0(N).
Recall that

ΦM(j(τ), Y ) =
∏

γ∈Γ0(M)\SL2(Z)

(Y − j(Mγτ)),

therefore
fM(πN(τ)) =

∏
γ∈Γ0(M)\SL2(Z)

(j(Nτ)− j(Mγτ)). (2.1)

The function fM ◦ πN is a holomorphic function on H, which is also
meromorphic at the cusps and Γ0(N)-invariant. Thus fM ◦ πN is a modular
function for Γ0(N).

Before proceeding we need the following result:

Proposition 2.2. Let φ : X ! Y be a non-constant morphism of Riemann
surfaces, let g ∈ C(Y ) be a meromorphic function on Y and P ∈ X. Then

ordP (g ◦ φ) = eφ(P )ordφ(P )(g).

We deduce that for every τ0 ∈ H, we have

ordτ0(fM ◦ πN) = eπN (τ0)ordπN (τ0)(fM)

by Proposition 2.2. Our aim is to determine

ordπN (τ0)(fM) =
ordτ0(fM ◦ πN)

eπN (τ0)
(2.2)

for every τ0 ∈ H.
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2.1 The ramification index eπN (τ0)

Our goal in this section is to compute the ramification index eπN (τ0) for every
τ0 ∈ H, which is needed to compute the order of the function fM at the point
Γ0(N)τ0.

Theorem 2.3. Let τ ∈ H. We have that

eπN (τ) =
|O(Λτ )

∗ ∩ O(ΛNτ )
∗|

2
. (2.3)

Proof. We already know that eπN (τ) = hτ = |Γ0(N)τ |
2

for all τ ∈ H. Thus we
want to prove that

χ : Γ0(N)τ ! O(Λτ )
∗ ∩ O(ΛNτ )

∗(
a b
c d

)
7! cτ + d

is a bijection. First of all we show that χ is well-defined. Let γ = ( a bc d ) ∈
Γ0(N)τ . Then cτ+d ∈ Λτ and (cτ+d)τ = aτ+b ∈ Λτ , hence cτ+d ∈ O(Λτ );
in the same way cτ + d ∈ ΛNτ because N | c and (cτ + d)Nτ = aNτ + bN ∈
ΛNτ . To prove that cτ +d is a unit, consider the characteristic polynomial of
the matrix γ, which is x2−(a+d)x+1. Noticing that cτ+d is the eigenvalue
of the eigenvector ( τ1 ) for the matrix γ, we deduce that

(cτ + d)2 − (a+ d)(cτ + d) + 1 = 0.

Consequently (cτ + d)(cτ − a) = −1. Furthermore it is easy to verify that
cτ − a ∈ O(Λτ ) ∩ O(ΛNτ ), so cτ + d is a unit in O(Λτ ) and in O(ΛNτ ). In
order to see that the above map is a bijection, we consider

ψ : O(Λτ )
∗ ∩ O(ΛNτ )

∗ ! Γ0(N)τ

cτ + d 7!

(
a b
c d

)
where a, b ∈ Z are such that (cτ +d)τ = aτ +b. Now we prove that ψ is well-
defined: let cτ + d ∈ O(Λτ )

∗ ∩ O(ΛNτ )
∗ and γ := ψ(cτ + d). Then cτ + d ∈

ΛNτ ⇒ N | c and aτ+b
cτ+d

= τ , hence we just have to show that γ ∈ SL2(Z).
Since cτ + d ∈ O(Λτ )

∗, the multiplication by cτ + d is an automorphism of
Λτ . Therefore τZ + Z = Λτ = (cτ + d)Λτ = (aτ + b)Z + (cτ + d)Z. This
implies that γ ∈ SL2(Z) thanks to Lemma 1.39. It is now sufficient to show
that the compositions of the two maps χ◦ψ and ψ ◦χ give the identity map,
which is simply straightforward computation.
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Taking N = 1, we obtain the following special case:

Corollary 2.4. Let τ ∈ H and let π : H! Y (1) be the quotient map. Then

eπ(τ) =
|O(Λτ )

∗|
2

.

2.2 The order ordτ0(fM ◦ πN)

By (2.1) we have that for every τ0 ∈ H

ordτ0(fM ◦ πN) =
∑

γ∈Γ0(M)\SL2(Z)

ordτ0(j(Nτ)− j(Mγτ)), (2.4)

thus we now try to find ordτ0(j(Nτ)− j(Mγτ)) with γ ∈ SL2(Z).
Before proceeding we need the following:

Lemma 2.5. Let U be an open connected subset of C, z0 ∈ U and g : U ! C
a holomorphic non-constant map. Then

ordz0(g(z)− g(z0)) = max{k ∈ N>0 : g′(z0) = g′′(z0) = · · · = g(k−1)(z0) = 0}.

Proof. The proof is obvious recalling the definition of the order and that
holomorphic functions are analytic.

From this lemma we deduce:

Proposition 2.6. Let U, V be two open connected subsets of C and let
z0 ∈ U . Consider two holomorphic non-constant maps g : U ! V and
h : V ! C. Let r ≤ ordg(z0)(h) be a positive integer. We have that(

d

dz

)r
(h ◦ g)(z0) = h(r)(g(z0)) · (g′(z0))r.

Proof. We proceed by induction on r.

r = 0: The formula is obviously true.

r = 1: We have
(
d
dz

)
(h ◦ g)(z0) = h′(g(z0))g′(z0).

r > 1: If 1 < r ≤ ordg(z0)(h), then h(g(z0)) = 0. Hence

r ≤ ordg(z0)(h(w)− h(g(z0)))

= max{k ∈ N>0 : h′(g(z0)) = h′′(g(z0)) = · · · = h(k−1)(g(z0)) = 0}
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by Lemma 2.5. In particular h′(g(z0)) = 0 because r > 1, hence
ordg(z0)(h

′) = ordg(z0)(h
′(w) − h′(g(z0))) = ordg(z0)(h) − 1. Using the

fact that (h′)(k)(g(z0)) = 0 for every k < r − 1, we have(
d

dz

)r
(h ◦ g)(z0) =

(
d

dz

)r−1

((h′ ◦ g) · g′) (z0)

=
r−1∑
k=0

(
r − 1

k

)[(
d

dz

)k
(h′ ◦ g)

]
·

[(
d

dz

)r−1−k

(g′)

]
(z0)

=

(
d

dz

)r−1

(h′ ◦ g)(z0)g′(z0).

Finally by the inductive hypothesis,(
d

dz

)r
(h ◦ g)(z0) =

(
d

dz

)r−1

(h′ ◦ g)(z0)g′(z0)

= (h′)(r−1)(g(z0)) · (g′(z0))r−1g′(z0)

= h(r)(g(z0)) · (g′(z0))r.

Given two positive coprime integers M and N that are not both squares
and given τ0 ∈ H such that j(Nτ0) = j(Mγτ0) for some γ ∈ SL2(Z), we want
to compute the order ordτ0(j(Nτ)− j(Mγτ)). But first we need to study the
order ordτ0(j(τ)− j(τ0)).

Let us define the map

j̃ : Y (1)! C
SL2(Z)τ 7! j(τ),

which is well-defined because j is SL2(Z)-invariant and it is an isomorphism
of Riemann surfaces.

Lemma 2.7. Let τ0 ∈ H. We have

ordτ0(j(τ)− j(τ0)) =
|O(Λτ0)∗|

2
.

Proof. Notice that j = j̃ ◦π. Let τ0 ∈ H and let η be a coordinate chart on a
neighbourhood of j(τ0). Since j̃ is an isomorphism, we have that ordπ(τ0)(η ◦
j̃) = 1. Recalling Proposition 2.2 we compute

ej(τ0) = ej̃◦π(τ0) = ordτ0(η ◦ j̃ ◦ π) = eπ(τ0)ordπ(τ0)(η ◦ j̃) = eπ(τ0).
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We therefore conclude that

ordτ0(j(τ)− j(τ0)) = ej(τ0) = eπ(τ0) =
|O(Λτ0)∗|

2
.

