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These notes are meant as an introduction and a collection of references to
Néron models of elliptic curves. We use Liu [Liu02] and Silverman [Sil94] as
main references and many results and definitions are simply quoted from these
books. For the prerequisites, we refer to Silverman [Sil86], Hartshorne [Har77]
and the notes of Peter Bruin’s talk [Bru07].
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1 Néron Models

Let B be a Dedekind ring of dimension 1 with field of fractions K. Let X be
a smooth and separated K-scheme of finite type. A Néron model of X is an
B-scheme N which is smooth, separated and of finite type, which has generic
fiber isomorphic to X and which satisfies the following universal property: For
every smooth B-scheme Y , the natural map

N (Y )→ X(YK)

is a bijection.
A Néron model does not always exist, but if it does, then the universal

property implies that it is unique. These notes focus on the case where X is an
elliptic curve. In that case, it has a Néron model (Theorem 3.2 and Theorem
3.3).

1



The most important special case of the universal property is obtained when
we take Y = Spec(B). Then we get

N (B) = X(K). (1.1)

Another nice special case is when we take for Y a Néron model N ′ of X ′.
Then we get

HomB(N ′,N ) = HomK(X ′, X). (1.2)

It is easy to check using the universal property that if X is an abelian variety,
then we may restrict to homomorphisms (i.e. morphisms respecting the group
law) on both sides of (1.2).

2 Weierstrass models

In this section, we will consider Weierstrass equations and see what can and
cannot be achieved with them over discrete valuation rings. We will relate them
to Néron models later (Proposition 3.4).

Let R be a discrete valuation ring with uniformizer t, maximal ideal m = tR,
field of fractions K and residue field k = R/m.

By the Riemann-Roch Theorem, we know that E is a plane projective curve,
given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (2.1)

A linear change of coordinates x′ = u2x, y′ = u3y changes the coefficients ai

into aiu
i, hence we can demand that the Weierstrass equation is integral, i.e.

has coefficients ai ∈ R.
The first kind of model for E over R that we will be looking at is the

Weierstrass model :

Definition. Suppose that we are given an integral Weierstrass equation of E.
We call the closed subscheme of P2

R that it defines a Weierstrass model of E
over R.

We will start with the following hopeful result:

Proposition 2.2. Let W be a Weierstrass model of E over R. If W is smooth
as an R-scheme, then it is a Néron model for E.

Proof. This is [Sil94, IV 6.3]. See also [BLR90, 1.2.8] or [Art86, 1.4] in combi-
nation with [Sil94, IV.3.1.4].

This result should be motivation enough to look into Weierstrass models a
bit more. First of all, the generic fiber of a Weierstrass model W is isomorphic
to E, since it is the curve over K given by the Weierstrass equation.

Next, every K-valued point of E specializes to an R-valued point onW, i.e.

W(R) = E(K),
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which is a desireable property, see (1.1). Actually, this is an elementary property
of projective schemes over discrete valuation rings: Any point in Pn(K) can be
written in homogeneous coordinates. We scale the coordinates in such a way
that they are in R and at least one coordinate is in R∗. Then these are the
coordinates of a point in Pn(R) which is in W(R) if and only if the original
point is in E(K).

Now let’s look at the special fiber of a Weierstrass model. The special fiber
Wk is a plane projective curve over k, given by a Weierstrass equation with
coefficients (ai mod tR). We know what such a curve looks like: it can be an
elliptic curve, or a cubic curve with one singularity. We can distinguish between
these possibilities using the discriminant of the Weierstrass equation.

The discriminant is an invariant of the Weierstrass equation, defined for
example in [Sil86, III §1]. It is given by a polynomial in Z[a1, a2, a3, a4, a6]. For
example, if f is a monic polynomial of degree 3, then the discriminant of the
Weierstrass equation

y2 = f(x)

is 16∆(f).

Lemma 2.3. Let F be a field and C/F a projective curve given by a Weierstrass
equation. Then C is smooth if and only if the discriminant is non-zero. If the
discriminant is zero, then C is smooth outside a single point where C is not
smooth.

