Igusa Class Polynomials

Marco Streng
Universiteit Leiden

Genus 2 day, Intercity Number Theory Seminar Utrecht, April 18th 2008

Overview

- Igusa class polynomials are the genus 2 analogue of the classical Hilbert class polynomial.
- For each notion, I will

1. tell you what it is,
2. show two applications
3. and talk about computing it.

Complex multiplication

The Hilbert class polynomial is a notion from complex multiplication of elliptic curves.

- Let E be an elliptic curve over a field of characteristic 0 and let $\operatorname{End}(E)$ be the ring of algebraic group endomorphisms.
- It is \mathbb{Z} or an order \mathcal{O} in an imaginary quadratic number field. In the second case, we say that E has complex multiplication (CM) by \mathcal{O}.
- Example: $E: y^{2}=x^{3}+x$ over \mathbb{C} has an endomorphism $(x, y) \mapsto(-x, i y)$ with $i^{2}=-1$.
We call this endomorphism i and notice $i^{2}=-1$.
The endomorphism ring is $\operatorname{End}(E)=\mathbb{Z}[i]$.

Complex complex multiplication

- Every elliptic curve E over \mathbb{C} is complex analytically isomorphic to \mathbb{C} / Λ for some lattice $\wedge \subset \mathbb{C}$.
- The algebraic endomorphisms of E correspond to the holomorphic endomorphisms of \mathbb{C} / Λ and they are of the form $z \mapsto \alpha z$ with $\alpha \Lambda \subset \Lambda$.
- Let K be an imaginary quadratic number field and \mathcal{C}_{K} its ideal class group. There is a bijection

$$
\begin{aligned}
\mathcal{C}_{K} & \leftrightarrow\left\{\text { Elliptic curves over } \mathbb{C} \text { with CM by } \mathcal{O}_{K}\right\} / \cong \\
{[\mathfrak{a}] } & \mapsto \mathbb{C} / \mathfrak{a} .
\end{aligned}
$$

The j-invariant

- The j-invariant is a rational function in the coefficients of the (Weierstrass) equation of an elliptic curve.
- For any field L, there is a bijection

$$
\{\text { elliptic curves over } L\} /(\bar{L} \text {-isom. }) \leftrightarrow L,
$$

given by the j-invariant.

- Up to \bar{L}-isomorphism, computing E and computing $j(E)$ is the same thing.

Definition

The Hilbert class polynomial H_{K} of an imaginary quadratic number field K is

$$
H_{K}=\prod_{E \in \mathcal{C}_{K}}(X-j(E))
$$

The Hilbert class polynomial

$$
H_{K}=\prod_{E \in \mathcal{C}_{K}}(X-j(E)) \in \mathbb{Z}[X]
$$

- Why in $\mathbb{Q}[X]$?

Let $\sigma \in \operatorname{Aut}(\mathbb{C})$ be any ring automorphism of \mathbb{C}. The algebraic endomorphism rings of E and ${ }^{\sigma} E$ are isomorphic via σ. If $j(E)$ is a root, then so is $j\left({ }^{\sigma} E\right)={ }^{\sigma} j(E)$.

- Why in $\mathbb{Z}[X]$?

Fact: Elliptic curves with complex multiplication have (after suitable base extension) good reduction at every prime \mathfrak{p}. Hence $j(E) \bmod \mathfrak{p}=j(E \bmod \mathfrak{p}) \neq \infty$ for all \mathfrak{p}, so $j(E)$ is an algebraic integer.

Application: constructing class fields

Definition

The Hilbert class field \mathcal{H}_{K} of a field K is the maximal unramified abelian extension of K.

The Galois group $\operatorname{Gal}\left(\mathcal{H}_{K} / K\right)$ is naturally isomorphic to \mathcal{C}_{K} (Artin isomorphism).

