Genus 1 Genus 2

Igusa Class Polynomials

Marco Streng

Universiteit Leiden

Genus 2 day, Intercity Number Theory Seminar Utrecht, April 18th 2008

Genus 1 Genus 2

Overview

- Igusa class polynomials are the genus 2 analogue of the classical Hilbert class polynomial.
- For each notion, I will
 - tell you what it is,
 - 2. show two applications
 - 3. and talk about computing it.

Complex multiplication

The Hilbert class polynomial is a notion from complex multiplication of elliptic curves.

- ► Let *E* be an elliptic curve over a field of characteristic 0 and let End(*E*) be the ring of algebraic group endomorphisms.
- It is Z or an order O in an imaginary quadratic number field. In the second case, we say that E has complex multiplication (CM) by O.
- ► Example: $E: y^2 = x^3 + x$ over \mathbb{C} has an endomorphism $(x,y) \mapsto (-x,iy)$ with $i^2 = -1$. We call this endomorphism i and notice $i^2 = -1$. The endomorphism ring is $\operatorname{End}(E) = \mathbb{Z}[i]$.

Complex complex multiplication

- ▶ Every elliptic curve E over $\mathbb C$ is complex analytically isomorphic to $\mathbb C/\Lambda$ for some lattice $\Lambda \subset \mathbb C$.
- ▶ The algebraic endomorphisms of E correspond to the holomorphic endomorphisms of \mathbb{C}/Λ and they are of the form $z \mapsto \alpha z$ with $\alpha \Lambda \subset \Lambda$.
- ▶ Let K be an imaginary quadratic number field and C_K its ideal class group. There is a bijection

```
\mathcal{C}_{\mathcal{K}} \leftrightarrow \{ \text{Elliptic curves over } \mathbb{C} \text{ with CM by } \mathcal{O}_{\mathcal{K}} \} / \cong [\mathfrak{a}] \mapsto \mathbb{C}/\mathfrak{a}.
```

The *j*-invariant

- ► The j-invariant is a rational function in the coefficients of the (Weierstrass) equation of an elliptic curve.
- ▶ For any field L, there is a bijection

{ elliptic curves over
$$L$$
 }/(\overline{L} -isom.) \leftrightarrow L ,

given by the *i*-invariant.

▶ Up to L-isomorphism, computing E and computing j(E) is the same thing.

Definition

The Hilbert class polynomial H_K of an imaginary quadratic number field K is

$$H_K = \prod_{E \in C_K} (X - j(E)).$$

The Hilbert class polynomial

$$H_{\mathcal{K}} = \prod_{E \in \mathcal{C}_{\mathcal{K}}} (X - j(E)) \in \mathbb{Z}[X].$$

- ▶ Why in $\mathbb{Q}[X]$? Let $\sigma \in \operatorname{Aut}(\mathbb{C})$ be any ring automorphism of \mathbb{C} . The algebraic endomorphism rings of E and σE are isomorphic via σ . If j(E) is a root, then so is $j(\sigma E) = \sigma j(E)$.
- Why in Z[X]?
 Fact: Elliptic curves with complex multiplication have (after suitable base extension) good reduction at every prime p.
 Hence j(E) mod p = j(E mod p) ≠ ∞ for all p, so j(E) is an algebraic integer.

Application: constructing class fields

Definition

The Hilbert class field \mathcal{H}_K of a field K is the maximal unramified abelian extension of K.

The Galois group $Gal(\mathcal{H}_K/K)$ is naturally isomorphic to \mathcal{C}_K (Artin isomorphism).

Theorem

Let K be imaginary quadratic. The Hilbert class polynomial H_K is irreducible and normal and its roots generate \mathcal{H}_K over K. The action of \mathcal{C}_K on the roots of H_K is given by $[\mathfrak{a}] \bullet j([\mathfrak{b}]) = j([\mathfrak{a}^{-1}\mathfrak{b}])$.

By computing the CM curves and their torsion points, we can also compute the ray class fields of K.

Application: curves of prescribed order

- Let π be an imaginary quadratic integer of prime norm q (a quadratic Weil q-number).
- ▶ Suppose that the trace t of π is coprime to q.
- ▶ Fact: The Hilbert class polynomial $H_{\mathbb{Q}(\pi)}$ splits into linear factors over \mathbb{F}_q ; let $j_0 \in \mathbb{F}_q$ be any root.
- ▶ Fact: There exists an ordinary elliptic curve E/\mathbb{F}_q with $j(E) = j_0$ and $\#E(\mathbb{F}_q) = q + 1 t$.
- ▶ Over $\overline{\mathbb{F}_q}$, all curves with *j*-invariant j_0 are isomorphic; over \mathbb{F}_q , there are at most 6 and it is easy to select the right one.
- ► Conclusion: $(q ext{-number }\pi ext{ of trace }t) + H_{\mathbb{Q}(\pi)} \leadsto \text{ EC of order }q+1-t.$

Computing the Hilbert class polynomial

The Hilbert class polynomial is huge: the degree h_K grows like $|\Delta|^{\frac{1}{2}}$, as do the logarithms of the coefficients.

