
QUADRATIC FORMS AND THETA FUNCTIONS

Abstract. My notes for a talk on modular forms given on October 10, 2007
in Leiden.

Introduction

The following two facts about modular forms are not at all clear from the defi-
nition:

(1) Modular forms exist;
(2) dimMk(Γ) is finite.

In fact, a stronger version of (1) is true: interesting modular forms exist. Think
of those forms associated with elliptic curves over Q, Galois representations, certain
partition functions, and–and this is the topic of this talk–with integral quadratic
forms.

The linear pigeon hole principle states that if n+ 1 pigeons flock together in an
n-dimensional vector space, then they satisfy a linear relation. In this talk we will
find 4 interesting modular forms, elements of the same 3-dimensional vector space.

1. θ(z)8 ∈M4(Γ0(4))

Define the following function of q = exp(2πiz):

θ(z) :=
∑
d∈Z

qd2
= 1 + 2q + 2q4 + 2q9 + 2q16 + 2q25 + · · ·

Proposition. θ(z/(4z + 1)) =
√

4z + 1 · θ(z)
Lemma (Poisson summation). φ : R → C continuous and rapidly decreasing, put

φ̂ : R → C : t 7→ φ̂(t) :=
∫ ∞

−∞
φ(x) exp(−2πitx)dt

its Fourier transform, then
∑

n∈Z φ(n) =
∑

k∈Z φ̂(k).

Proof of the Lemma. The proof is easy. Define ψ(x) :=
∑

n∈Z φ(x+n). Then ψ(x)
is periodic hence has a Fourier series expansion:

ψ(x) =
∑
k∈Z

ck exp(2πikx) where ck :=
∫ 1

0

ψ(x) exp(−2πikx)dx.

Now we have:∑
n∈Z

φ(n) = ψ(0) =
∑
k∈Z

ck =
∑
k∈Z

∫ 1

0

ψ(x) exp(−2πikx)dx

=
∑
k∈Z

∫ ∞

−∞
φ(x) exp(−2πikx)dx

=
∑
k∈Z

φ̂(k)
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Proof of the Proposition. Take φ(x) = e−2πizx2
. This is ‘rapidly decreasing’ if the

imaginary part of z is positive. Then φ̂(t) = (−2iz)−1/2e−πit2/2z. (Recall that
e−πx2

is its own Fourier transform.) Poisson summation gives∑
n

e−2πizn2
= (−2iz)−1/2

∑
k

e−πik2/2z

or in other words:
θ(z) = (−2iz)−1/2θ(−1/4z).

This gives the transformation behavior for z 7→ −1/4z. Together with the invari-
ance under z 7→ z + 1 we can calculate the transformation behavior for

z 7→ −1
4z

7→ −1− 4z
4z

7→ z

4z + 1
and verify the correctness of the Proposition. �

The transformations z 7→ z + 1 and z 7→ z
4z+1 generate the group Γ0(4), so it

follows that:

Proposition. θ(z)8 ∈M4(Γ0(4))

We have
θ(z)8 = 1 + 16q + 112q2 + 448q3 + 1136q4 + · · ·

where the coefficient of qn is of course the number of vectors of length square root
of n in the standard eight dimensional lattice.

2. Three More Elements of M4(Γ0(4))

They are:

G4(z) =
1

240
+

∑
n>0

σ3(n)qn =
1

240
+ q + 9q2 + 28q3 + 73q4 + · · ·

G4(2z) =
1

240
+ q2 + 9q4 + · · ·

G4(4z) =
1

240
+ q4 + · · ·

3. dimC M4(Γ0(4)) = 3

See the picture of the fundamental domain. The quotient Y (Γ) of H by Γ0(4)
has genus 0 and three cusps. Also, the quotient is a free quotient by PΓ0(4) =
Γ0(4)/{±1}, i.e. there are no elliptic points. (In fact, the group PΓ0(4) is torsion-
free, for if it would contain some nontrivial torsion element ±γ then the trace of γ
would be 0 or ±1, but traces of elements of Γ0(4) are 2 modulo 4.)

(From the freeness it follows that PΓ0(4) is the fundamental group of the Rie-
mann sphere minus three points: a free group on two generators.)

The freeness of the action is not in contradiction with the fact that Y (Γ0(4))
does not carry a universal elliptic curve: elliptic curves with Γ0(4)-structure still
have the nontrivial automorphism −1.

Proposition. dimM4(Γ0(4)) = 3.
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We could of course just plug in the details into the big formula giving the dimen-
sion of a space of modular forms, but that formula is one that I cannot remember.
It is the method by which it is deduced rather that I can remember.

Sketch of proof. We identify M4 with a subset of the set of meromorphic invariant
forms of degree 2 on H:

M4(Γ0(4)) = {f ∈ A4(Γ0(4)) : vP (f) ≥ 0 and vC(f) ≥ 0}
= {ω : vP (f) ≥ 0 and vC(f) ≥ −2}
= {hω0 : div(h) ≥ −2s1 − 2s2 − 2s3 − div(ω0)}
= {h : div(h) ≥ D}

for some D of degree −2. (Note that the degree of the divisor of a differential
1-form on the Riemann sphere is −2, hence that the degree of the divisor of any
degree 2 form ω0 is −4).

Since on the projective line all divisors of same degree are equivalent, we can
take D to be −2∞ and we get the space of polynomials of degree at most 2, which
is of dimension 3. �

4. An Elementary Solution of the Eight Squares Problem

The eight squares problem is the problem of finding the number of vectors of
square length n in the lattice Z8. An elementary solution is one that uses only the
five fundamental operations of arithmetic: addition, subtraction, multiplication,
division and modular form (Eichler.)

Theorem. θ(z)8 = 16G4(z)− 32G4(2z) + 256G4(4z).

Proof. Apply the linear pigeon hole principle. �


