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Summary

Consider a subgroup Γ of Γ(1) = SL(2, Z) of finite index. We will derive a
formula for the genus of the modular curve X(Γ), and a formula for the dimensions
of the spaces of modular forms of weight k for such a group, where k ∈ Z. This is
done by establishing an isomorphism of vector spaces between the set of these forms
and the sections of certain line bundles on the associated modular curve. These
formulae depend only on very simple parameters of these groups. We will give a
conceptual reason for this. For a concrete set of examples, namely Γ = Γ1(N),
explicit calculations are provided. Finally, generalizations of the classical theory
are briefly mentioned.

Note that all our techniques also apply for non-congruence subgroups of SL(2, Z):
at this point, the theory for these groups is still the same as for congruence sub-
groups (this will change with the appearance of Hecke operators).

Notation

For a discrete group Γ in SL(2, R), we denote the compactification of the alge-
braization of the Riemann surface Γ\H by X(Γ).

The elliptic points of Γ\H are the branch points of the map H → Γ\H. Equiva-
lently, they are the image under this map of the points in H with non-trivial stabi-
lizer. The order of an elliptic point is the order of the stabilizer in PΓ ⊂ PSL(2, R),
which is the same as the ramification index of the map H → Γ\H in any element of
the fiber of the elliptic point.

The parabolic points of are the points added in the process of compactification,
that is, the points of X(Γ) not already in Γ\H. Careful consideration of this process
reveals that these correspond to the set of orbits Γ\P1

Q (see [3] for this). The set
of these points can be visualized as the intersection of the closure of a fundamental
domain with P1(R). A fixed cusp can be sent to ∞ by an SL(2, R)-transformation,
so let us suppose that it in fact equals infinity. The stabilizer of this point in PΓ is

then of the form
〈(

1 h
0 1

)〉
. This h is called the width of the cusp: it can also

be interpreted as the ramification index of the map X(Γ) → X(1) for the cusp in
question. Around such a cusp at infinity, a local coordinate is given by τ 7→ e2πiτ/h.
This maps a neighborhood of this cusp in the fundamental domain isomorphically
to the punctured disc D∗.

1. The curve X(Γ) as a covering of X(1); genus

Recall the following theorem:
1
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Theorem 1.1 (Riemann-Hurwitz-Zeuthen-?). Let f : X → Y be a non-constant
morphism of curves over C of degree n. Then the number of points at which f
ramifies is finite, and we have

2g(X)− 2 = (2g(Y )− 2)n +
∑
x∈X

ex(f),

denoting the ramification index at a point x ∈ X by ex(f).

Proof. This theorem is true for more general schemes, but over C there is a very
simple proof: triangulate Y , making sure that the branch points of f are included
among the vertices of the triangularization, then take the inverse image of this
triangulation under f and compare to get the formula. �

The first step to deriving our formula is to determine the genus of the modular
curve X(Γ). The inclusion PΓ ⊂ PSL(2, Z) gives a natural map

X(Γ)
fΓ−→ X(1)

of modular curves, of degree [PΓ(1) : PΓ] =: n say.
Now the remarkable fact is the for the modular covering above, we can determine

the ramification indices if we know

(1) the number and orders of the elliptic points of Γ;
(2) the number of parabolic points.

Indeed, consider the diagram below.

H

}}||
||

||
||

""FF
FF

FF
FF

F

Γ\H // Γ(1)\H

The morphism H → Γ(1)\H ramifies above two points only, namely the elliptic
point P2 of order 2 and the elliptic point P3 of order 3. This means that the
morphism Γ\H → Γ(1)\H also ramifies only above these two points. One also sees
that the elliptic points of Γ have order either 2 or 3, and that if they have order i,
they lie in the fiber of Pi. Moreover, a point in the fiber of Pi is unramified under
this morphism if and only if it is elliptic of order i itself: otherwise it ramifies of
order exactly i. So if we slightly abuse notation by denoting the number of elliptic
points of order i by ei, we have∑

x∈Γ\H

ex(fΓ) =
∑

x∈f−1
Γ (P2)

ex(fΓ) +
∑

x∈f−1
Γ (P3)

ex(fΓ) =
n− e2

2
+

2(n− e3)
3

.

Note that the argument above hinges on the facts that (1) the elliptic points of
fixed order for Γ(1) are unique, and (2) the only occuring orders are prime. These
certainly hold true for Γ(1), but or course they do not for more general Γ.

