Elliptic divisibility sequences and modular units

Marco Streng

Universiteit Leiden

Journées Arithmétiques
7 July 2015
slides: http://bit.ly/streng
arXiv:1503.08127

Modular units

$[N \geq 4]$

- $Y^{1}(N) / \mathbb{Q}$ affine curve s.t. for fields $K \supseteq \mathbb{Q}$:

$$
\begin{aligned}
& Y^{1}(N)(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P)=N
\end{array}\right\} / \cong \\
& X^{1}(N)=Y^{1}(N) \sqcup\{\text { cusps }\}
\end{aligned}
$$

- Modular units
$\mathcal{O}\left(Y^{1}(N)\right)^{\times}=\left\{\right.$alg. funct. $/ \mathbb{Q}$ on $Y^{1}(N)$ with no poles or zeroes $\}$

Theorem (Conjecture of Derickx and Van Hoeij 2011)
$O\left(Y^{1}(N)\right)^{x} / Q^{\times}$is freely generated by roughly the defining equations of $Y^{1}(k)$ for $k \leq N / 2+1$.

Modular units

$[N \geq 4]$

- $Y^{1}(N) / \mathbb{Q}$ affine curve s.t. for fields $K \supseteq \mathbb{Q}$:

$$
\begin{aligned}
& Y^{1}(N)(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P)=N
\end{array}\right\} / \cong \\
& X^{1}(N)=Y^{1}(N) \sqcup\{\text { cusps }\}
\end{aligned}
$$

- Modular units
$\mathcal{O}\left(Y^{1}(N)\right)^{\times}=\left\{\right.$alg. funct. $/ \mathbb{Q}$ on $Y^{1}(N)$ with no poles or zeroes $\}$

Theorem (Conjecture of Derickx and Van Hoeij 2011)
$O\left(Y^{-1}(N)\right)^{x} / \mathbb{Q}^{\times}$is freely generated by roughly the defining equations of $Y^{1}(k)$ for $k \leq N / 2+1$.

Modular units

$[N \geq 4]$

- $Y^{1}(N) / \mathbb{Q}$ affine curve s.t. for fields $K \supseteq \mathbb{Q}$:

$$
\begin{aligned}
& Y^{1}(N)(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P)=N
\end{array}\right\} / \cong \\
& X^{1}(N)=Y^{1}(N) \sqcup\{\text { cusps }\}
\end{aligned}
$$

- Modular units
$\mathcal{O}\left(Y^{1}(N)\right)^{\times}=\left\{\right.$alg. funct. $/ \mathbb{Q}$ on $Y^{1}(N)$ with no poles or zeroes $\}$

Theorem (Conjecture of Derickx and Van Hoeij 2011)
$\mathcal{O}\left(Y^{1}(N)\right)^{\times} / \mathbb{Q}^{\times}$is freely generated by roughly the defining equations of $Y^{1}(k)$ for $k \leq N / 2+1$.

The ambient space

- For any field $K \supseteq \mathbb{Q}$, let

$$
\begin{aligned}
& \qquad A(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P) \neq 1,2,3
\end{array}\right\} / \cong \\
& \text { so } Y^{1}(N) \subset A \text {. } \\
& \text { Tate normal form: } \\
& \text { Every }(E, P) \in A(K) \text { can uniquely be written as }
\end{aligned}
$$

The ambient space

- For any field $K \supseteq \mathbb{Q}$, let

$$
A(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P) \neq 1,2,3
\end{array}\right\} / \cong
$$

so $Y^{1}(N) \subset A$.

- Tate normal form:

Every $(E, P) \in A(K)$ can uniquely be written as

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}, \quad P=(0,0)
$$

for $B, C \in K$.

- Let $D=\triangle(E) \in \mathbb{Z}[B, C]$.

The ambient space

$$
A(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P) \neq 1,2,3
\end{array}\right\} / \cong
$$

- Tate normal form:

Every $(E, P) \in A(K)$ can uniquely be written as

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}, \quad P=(0,0)
$$

for $B, C \in K$.

- Proof:
$Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$, any P
- Let $D=\Delta(E) \in \mathbb{Z}[B, C]$
- Get $A(K)=\left\{(B, C) \in K^{2}: D \neq 0\right\}$

The ambient space

$$
A(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P) \neq 1,2,3
\end{array}\right\} / \cong
$$

- Tate normal form:

Every $(E, P) \in A(K)$ can uniquely be written as

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}, \quad P=(0,0)
$$

for $B, C \in K$.