Proof. By [Sil86, III.1.4], the discriminant characterizes regularity. The curve is
regular (also after algebraic closure) if and only if the discriminant is non-zero.
There is at most one non-regular point.

In particular, the special fiber of a Weierstrass model is smooth if and only
if the discriminant is in R∗.

Of all integral Weierstrass equations of an elliptic curve E over K, it there-
fore makes sense to pick one such that the valuation of the discriminant v(∆)
is minimal. We call such an equation a minimal Weierstrass equation, its dis-
criminant modulo R∗ the minimal discriminant and the resulting Weierstrass
model a minimal Weierstrass model.

Lemma 2.4. The minimal Weierstrass model of K over R is unique (up to
isomorphism).

Proof. We know what an isomorphism of Weierstrass curves over K looks like
and what it does with the discriminant ([Sil86, III.3.1 and Table III.1.2]) It is
then not hard to prove that an isomorphism over K between integral Weierstrass
equations with discriminants of equal valuation induces an isomorphism over
R. For the details, see [Sil86, Proposition VII.1.3(a)]. Alternatively, there is a
proof of this statement in [Liu02, Theorem 9.4.35(d)].

From now on, let W denote the minimal Weierstrass model and let W0 be
its smooth locus. Following [Sil86, VII], we call the special fiber Ẽ = Wk of
the minimal Weierstrass model the reduction of E modulo m and we say that
E has good reduction if Ẽ is smooth, i.e. if ∆ ∈ R∗. By [Sil86, III.1], there
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are two classes for the curve Ẽ if it is not smooth: it can have a cusp, in which
case the smooth part Ẽns birational to the additive group Ga and we say that
E has additive reduction; or it can have a node, in which case Ẽns is (possibly
after a quadratic extension) birational to the multiplicative group Gm and we
say that E has multiplicative reduction (see [Sil86, III.2.5]).

Lemma 2.5. A Weierstrass model is integral and flat over R.

Proof. Each affine part of the polynomial that gives the Weierstrass equation
is irreducible, hence W is an integral scheme. By [Liu02, Corollary 3.10], every
non-constant morphism from an integral scheme to a Dedekind scheme is flat.

Lemma 2.6. If E has good reduction, then W0 =W is the Néron model of E.
Otherwise W \W0 consists of the unique non-smooth point of Ẽ.

Proof. The Weierstrass model is of finite presentation and by Lemma 2.5 it is
also flat. The third and last part of the definition of smoothness is that the
fiber Xf(x) should be geometrically regular at x for every point x ∈ W. This is
a condition on the fiber only, hence satisfied at all smooth points of the fibers,
so Lemma 2.3 says exactly where W is smooth.

We have already said that a smooth Weierstrass model is a Néron model
(Proposition 2.2).

If E has bad reduction, then we know that W cannot be the Néron model,
because it is not smooth. On the other hand, W0 may be too small to be a
Néron model, as we will see.

2.1 Example

A change of coordinates changes the discriminant of a Weierstrass equation by
a 12-th power ([Sil86, III.1.2]), hence if we are given a Weierstrass equation
with v(∆) < 12, then we know that it is minimal.

Let us consider the elliptic curve E over K, given by the Weierstrass equa-
tion

E : y2 = x3 + tn (2.7)

for some non-negative integer n and where char(k) 6= 2, 3. By a change of
coordinates x′ = t2x, y′ = t3y, we can assume n < 6. The discriminant is
−2433t2n. As char(k) 6= 2, 3, we know that the Weierstrass equation is minimal.
Let W be the Weierstrass model given by (2.7). If n = 0, then the Weierstrass
model is smooth, hence a Néron model, so let us assume n > 0. Then W is
smooth everywhere except at the point given by the maximal ideal generated by
x, y and t. The local ring there has maximal ideal m generated by x, y and t and
the square m2 of the maximal ideal is generated by x2, xy, xt, y2 = x3 + tn, yt
and t2. Therefore, t ∈ m2 if and only if n = 1, so W is regular if and only if
n = 1.