So we know the ramification behavior of X(Γ) → X(1) above all points except
the cusp of X(1). However, for that point we know the cardinality of the fiber,
because it equals the number of parabolic points. This allows us to determine the
remaining sum

∑
x∈f−1

Γ (cusp) ex(fΓ), (it equals n− c), and one obtains:
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Theorem 1.2. Let Γ be a finite index subgroup of Γ(1) = SL(2, Z). Set n =
[PΓ(1) : PΓ], let c be the number of cusps of Γ, and for i ∈ {2, 3}, let ei equal the
number of elliptic points of order i. Then we have

g(X) = 1 +
n

12
− e2

4
− e3

3
− c

2
.

2. From meromorphic modular forms to rational differential forms

This section will show another interpretations of meromorphic modular forms of
even weight k. Recall that these were meromorphic functions f on H∪P1

Q satisfying
the transformation rule

f(
(

a b
c d

)
τ) = (cτ + d)kf(τ).

The action of SL(2, R) on H induces an action of SL(2, R) on the sheaf of meromor-
phic differential forms on H. The form dτ transforms by the rule(

a b
c d

)∗

dτ = (cτ + d)−2dτ.

Since meromorphic differential k/2-form can be written as fdτ⊗k/2 for a unique
meromorphic function f on H, this means that the meromorphic modular forms of
weight k correspond exactly to k/2-fold meromorphic differentials invariant under
the action of Γ. In turn, these can be identified with the rational differential forms
on the algebraic curve X(Γ) (some work is needed to prove this near cusps and
elliptic points as well). So:

Theorem 2.1. Let Γ ⊂ (P)SL(2, R) be discrete, and let k ∈ Z be even. Denote by
Mmer

k (Γ) the meromorphic modular functions of weight k with respect to Γ, and by
(Ωrat)⊗k/2(X(Γ)) the k/2-fold rational differential forms on X(Γ). Then the map

Mmer
k (Γ) −→ (Ωrat)⊗k/2(X(Γ)) ∼= K ⊗ Ω⊗k/2(X(Γ))
f 7−→ fdτ⊗k/2

defines a natural isomorphism of vector spaces.

3. Riemann-Roch; dimension

In this paragraph, we again consider finite index subgroups of Γ(1). We will
show that, like the genus of X(Γ), the dimensions mk of the vector spaces Mn(Γ)
of Γ-modular forms of weight k only depend on e2, e3, c, n and k (at least for even
k, for odd k, there is a tiny snag). For this, we use the following

Theorem 3.1 (Riemann-Roch). Let X be a complex curve of genus g. Define the
following spaces for a divisor D:

L(D) := {f rational on X | div(f) + D ≥ 0}.
and set

l(D) := dimL(D).
Let K be ”the” canonical divisor on K (that is, the divisor of some non-zero 1-
form). Then one has

l(D)− l(K −D) = deg D + 1− g.

This implies deg K = 2g − 2.
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Theorem 3.2. Let k ∈ Z be even. If k > 0, we have

mk(Γ) = (k − 1)(g − 1) +
k

2
c + bk

4
ce2 + bk

3
ce3.

Additionally, m0(Γ) = 1, and mk(Γ) is zero for k < 0.

Proof. We have already seen that rational k/2-fold differential forms on X(Γ) cor-
respond to meromorphic modular forms of weight k. All that remains is a more
precise analysis of the relations between the order of a modular form f at a cer-
tain point x and the order of the corresponding differential form fdz⊗k/2 pushed
forward to X(Γ) at the image of x.

By considering the projection morphism πΓ : H → Γ\H locally around x, one
sees that

ordx(f) = ex(πΓ)ordπΓ(x)(fdτ⊗k/2) +
k

2
(ex(πΓ)− 1).

For the cusps, we have

ordx(f) = ordπΓ(x)(fdτ⊗k/2) +
k

2
.

This follows because the local parameters q(τ) = exp(2πiτ/h) from H ∪ P1
Q to D

used in the compactification have the property dq = const · qdτ : because of the
factor q, the orders of n-forms are increased by n under this map.

Our search, then, is for rational n-fold differentials ω on X(Γ) with the following
property:

ex(πΓ)ordx(ω) + k
2 (ex(πΓ)− 1) ≥ 0 for x ∈ Γ\H

ordx(ω) + k
2 ≥ 0 for x a cusp

.

If we fix some rational k/2-fold differential ω0, then any such ω can be written
as ω = hω0 for a unique rational function h. In terms of h, the above demands on
ω are equivalent to

ordx(h) + ordx(ω0) + k
2 (1− 1

ex(πΓ) ) ≥ 0 for x ∈ Γ\H
ordx(h) + ordx(ω0) + k

2 ≥ 0 for x a cusp
.

So we should have div(h) + D ≤ 0, where D is the integral divisor

D = div(ω0) +
∑

x a cusp

k

2
x +

∑
x∈Γ\H

bk
2
(1− 1

ex(πΓ)
c.