- Proof:
$Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$, any P
- translate P to $(0,0)$, then $a_{6}=0$
- Let $D=\Delta(E) \in \mathbb{Z}[B, C]$
- Get $A(K)=\left\{(B, C) \in K^{2}: D \neq 0\right\}$

The ambient space

$$
A(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P) \neq 1,2,3
\end{array}\right\} / \cong
$$

- Tate normal form:

Every $(E, P) \in A(K)$ can uniquely be written as

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}, \quad P=(0,0)
$$

for $B, C \in K$.

- Proof:
$Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X$ 土a6, any $P=(0,0)$
- translate P to $(0,0)$, then $a_{6}=0$
- as $2 P \neq O$, have $a_{3} \neq 0$; do $Y \mapsto Y+a_{4} / a_{3} X$ to make $a_{4}=0$

The ambient space

$$
A(K)=\left\{(E, P): \begin{array}{l}
E / K \text { elliptic curve } \\
P \in E(K), \text { order }(P) \neq 1,2,3
\end{array}\right\} / \cong
$$

- Tate normal form:

Every $(E, P) \in A(K)$ can uniquely be written as

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}, \quad P=(0,0)
$$

for $B, C \in K$.

- Proof:
$Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2} \pm a_{4} X+a_{6}$, any $P=(0,0)$
- translate P to $(0,0)$, then $a_{6}=0$
- as $2 P \neq O$, have $a_{3} \neq 0$; do $Y \mapsto Y+a_{4} / a_{3} X$ to make $a_{4}=0$
- as $3 P \neq O$, have $a_{2} \neq 0$; scale $(X, Y) \mapsto\left(u^{2} X, u^{3} Y\right)$ to make $a_{2}=a_{3}$

The ambient space

- Tate normal form:

Every $(E, P) \in A(K)$ can uniquely be written as

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}, \quad P=(0,0)
$$

for $B, C \in K$.

- Proof:
$Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2} \neq a_{4} X \pm a_{6}$, any $P=(0,0)$
- translate P to $(0,0)$, then $a_{6}=0$
- as $2 P \neq O$, have $a_{3} \neq 0$; do $Y \mapsto Y+a_{4} / a_{3} X$ to make $a_{4}=0$
- as $3 P \neq O$, have $a_{2} \neq 0$; scale $(X, Y) \mapsto\left(u^{2} X, u^{3} Y\right)$ to make $a_{2}=a_{3}$
- Let $D=\Delta(E) \in \mathbb{Z}[B, C]$.
- Get $A(K)=\left\{(B, C) \in K^{2}: D \neq 0\right\}$

The curve $Y^{1}(N)$ is the zero locus of an irreducible $F_{N} \in \mathbb{Z}[B, C]$ (for $N \geq 4$).

Main result

$$
\begin{aligned}
A(K) & =\{(E, P): E / K \text { elliptic curve, } P \in E(K), \operatorname{order}(P) \neq 1,2,3\} / \cong \\
& =\left\{(B, C) \in K^{2}: D \neq 0\right\} \\
A & \supset Y^{1}(N): F_{N}=0
\end{aligned}
$$

- Notation: blah $=\left(\right.$ BLAH $\left.\bmod F_{N}\right)$
- Note $f_{k} \in \mathcal{O}\left(Y^{1}(N)\right)^{\times}$for $k \neq N$. Proof: Polynomials have no poles, and zeroes would be (E, P) where P has order N and k.

Theorem (Conjecture of Derickx and Van Hoeij ≈ 2011)
$\mathcal{O}\left(Y^{1}(N)\right)^{\times} / \mathbb{Q}^{\times}$is freely generated by $b, d, f_{4}, f_{5}, \ldots, f_{[N / 2]+1}$.