Theorem

Let K be imaginary quadratic. The Hilbert class polynomial H_{K} is irreducible and normal and its roots generate \mathcal{H}_{K} over K. The action of \mathcal{C}_{K} on the roots of H_{K} is given by $[\mathfrak{a}] \bullet j([\mathfrak{b}])=j\left(\left[\mathfrak{a}^{-1} \mathfrak{b}\right]\right)$.

By computing the CM curves and their torsion points, we can also compute the ray class fields of K.

Application: curves of prescribed order

- Let π be an imaginary quadratic integer of prime norm q (a quadratic Weil q-number).
- Suppose that the trace t of π is coprime to q.
- Fact: The Hilbert class polynomial $H_{\mathbb{Q}(\pi)}$ splits into linear factors over \mathbb{F}_{q}; let $j_{0} \in \mathbb{F}_{q}$ be any root.
- Fact: There exists an ordinary elliptic curve E / \mathbb{F}_{q} with $j(E)=j_{0}$ and $\# E\left(\mathbb{F}_{q}\right)=q+1-t$.
- Over $\overline{\mathbb{F}_{q}}$, all curves with j-invariant j_{0} are isomorphic; over \mathbb{F}_{q}, there are at most 6 and it is easy to select the right one.
- Conclusion:
$(q$-number π of trace $t)+H_{\mathbb{Q}(\pi)} \rightsquigarrow$ EC of order $q+1-t$.

Computing the Hilbert class polynomial

The Hilbert class polynomial is huge: the degree h_{K} grows like $|\Delta|^{\frac{1}{2}}$, as do the logarithms of the coefficients.

Classical complex analytic method:

- compute all τ in \mathcal{F} s.t. $\tau \mathbb{Z}+\mathbb{Z}$ is an \mathcal{O}_{K}-ideal,
- evaluate $j(\tau)$ for those τ,
- compute H_{K} from its roots.

Two other methods:

- p-adic, [Couveignes-Henocq, Bröker]
- Chinese remainder theorem. [CNST,ALV]

Each takes time $\widetilde{O}(|\Delta|)$, essentially linear in the size of the output.

Part 2: genus 2

Definition

A curve of genus 2 is a smooth geometrically irreducible curve of genus 2 .

"Definition" (char. $=$ 2)

A curve of genus 2 is a smooth projective curve that has an affine model

$$
y^{2}=f(x), \quad \operatorname{deg}(f) \in\{5,6\},
$$

where f has no double roots.

How to add points on a curve

- Let C / k be a curve over a perfect field.
- The group of divisors $\operatorname{Div}(C)$ is the group of Galois invariant elements of the free abelian group on $C(\bar{k})$.
- Let $\operatorname{Div}^{0}(C)$ be the group of divisors of degree 0 .
- Define the divisor $\operatorname{div}(f)$ of a rational function $f \in k(C)^{*}$ to be the sum of the zeroes/poles with multiplicities. It has degree 0 .
- Get a group $\operatorname{Pic}^{0}(C)=\operatorname{Div}^{0}(C) / \operatorname{div}\left(k(C)^{*}\right)$.
- For an elliptic curve $E: E(k) \cong \operatorname{Pic}^{0}(E), P \mapsto[P-O]$.
- For a curve of genus 2 , if we fix a divisor D of degree 2 , then every class in $\operatorname{Pic}^{0}(C)$ has a representative $P_{1}+P_{2}-D$.

Genus 2 addition law

$\left\{P_{1}, P_{2}\right\} \leftrightarrow\left[P_{1}+P_{2}-2 \infty\right]$, use graphs of cubic polynomials!

Abelian varieties

- An abelian variety (AV) is a smooth projective group variety. (AV of dim. 1 = elliptic curve.)
- We consider abelian varieties together with a "principal polarization". (Every elliptic curve has a unique one.)
- $\operatorname{Pic}^{0}(C)$ "is" the group of rational points on a principally polarized abelian variety $J(C)$ of dimension $g(C)$, called the Jacobian of $C .(J(E)=E$.)