Now we use Riemann-Roch. One sees that, because Γ has a cusp, the l(K −D)
part disappears because the degree of K − D is strictly negative, and after some
calculation, we obtain our formula.

M0(Γ) corresponds to the ring of regular functions on X(Γ), and these consist
of the constants only.

We now quickly see that there are no non-trivial modular forms of even weight
smaller than zero. Indeed, consider a form f of weight −k say. Then take any
non-trivial form g of positive weight l say with a zero. Then, on the one hand the
modular form f lgk should be constant, whereas on the other hand it should have
a zero. This means that it is zero. So f should be zero anywhere that g is not, so
almost everywhere: hence it is zero itself. �

Remark With some extra effort, one can also calculate the dimensions of the
spaces of cusp forms. Exercise: note that S2(Γ) is isomorphic to Ω(X(Γ)).
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Remark The theorem generalizes quite easily to more general discrete subgroups
of (P)SL(2, R). In [4], page 45, this general form is given, even though Milne’s
preamble suggest that only Γ of finite index in Γ(1) are considered. Sadly, the
proof there is wrong (one needs to assume that Γ has a cusp, or enough elliptic
points): a correct proof is given in [2].

The next step is to calculate the dimensions of the spaces of modular forms with
odd weight. These spaces are non-trivial only if −1 /∈ Γ. For such Γ, there are no
elliptic points of order 2.

There is a technicality that has to be dealt with here, namely the concept of an
irregular cusp. By definition of the width h of a cusp c, the stabilizer of c in PΓ

is conjugate to some group
〈(

1 h
0 1

)〉
. Now the stabilizer in Γ might be of the

form
〈
−

(
1 h
0 1

)〉
. Using the functional equation and developing f in a Fourier

series in the local parameter q = exp 2πiτ/h, we see that f has strictly half-integral
zero order at such a cusp. If this occurs, the cusp c is called irregular. If the
stabilizer in Γ has any other form, the problem just mentioned does not occur, the
order of f at the cusp is always integral, and the cusp c is called regular.

Our argument will depend on the existence of a non-zero meromorphic modular
form for Γ. Such a form exists. Indeed, there always exists a form in Mmero

1 (Γ) as
long as −I /∈ Γ. The reason for this as follows. Take a non-zero ω in Ω(X(Γ)), and
let x in X(Γ). Then div(ω)− 2(g− 1)x defines an element of the Jac(X(Γ)). Since
this is a complex torus, there exists a degree zero divisor D and a rational function
f on X(Γ) such that

2D = div(ω)− 2(g − 1)x + div(f).

The differential form fω corresponds to a modular form g, which one can check has
even order at any point of H. Let g1 be a function such that g2

1 = g. Because g is
invariant of weight 2 with respect to Γ, g1 is a modular form of weight 1 with respect
to a subgroup Γ1 of Γ of index at most 2: the action of the complement of this
subgroup will transform g1 into −g1. If this index is 1, we are done; otherwise, PΓ1

is also of index 2 in PΓ because −I /∈ Γ. Then the rational function field of X(Γ)
also has index 2 in that of X(Γ1). By Galois theory, there is some rational function
g2 on X(Γ1) such that g1g2 is invariant with respect to Γ. Indeed, this works if we
choose g2 such that the Galois group of the inclusion acts as multiplication by −1.

Now for a nice theorem.

Theorem 3.3. Denote by cr respectively ci the number of regular respectively ir-
regular cusps of Γ. Then for k ∈ Z≥3 odd we have

mk(Γ) = (k − 1)(g − 1) + bk
3
ce3 +

k

2
cr +

k − 1
2

ci.

Furthermore, mn(Γ) is zero for n < 0. Finally, we have m1(Γ) ≥ cr/2.

Proof. (Sketch) A similar argument to the one used in the previous theorem shows
mn(Γ) = l(bdiv(f)c), where f is an arbitrary meromorphic modular form for Γ.
Note that div(f) is not necessarily an integral divisor: it might take rational val-
ues at the elliptic points and the irregular cusps. We do know that f2 defines a
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differential form ω on X(Γ), and one easily sees that

div(f) =
1
2
div(ω) +

∑
x∈Γ\H

n(1− 1
ex(πΓ)

)x +
∑

ci regular

n

2
ci +

∑
c′i irregular

n

2
c′i.

(Note the abuse of notation.) One now has to take the entier of this divisor. The
difference between the regular and the irregular cusps is the following. At the
regular cusps, div(f) is integral, so at those points, the valuation of div(f) does
not change under taking the entier. In contrast to this, at the irregular cusps the
divisor div(f) has a value in (1/2) + Z, so taking the entier decreases the valuation
by 1/2 at such a cusp. Finally, since all elliptic points have odd order, the valuation
of div(ω) at those points is even, so we need not round down that part of div(f).
Using this, one finds

bdiv(f)c =
1
2
div(ω) +

∑
x∈Γ\H

bn(1− 1
ex(πΓ)

)cx +
∑

ci regular

n

2
ci +

∑
c′i irregular

n− 1
2

c′i.