From now on we will call j̃ just j for simplicity.

Lemma 2.8. LetM and N be two positive coprime integers not both squares.
Let τ0 ∈ H such that j(Nτ0) = j(Mγτ0) for some γ ∈ SL2(Z). Then

ordτ0(j(Nτ)− j(Mγτ)) =
|O(ΛNτ0)∗|

2
.

Proof. Let τ0 ∈ H and consider γ ∈ SL2(Z) such that j(Nτ0) = j(Mγτ0);
this happens if and only if there exists A ∈ SL2(Z) such that Nτ0 = AMγτ0.
Fix such an A and we now indicate with B the matrix A (M 0

0 1 ) γ = ( a bc d ) with
determinant M . Define two maps g1, g2 : H! C, g1(τ) := Nτ and g2(τ) :=
Bτ = aτ+b

cτ+d
. Notice that g1(τ0) = g2(τ0). Moreover j(Nτ) = (j ◦ g1)(τ) and

j(Mγτ) = (j ◦ g2)(τ). Using Lemma 2.5, we know

ordτ0(j(Nτ)− j(Mγτ)) =

= max{k ∈ N>0 : (j ◦ g1)(i)(τ0)− (j ◦ g2)(i)(τ0) = 0 for i = 1, . . . , k − 1}
= max{k ∈ N>0 : (j ◦ g1)(i)(τ0) = (j ◦ g2)(i)(τ0) for i = 1, . . . , k − 1}.

(2.5)

Let r :=
|O(ΛNτ0 )∗|

2
= ordg1(τ0)(j(τ) − j(g1(τ0))) = ordg2(τ0)(j(τ) − j(g2(τ0)))

by Lemma 2.7. From Lemma 2.5 we have that j(k)(g1(τ0)) = j(k)(g2(τ0)) = 0
for every k < r. Then (j ◦ g1)(k)(τ0) = 0 = (j ◦ g2)(k)(τ0) for every k < r.
Now our goal is to show that (j ◦ g1)(r)(τ0) 6= (j ◦ g2)(r)(τ0), implying that
ordτ0(j(Nτ)− j(Mγτ)) =

|O(ΛNτ0 )∗|
2

. By Proposition 2.6,(
d

dz

)r
(j ◦ g1)(τ0) = j(r)(g1(τ0)) · (g′1(τ0))r = j(r)(g1(τ0))N r

and(
d

dz

)r
(j ◦ g2)(τ0) = j(r)(g2(τ0)) · (g′2(τ0))r = j(r)(g2(τ0))

(
M

(cτ0 + d)2

)r
.

Thus we have(
d

dz

)r
(j ◦ g1)(τ0) =

(
d

dz

)r
(j ◦ g2)(τ0)⇔ (cτ0 + d)2r = (M/N)r,
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or equivalently there exists a primitive s-th root of unity ζs such that

(cτ0 + d)2 = ζs
M

N

for some s | r. Remember that r = ordNτ0(j(τ)− j(Nτ0)) =
|O(ΛNτ0 )∗|

2
thanks

to Lemma 2.7. Hence by Proposition 1.56 we just have three possibilities for
r and consequently for s: 1, 2 or 3. Define K to be the field of fractions of
O(ΛNτ0) and let us consider separately all the three cases.

s = 1 : Suppose that (cτ0 +d)2 = M/N ∈ R, so c = 0; consequently d2N = M ,
hence N = 1 because gcd(N,M) = 1. On the other hand, N is a square
thus M = d2 leads to a contradiction since we assumed M and N to
be not both squares.

s = 2 : Consider now the case in which (cτ0 + d)2 = −M/N , so cτ0 + d =
±i
√
M/N . Of course cτ0 + d ∈ K and i ∈ K because i ∈ O(ΛNτ0)∗,

thus ±
√
M/N = cτ0+d

i
∈ K ∩ R = Q (remember that the multiplier

ring of a lattice L is either Z or an order in some imaginary quadratic
field Q(α) and that O(L) has field of fractions exactly Q or Q(α)).
This results in a contradiction because we assumed M and N to be
coprime and not both squares.

s = 3 : Suppose that (cτ0 + d)2 = ζ3
M
N
⇒ ζ3(cτ0 + d) = ±

√
M/N . As before,

±
√
M/N ∈ K ∩ R = Q, which gives a contradiction again.

This allows us to conclude that the two derivatives are different, therefore

ordτ0(j(Nτ)− j(Mγτ)) =
|O(ΛNτ0)∗|

2
.

Finally we deduce a formula for the order ordτ0(fM ◦ πN), as wanted.

Theorem 2.9. Let M and N be two positive coprime integers not both
squares. Let τ0 ∈ H and let fM be the map on the modular curve Y0(N)
defined as follows:

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ)).

Then

ordτ0(fM ◦ πN) =
|O(ΛNτ0)∗|

2
·#{γ ∈ Γ0(M)\SL2(Z) : j(Nτ0) = j(Mγτ0)}.

(2.6)
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Proof. Thanks to Lemma 2.8 we are now able to compute

ordτ0(fM ◦ πN)
(2.4)
=

∑
γ∈Γ0(M)\SL2(Z)

ordτ0(j(Nτ)− j(Mγτ))

=
∑

γ∈Γ0(M)\SL2(Z)
s.t j(Nτ0)=j(Mγτ0)

|O(ΛNτ0)∗|
2

=
|O(ΛNτ0)∗|

2
·#{γ ∈ Γ0(M)\SL2(Z) : j(Nτ0) = j(Mγτ0)}.

2.3 The order ordπN (τ0)(fM)

In order to find a formula for the divisor of zeros of the function

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ))

where M and N are two positive coprime integers not both squares, we need
to compute the order of the function at a arbitrary point Γ0(N)τ0 ∈ Y0(N).

Using

ordπN (τ0)(fM)
(2.2)
=

ordτ0(fM ◦ πN)

eπN (τ0)
,

ordτ0(fM ◦ πN)
(2.6)
=
|O(ΛNτ0)∗|

2
·|{γ∈Γ0(M)\SL2(Z):j(Nτ0)=j(Mγτ0)}|,

and

eπN (τ0)
(2.3)
=
|O(Λτ0)∗ ∩ O(ΛNτ0)∗|

2
,

we know that

ordπN (τ0)(f)=
|O(ΛNτ0)∗|

|O(Λτ0)∗∩O(ΛNτ0)∗|
· |{γ∈Γ0(M)\SL2(Z) : j(Nτ0)=j(Mγτ0)}|.

(2.7)
For this reason we now try to understand better for which τ ∈ H there

exists γ ∈ SL2(Z) such that j(Nτ) = j(Mγτ). Recall the map

φN : Y0(N)! C2

Γ0(N)τ 7! (j(τ), j(Nτ)).
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Before continuing with the computation of ordπN (τ0)(f), it is useful to
translate our study in terms of lattices. Consider the map

ψN : Y0(N)! Y (1)× Y (1)

Γ0(N)τ 7! (SL2(Z)τ, SL2(Z)Nτ)

and notice that φN = (j, j) ◦ψN . We can also describe the map ψN in terms
of lattices thanks to Theorem 1.59:

ψN : LN ! L1 × L1

[(L,L′)] 7! ([L], [L′])

and observe that for all τ ∈ H

φN(Γ0(N)τ) = (j(τ), j(Nτ)) =

(
j(Λτ ), j

(
τZ+

1

N
Z
))

= ((j, j) ◦ ψN)

([(
Λτ , τZ+

1

N
Z
)])

.

We then define the corresponding map φN on LN :

φN : LN ! C2

[(L,L′)] 7! (j(L), j(L′)).

Consider now [(L,LN)] ∈ LN and [(L′, L′M)] ∈ LM with N and M two
positive distinct integers. Then

φN([(L,LN)] = φM([(L′, L′M)])⇔ j(L) = j(L′) and j(LN) = j(L′M)

⇔ ψN([(L,LN)]) = ψM([(L′, L′M)]).