Complex multiplication

- An elliptic curve (dim. 1 AV) has CM if its endomorphism ring is an order in an imaginary quadratic number field.
- An abelian surface (dim. 2 AV) has CM if its endomorphism ring is an order in a CM field of degree 4.
- A CM field of degree 4 is a totally imaginary quadratic extension K of a real quadratic field.
- It is called primitive if it does not contain an imaginary quadratic subfield.
- Fact: any principally polarized abelian surface with CM by a primitive CM field is the Jacobian of a unique (up to isomorphism) curve of genus 2 .

The analogue of the j-invariant

Let $C: y^{2}=f(x)$ be a curve of genus 2 .

- Over algebraically closed fields, we can write it in Rosenhain form

$$
C: y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)
$$

- Compare this to Legendre form for elliptic curves

$$
E: y^{2}=x(x-1)(x-\lambda)
$$

The "family" of elliptic curves is one-dimensional, that of curves of genus 2 is three-dimensional.

Igusa invariants

- Igusa gave a genus 2 analogue of the j-invariant.
- Let L be a field of characteristic different from 2. (Actually, Igusa's invariants work for any characteristic.)
- Igusa gives polynomials $I_{2}, I_{4}, I_{6}, I_{10}$ in the coefficients of f.
- These give a bijection between the set of isomorphism classes of genus two curves over \bar{L} and \bar{L}-points $\left(I_{2}: I_{4}: I_{6}: I_{10}\right)$ in weighted projective space with $I_{10} \neq 0$.
- Mestre's algorithm (also implemented in Magma) computes an equation for the curve from the invariants.
- The curve can be constructed over a field of degree at most 2 over any field containing the invariants.

Absolute invariants

- One simplifies by looking at the so-called absolute Igusa invariants

$$
i_{1}=\frac{I_{2}^{5}}{I_{10}}, \quad i_{2}=\frac{I_{2}^{3} I_{4}}{I_{10}} \quad \text { and } \quad i_{3}=\frac{I_{2}^{2} I_{6}}{I_{10}} .
$$

- Outside $I_{2}=0$, they define the same space.
- The Jacobian of $C: y^{2}=x^{5}-1$ has CM by the ring of integers of $\mathbb{Q}\left(\zeta_{5}\right)$ and corresponds to $I_{2}=I_{4}=I_{6}=0$. Do there exist other CM curves with $I_{2}=0$?

Igusa class polynomials

Definition

The Igusa class polynomials of a primitive quartic CM field K are the polynomials

$$
\underset{\left\{C / \mathbb{C}: \operatorname{End}(J(C)) \cong \mathcal{O}_{K}\right\} / \cong}{H_{K, n}(X)}\left(X-i_{n}(C)\right) \quad \in \mathbb{Q}[X], \quad n \in\{1,2,3\} .
$$

- By taking one zero i_{n}^{0} of each polynomial $H_{K, n}$, get a point $\left(i_{1}^{0}, i_{2}^{0}, i_{3}^{0}\right)$ and hence an isomorphism class of curve.
- The polynomials thus specify d^{3} isomorphism classes and the d classes with CM by \mathcal{O}_{K} are among them.
- If $H_{K, 1}$ has no double roots, can replace $H_{K, 2}$ and $H_{K, 3}$ by polynomials $G_{K, 2}$ and $G_{K, 3}$ such that $G_{K, n}\left(i_{1}(C)\right)=i_{n}(C)$ for all C with CM by \mathcal{O}_{K}.

Application: computation of class fields.

- In general, CM theory does not generate class fields of the CM field K, but of the reflex field K^{\dagger}.
- If K / \mathbb{Q} is Galois, then $K^{\dagger}=K$.
- If $K=\mathbb{Q}(\sqrt{-a+b \sqrt{d}})$ is a primitive quartic CM field, then $K^{\dagger}=\mathbb{Q}\left(\sqrt{-2 a+2 \sqrt{d^{\prime}}}\right)$, where $d^{\prime}=a^{2}-b^{2} d$, and $K^{\dagger \dagger}=K$.
- In general, CM theory does not allow you to generate the full Hilbert class field or ray class fields:
- Which fields can be obtained is described by Shimura.
- Question: can we use dimension 2 CM as an ingredient for efficient computation of class fields?