If n ≥ 2, then the Weierstrass model is not regular any more. Moreover,
if for example n = 2, then we have an R-valued point (0 : t : 1) on W which
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is not on W0, because it reduces to the singular point (0 : 0 : 1) on Wk. This
means in particular that W0(R) 6=W(R) = E(K), so W0 cannot be the Néron
model. To see what we have to do to get the Néron model, we will look at the
theory of models of curves in a more general setting.

3 Models of curves

Let B be a Dedekind ring of dimension 1 with field of fractions K.

Definition. A fibered surface over B is an integral, projective, flat B-scheme
π : Y → Spec(B) of dimension 2.

We say that the fibered surface is regular if Y is a regular scheme.

Let C be a normal, connected, projective curve over K.

Definition. A (projective) model of C over B is a normal fibered surface M →
Spec(B) together with an isomorphism MK

∼= C. We say that the model is
regular if M is regular.

This is a very strict definition of model. In fact, Néron models are not always
models according to this definition, because they are not always projective
(we will remove points from projective models in order to construct the Néron
model). Weierstrass models however are models, although not always regular.

Lemma 3.1. Let E/K be an elliptic curve over the field of fractions of a
discrete valuation ring R such that 2 ∈ R∗ and let W be a Weierstrass model
of E. Then W is a model of E over R.

Probably we do not need 2 ∈ R∗ here, but it makes the proof a lot easier.

Proof. By Lemma 2.5 and the fact that W is defined as a closed subscheme of
the projective plane, all properties of models are satisfied except possibly that
W is normal. We know that W is regular at all points except possibly one
point, hence it is normal outside that point ([Liu02, 4.2.16]) .

We will prove thatW is normal in that point under the assumption 2 ∈ R∗.
First, we do a change of variables such that y2 = f(x), where f is a monic
polynomial of degree 3 in x with coefficients in R. Then we will follow [Liu02,
Example 4.1.9] to show that the ring A = R[x, y] is integrally closed in its field
of fractions. That suffices, because then every localization is normal as well
([Liu02, 4.1.4]).

Let A = R[x, y]. Then Frac(A) = K(x)[y]. Suppose that g = g1 + g2y
is integral over A for g1, g2 ∈ K(x). By the automorphism x 7→ x, y 7→ −y
of Frac(A) over K(x), we find that g1 − g2y is also integral, hence so are 2g1

and (2g2y)2 = 4g2
2f(x). Since A is integral over R[x], this implies that 2g1 and

4g2
2f(x) are integral over R[x], hence are in fact inside R[x]. As f has no double

roots and R[x] is factorial, this implies that 2g1 and 2g2 are in R[x]. Since 2 is
invertible, we have g1, g2 ∈ R[x], hence g = g1 + g2y ∈ A.
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Definition. Let X and Y be integral schemes over a scheme S with Y →
S separated. A rational map f from X to Y , denoted f : X 99K Y is an
equivalence class of morphisms of S-schemes from a non-empty open subscheme
X to Y . We call two such morphisms U → Y and V → Y equivalent if they
coincide on U ∩ V .

In every equivalence class, there exists an element f : U → Y such that
for every element g : V → Y of the equivalence class, we have V ⊂ U and
g = f|V .[Liu02, exercise 3.3.13] We call U the domain of definition of the
rational map and identify the rational map with f . We say that a rational map
f : X 99K Y is a morphism or is defined everywhere if its domain of definition
is equal to X.

If X, Y, Z are integral schemes over S, Y and Z are separated over S and
f : X 99K Y , g : Y 99K Z are rational maps, then we can compose f and
g as follows: Let f0 : U → Y and g0 : V → Z be representatives. Then
g ◦ f is the equivalence class of g0 ◦ f0|f−1

0 (V ) : f−1
0 (V ) → Z. This is a well-

defined composition map. A birational map is a rational map f : Y 99K Z
with a rational inverse g (i.e. s.t. f ◦ g and g ◦ f are equivalent to the identity
morphisms of Z and Y ). In other words, a birational map f : Y 99K Z is the
equivalence class of an isomorphism from a non-empty open subset of Y to an
open subset of Z. A birational morphism is a morphism which is a birational
map.