This means that φN([(L,LN)] = φM([(L′, L′M)]) if and only if the lattice L is
homothetic to L′ and LN is homothetic to L′M .

We are now going to prove that the zeros of the function fM are complex
multiplication points.

Lemma 2.10. Let M and N be two positive different integers, let τ be a
point of H and let γ ∈ SL2(Z). Then

j(Nτ) = j(Mγτ)⇔ φN(Γ0(N)τ) = φM(Γ0(M)γτ).

Proof. Let γ ∈ SL2(Z). Recalling the definition of the maps φN and φM , we
have that φN(Γ0(N)τ) = (j(τ), j(Nτ)) and φM(Γ0(M)γτ) = (j(γτ), j(Mγτ)).
Thus φN(Γ0(N)τ) = φM(Γ0(M)γτ) if and only if j(Nτ) = j(Mγτ).
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If fM(Γ0(N)τ) = 0, then there exists γ ∈ SL2(Z) such that j(Nτ) =
j(Mγτ), which means that Nτ = AMγτ for some A ∈ SL2(Z). As a conse-
quence the lattice Λτ is homothetic to the lattice Λγτ and ΛNτ is homothetic
to the lattice ΛMγτ by Lemma 1.39. Hence we have the following isogenies
between C-lattices:

Λτ
×N
! ΛNτ

∼=
! ΛMγτ ↪! Λγτ

∼=
! Λτ .

If we call α the composition of these isogenies, we have that αΛτ ⊆ Λτ .
Therefore α ∈ O(Λτ ). We have thus found a special element of the multi-
plier ring of the lattice Λτ which is likely not an integer. We now prove it
rigorously.

Proposition 2.11. Let M and N be two positive distinct integers. Con-
sider [(L,LN)] ∈ LN such that [(L,LN)] ∈ φ−1

N (φM(LM)). Then O(L) 6=
Z 6= O(LN).

Proof. Suppose that [(L,LN)] ∈ φ−1
N (φM(LM)); consequently there exists

[(L′, L′M)] ∈ LM such that φN([(L,LN)]) = φM([(L′, L′M)]). Therefore there
exist z, z′ ∈ C∗ such that L′ = zL and L′M = z′LN . Notice that [(L′, L′M)] =
[(zL′, zL′M)] = [(L, zL′M)], so we assume without loss of generality that z = 1
and we get that φN([(L,LN)]) = φM([(L,LM)]) for some [(L,LM)] ∈ LM
such that there exists β ∈ C∗ with βLN = LM . Consider α := Mβ and
we see that α ∈ O(L): αL = MβL ⊆ MβLN = MLM ⊆ L. Moreover
αLN = MβLN = MLM ⊆ L ⊆ LN , thus α ∈ O(LN) and β = α

M
is an

element of the field of fractions of O(LN). We therefore use Proposition 1.52
and compute

αᾱ = M2ββ̄ = M2[LN : βLN ] = M2[LN : LM ]

= M2 [LN : LM ∩ LN ]

[LM : LM ∩ LN ]
= M2 [LN : LM ∩ LN ]

[LM : LM ∩ LN ]

[LN ∩ LM : L]

[LN ∩ LM : L]

= M2 [LN : L]

[LM : L]
= M2 N

M
= MN.

(2.8)

Suppose now that α ∈ Z. Hence L/αL ∼= (Z/αZ)2 and αᾱ = α2 = MN , so
α = ±

√
MN ∈ Z. Consider now

αL ⊆ αLN = MLM ⊆ L;

this shows that αLN/αL ⊆ L/αL. Therefore

Z/NZ ∼= αLN/αL ⊆ L/αL ∼= (Z/αZ)2 .
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From this we deduce that there is an element of order N in the group
(Z/αZ)2; but all the elements of this group have order dividing α, thus
N | α. In the same way we notice that

αL = ᾱL ⊆ ᾱLM = α−1MNLM = β−1NLM = NLN ⊆ L.

Consequently

Z/MZ ∼= αLM/αL ⊆ L/αL ∼= (Z/αZ)2 .

As before we conclude that M divides α. On the other hand, MN = α2,
so M = N = α, which contradicts the hypothesis that M and N are dif-
ferent. We have therefore found an element α such that α ∈ O(L) \ Z and
α ∈ O(LN) \ Z, which concludes the proof.

Theorem 2.12. LetM and N be two positive different integers and let τ ∈ H
such that fM(Γ0(N)τ) = 0. Then τ is a complex multiplication point.

Proof. The fact that fM(Γ0(N)τ) = 0 implies that j(Nτ) = j(Mγτ) for some
γ ∈ SL2(Z), which means that Γ0(N)τ ∈ φ−1

N (φM(Y0(M))) by Lemma 2.10.
Using the correspondence between Y0(N) and LN given in Theorem 1.59, we
have that [(Λτ , τZ+ 1

N
Z)] ∈ φ−1

N (φM(LM)). By Proposition 2.11 we know that
O(Λτ ) 6= Z and as a consequence τ is a complex multiplication point.

Recall that

ordπN (τ0)(fM)
(2.7)
=

|O(ΛNτ0)∗|
|O(Λτ0)∗∩O(ΛNτ0)∗|

·|{γ∈Γ0(M)\SL2(Z):j(Nτ0)=j(Mγτ0)}|.

Now we show that if fM(πN(τ)) = 0, then O(Λτ ) = O(ΛNτ ).

Lemma 2.13. Let M and N be two positive coprime integers and consider
[(L,LN)] ∈ φ−1

N (φM(LM)). Then O(L) = O(LN).

Proof. By Proposition 2.11 we deduce that O(L) 6= Z 6= O(LN). Let
[(L′, L′M)] ∈ LM such that φN([(L,LN)]) = φM([(L′, L′M)]) and as in the
proof of Proposition 2.11 we have that [(L′, L′M)] = [(L,LM)]. The lattices
LN and LM are homothetic, therefore they have the same multiplier ring.
We want to show that O(L) = O(LN).

(⊆) Observe that

MO(L) = {Mα ∈ C : αL ⊆ L} = {α ∈ C : α
1

M
L ⊆ L}

⊆ {α ∈ C : αLM ⊆ LM} = O(LM) = O(LN).

Analogously NO(L) ⊆ O(LN). Since M and N are coprime, we have
that NZ+MZ = Z, hence

O(L) = MO(L) +NO(L) ⊆ O(LN).
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(⊇) Notice that

MO(LN) = MO(LM) = {α ∈ C : αLM ⊆MLM}
⊆ {α ∈ C : αL ⊆ L} ⊆ O(L).

Similarly NO(LN) ⊆ O(L). Therefore

O(LN) = MO(LN) +NO(LN) ⊆ O(L).

Lemma 2.14. Let M and N be two positive coprime integers and let τ0 ∈ H
such that fM(Γ0(N)τ0) = 0. Then

eπN (τ0) =
|O(ΛNτ0)∗|

2
. (2.9)

Proof. Let τ0 ∈ H such that fM(Γ0(N)τ0) = 0. Then there exists γ ∈ SL2(Z)
such that j(Nτ0) = j(Mγτ0), so [(Λτ0 ,

1
N

ΛNτ0)] ∈ φ−1
N (φM(LM)) by Lemma

2.10. Thus from Lemma 2.13 we deduce that O(Λτ0) = O(ΛNτ0). As a
consequence eπN (τ0) =

|O(ΛNτ0 )∗|
2

by Theorem 2.3.

Recall that the function

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ)).

Theorem 2.15. LetM and N two positive coprime integers not both squares.
Let τ0 ∈ H. Then

ordπN (τ0)(fM) = #{γ ∈ Γ0(M)\SL2(Z) : j(Nτ0) = j(Mγτ0)}.

Proof. Recall that

ordπN (τ0)(fM)
(2.2)
=

ordτ0(fM ◦ πN)

eπN (τ0)
,

ordτ0(fM ◦ πN)
(2.6)
=
|O(ΛNτ0)∗|

2
·#{γ ∈ Γ0(M)\SL2(Z) : j(Nτ0) = j(Mγτ0)}

and

eπN (τ0)
(2.9)
=
|O(ΛNτ0)∗|

2
.