Step 1: Division polynomials

- For $E / K: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and $k \in \mathbb{Z}$, the k-th division polynomial of E is

$$
\psi_{k}=k \sqrt{\prod_{\substack{Q \in E[k] \\ Q \neq O}}(x-x(Q))} \in \mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right][x, y] \subset K(E) .
$$

- For all $P \in E(K): \quad \psi_{k}(P)=0 \quad \Longleftrightarrow \quad k P=0$
- Let $P_{k} \in \mathbb{Z}[B, C]$ be $\psi_{k}((0,0))$ for the Tate form
- If $k \geq 4$, then F_{k} is the unique "new" factor of P_{k}

Step 1: Division polynomials

- For $E / K: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and $k \in \mathbb{Z}$, the k-th division polynomial of E is

$$
\psi_{k}=k \sqrt{\prod_{\substack{Q \in E[k] \\ Q \neq O}}(x-x(Q))} \in \mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right][x, y] \subset K(E) .
$$

- For all $P \in E(K): \quad \psi_{k}(P)=0 \quad \Longleftrightarrow \quad k P=0$
- If $k \geq 4$, then F_{k} is the unique "new" factor of P_{k}

Step 1: Division polynomials

- For $E / K: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and $k \in \mathbb{Z}$, the k-th division polynomial of E is

$$
\psi_{k}=k \sqrt{\prod_{\substack{Q \in E[k] \\ Q \neq O}}(x-x(Q))} \in \mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right][x, y] \subset K(E) .
$$

- For all $P \in E(K): \quad \psi_{k}(P)=0 \quad \Longleftrightarrow \quad k P=0$
- Let $P_{k} \in \mathbb{Z}[B, C]$ be $\psi_{k}((0,0))$ for the Tate form

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}
$$

- If $k \geq 4$, then F_{k} is the unique "new" factor of P_{k}

Step 1: Division polynomials

- Let $P_{k} \in \mathbb{Z}[B, C]$ be $\psi_{k}((0,0))$ for the Tate form

$$
E: Y^{2}+(1-C) X Y-B Y=X^{3}-B X^{2}
$$

- If $k \geq 4$, then F_{k} is the unique "new" factor of P_{k}

Theorem
$\mathcal{O}\left(Y^{1}(N)\right)^{\times} / \mathbb{Q}^{\times}$is freely generated by $b, d, p_{4}, \ldots, p_{\lfloor N / 2\rfloor+1}$

Elliptic divisibility sequences and recurrence

Sequences that satisfy

$$
\begin{aligned}
& \psi_{m+n} \psi_{m-n} \psi_{k}^{2}=\psi_{m+k} \psi_{m-k} \psi_{n}^{2}-\psi_{n+k} \psi_{n-k} \psi_{m}^{2}, \\
& \psi_{1} \psi_{2} \psi_{3} \neq 0, \text { and } \\
& m\left|n \Rightarrow \psi_{m}\right| \psi_{n}
\end{aligned}
$$

are called elliptic divisibility sequences.
The 'new' prime factors of a term are called primitive divisors.
$P_{1}, P_{2}, P_{3}, P_{4}, \ldots$ is an elliptic divisibility sequence, and for $N \geq 4$, the term P_{N} has a unique primitive divisor F_{N}, which defines $Y^{1}(N)$.

Special cases of the recursion allow for computation:

$$
\begin{aligned}
\psi_{2 \ell+1} & =\psi_{\ell+2} \psi_{\ell}^{3}-\psi_{\ell+1}^{3} \psi_{\ell-1} \\
\psi_{2 \ell} & =\psi_{2}^{-1} \psi_{\ell}\left(\psi_{\ell+2} \psi_{\ell-1}^{2}-\psi_{\ell-2} \psi_{\ell+1}^{2}\right)
\end{aligned}
$$

Example

$D=B^{3} \cdot\left(C^{4}-8 B C^{2}-3 C^{3}+16 B^{2}-20 B C+3 C^{2}+B-C\right)$
$P_{1}=1$
$P_{2}=(-1) \cdot B$
$P_{3}=(-1) \cdot B^{3}$
$P_{4}=C \cdot B^{5}$
$P_{5}=(-1) \cdot(C-B) \cdot B^{8}$
$P_{6}=(-1) \cdot B^{12} \cdot\left(C^{2}+C-B\right)$
$P_{7}=B^{16} \cdot\left(C^{3}-B^{2}+B C\right)$
$P_{8}=C \cdot B^{21} \cdot\left(B C^{2}-2 B^{2}+3 B C-C^{2}\right)$