If X and Y are models of the same curve C over a discrete valuation ring,
then the identification of the generic fibers gives a birational map between X
and Y .

More generally, suppose that X and Y are models of the same curve C over
a Dedekind domain B. Let f : XK → YK be the identification of the generic
fibers. We embed X resp. Y in a projective space Pm

B resp. Pn
B. There is a

tuple φ = (f1 : · · · : fn), where the fj are homogeneous polynomials of the same
degree in m variables as follows: Let V be the locus of Pm

K where the fj vanish
simultaneously. Then V does not contain X and f is given on X \ V by φ.
By multiplication by an element of B, we eliminate the denominators from the
coefficients of fj . Let Z be the locus in Pm

B where the fj vanish simultaneously.
Then Z is closed and φ defines a morphism Pm

B \ Z → Pn
B. Now we want two

things: 1) The morphism factors through Y and 2) Its class as a birational map
X → Y does not depend on the choices that were made. Is this true? If so,
then we call this the natural morphism from X to Y that is induced by the
identification of the special fibers. See also [Liu02, Exercises 3.2.6, 3.3.13 and
3.3.14]

Definition. A minimal regular model of C over B is a regular model E over
B such that for every regular model Y over B, the natural birational map
f : Y 99K E is a morphism.

We now get to the main theorems:

Theorem 3.2. Let B be a Dedekind ring of dimension 1, with field of fractions
K. Let C be a smooth geometically connected projective curve of genus g ≥ 1
over K. Then there is a unique minimal regular model Cmin of C over B.
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Proof. Uniqueness follows from the definition, so we only have to prove exis-
tence of a minimal regular model. We start with the existence of a model. If
C is an elliptic curve, then we can take a Weierstrass model. In general, fol-
lowing [Liu02, 10.1.8], we take C0 as in [Liu02, 10.1.4] and then we take the
normalization of the Zariski closure of C in C0 is a model.

We will show in Proposition 4.17 that we can make a model regular using a
technique called blowing-up. Finally, we show in Proposition 4.22 that we can
make a regular model minimal using a technique called contraction.

See also [Liu02, 10.1.8].

Theorem 3.3. Let B be a Dedekind ring of dimension 1 with field of fractions
K. Let E be an elliptic curve over K with minimal regular model E over B.
Then the open subscheme N of smooth points of E is the Néron model of E
over B.

Proof. See [Liu02, 10.2.14].

Let N be a Néron model of an elliptic curve E over a discrete valuation
ring R with residue field k. Kodaira and Néron give a classification of the
special fibers N in the case where k is algebraically closed. See Table 15.1 in
Appendix C of [Sil86] or Table 4.1 in Chapter IV of [Sil94]. For genus 2 curves,
the analogous classification of special fibers of Néron models has approximately
120 types ([Liu02, 10.2.6] or [Sil94, IV.8.2.4], compared to 10 in the elliptic
case). Tate’s algorithm [Sil94, IV.9.4] gives the same classification (without
demanding k = k) by asking questions about divisibility of coefficients and
decompositions of certain polynomials in the residue field k. Behind the scenes,
it performs a series of blowing-ups.

The special fiber of N may consist of multiple components. One of them
contains the closed point of the identity section. The scheme obtained from
N by removing all non-identity components of the special fiber is called the
identity component of the Néron model and denoted N 0. This name is a bit
strange, because N is connected: the special fiber is connected and dense in N .
LetW0 be the smooth part of the minimal Weierstrass model. By the universal
property of the Néron model, the inclusion of W0

K into E induces a map from
W0 to N .

Proposition 3.4. The natural map W0 → N induces an isomorphism W0 ∼=
N 0.

Proof. [Sil94, Corollary IV.9.1].