We are thus able to conclude that

ordπN (τ0)(fM) = #{γ ∈ Γ0(M)\SL2(Z) : j(Nτ0) = j(Mγτ0)}.
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From Theorem 2.15 we obtain

Div0(fM) =
∑

Γ0(N)τ∈Y0(N)

∑
γ∈Γ0(M)\SL2(Z)
s.t. j(Nτ)=j(Mγτ)

(Γ0(N)τ). (2.10)

Therefore for every τ ∈ H we want to give a better description of the set

Gτ := {γ ∈ Γ0(M)\SL2(Z) : j(Nτ) = j(Mγτ)}.

Theorem 2.16. Let M and N be two positive coprime integers and τ ∈ H.
Recall the definition of the maps φN and φM :

φN : Y0(N)! C
Γ0(N)τ 7! (j(τ), j(Nτ))

φM : Y0(M)! C
Γ0(M)τ 7! (j(τ), j(Mτ)).

Let Hτ be the set

Hτ := {Γ0(M)τ ′ ∈ Y0(M) : φN(Γ0(N)τ) = φM(Γ0(M)τ ′)}.

Then there is a bijection

B : Gτ ! Hτ

Γ0(M)γ 7! Γ0(M)γτ.

Proof. First of all B is well-defined as a map Γ0(M)\SL2(Z) ! Y0(M).
Second the image of Gτ under this map is exactly Hτ by Lemma 2.10, thus
B is surjective. To prove injectivity we claim that for all γ ∈ SL2(Z) such
that Γ0(M)γ ∈ Gτ , we have

Γ0(M)γτ = SL2(Z)γτ .

Assuming the claim for now, we get that if Γ0(M)γτ = Γ0(M)γ′τ for some
Γ0(M)γ,Γ0(M)γ′ ∈ Gτ , then there is an element δ ∈ Γ0(M) such that
δγτ = γ′τ . Hence γγ′−1δ ∈ SL2(Z)γτ ⊆ Γ0(M). As a consequence γγ′−1 ∈
Γ0(M), so Γ0(M)γ = Γ0(M)γ′. It now suffices to prove the claim. Of course
Γ0(M)γτ ⊆ SL2(Z)γτ for every γ ∈ SL2(Z), thus we just need to show that
these two groups have the same order if Γ0(M)γ ∈ Gτ . In the proof of
Theorem 2.3 we have shown that for every τ ∈ H and N ∈ Z≥1 we have
|Γ0(N)τ | = |O(Λτ )

∗ ∩ O(Λ∗Nτ |. Recall that j(Nτ) = j(Mγτ) and thus the
two lattices ΛNτ and ΛMγτ are homothetic. In particular they have the same
multiplier ring. Moreover we have that [(Λτ ,

1
N

ΛNτ )] ∈ φ−1
N (φM(LM)), so we

can apply Lemma 2.13 to conclude that

O(Λγτ ) = O(Λτ ) = O(ΛNτ ) = O(ΛMγτ ).
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We thus have that O(Λγτ )
∗ ∩ O(ΛMγτ )

∗ = O(Λγτ )
∗ and that

|Γ0(M)γτ | = |O(Λγτ )
∗ ∩ O(ΛMγτ )

∗| = |O(Λγτ )
∗| = |SL2(Z)γτ |.

Thus we have proved the claim and the proof is concluded.

For every pair of positive integers M and N we define the set

ZN,M := {(x, y) ∈ Y0(N)× Y0(M) : φN(x) = φM(y)}.

From Theorem 2.16 we obtain

Div0(fM) =
∑

Γ0(N)τ∈Y0(N)

∑
γ∈Γ0(M)\SL2(Z) s.t.

j(Nτ)=j(Mγτ)

(Γ0(N)τ)

=
∑

Γ0(N)τ∈Y0(N)

∑
Γ0(M)τ ′∈Y0(M) s.t.

φN (Γ0(N)τ)=φM (Γ0(M)τ ′)

(Γ0(N)τ)

=
∑

(x,y)∈ZN,M

(x).

(2.11)

Hence to be able to understand the order of the zeros of fM better, we
now focus on the study of the set ZN,M .

2.4 The zeros of fM
Let M and N be two positive coprime integers not both squares. Keeping
in mind Theorem 1.59, which describes the bijection between the modular
curve Y0(N) and the set LN , we have:

ZN,M↔ {([(L,LN)], [(L′, L′M)])∈LN×LM : φN([(L,LN)]) = φM([(L′, L′M)])}
= {([(L,LN)], [(L′, L′M)])∈LN×LM :∃z, z′ ∈C∗ s.t. L= zL′, LN = z′L′M}

and noticing as before that [(L′, L′M)] = [(zL′, zL′M)] = [(L, zL′M)], we get

ZN,M ↔ {([(L,LN)], [(L,LM)]) ∈ LN × LM : ∃β ∈ C∗ s.t. βLN = LM}.
(2.12)

For simplicity we call U the set in (2.12).

Before continuing it is useful to translate the study our C-lattices in terms
of invertible fractional ideals, which are easier to work with.

Lemma 2.17. Let [(L,LN)] ∈ LN such that O(L) = O(LN) 6= Z and let K
be the field of fractions of O(L). Then [(L,LN)] = [(a, bN)] ∈ LN where a
and bN are invertible fractional O(L)-ideals.
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Proof. We have shown in the proof of Theorem 1.59 that for some τ ∈ H
we have [(L,LN)] = [(Λτ ,

1
N

ΛNτ )] = [(NΛτ ,ΛNτ )]. We have moreover seen
in the proof of Theorem 1.43 that Λτ is an invertible fractional O(Λτ )-ideal.
Since Λτ is homothetic to L and ΛNτ is homothetic to LN , they have the
same multiplier rings. As Λτ is an invertible fractional O(L)-ideal, also NΛτ

is, so the proof is concluded.

Recall that, given an integral domain R, we denote by I(R) the set of
invertible fractional R-ideals. For every imaginary quadratic order O, let us
define the set

JN(O) := {(a, b) ∈ I(O)× I(O) : a ⊆ b and b/a ∼= Z/NZ}/∼

where (a, b) ∼ (a′, b′) if there exists x ∈ Frac(O)∗ such that (a, b) = x(a′, b′).
We denote by [(a, b)]∼ the equivalence class of the pair (a, b).

Lemma 2.18. The set U in (2.12) is in bijection with the set⋃
O⊂C imaginary
quadratic order

{([(a,bN)]∼,[(a,bM)]∼)∈JN(O)× JM(O):∃β ∈Frac(O)∗ s.t. βbN = bM},

(2.13)
that we call V . More specifically, the bijection is

R : U −! V

([(L,LN)], [(L,LM)]) 7! ([(zL, zLN)]∼, [(zL, zLM)]∼),

where z ∈ C∗ is such that zL, zLN ∈ I(O(L)).

Proof. Our goal is to prove that

R : U −! V

([(L,LN)], [(L,LM)]) 7! ([(zL, zLN)]∼, [(zL, zLM)]∼)

is a bijection, where z ∈ C∗ is such that zL, zLN ∈ I(O(L)). We prove
that R is well-defined. We prove that [(zL, zLM)]∼ ∈ JM(O). By Lemma
2.17 we have that there exists z′inC∗ such that [(z′L, z′LM)]∼ ∈ JM(O).
Thus both zL and z′L are invertible fractional O-ideals and zL = z

z′
(z′L), so

z
z′
∈ Frac(O)∗. As a consequence [(z′L, z′LM)]∼ = [(zL, zLM)]∼ ∈ JM(O).