- So $Y^{1}(6)$ is given by $F_{6}=C^{2}+C-B=0$, so $b=c(c+1)$
- $\mathcal{O}\left(Y^{1}(6)\right)^{\times}=\mathbb{Q}^{\times} \times\left\langle b, d, p_{4}\right\rangle$
- $\left\langle b, d, p_{4}\right\rangle=\left\langle c(c+1), c^{6}(c+1)^{3}(9 c+1), c^{6}(c+1)\right\rangle=$ $\langle c, c+1,9 c+1\rangle$

Example

$$
D=B^{3} \cdot\left(C^{4}-8 B C^{2}-3 C^{3}+16 B^{2}-20 B C+3 C^{2}+B-C\right)
$$

$$
P_{1}=1
$$

$$
P_{2}=(-1) \cdot B
$$

$$
P_{3}=(-1) \cdot B^{3}
$$

$$
P_{4}=C \cdot B^{5}
$$

$$
P_{5}=(-1) \cdot(C-B) \cdot B^{8}
$$

$$
P_{6}=(-1) \cdot B^{12} \cdot\left(C^{2}+C-B\right)
$$

$$
P_{7}=B^{16} \cdot\left(C^{3}-B^{2}+B C\right)
$$

$$
P_{8}=C \cdot B^{21} \cdot\left(B C^{2}-2 B^{2}+3 B C-C^{2}\right)
$$

- So $Y^{1}(6)$ is given by $F_{6}=C^{2}+C-B=0$, so $b=c(c+1)$
- $\mathcal{O}\left(Y^{1}(6)\right)^{\times}=\mathbb{Q}^{\times} \times\left\langle b, d, p_{4}\right\rangle$
- $\left\langle b, d, p_{4}\right\rangle=\left\langle c(c+1), c^{6}(c+1)^{3}(9 c+1), c^{6}(c+1)\right\rangle=$ $\langle c, c+1,9 c+1\rangle$

Step 2: Complex elliptic curves

- $\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H} by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \tau=\frac{a \tau+b}{c \tau+d}$.

$$
\Gamma^{1}(N)=\left\{A \in \mathrm{SL}_{2}(\mathbb{Z}): A \equiv\left(\begin{array}{ll}
1 & 0 \\
* & 1
\end{array}\right) \bmod N\right\} .
$$

$$
\Gamma^{1}(N) \backslash \mathcal{H} \cong Y^{1}(N)(\mathbb{C})
$$

$$
\tau \quad \mapsto \quad\left(E_{\tau}, P_{\tau}\left(\frac{1}{N} \tau\right)\right)
$$

$$
\text { where } \quad E_{\tau}: y^{2}=4 x^{3}-g_{2}(\tau) x-g_{3}(\tau) \text { and } P_{\tau}(z) \in E_{\tau}(\mathbb{C})
$$

Step 2: Complex elliptic curves

- $\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H} by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \tau=\frac{a \tau+b}{c \tau+d}$.

$$
\Gamma^{1}(N)=\left\{A \in \mathrm{SL}_{2}(\mathbb{Z}): A \equiv\left(\begin{array}{ll}
1 & 0 \\
* & 1
\end{array}\right) \bmod N\right\} .
$$

$$
\Gamma^{1}(N) \backslash \mathcal{H} \cong Y^{1}(N)(\mathbb{C})
$$

$$
\tau \quad \mapsto \quad\left(E_{\tau}, P_{\tau}\left(\frac{1}{N} \tau\right)\right)
$$

where $\quad E_{\tau}: y^{2}=4 x^{3}-g_{2}(\tau) x-g_{3}(\tau)$ and $P_{\tau}(z) \in E_{\tau}(\mathbb{C})$.

- In fact:

$$
\mathcal{O}\left(Y^{1}(N)\right)^{\times} \longleftrightarrow\left\{\begin{array}{l}
\text { holomorphic } f: \Gamma^{1}(N) \backslash \mathcal{H} \rightarrow \mathbb{C}^{*} \\
\text { that are meromorphic at cusps } \\
\text { with } q \text {-expansion coefficients in } \mathbb{Q}
\end{array}\right\}
$$

- Division polynomials on E_{τ} :

