QUADRATIC FORMS AND THETA FUNCTIONS

ABSTRACT. My notes for a talk on modular forms given on October 10, 2007 in Leiden.

Introduction

The following two facts about modular forms are not at all clear from the definition:

- (1) Modular forms exist;
- (2) dim $M_k(\Gamma)$ is finite.

In fact, a stronger version of (1) is true: interesting modular forms exist. Think of those forms associated with elliptic curves over Q, Galois representations, certain partition functions, and-and this is the topic of this talk-with integral quadratic forms.

The linear pigeon hole principle states that if n+1 pigeons flock together in an n-dimensional vector space, then they satisfy a linear relation. In this talk we will find 4 interesting modular forms, elements of the same 3-dimensional vector space.

1.
$$\theta(z)^8 \in M_4(\Gamma_0(4))$$

Define the following function of $q = \exp(2\pi i z)$:

$$\theta(z) := \sum_{d \in \mathbb{Z}} q^{d^2} = 1 + 2q + 2q^4 + 2q^9 + 2q^{16} + 2q^{25} + \cdots$$

Proposition. $\theta(z/(4z+1)) = \sqrt{4z+1} \cdot \theta(z)$

Lemma (Poisson summation). $\phi : \mathbb{R} \to \mathbb{C}$ continuous and rapidly decreasing, put

$$\hat{\phi}: \mathbb{R} \to \mathbb{C}: t \mapsto \hat{\phi}(t) := \int_{-\infty}^{\infty} \phi(x) \exp(-2\pi i t x) dt$$

its Fourier transform, then $\sum_{n\in\mathbb{Z}} \phi(n) = \sum_{k\in\mathbb{Z}} \hat{\phi}(k)$.

Proof of the Lemma. The proof is easy. Define $\psi(x) := \sum_{n \in \mathbb{Z}} \phi(x+n)$. Then $\psi(x)$ is periodic hence has a Fourier series expansion:

$$\psi(x) = \sum_{k \in \mathbb{Z}} c_k \exp(2\pi i kx)$$
 where $c_k := \int_0^1 \psi(x) \exp(-2\pi i kx) dx$.

Now we have:

$$\sum_{n \in \mathbb{Z}} \phi(n) = \psi(0) = \sum_{k \in \mathbb{Z}} c_k = \sum_{k \in \mathbb{Z}} \int_0^1 \psi(x) \exp(-2\pi i k x) dx$$
$$= \sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} \phi(x) \exp(-2\pi i k x) dx$$
$$= \sum_{k \in \mathbb{Z}} \hat{\phi}(k)$$

Proof of the Proposition. Take $\phi(x) = e^{-2\pi izx^2}$. This is 'rapidly decreasing' if the imaginary part of z is positive. Then $\hat{\phi}(t) = (-2iz)^{-1/2}e^{-\pi it^2/2z}$. (Recall that $e^{-\pi x^2}$ is its own Fourier transform.) Poisson summation gives

$$\sum_{n} e^{-2\pi i z n^{2}} = (-2iz)^{-1/2} \sum_{k} e^{-\pi i k^{2}/2z}$$

or in other words:

$$\theta(z) = (-2iz)^{-1/2}\theta(-1/4z).$$

This gives the transformation behavior for $z \mapsto -1/4z$. Together with the invariance under $z \mapsto z+1$ we can calculate the transformation behavior for

$$z \mapsto \frac{-1}{4z} \mapsto \frac{-1 - 4z}{4z} \mapsto \frac{z}{4z + 1}$$

and verify the correctness of the Proposition.

The transformations $z\mapsto z+1$ and $z\mapsto \frac{z}{4z+1}$ generate the group $\Gamma_0(4)$, so it follows that:

Proposition. $\theta(z)^8 \in M_4(\Gamma_0(4))$

We have

$$\theta(z)^8 = 1 + 16q + 112q^2 + 448q^3 + 1136q^4 + \cdots$$

where the coefficient of q^n is of course the number of vectors of length square root of n in the standard eight dimensional lattice.

2. Three More Elements of $M_4(\Gamma_0(4))$

They are:

$$G_4(z) = \frac{1}{240} + \sum_{n>0} \sigma_3(n)q^n = \frac{1}{240} + q + 9q^2 + 28q^3 + 73q^4 + \cdots$$

$$G_4(2z) = \frac{1}{240} + q^2 + 9q^4 + \cdots$$

$$G_4(4z) = \frac{1}{240} + q^4 + \cdots$$

3.
$$\dim_{\mathbb{C}} M_4(\Gamma_0(4)) = 3$$

See the picture of the fundamental domain. The quotient $Y(\Gamma)$ of H by $\Gamma_0(4)$ has genus 0 and three cusps. Also, the quotient is a *free* quotient by $P\Gamma_0(4) = \Gamma_0(4)/\{\pm 1\}$, *i.e.* there are no elliptic points. (In fact, the group $P\Gamma_0(4)$ is torsion-free, for if it would contain some nontrivial torsion element $\pm \gamma$ then the trace of γ would be 0 or ± 1 , but traces of elements of $\Gamma_0(4)$ are 2 modulo 4.)

(From the freeness it follows that $P\Gamma_0(4)$ is the fundamental group of the Riemann sphere minus three points: a free group on two generators.)

The freeness of the action is *not* in contradiction with the fact that $Y(\Gamma_0(4))$ does not carry a universal elliptic curve: elliptic curves with $\Gamma_0(4)$ -structure still have the nontrivial automorphism -1.

Proposition. dim $M_4(\Gamma_0(4)) = 3$.

We could of course just plug in the details into the big formula giving the dimension of a space of modular forms, but that formula is one that I cannot remember. It is the method by which it is deduced rather that I can remember.

Sketch of proof. We identify M_4 with a subset of the set of meromorphic invariant forms of degree 2 on \mathbb{H} :

```
\begin{array}{lcl} M_4(\Gamma_0(4)) & = & \{f \in \mathbb{A}_4(\Gamma_0(4)) : v_P(f) \geq 0 \text{ and } v_C(f) \geq 0\} \\ & = & \{\omega : v_P(f) \geq 0 \text{ and } v_C(f) \geq -2\} \\ & = & \{h\omega_0 : \operatorname{div}(h) \geq -2s_1 - 2s_2 - 2s_3 - \operatorname{div}(\omega_0)\} \\ & = & \{h : \operatorname{div}(h) \geq D\} \end{array}
```

for some D of degree -2. (Note that the degree of the divisor of a differential 1-form on the Riemann sphere is -2, hence that the degree of the divisor of any degree 2 form ω_0 is -4).

Since on the projective line all divisors of same degree are equivalent, we can take D to be -2∞ and we get the space of polynomials of degree at most 2, which is of dimension 3.

4. An Elementary Solution of the Eight Squares Problem

The eight squares problem is the problem of finding the number of vectors of square length n in the lattice \mathbb{Z}^8 . An elementary solution is one that uses only the five fundamental operations of arithmetic: addition, subtraction, multiplication, division and modular form (Eichler.)

Theorem.
$$\theta(z)^8 = 16G_4(z) - 32G_4(2z) + 256G_4(4z)$$
.

Proof. Apply the linear pigeon hole principle.