Let now ([(L,LN)], [(L,LM)]) ∈ U and z ∈ C∗ such that zLN ∈ I(O(L)). If
z′ ∈ C∗, then z

z′
z′LN ∈ I(O(L)), thus we get R([(z′L, z′LN)], [(z′L, z′LM)]) =

([(zL, zLN)]∼, [(zL, zLM)]∼). Moreover let z, z′ ∈ C∗ such that zLN , z′LN ∈
I(O(L)). We get that z′LN = z′

z
zLN , hence z′

z
∈ Frac(O(L))∗. Therefore
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we have ([(zL, zLN)]∼, [(zL, zLM)]∼) = ([(z′L, z′LN)]∼, [(z
′L, z′LM)]∼). Ob-

viously β ∈ Frac(O)∗, since bN , bM ∈ I(O). In order to prove that the map
R is a bijection we consider its inverse

S : V ! U

([(a, bN)]∼, [(a, bM)]∼) 7! ([(a, bN)], [(a, bM)]).

It is straightforward that S is well-defined and that the compositions with
the map R give the identity.

Now instead of pairs (a, b) ∈ I(O)×I(O) with O an imaginary quadratic
order and b related to a, we look at pairs (a, c), where a ∈ I(O) and c is
an ideal of O independent of a, which helps for getting a nice formula. The
relation between the two types of pairs is c := b−1a. In particular we have:

Theorem 2.19. The set V as in (2.13) is in bijection with the set

W :=
⋃

O⊂C imaginary
quadratic order

Pic(O)×
{

(cN , cM) :
O/cN ∼= Z/NZ,O/cM ∼= Z/MZ
and ∃β ∈ K∗ s.t. βcM = cN

}
.

(2.14)
In particular the bijection is

T : V ! W

([(a, bN)]∼, [(a, bM)]∼) 7! ([a], (b−1
N a, b−1

M a)).

Proof. We show that T is a bijection. First of all we prove that T is well-
defined. Therefore let ([(a, bN)]∼, [(a, bM)]∼) ∈ V with a, bN , bM ∈ I(O)
and let z ∈ Frac(O)∗ for some imaginary quadratic order O. Then [za] = [a],
(zbN)−1za = b−1

N a and (zbM)−1za = b−1
M a. Let cN := b−1

N a and cM := b−1
M a.

Notice that cN , cM ⊆ O, since a ⊆ bM , bN ; in addition βcM = β(b−1
M a) =

b−1
N a = cN . Using Lemma 1.58, we obtain

O/cN = O/b−1
N a ∼= bN/a ∼= Z/NZ

and
O/cM = O/b−1

M a ∼= bM/a ∼= Z/MZ.

Therefore T is well-defined. In order to prove that T is a bijection it is
sufficient to see that the compositions with its inverse

T ′ : W ! U

([a], (cN , cM)) 7! ([(a, c−1
N a)]∼, [(a, c

−1
M a)]∼)
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are the identity. We first need to show that T ′ is well-defined. Hence let
([a], (cN , cM)) ∈ W with a ∈ I(O) for some imaginary quadratic order O.
Since M and N are coprime, O = MO + NO ⊆ cM + cN ⊆ O. Therefore
O = (β−1, 1)cN = (β, 1)cM . As a consequence, cN and cM are invertible
ideals of O. Of course we have that a ⊆ c−1

N a ∩ c−1
M a and βc−1

N a = c−1
M a. By

Lemma 1.58 we have again

c−1
N a/a ∼= O/cN ∼= Z/NZ

and
c−1
M a/a ∼= O/cM ∼= Z/MZ.

It is clear that T ◦ T ′ is the identity of W and that T ′ ◦ T is the identity of
V .

We prove that, given an imaginary quadratic order O, the pairs of O-
ideals (cN , cM) such that O/cN ∼= Z/NZ,O/cM ∼= Z/MZ and there exists
β ∈ Frac(O)∗ such that βcM = cN are determined by some elements α ∈ O
such that O/αO ∼= Z/MNZ. This allows us to have an explicit description
of these ideals. More precisely we have:

Theorem 2.20. Let O ⊂ C be an order in an imaginary quadratic number
field K. We have the following bijection

{α∈O:O/αO ∼= Z/MNZ}/O∗↔
{
(cN , cM):

O/cN ∼= Z/NZ,O/cM ∼= Z/MZ
and ∃β ∈ K∗ s.t. βcM = cN

}
α 7−−−−−−! ((α,N), (ᾱ,M))

Mβ  −−−−−−[ (cN , cM).

Proof. Suppose that α ∈ O is such that O/αO ∼= Z/MNZ. Define cM :=
(ᾱ,M) and cN := (α,N). Of course we have O/cM ∼= Z/MZ and O/cN ∼=
Z/NZ because O/αO ∼= Z/MNZ. Finally define β to be α

M
. Then by

Proposition 1.52 we have

βcM =
α

M
(ᾱ,M) = (

αᾱ

M
, α) = (N,α) = cN .

Assume now that cM and cN are two O-ideals such that O/cM ∼= Z/MZ,
O/cN ∼= Z/NZ and there exists β ∈ K∗ such that βcM = cN . Let α :=
Mβ. Then N = N(cN) = N(βcM) = ββ̄N(cM) = ββ̄M . This implies that
αᾱ = M2ββ̄ = M2 N

M
= MN . Moreover αO = MβO ⊆ βcM = cN ⊆ O, so

α ∈ O. Now we prove that cM = (ᾱ,M) and cN = (α,N): we have seen that
αO ⊆ cN , thus (α,N) ⊆ cN . As a consequence |O/(α,N)| ≥ |O/cN | = N ;
on the other hand NO ⊆ (α,N), consequently cN = (α,N). Furthermore
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ᾱO = MN
α
O = N

β
O ⊆ β−1cN = cM . Hence (ᾱ,M) ⊆ cM and reasoning with

the indexes in the same way as before we find that (ᾱ,M) = cM . Finally
(α,M)(α,N) = (α2,Mα,Nα,MN) = αO. As O/(α,M) ∼= O/(ᾱ,M) and
(α,N) + (α,M) = O, we have by the Chinese Remainder Theorem that

O/αO ∼= O/(α,N)×O/(α,M) ∼= Z/NZ× Z/MZ ∼= Z/MNZ.

We have thus proved that we have two well-defined maps. It is now straight-
forward to see that the compositions of the two maps are the identity.

By Theorem 2.20, we finally have

ZN,M ↔
⋃

O imaginary
quadratic order

Pic(O)× {α ∈ O : O/αO ∼= Z/MNZ}/O∗ , (2.15)

where we have that

(Γ0(N)τ,Γ0(M)τ ′)↔ ([(Λτ ,
1

N
ΛNτ )], [(Λτ , LM)])

R
7! ([NΛτ ,ΛNτ )]∼, [(NΛτ , NLM)]∼)

T
7! ([Λτ ], (NΛ−1

NτΛτ , L
−1
M Λτ ))

↔ ([Λτ ], α
∗)

where α ∈ O(Λτ ) such that ΛNτ = Λτ (α,N)−1 and O(Λτ )/αO(Λτ ) ∼=
Z/MNZ and α∗ denotes the equivalence class of α under scalar multipli-
cation by the units of O(Λτ ).

Thanks to (2.11) and (2.15) we obtain that

Div0(fM) =
∑

O⊂C imaginary
quadratic order

∑
[a]∈Pic(O)

∑
{α∈O : O/αO∼=Z/MNZ}/O∗

([(
a, a(α,N)−1

)])
.

We have that (α,N)−1 is ( ᾱ
N
, 1):

(α,N)(ᾱ/N, 1) = (M, ᾱ, α,N) = O.

This proves the following theorem:

Theorem 2.1. Let M and N be two positive coprime integers not both
squares and let

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ)).