Let N 1(R) = W1(R) ⊂ N 0(R) = W0(R) be the set of points that restrict
to the unit point of the special fiber. The subgroup E0(K) (resp. E1(K)) of
E(K) is defined in [Sil86] as the subgroup of E(K) that correspond to W0(R)
(resp. W1(R)) through the natural isomorphism W(R) ∼= E(K). Let Ẽns(k)
be the set of non-singular points of Ẽ(k). We get an exact sequence

0→ E1(K)→ E0(K)→ Ẽns(k),
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where the rightmost map is surjective if K is complete ([Sil86, VII.2.1]). We
know that Ẽns(k) is an elliptic curve or k+ or a torus, so we can study this with
the smaller field k and we can study E1(K) using formal groups ([Sil86, IV and
VII]). The Néron model gives information about E(K)/E0(K) = N (R)/N 0(R)
([Sil94, Table 4.1 on page 365]): It is a finite abelian group. More precisely,
if E has multiplicative reduction, then E(K)/E0(K) is a cyclic group of order
−v(j(E)) (for j, see [Sil86, III]); otherwise, E(K)/E0(K) has order 1, 2, 3 or 4.

A nice corollary of the theory of Néron models is the following.

Lemma 3.5. Homomorphisms of elliptic curves induce homomorphisms of the
smooth parts of the reduced curves.

Proof. By the universal property (1.2), a morphism of elliptic curves induces a
morphism of Néron models. The identity component gets mapped to the idenity
component by continuity and the assumption that the zero section goes to the
zero section. Consequently, we get a homomorphism of smooth parts of minimal
Weierstrass models. If we base-change to k, then we get a homomorphism of
the smooth parts of the reduced curves.

4 Construction of a Néron model

We need to perform two procedures in order to actually find the minimal regular
model starting from any model. The first is blowing up, which makes a model
regular. The second is contraction, which makes a regular model minimal.

4.1 Blowing up

Blowing up at a point of a scheme is a way of removing singularities from a
scheme.

We will start with the definition of the blowing-up of a Noetherian affine
scheme Spec(A) along a closed subscheme V (I) as in [Liu02, 8.1.1]. So let A
be a Noetherian ring and I an ideal of A. Let us consider the graded A-algebra

Ã =
⊕
d≥0

Id,

where of course I0 = A.

Definition. Let X = Spec(A) be an affine Noetherian scheme and I an ideal
of A. We let X̃ = Proj(Ã) and call the canonical morphism π : X̃ → X the
blowing-up of X along V (I).

So what does this look like? Let f1, . . . , fn be a system of generators of I.
Let ti ∈ I = Ã1 denote the element fi considered as a homogeneous element
of degree 1, which is not to be confused with the element fi itself, which is in
I ⊂ A = A0, i.e. of degree 0. Then we have a surjective homomorphism of
graded A-algebras

φ : A[T1, . . . , Tn] → Ã

Ti 7→ ti.
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This implies that X̃ is isomorphic to a closed subscheme of Pn−1
A ([Liu02, 8.1.1

and 2.3.41]).

Lemma 4.1. If P (T ) ∈ A[T1, . . . , Tn] is a homogeneous polynomial, then P (T )
is in the kernel of φ if and only if P (f1, . . . , fn) = 0.

Proof. Let m be the degree of P . Then P (f1, . . . , fn) is an element of Im. If
we identify In with Ãn, then P (f1, . . . , fn) corresponds to P (t1, . . . , tn), which
is the image of P (T ) under φ.

In particular, the kernel of φ contains at least the ideal J ⊂ A[T1, . . . , Tn]
generated by the elements fiTj − fjTi.

Example 4.2. Let F be a field and A = F [x1, . . . , xn]. We will blow up
Spec(A) = An

F in the point x1 = · · · = xn = 0. In this case, kerφ = J ([Liu02,
8.1.2]), so X̃ is the subscheme of Pn−1

A = An
F ×F Pn−1

F given by J . In any
local ring in the subscheme “xi 6= 0” of X̃, we have Tj = xjTix

−1
i , hence the

natural morphism X̃(xi) → X(xi) is an isomorphism (on local rings, hence on
the subscheme). The fiber of the point 0 is a projective (n − 1)-dimensional
space, since there are no relations there except xi = 0.

So blowing up in a point of An
F leaves the scheme invariant except for the

point in which we blow up, which gets replaced by a Pn−1
F .