Step 2: Complex elliptic curves

- $E_{\tau}: y^{2}=4 x^{3}-g_{2}(\tau) x-g_{3}(\tau)$ and $P_{\tau}(z) \in E_{\tau}(\mathbb{C})$.
- In fact:

$$
\mathcal{O}\left(Y^{1}(N)\right)^{\times} \longleftrightarrow\left\{\begin{array}{l}
\text { holomorphic } f: \Gamma^{1}(N) \backslash \mathcal{H} \rightarrow \mathbb{C}^{*} \\
\text { that are meromorphic at cusps } \\
\text { with } q \text {-expansion coefficients in } \mathbb{Q}
\end{array}\right\}
$$

- Division polynomials on E_{τ} :

$$
\psi_{k, E_{\tau}}\left(P_{\tau}(z)\right)=\sigma_{\tau}(k z) / \sigma_{\tau}(z)^{k^{2}}
$$

- Explicit rewrite between $\left(E_{\tau}, P_{\tau}\left(\frac{1}{N} \tau\right)\right)$ and Tate normal form gives P_{k} as function on $\Gamma^{1}(N) \backslash \mathcal{H}$.

Step 2: Complex elliptic curves

- For $a \in \mathbb{Q} \cap\left(0, \frac{1}{2}\right]$ define the Siegel function $h_{(a, 0)}$ by

$$
\begin{gathered}
h_{(a, 0)}(\tau)=i q^{\frac{1}{2}\left(a^{2}-a+\frac{1}{6}\right)}\left(1-q^{a}\right) \prod_{n=1}^{\infty}\left(1-q^{n+a}\right)\left(1-q^{n-a}\right), \\
\text { with } \quad q=\exp (2 \pi i \tau)
\end{gathered}
$$

- Then

$$
\left\langle-b, d, p_{4}, \ldots, p_{\lfloor N / 2\rfloor+1}\right\rangle \subset\left\langle h_{(k / N, 0)}: k=1, \ldots,\lfloor N / 2\rfloor\right\rangle
$$

- Notation: $m=\lfloor N / 2\rfloor$ Notation: for $e \in \mathbb{Z}^{m}$, let $h^{e}=\prod_{k=1}^{m} h_{(k / N, 0)}^{e_{k}}$

Step 2: Complex elliptic curves

- For $a \in \mathbb{Q} \cap\left(0, \frac{1}{2}\right]$ define the Siegel function $h_{(a, 0)}$ by

$$
\begin{gathered}
h_{(a, 0)}(\tau)=i q^{\frac{1}{2}\left(a^{2}-a+\frac{1}{6}\right)}\left(1-q^{a}\right) \prod_{n=1}^{\infty}\left(1-q^{n+a}\right)\left(1-q^{n-a}\right), \\
\text { with } \quad q=\exp (2 \pi i \tau)
\end{gathered}
$$

- Then

$$
\left\langle-b, d, p_{4}, \ldots, p_{\lfloor N / 2\rfloor+1}\right\rangle \subset\left\langle h_{(k / N, 0)}: k=1, \ldots,\lfloor N / 2\rfloor\right\rangle
$$

- Notation: $m=\lfloor N / 2\rfloor$

Notation: for $e \in \mathbb{Z}^{m}$, let $h^{e}=\prod_{k=1}^{m} h_{(k / N, 0)}^{e_{k}}$

- Let $T=\left\{e \in \mathbb{Z}^{m}: \quad \sum_{k} k^{e^{2} e_{k} \in 12 \mathbb{Z},} \operatorname{gcd}(N, 2) N \mathbb{Z}\right\}$.
- Then $\left\langle-b, d, p_{4}, \ldots, p_{\lfloor N / 2\rfloor+1}\right\rangle=\left\{h^{e}: e \in T\right\}$.

Overview

[case $N \geq 4$ odd]

- $T=\left\{e \in \mathbb{Z}^{m}: \quad \sum_{k} e_{k} e_{k} \in 12 \mathbb{Z}, \quad, \quad k^{2} e_{k} \in \operatorname{gcd}(N, 2) N \mathbb{Z}\right\}$
- Main theorem is equivalent to bijectivity of

$$
T \rightarrow \mathcal{O}\left(Y^{1}(N)\right)^{\times} / \mathbb{Q}^{\times}: e \mapsto h^{e} .
$$

Steps:
3 injective with finite cokernel, so all $f \in \mathcal{O}\left(Y^{1}(N)\right)^{\times}$are uniquely of the form $c h^{e}$ with $e \in \mathbb{Q}^{m}$.
$4 h^{e} \in \mathcal{O}\left(Y^{1}(N)\right)^{\times} \Rightarrow e \in \mathbb{Z}^{m}$.
$5 h^{e} \in \mathcal{O}\left(Y^{1}(N)\right)^{\times} \Rightarrow$ the congruences
Steps 3 and 4 are inspired by Kubert-Lang who treat $\mathcal{O}\left(Y(N)_{\mathbb{C}}\right)^{\times}$ up to power-of-2 index.