We have that

Div0(fM) =
∑

O⊂C imaginary
quadratic order

∑
[a]∈Pic(O)

∑
{α∈O : O/αO∼=Z/MNZ}/O∗

([(
a, a +

α

N
a
)])

.
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It is important to underline that all these summations are finite. First of
all the Picard group of an order in a number field is always a finite abelian
group (a reference for this result is [8, Theorem 5.4.]). Furthermore there
are finitely many elements α in an imaginary quadratic order O such that
O/αO ∼= Z/MNZ. In fact by Proposition 1.52 this means that N(α) = MN
and there are finitely many elements of O with norm MN . Finally there
are finitely many orders O containing elements α with the property that
O/αO ∼= Z/MNZ: let O be an imaginary quadratic order with an element
α such that O/αO ∼= Z/MNZ. Notice that α /∈ Z, otherwise α2 = MN and

O/αO ∼= (Z/αZ)2 � Z/α2Z.

Thus we conclude by Proposition 1.57 that the discriminant D of O is such
that |D| ≤ 4MN .

2.5 An example
In order to illustrate the formula we show an example. For simplicity of
notation we will denote the imaginary quadratic orders of discriminant D
by OD.

Let N = 1 and M = 2. We now compute the divisor of zeros of the
function

f2 : Y (1)! C
SL2(Z)τ 7! Φ2(j(τ), j(τ)).

By Theorem 2.1, we know that

Div0(f2) =
∑

O⊂C imaginary
quadratic order

∑
[a]∈Pic(O)

∑
{α∈O : O/αO∼=Z/2Z}/O∗

([(a, a + αa)])

=
∑

O⊂C imaginary
quadratic order

∑
[a]∈Pic(O)

∑
{α∈O : O/αO∼=Z/2Z}/O∗

([a]) .
(2.16)

We have seen that the elements α in an imaginary quadratic order O
satisfying O/αO ∼= Z/2Z are not rational integers and satisfy N(α) = 2 by
Proposition 1.52. Now let α be such an element. Then we deduce that α is
a root of a quadratic polynomial of the form

x2 + bx+ 2

with b ∈ Z such that the discriminant of the polynomial is negative. This
means that b2−8 < 0, so we have |b| ≤ 2. Thus we distinguish three different
cases:
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b=0 : The roots of the polynomial x2+2 in C are α1 =
√
−2 and α2 = −

√
−2.

The only imaginary quadratic order containing α1 and α2 is O−2, which
is a principal ideal domain. As a consequence Pic(O−2) = 0. Notice
moreover that α2 = −α1, so

#{α ∈ O−2 : O−2/αO−2
∼= Z/2Z}/O∗−2

= 1.

As a consequence [O−2] (or equivalently SL2(Z)
√
−2 ∈ Y (1)) is a zero

of the function f2 with order 1.

|b|=1: The zeros of the polynomials x2 ± x + 2 in C are α1 = 1+
√
−7

2
, α2 =

−1−
√
−7

2
, α3 = 1−

√
−7

2
and α4 = −1+

√
−7

2
. The unique imaginary quadratic

order containing α1, α2, α3 or α4 is O−7 and we have Pic(O−7) = 0.
Furthermore α2 = −α1 and α4 = −α3. Consequently

# {α ∈ O−7 : O−7/αO−7
∼= Z/2Z}/O∗−7

= 2.

This allows us to conclude that [O−7] (or equivalently SL2(Z)1+
√
−7

2
∈

Y (1)) is a zero of the function f2 of order 2.

|b|=2: Finally the zeros of the polynomials x2 ± 2x + 2 in C are α1 = 1 + i,
α2 = 1− i, α3 = −1− i and α4 = −1+ i. The only imaginary quadratic
order containing α1, α2, α3 or α4 is O−1. We have that Pic(O−1) = 0
and that α1 = iα2 = −α3 = −iα4. The units of the order O−1 are
{±1,±i}, so

#{α ∈ O−1 : O−1/αO−1
∼= Z/2Z}/O∗−1

= 1.

Hence [O−1] (or equivalently SL2(Z)i ∈ Y (1)) is a zero of the func-
tion f2 of order 1.

We conclude by (2.16) that

Div0(f2) = ([O−2]) + 2 ([O−7]) + ([O−1])

= (SL2(Z)
√
−2) + 2

(
SL2(Z)

1 +
√
−7

2

)
+ (SL2(Z)i).

In order to check the correctness of the formula we computed the factor-
iztion of the polynomial Φ2(X,X) thanks to [10]. In this way we find the
roots of the polynomial Φ2(X,X), which are exactly the points j(τ) ∈ C
such that f2(SL2(Z)τ) = 0.
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First of all we compute the modular polynomial Φ2(X, Y ) in [10] through
the function "polmodular":

Φ2(X, Y ) =X3 −X2Y 2 + 1488X2Y − 162000X2 + 1488XY 2

+ 40773375XY + 8748000000X + Y 3 − 162000Y 2

+ 8748000000Y − 157464000000000.

Hence we compute the factorization of the polynomial Φ2(X,X) and obtain

Φ2(X,X) = −(X − 8000)(X − 1728)(X + 3375)2.

Therefore the zeros of the function f2 are the points SL2(Z)τ ∈ Y (1) such
that j(τ) is a root of Φ2(X,X). We have that j(

√
−2) = 8000, j(i) = 1728

and j(1+
√
−7

2
) = −3375. Thus we showed that Theorem 2.1 gave us the right

divisor of zeros of the function f2 on the modular curve Y (1).





Chapter 3

The modular curve X0(N) and
combination of functions obtained
from modular polynomials

In this chapter we will show that the modular curveX(Γ) with Γ a congruence
subgroup is a compact Riemann surface. Moreover we will prove that every
non-constant finite product of powers of functions of the form

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ))

is not a modular unit and we will give a lower bound for the degree of this
kind of functions on the modular curve X0(N).

3.1 The Riemann surface structure of the mod-
ular curve X(Γ)

The goal of this section is to show the Riemann surface structure of the mod-
ular curve X(Γ), which is already a well-known result. A reference for this
section is [4, Chapter 2].

Recall the action of the modular group SL2(Z) on the set C∪{∞} defined
in the first chapter. The modular group SL2(Z) acts transitively on Q∪{∞}:
given a rational number a

c
with a, c ∈ Z and gcd(a, c) = 1, there exists a

matrix ( a bc d ) ∈ SL2(Z) with a and c in the first column and we have(
a b
c d

)
· ∞ =

a

c
.

51
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Notice that the isotropy subgroup of ∞ is

SL2(Z)∞ =

{
±
(

1 m
0 1

)
: m ∈ Z

}
.

Let Γ be a congruence subgroup of SL2(Z) and recall that the modular curve
Y (Γ) is defined as the quotient Γ\H where H is the upper half complex plane.
In order to compactify Y (Γ) we consider H∗ := H ∪Q ∪ {∞}.

Definition 3.1. Let Γ be a congruence subgroup of SL2(Z). The set under-
lying the modular curve X(Γ) is the quotient

X(Γ) := Γ\H∗ = Y (Γ) ∪ (Γ\(Q ∪ {∞})).

The points Γs with s ∈ Q ∪ {∞} are called the cusps of the modular curve
X(Γ).

The modular curves for the congruence subgroups Γ(N) and Γ0(N) are
denoted respectively X(N) and X0(N).

Since the modular group acts transitively on Q∪{∞}, the modular curve
X(1) has only one cusp. Moreover for every congruence subgroup Γ, the
modular curve X(Γ) has at most [SL2(Z) : Γ] cusps, so there are finitely
many.

We now define the modular curve X(Γ) as a (compact) Riemann surface.
First of all we define a basis for the topology on H∗ adjoining to the usual
open subsets of H the sets of the form

α(NM ∪ {∞})

where α ∈ SL2(Z) and NM := {τ ∈ H : Im(τ) > M} for every M > 0. Let

π : H∗ ! X(Γ)

s 7! Γs

be the quotient map and endow X(Γ) with the quotient topology, making π
a continuous map. Moreover π is open: we have already shown that if U is an
open subset of H, then π(U) is open, so let us consider an open subset of H∗ of
the form α(NM ∪{∞}). We have that π(α(NM ∪{∞})) = Γ(α(NM ∪{∞}))
is open because its preimage through π is

⋃
γ∈Γ γα(NM∪{∞}), which is open

in H∗.