Classical complex analytic method:

- ▶ compute all τ in \mathcal{F} s.t. $\tau \mathbb{Z} + \mathbb{Z}$ is an \mathcal{O}_K -ideal,
- evaluate $j(\tau)$ for those τ ,
- ightharpoonup compute H_K from its roots.

Two other methods:

- ► p-adic, [Couveignes-Henocq, Bröker]
- ► Chinese remainder theorem. [CNST,ALV]

Each takes time $\widetilde{O}(|\Delta|)$, essentially linear in the size of the output.

Part 2: genus 2

Definition

A curve of genus 2 is a smooth geometrically irreducible curve of genus 2.

"Definition" (char. \neq 2)

A curve of genus 2 is a smooth projective curve that has an affine model

$$y^2 = f(x), \quad \deg(f) \in \{5, 6\},\$$

where f has no double roots.

How to add points on a curve

- ▶ Let C/k be a curve over a perfect field.
- ▶ The group of divisors Div(C) is the group of Galois invariant elements of the free abelian group on $C(\overline{k})$.
- ▶ Let $Div^0(C)$ be the group of divisors of degree 0.
- ▶ Define the divisor div(f) of a rational function $f \in k(C)^*$ to be the sum of the zeroes/poles with multiplicities. It has degree 0.
- ► Get a group $Pic^0(C) = Div^0(C)/div(k(C)^*)$.
- ▶ For an elliptic curve E: $E(k) \cong Pic^0(E), P \mapsto [P O]$.
- For a curve of genus 2, if we fix a divisor D of degree 2, then every class in Pic⁰(C) has a representative P₁ + P₂ − D.

Genus 2 addition law

 $\{P_1, P_2\} \leftrightarrow [P_1 + P_2 - 2\infty]$, use graphs of cubic polynomials!

Abelian varieties

- ➤ An abelian variety (AV) is a smooth projective group variety. (AV of dim. 1 = elliptic curve.)
- We consider abelian varieties together with a "principal polarization". (Every elliptic curve has a unique one.)
- ▶ $Pic^0(C)$ "is" the group of rational points on a principally polarized abelian variety J(C) of dimension g(C), called the Jacobian of C. (J(E) = E.)

Complex multiplication

- ► An elliptic curve (dim. 1 AV) has CM if its endomorphism ring is an order in an imaginary quadratic number field.
- An abelian surface (dim. 2 AV) has CM if its endomorphism ring is an order in a CM field of degree 4.
 - ► A CM field of degree 4 is a totally imaginary quadratic extension K of a real quadratic field.
 - It is called primitive if it does not contain an imaginary quadratic subfield.
- Fact: any principally polarized abelian surface with CM by a primitive CM field is the Jacobian of a unique (up to isomorphism) curve of genus 2.

The analogue of the *j*-invariant

Let $C: y^2 = f(x)$ be a curve of genus 2.

 Over algebraically closed fields, we can write it in Rosenhain form

$$C: y^2 = x(x-1)(x-\lambda_1)(x-\lambda_2)(x-\lambda_3).$$

Compare this to Legendre form for elliptic curves

$$E: y^2 = x(x-1)(x-\lambda).$$

The "family" of elliptic curves is one-dimensional, that of curves of genus 2 is three-dimensional.

Igusa invariants

- ▶ Igusa gave a genus 2 analogue of the *j*-invariant.
 - ► Let *L* be a field of characteristic different from 2. (Actually, Igusa's invariants work for any characteristic.)
 - ▶ Igusa gives polynomials I_2 , I_4 , I_6 , I_{10} in the coefficients of f.
 - These give a bijection between the set of isomorphism classes of genus two curves over \(\overline{L}\) and \(\overline{L}\)-points (\(l_2 : l_4 : l_6 : l_{10}\)) in weighted projective space with \(l_{10} ≠ 0\).
- Mestre's algorithm (also implemented in Magma) computes an equation for the curve from the invariants.
 - ► The curve can be constructed over a field of degree at most 2 over any field containing the invariants.

Absolute invariants

 One simplifies by looking at the so-called absolute Igusa invariants

$$i_1 = \frac{I_2^5}{I_{10}}, \quad i_2 = \frac{I_2^3 I_4}{I_{10}} \quad \text{and} \quad i_3 = \frac{I_2^2 I_6}{I_{10}}.$$

- ▶ Outside $l_2 = 0$, they define the same space.
- ▶ The Jacobian of $C: y^2 = x^5 1$ has CM by the ring of integers of $\mathbb{Q}(\zeta_5)$ and corresponds to $I_2 = I_4 = I_6 = 0$. Do there exist other CM curves with $I_2 = 0$?