Applying Riemann-Roch gives the result. The other two statements of the theorem
are simpler. �

Remark Note that the theorem implies that the number of regular cusps is
always even.

Remark This result, too, can be generalized to other discrete subgroups of
SL(2, R).

For a less ad hoc treatment of the results in this paragraph, see [2].

4. The case Γ = Γ1(N)

In this section, following [2], we will apply the previous theory to Γ = Γ1(N).
Few books mention these formulae: the reason for this is that the group Γ0(N) is
more interesting for the modularity theorem: the calculations for these groups are
already in [5].

First the degree of X1(N) → X(1). The covering X(N) → X(1) has is Galois
with group SL(Z/NZ). Since PΓ1(N) has index N in PΓ(N), this means that

deg(X1(N) → X(1)) =
|SL(Z/NZ)|

N
=

{ 1
2N2

∏
p|N (1− 1

p2 ) for N > 2
6 for N = 2

As for the elliptic points, we know that Γ(1) has unique elliptic points of order 2
and 3. The stabilizers of lifts of these elements are therefore all conjugate. The
non-trivial elements of the stabilizers have trace 0 for the order 2 points, and trace
in {±1} for the order 3 points. Elliptic points for Γ1(N) project to elliptic points
for Γ(1). But for N > 3, no elements of Γ1(N) can have trace in {−1, 0, 1}. Hence
for N > 3, Γ1(N) has no elliptic points. For N = 2 and N = 3, there turns out
to be only one elliptic point, of order 2 and 3, respectively; all non-trivial elliptic

elements are conjugate to
(

1 −1
2 −1

)
and

(
1 1
−3 −2

)
, respectively, although

this is not extremely easy to see.
The cusps are in bijection with the orbit space Γ1(N)\P1

Q. One checks that

a

c
∼Γ1(N)

a′

c′
⇔

(
a
c

)
≡ ±

(
a′

c′

)
mod N.
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For N = 2 and N = 3 this gives 2 cusps, for N = 4 it gives 4, and for bigger N the
number of cusps equals 1

2

∑
d|N ϕ(d)ϕ(N/d). Now to see which of these cusps are

regular. Irregularity at a cusp a/c can only occur if, after choosing some element α

of SL(2, Z) sending ∞ to a
c , we have α−1Stab(a

c )α =
〈
−

(
1 h
0 1

)〉
, where h is

the width of the cusp: only then does the cardinality of the stabilizer equal twice
the width of the cusp. Looking at the trace, we see that for an irregular cusp to
occur, we need N |4. If N = 2, then −I ∈ Γ1(N) so that we have regularity, and if
N = 4, there is one irregular cusp 1

2 .
In principle, we can plug in these values to obtain all the information about

modular forms for Γ1(N) that we might want to know. Figures 3.3 and 3.4 in [2]
summarize all that is known: they are not copied here.

5. Generalizations; volume

One can ask oneself whether for general discrete subgroups of (P)SL(2, R), there
are formulae similar to those in Theorems 1.2, 3.2 and 3.3. The author is not aware
of the existence of such formulae in general. However, there is a class of subgroups of
SL(2, R) that are very interesting and for which such formulae are available. These
are the so-called rational arithmetic subgroups. These are more or less obtained by
replacing SL(2, Z) by a maximal order in a quaternion algebra over Q that injects
into M(2, R). Such an algebra has a discriminant D: the case SL(2, Z) corresponds
to discriminant 1. For any D, there is a natural analogue XD

0 (N) of the classical
modular curve X0(N), and its genus is given by

g(XD
0 (N)) = 1 +

∏
p|D(p− 1)

∏
q|N (q + 1)

12
− e2

4
− e3

3
− c

2
.

Furthermore, the ei allow expressions in terms of certain class numbers of the
quaternion algebra B. Note the similarity with our genus formula. This formula
can most naturally be established using theorems on reduction of of Deligne and
Rapoport. For an overview of this subject, see the notes on Shimura curves at [1].

Formulae for the dimensions of the spaces of modular forms can also be derived
in this case, at least for k big enough. For N = 1, these functions do not have
q-expansions anymore, because this time, XD(1) does not have any cusps!

The most general genus formula is

g(X(Γ)) = 1 +
1
4π

V (Γ)−
∑
n∈N

n− 1
n

en

2
− c

2
,

where V (Γ) is the hyperbolic area of a fundamental domain for Γ: this value is
in general hard to determine. Again, note the similarities with our previous genus
formula.
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