Step 3: Injective with finite cokernel

- $T \rightarrow \mathcal{O}\left(Y^{1}(N)\right)^{\times} / \mathbb{Q}^{\times}$
- $\operatorname{rank}($ codomain $) \leq \# \frac{\{\text { cusps }\}}{\text { Gal(} \mathbb{Q} / \mathbb{Q})}-1=\lfloor N / 2\rfloor=\operatorname{rank}$ (domain) so injectivity is enough
- We show that if $e \neq 0$, then $h^{e} \notin \mathbb{Q}^{\times}$.
- Take k_{0} minimal with $e_{k_{0}} \neq 0$.
- Divide by leading terms, that is,

Step 3: Injective with finite cokernel

$[N \geq 4$ odd]

- $T \rightarrow \mathcal{O}\left(Y^{1}(N)\right)^{\times} / \mathbb{Q}^{\times}$
- $\operatorname{rank}($ codomain $) \leq \# \frac{\{\text { cusps }\}}{\text { Gal(Q) } \mathbb{Q})}-1=\lfloor N / 2\rfloor=\operatorname{rank}($ domain $)$ so injectivity is enough
- We show that if $e \neq 0$, then $h^{e} \notin \mathbb{Q}^{\times}$.
- Take k_{0} minimal with $e_{k_{0}} \neq 0$.
- Divide by leading terms, that is,

$$
h_{(a, 0)}^{*}=\left(1-q^{a}\right) \prod_{n=1}^{\infty}\left(1-q^{n+a}\right)\left(1-q^{n-a}\right)=1-q^{a}+O\left(q^{1-a}\right)
$$

- Then $\left(h^{e}\right)^{*}=1-e_{k_{0}} q^{k_{0} / N}+O\left(q^{\left(k_{0}+1\right) / N}\right) \neq 1$, so $h^{e} \notin \mathbb{Q}^{\times}$

Steps 4 and 5

[N odd]

Step 4:

- Combine the above with Gauss' lemma for power series with bounded denominators, and the fact that cusp forms have q-expansions with bounded denominators.
- This gives $e \in \mathbb{Z}^{m}$.

Step 5:

- Explicit action of $\left(\begin{array}{cc}1 & N \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \in \Gamma^{1}(N)$
- This gives congruences on e.

Summary

Conclusion: $\mathcal{O}\left(Y^{1}(N)\right)^{\times}$is $\mathbb{Q}^{\times} \times S$, where S is

- $\left\langle-b, d, f_{4}, \ldots, f_{\lfloor N / 2\rfloor+1}\right\rangle \quad$ (defining equations of $Y^{1}(k)$)
- $\left\langle-b, d, p_{4}, \ldots, f_{\lfloor N / 2\rfloor+1}\right\rangle \quad$ (terms of a recurrent sequence)
- $\left\{\prod_{k=1}^{\lfloor N / 2\rfloor} h_{(k / N, 0)}^{e_{k}}: \begin{array}{rl}e & \in \mathbb{Z}^{\lfloor N / 2\rfloor}, \\ \sum_{k} e_{k} & \in 12 \mathbb{Z}, \\ \sum_{k} k^{2} e_{k} & \in \operatorname{gcd}(N, 2) N \mathbb{Z}\end{array}\right\}$
(Siegel functions)
Proof:
1 Connect F_{k} to elliptic divisibility sequence P_{k}
2 Transformation between E_{τ} and Tate normal form (using some tricks not in talk)
3/4 Use q-expansions and Gauss' lemma (inspired by Kubert-Lang, but simpler and stronger)
5 Explicit action of $\Gamma^{1}(N)$

Work in progress

- $Y(N)$ and elliptic nets (almost finished)
- $Y^{0}(N)$ and class invariants
- moduli of abelian varieties: Hilbert/Siegel modular forms