Proposition 3.2. Let Γ be a congruence subgroup of SL2(Z). The modular
curve X(Γ) is Hausdorff, connected and compact.
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A proof of this statement can be found in [4, Proposition 2.4.2.].

Now we just need to define local charts for the modular curve X(Γ) and
check that the transition maps are holomorphic. We already defined local
charts for a neighbourhood U ⊂ H in Chapter 1, so now we study what
happens at the cusps.

Definition 3.3. Let Γ be a congruence subgroup of SL2(Z) and let s ∈ Q∪
{∞}. The width of s is the number

hs := |SL2(Z)s/{±I}Γs|.

Lemma 3.4. Let Γ be a congruence subgroup of SL2(Z) and let s ∈ Q∪{∞}.
The width hs is finite. Moreover if γ ∈ SL2(Z), then the width of γ(s) under
γΓγ−1 is the same as the width of s under Γ.

This lemma is an exercise in [4], so we show the proof.

Proof. We know that there exists Γ(N) ⊆ Γ for some N ∈ Z≥1. Let δ ∈
SL2(Z) such that δ(s) =∞; thus δΓ(N)δ−1 = Γ(N). Consequently

hs = |SL2(Z)s/{±I}Γs| ≤ |SL2(Z)s/{±I}Γ(N)s|
= |δ−1SL2(Z)∞δ/{±I}δ−1Γ(N)∞δ| = |SL2(Z)∞/({±I}Γ(N))∞| = N

because ({±I}Γ(N))∞ = {± ( 1 kN
0 1 ) : k ∈ Z}. Moreover we have that

(δΓδ−1)∞ ⊆ ±〈( 1 h
0 1 )〉 where h is the width of s under Γ. Consider now

γ ∈ SL2(Z) and we compute the width of γ(s) under γΓγ−1:

hγ(s) = |SL2(Z)γ(s)/({±I}γΓγ−1)γ(s)| = |γSL2(Z)sγ
−1/γ({±I}Γ)sγ

−1|
= |SL2(Z)s/({±I}Γ)s|,

which is the width of s under Γ.

From Lemma 3.4 we deduce in particular that the width is well-defined
on X(Γ).

Let Γ be a congruence subgroup of SL2(Z). Let s ∈ Q ∪ {∞} and let
δ ∈ SL2(Z) such that δ(s) = ∞. Define the open neighbourhood U :=
δ−1(N2 ∪ {∞}) of s and ρ : H∗ ! C, z 7! e2πiz/h,∞ 7! 0, where h is the
width of s under Γ. As in Chapter 1 we now define

ψ := ρ ◦ δ : U ! V ⊂ C
τ 7! e2πiδ(τ)/h,
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where V = (ρ ◦ δ)(U). Let τ1, τ2 ∈ U and observe that π(τ1) = π(τ2) if and
only if there exists γ ∈ Γ such that τ1 = γ(τ2). Of course this is equivalent
to δ(τ1) = (δγδ−1)(δ(τ2)). We know that Im(δ(τ1)) > 2 and Im(δ(τ2)) > 2.
Let δγδ−1 = ( a bc d ). If c 6= 0, then

2 < Im(δ(τ1)) =
Im(δ(τ2))

|cδ(τ2) + d|2
<

Im(δ(τ2))

c2Im(δ(τ2))2
< 1/2.

We have thus proved that δγδ−1 is a translation. Thus δγδ−1 ∈ δΓδ−1 ∩
SL2(Z)∞ = (δΓδ−1)∞ ⊆ ±〈( 1 h

0 1 )〉 where h is the width of s under Γ.
We conclude that that for all τ1, τ2 ∈ U , we have

π(τ1) = π(τ2)⇔ δ(τ1) = δ(τ2) +mh for some m ∈ Z⇔ ψ(τ1) = ψ(τ2).

We hence conclude that there exists a bijection

φ : π(U)! V ⊂ C

such that φ ◦ π = ψ. By the open mapping theorem ψ is an open map. As
also π is open, we get that φ is a homeomorphism. We have in this way
defined the local charts of X(Γ).

It remains to show that the transition maps are holomorphic and this is
explained in Diamond and Shurman [4, Chapter 2].

We have thus shown that:

Theorem 3.5. Let Γ be a congruence subgroup of SL2(Z). The modular
curve X(Γ) with the complex atlas given above is a compact Riemann surface.

Proposition 3.6. Let X be a compact Riemann surface and f ∈ C(X) be
a meromorphic function on X. Then deg(Div(f)) = 0, where Div(f) =∑

x∈X ordx(f) · (x) is the divisor of f .

Proof. This result is in Bobenko and Klein [1, Corollary 2, Section 2, Chap-
ter1].

Let N and M be two positive distinct integers. The function fM :=
ΦM(j(τ), j(Nτ)) is a meromorphic function on the modular curve X0(N)
and it is holomorphic on Y0(N). As a consequence all the poles of fM are at
the cusps of X0(N). Moreover, as X0(N) is a compact Riemann surface, we
have that

deg(Div0(fM)) = deg(Div∞(fM))

thanks to Proposition 3.6.
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3.2 Modular units of Q(X0(N))

Definition 3.7. A non-zero element of Q(X0(N)) is called a modular unit
if all its poles and zeros are cusps.

For every positive natural number M different from N we define the
following function on the modular curve Y0(N):

fM : Y0(N)! C
Γ0(N)τ 7! ΦM(j(τ), j(Nτ)).

In this section we will show that every non-constant product of powers of
functions of this form is not a modular unit of Q(X0(N)).

Proposition 3.8. Let M be a positive natural number different from N .
Then there exists a point Γ0(N)τ ∈ Y0(N) such that fM(Γ0(N)τ) = 0 and
O(Λτ ) = Z[

√
−MN ].

Proof. Let L := Z[
√
−MN ] and LN :=

√
−M/NZ+Z. Notice that L ⊂ LN

and LN/L ∼= Z/NZ, so [(L,LN)] ∈ LN . Let Γ0(N)τ ∈ Y0(N) be the point on
the modular curve corresponding to [(L,LN)] ∈ LN through the bijection in
Theorem 1.59. Notice that O(L) = Z[

√
−MN ]. Thus we are now going to

prove that fM(Γ0(N)τ) = 0: this is equivalent to [(L,LN)] ∈ φ−1
N (φM(LM))

by Lemma 2.10. Let LM :=
√
−N/MZ + Z. We have that [(L,LM)] ∈ LM

and √
−N
M

LN =

√
−N
M

(√
−M
N
Z+ Z

)
=

√
−N
M
Z+ Z = LM .

Therefore φN([(L,LN)]) = φM([(L,LM)]), so fM(Γ0(N)τ) = 0.

From Proposition 3.8 we have that fM is not a modular unit of Q(X0(N))
for any positive integer M different from N .

We want to prove that also any non-constant product of powers of func-
tions fM is not a modular unit of Q(X0(N)). Thus now we want to prove
that every function of this form always has a zero or a pole that is not a cusp.
To do this we study the properties of the zeros of the functions fM better:

Lemma 3.9. Let M be a positive integer different from N and let Γ0(N)τ ∈
Y0(N) be a zero of fM . The discriminant D of the order O(Λτ ) is such that
|D| ≤ 4MN .
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Proof. If Γ0(N)τ ∈ Y0(N) is such that fM(Γ0(N)τ) = 0, then [(Λτ , τZ +
1
N
Z)] ∈ φ−1

N (φM(LM)) by Lemma 2.10. Thanks to Proposition 2.11 we deduce
that O(Λτ ) 6= Z and we have showed in the proof of Proposition 2.11 that
there exists α ∈ O(Λτ ) \ Z such that N(α) = MN . From the proof of
Proposition 1.57 we have then that |D| ≤ 4N(α) = 4MN .

Consider a positive integer M different from N . From what we have
previously shown we know that

max
{
|D| ∈ N :∃ Γ0(N)τ ∈ Y0(N) s.t. ordΓ0(N)τ (fM) > 0,O(Λτ ) = Z [D+

√
D

2
]
}

≤ 4MN.