Usually, J is not equal to ker(φ). The following lemma allows us to compute
the blowing-up. Another way of computing the blowing-up is presented below
Proposition 4.13.

Lemma 4.3. The blowing-up X̃ is the union of the affine open subschemes
SpecAi, 1 ≤ i ≤ n, where Ai is the sub-A-algebra of Afi

generated by the fjf
−1
i ∈

Afi
, 1 ≤ j ≤ n.
In particular, if A is integral, then Ai is the sub-A-algebra of Frac(A) gen-

erated by the fjf
−1
i .

Proof. The scheme X̃ is covered by the affine schemes D+(ti) = Spec(Ã(ti)),
where Ã(ti) is the subring of Ãti made up o the elements of degree 0, i.e. the
elements of the form at−N

i , where a ∈ Ã has degree N .
The ring A(ti) is computed in [Liu02, 8.1.2(e)]. Another proof of the special

case where A is integral is [Liu02, 8.1.4].

Example 4.4. Now let’s take another example: The curve X : y2 = x3 in the
affine plane over F . It has a cusp in the origin, so that is where we blow up.
We have X = Spec(A), where A = F [X, Y ]/(Y 2 −X3) = F [x, y] and we blow
up in the point I = xA + yA.

The blowing-up is covered by two affine charts with coordinate rings A1 =
F [x/y, y] and A2 = F [y/x, x] (as subrings of Frac(A) = F (x)[y], where y2 = x3).
In the first ring, we have the relation (x/y)3y = 1, so (x/y) 6= 0, hence we have
X̃ = Spec(A2). Let t = y/x. Then we have the relation t2 = x, hence A2 = F [t]
and X̃ = A1

F is simply the normalization of X.
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If X is not affine, but only locally Noetherian and Z is a closed subscheme
of X, then we give the following definition of the blowing-up of X along Z:

Proposition 4.5. There is a unique morphism π : X̃ → X such that for every
affine open subscheme U ⊂ X, we have an isomorphism π−1(U) ∼= Ũ , where Ũ
is the blowing-up of U along Z ∩ U and the isomorphisms are compatible with
restriction.

Proof. This morphism is given in [Liu02, 8.1.11 and 8.1.8] or alternatively
[Har77, II.7].

The following proposition makes precise and general what we have seen in
Example 4.2.

Proposition 4.6. Let π : X̃ → X be the blowing-up of a locally Noetherian
scheme X along a closed subscheme Z.

1. The morphism π induces an isomorphism π−1(X \ Z)→ X \ Z.

2. If X is integral and Z 6= X, then X̃ is integral.

3. If X is regular and Z is a regular closed subscheme, then X̃ is regular
and for every x ∈ Z, the fiber X̃x is isomorphic to Pr−1

k(x), where r =
dimxX − dimxY .

Proof. Parts (1) and (2) are in [Liu02, 8.1.12(d)]. Alternatively, (1) is [Har77,
II.7.13(b)] and (2) follows immediately from Lemma 4.3. Part (3) is [Liu02,
8.1.19(a) and (b)].

Some statements are better phrased in terms of quasi-coherent sheafs of
ideals. By [Har77, II.5.9], quasi-coherent sheafs of ideals correspond bijectively
to closed subschemes. We will need the definition of the inverse image sheaf.
We quote it here from [Har77].

Definition. Let f : Y → X be a morphism of schemes, and let I ⊂ OX be a
sheaf of ideals on X. We define the inverse image sheaf f−1I · OY ⊂ OY (also
denoted IOY ) as follows. First consider f as a continuous map of topological
spaces Y → X and let f−1I be the inverse image of the sheaf I. Then f−1I is
a sheaf of ideals in the sheaf of rings f−1OX on the topological space Y . Now
there is a natural homomorphism of sheaves of rings on Y , f−1OX → OY , so
we define f−1I · OY to be the ideal sheaf in OY , generated by the image of
f−1I.

Proposition 4.7. Let π : X̃ → X be the blowing-up of a locally Noetherian
scheme X along a closed subscheme V (I).