Igusa class polynomials

Definition

The Igusa class polynomials of a primitive quartic CM field *K* are the polynomials

$$H_{K,n}(X) = \prod_{\{C/\mathbb{C} : \, \mathsf{End}(J(C))\cong \mathcal{O}_K\}/\cong} (X-i_n(C)) \in \mathbb{Q}[X], \quad n\in\{1,2,3\}.$$

- ▶ By taking one zero i_n^0 of each polynomial $H_{K,n}$, get a point (i_1^0, i_2^0, i_3^0) and hence an isomorphism class of curve.
- ▶ The polynomials thus specify d^3 isomorphism classes and the d classes with CM by \mathcal{O}_K are among them.
- ▶ If $H_{K,1}$ has no double roots, can replace $H_{K,2}$ and $H_{K,3}$ by polynomials $G_{K,2}$ and $G_{K,3}$ such that $G_{K,n}(i_1(C)) = i_n(C)$ for all C with CM by \mathcal{O}_K .

Application: computation of class fields.

- In general, CM theory does not generate class fields of the CM field K, but of the reflex field K[†].
 - ▶ If K/\mathbb{Q} is Galois, then $K^{\dagger} = K$.
 - If $K = \mathbb{Q}(\sqrt{-a+b\sqrt{d}})$ is a primitive quartic CM field, then $K^{\dagger} = \mathbb{Q}(\sqrt{-2a+2\sqrt{d'}})$, where $d' = a^2 b^2d$, and $K^{\dagger\dagger} = K$.
- In general, CM theory does not allow you to generate the full Hilbert class field or ray class fields:
 - Which fields can be obtained is described by Shimura.
 - Question: can we use dimension 2 CM as an ingredient for efficient computation of class fields?

Application: prescribed number of points

- ▶ Let q be a prime and let π be a quartic Weil q-number (i.e. an algebraic integer with all absolute values $a^{\frac{1}{2}}$) that generates a primitive quartic CM field.
- If the middle coefficient of f^{π} is coprime to q, then

(quartic
$$q$$
-number π) + $(H_{\mathbb{Q}(\pi),n})_n$

$$\left(egin{array}{l} ext{a curve } C/\mathbb{F}_q ext{ of genus 2 with} \ q+1- ext{Tr}(\pi) ext{ rational points} \ ext{and } \# ext{Pic}^0(C)=N(\pi-1) \end{array}
ight).$$

Computing Igusa class polynomials

Analogues of the three algorithms have been developed:

- Complex analytic [Spallek, van Wamelen, Weng]
- ▶ p-adic [Gaudry-Houtmann-Kohel-Ritzentaler-Weng]
- Chinese remainder theorem [Eisenträger-Lauter]

But...

- coefficients of Igusa class polynomials are usually not integers and ...
- ▶ no bounds on the sizes of $i_n(C)$ were given.

Denominators, why?

- Abelian varieties with CM have potential good reduction.
- ▶ But a genus 2 curve *C* of which the Jacobian has good reduction may have bad reduction!
- ▶ In that case, the reduction of *C* is the union of two intersecting elliptic curves and the reduction of *J*(*C*) is a product of those elliptic curves (with product polarization).

Denominators, the "embedding problem"

Let K be a primitive quartic CM field and p a prime number. The following are equivalent: [Goren-Lauter]

- 1. p occurs in the denominator of $H_{K,n}$ for some n,
- 2. there exist:
 - ▶ a maximal order R in the quaternion algebra $B_{p,\infty}/\mathbb{Q}$,
 - ▶ a fractional right R-ideal a with left order R' and
 - an embedding of \mathcal{O}_K into the matrix algebra

$$\begin{pmatrix} R & \mathfrak{a}^{-1} \\ \mathfrak{a} & R' \end{pmatrix}$$

such that complex conjugation on \mathcal{O}_K coincides with

$$\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right) \mapsto \left(\begin{array}{cc} \overline{\alpha} & \overline{\beta} N(\mathfrak{a})^{-1} \\ \overline{\gamma} N(\mathfrak{a}) & \overline{\delta} \end{array}\right).$$

They also prove that 2. implies $p < c\Delta_K$ for some constant c.

Denominators, a bound

- ► [Goren-Lauter] bounds the primes in the denominator.
- Recent unpublished results by Eyal Goren bound the order with which they divide the denominator.
- ▶ Get a bound on the denominator: $O(d\Delta_K)$, where d is the degree of $H_{K,1}$.

Bounding the absolute values

- Algorithms exist in the sense that if you set your precision "sufficiently high" and know how to compute class groups, then you get an answer.
- No bounds on the output or on "sufficiently high".
- Fundamental units are used.

To complete the analysis of the complex analytic method:

- enumerate curves in a suitable way to bound them away from $I_{10} = 0$ and $I_k = \infty$,
- analyse the multi-dimensional q-expansions and
- give rounding error analysis.

Result

Theorem (almost)

The complex analytic method takes time at most

$$\widetilde{\textit{O}}(\textit{d}^3\Delta^2) \leq \widetilde{\textit{O}}(\Delta^{7/2})$$

and the size of the output is at most

$$\widetilde{O}(d^2\Delta) \leq \widetilde{O}(\Delta^2).$$

I have the algorithm, which works at least if the real quadratic subfield has class number one and probably in general. I will write it up this summer.