Application: prescribed number of points

- Let q be a prime and let π be a quartic Weil q-number (i.e. an algebraic integer with all absolute values $q^{\frac{1}{2}}$) that generates a primitive quartic CM field.
- If the middle coefficient of f^{π} is coprime to q, then

$$
(\text { quartic } q \text {-number } \pi)+\left(H_{\mathbb{Q}(\pi), n}\right)_{n}
$$

$$
\left(\begin{array}{c}
\text { a curve } C / \mathbb{F}_{q} \text { of genus } 2 \text { with } \\
q+1-\operatorname{Tr}(\pi) \text { rational points } \\
\text { and } \# \operatorname{Pic}^{0}(C)=N(\pi-1)
\end{array}\right)
$$

Computing Igusa class polynomials

Analogues of the three algorithms have been developed:

- Complex analytic [Spallek, van Wamelen, Weng]
- p-adic [Gaudry-Houtmann-Kohel-Ritzentaler-Weng]
- Chinese remainder theorem [Eisenträger-Lauter]

But...

- coefficients of Igusa class polynomials are usually not integers and ...
- no bounds on the sizes of $i_{n}(C)$ were given.

Denominators, why?

- Abelian varieties with CM have potential good reduction.
- But a genus 2 curve C of which the Jacobian has good reduction may have bad reduction!
- In that case, the reduction of C is the union of two intersecting elliptic curves and the reduction of $J(C)$ is a product of those elliptic curves (with product polarization).

Denominators, the "embedding problem"

Let K be a primitive quartic CM field and p a prime number. The following are equivalent: [Goren-Lauter]

1. p occurs in the denominator of $H_{K, n}$ for some n,
2. there exist:

- a maximal order R in the quaternion algebra $B_{p, \infty} / \mathbb{Q}$,
- a fractional right R-ideal a with left order R^{\prime} and
- an embedding of \mathcal{O}_{K} into the matrix algebra

$$
\left(\begin{array}{cc}
R & \mathfrak{a}^{-1} \\
\mathfrak{a} & R^{\prime}
\end{array}\right)
$$

such that complex conjugation on \mathcal{O}_{K} coincides with

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \mapsto\left(\begin{array}{cc}
\bar{\alpha} & \bar{\beta} N(\mathfrak{a})^{-1} \\
\bar{\gamma} N(\mathfrak{a}) & \bar{\delta}
\end{array}\right) .
$$

They also prove that 2 . implies $p<c \Delta_{K}$ for some constant c.

Denominators, a bound

- [Goren-Lauter] bounds the primes in the denominator.
- Recent unpublished results by Eyal Goren bound the order with which they divide the denominator.
- Get a bound on the denominator: $O\left(d \Delta_{K}\right)$, where d is the degree of $H_{K, 1}$.

Bounding the absolute values

- Algorithms exist in the sense that if you set your precision "sufficiently high" and know how to compute class groups, then you get an answer.
- No bounds on the output or on "sufficiently high".
- Fundamental units are used.

To complete the analysis of the complex analytic method:

- enumerate curves in a suitable way to bound them away from $I_{10}=0$ and $I_{k}=\infty$,
- analyse the multi-dimensional q-expansions and
- give rounding error analysis.

Result

Theorem (almost)

The complex analytic method takes time at most

$$
\widetilde{O}\left(d^{3} \Delta^{2}\right) \leq \widetilde{O}\left(\Delta^{7 / 2}\right)
$$

and the size of the output is at most

$$
\tilde{O}\left(d^{2} \Delta\right) \leq \tilde{O}\left(\Delta^{2}\right) .
$$

I have the algorithm, which works at least if the real quadratic subfield has class number one and probably in general. I will write it up this summer.