On the other hand, by Proposition 3.8 we know that there exists a point
Γ0(N)τ ∈ Y0(N) such that fM(Γ0(N)τ) = 0 and the absolute value of the
discriminant of O(Λτ ) is 4MN . As a consequence we have

max
{
|D| ∈ N :∃ Γ0(N)τ ∈ Y0(N) s.t. ordΓ0(N)τ (fM) > 0,O(Λτ ) = Z [D+

√
D

2
]
}

= 4MN.
(3.1)

Consider a function F ∈ Q(X0(N)) that is a combination of the fM ’s:

F =
∏

M∈Z≥1
M 6=N

f eMM (3.2)

such that F is non-constant, eM ∈ Z and just finitely many of the exponents
eM are different from 0.

Theorem 3.10. Let F ∈ Q(X0(N)) as in (3.2). Then F is not a modular
unit.

Proof. Let P := max{M ∈ Z≥1,M 6= N : eM 6= 0}. Thanks to Proposi-
tion 3.8 we know that there exists τ ∈ H such that ordΓ0(N)τ (fP ) > 0 and
O(Λτ ) = Z[

√
−NP ]. As a consequence ordΓ0(N)τ (fM) = 0 for all M ∈ Z≥1

with M < P and M 6= N by Lemma 3.9. This means that

ordΓ0(N)τ (F ) = ordΓ0(N)τ

( ∏
M∈Z≥1
M 6=N

f eMM
)

= eP · ordΓ0(N)τ (fP ) 6= 0. (3.3)

Therefore we have proved that F has a complex multiplication point as zero
or pole and therefore it is not a modular unit of Q(X0(N)).
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3.3 The degree of the function F

The main result of this section is to give a lower bound of the degree of a
function F as in (3.2). We start defining the degree of a function.

Definition 3.11. Let k be a field, C/k a curve and k(C) the function field
of C over k. Given a function f ∈ k(C), the degree of f is the integer

deg(f) = deg(Div0(f)) = deg(Div∞(f)).

Now consider again a function F ∈ Q(X0(N)) that is a multiplicative
combination of the functions fM constructed as before:

F =
∏

M∈Z≥1
M 6=N

f eMM (3.4)

where F is non-constant, eM ∈ Z and just finitely many of the eM ’s are
different from 0. Take P := max{M ∈ Z≥1,m 6= N : eM 6= 0}. We now
notice that
deg(F )

≥
∣∣{Γ0(N)τ ∈Y0(N):ordΓ0(N)τ (fP )>0 and ordΓ0(N)τ (fM)=0 for allM<P

}∣∣ .
We have previously showed that all the zeros Γ0(N)τ of fP such thatO(Λτ ) =
Z[
√
−NP ] are such that ordΓ0(N)τ (fP ) > 0 and moreover ordΓ0(N)τ (fM) =

0 for all M < P , thus

deg(F ) ≥ |{Γ0(N)τ ∈ Y0(N) : ordΓ0(N)τ (fP ) > 0 and O(Λτ ) = Z[
√
−NP ]}|.

(3.5)

Proposition 3.12. Let M and N be two different positive integers and let
fM be the function ΦM(j(τ), j(Nτ)) on the modular curve X0(N). Then we
have

|{Γ0(N)τ ∈ Y0(N) : ordΓ0(N)τ (fM) > 0,O(Λτ ) = Z[
√
−MN ]}|

≥ |Pic(Z[
√
−MN ])|.

The case where M and N are coprime and not both squares is immediate
from Theorem 2.1 and (3.3). We will now check that the proof holds in
general.

Proof. Let O := Z[
√
−MN ] to simplify the notation. Let a be an invertible

fractional O-ideal; first of all we prove that [(L1, L)] is an element of LN ,
where L := a and L1 := Na +

√
−MNa:

a/(Na +
√
−MNa) ∼= a/(NO +

√
−MNO)a

∼= O/(NO +
√
−MNO) ∼=Z/NZ,
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where the second isomorphism derives from Lemma 1.58. Consider now
the point Γ0(N)τ ∈ Y0(N) corresponding to the element [(L1, L)] ∈ LN .
We prove that it is a zero of the function fM . For this we just have to
prove that φN([(L1, L)]) ∈ φM(LM). The element [(L2, L)] := [(Ma +√
−MNa, a)] ∈ LM is such that√

−M
N

L1 =

√
−M
N

(Na +
√
−MNa) = Ma +

√
−MNa = L2.

Thus φN([(L1, L)]) ∈ φM([(L2, L)]). We have showed that every element
[a] ∈ Pic(O) gives rise to a different zero Γ0(N)τ of the function fM such
that O(Λτ ) = O and this concludes the proof.

From (3.5) and from Proposition 3.12 we deduce that

deg(F ) ≥ |Pic(Z[
√
−NP ])|. (3.6)

We now try to give an estimate of this order.

Theorem 3.13 (Siegel’s Theorem). Given any imaginary quadratic number
field K, let dK be its discriminant and let hK be its class number. Then as
|dK |!∞ we have

log(h(OK)) ∼ log(
√
|dK |).

A reference for this result is [7].

Thus we have
lim
|dK |!∞

log(|Pic(OK)|)
log(

√
|dK |)

= 1.

In particular, for every ε > 0 there exists J ∈ Z>0 such that for all |dK | > J ,
we have

log(|Pic(OK)|)
log(

√
|dK |)

> 1− ε.

This means that for every ε > 0 there exists J ∈ Z>0 such that for all
|dK | > J

|Pic(OK)| > (
√
|dK |)1−ε.

In our case it could happen that Z[
√
−NP ] is not the ring of integers

OK , but the following theorem shows that the same asymptoties hold. First
we give the following definitions:

Definition 3.14. Let p be an odd prime. An integer n is a quadratic residue
modulo p if it is congruent to a perfect square modulo p.
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Definition 3.15. Let p be an odd number and n ∈ Z>0. The Legendre
symbol is a function of n and p defined as follows:(

n

p

)
=


1 if n is a quadrtaic residue modulo p and n 6≡ 0 (mod p)

−1 if n is not a quadratic residue modulo p
0 if n ≡ 0 (mod p).

Definition 3.16. Let n be a positive integer. The Kronecker symbol is

(n
2

)
=


0 if n is even
1 if n ≡ ±1 (mod 8)

−1 if n ≡ ±3 (mod 8).

Theorem 3.17 (Theorem 7.24 of [2]). Let O be the order of conductor f in
an imaginary quadratic number field K with discriminant dK. Then

|Pic(O)| = |Pic(OK)| · f
[O∗K : O∗]

·
∏
p|f

(
1−

(
dK
p

)
1

p

)
.

Theorem 3.18. For every ε > 0 there exists J ∈ Z>0 such that for all P > J
and F ∈ Q(X0(N)) as in (3.4) such that P = max{M ∈ Z≥1,M 6= N : eM 6=
0}, we have

deg(F ) ≥ (
√

4NP )1−ε
∏
p|f

(
1−

(
dK
p

)
1

p

)
,

where f is the conductor of the order Z[
√
−NP ] and dK is the discriminant

of its field of fractions.
Proof. From Theorem 3.17, for every ε > 0 there exists J ∈ Z>0 such that
for all P > J we have

|Pic(Z[
√
−NP ])| ≥ (

√
|dK |)1−εf

∏
p|f

(
1−

(
dK
p

)
1

p

)

= (
√
|dK |f 2)1−ε

∏
p|f

(
1−

(
dK
p

)
1

p

)

= (
√

4NP )1−ε
∏
p|f

(
1−

(
dK
p

)
1

p

)
.

Let F ∈ Q(X0(N)) as in (3.4) such that P = max{M ∈ Z≥1,M 6= N : eM 6=
0}. By (3.6) we conclude that

deg(F ) ≥ (
√

4NP )1−ε
∏
p|f

(
1−

(
dK
p

)
1

p

)
.
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