1. The morphism π is an isomorphism if and only if I is an invertible sheaf
on X.

2. The sheaf π−1I · O eX is invertible on X̃.
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Proof. Recall that a sheaf of OX -modules is called invertible if it is locally free
of rank 1. Both assertions are in [Liu02, 8.1.12]. However, since this is an
important property that characterizes the blowing-up, we will give a complete
proof in the case X integral.

Part (2) is also [Har77, II.7.13(a)]. Cover X by affine open subschemes. If
U = Spec(A) is such an affine open and I = (f1, . . . , fn) = I(U) with fi 6= 0,
then Lemma 4.3 gives a covering of its pre-image. We only have to show that
the ideal J ⊂ Ai generated by the image of I is free of rank one. The ideal J is
generated by f1, . . . , fn and we have that fjf

−1
i ∈ Ai, hence J is generated by

fi. If fi is not a zero divisor, then J is free of rank 1. This proves that IO eX is
locally free of rank 1 if X is integral.

Part (1): Suppose that I is invertible. Then X is covered by affine open
subsets of the form Spec(A) on which I is free on one generator f . Then the
morphism φ : A[T ]→ Ã is an isomorphism, hence π is an isomorphism between
Proj(Ã) and Spec(A). This proves that π is an isomorphism X̃ → X. The
converse follows from (2).

Example 4.8. Every non-zero sheaf of ideals on the projective line P1
F over

a field F is invertible, hence the blowing-up X̃ of X = P1
F along a closed

subscheme Z 6= X is equal to X.

Proposition 4.9. Let f : Y → X be a morphism of noetherian schemes, and
let I be quasi-coherent sheaf of ideals of X. Let X̃ be the blowing-up of X
along V (I), and let Ỹ be the blowing-up of Y along V (f−1I ·OY ). Then there
is a unique morphism f̃ : Ỹ → X̃ making the following diagram commute:

Ỹ
ef //

��

X̃

��
Y

f
// X.

(4.10)

Moreover, if f is a closed immersion and the image of f is not contained in
V (I), then f̃ is a closed immersion.

Proof. [Har77, II.7.15] or [Liu02, 8.1.15 and 8.1.17].

The following two statements show that blowing up is a natural thing to
do.

Corollary 4.11 (Universal property of the blowing-up). Let π : X̃ → X
be the blowing-up along V (I) of a locally Noetherian scheme. Then the sheaf
(π−1I)O eX is invertible. Moreover, for any morphism f : W → X such that
(f−1I)OW is an invertible sheaf of ideals on W , there exists a unique morphism
g : W → X̃ such that f = π ◦ g.

Proof. This is [Har77, II.7.14] or [Liu02, 8.1.16]. We present it here as a corol-
lary of the above (as does [Liu02]). The first statement is (2) of Proposition
4.7. Now suppose that the sheaf (f−1I)OW is invertible. By (1) of Proposition
4.7, we find that W̃ = W in Proposition 4.9. Therefore, we can take g = f̃ .
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Proposition 4.12. Let f : Y → X be a projective birational morphism of
integral schemes. Suppose that X is quasi-projective over an affine Noetherian
scheme. Then f is the blowing-up morphism of X along a closed subscheme.

Proof. [Liu02, 8.1.24].

Definition. If f in Proposition 4.9 is a closed immersion and the image is not
contained in V (I), then we call the image of Ỹ in X̃ the strict transform of Y .

Proposition 4.13. As a set, the strict transform of Y is the Zariski closure of
π−1(Y \ V (I)) in X̃, where π is the map from X̃ to X.

Proof. This is [Liu02, Exercise 8.1.1]. If F is a field and Y is a closed subvariety
of X = An

F passing through the point P and we blow up in P , then this is also
[Har77, II.7.14.1].

If Y is an integral affine scheme over a scheme S, then we can embed Y into
an affine plane X = An

S . Let Z be a closed subscheme of Y and suppose we want
to compute the blowing-up Ỹ of Y along Z. Then we can compute the blowing-
up of X along Z, which is very easy to compute and then compute the strict
transform Ỹ of Y as follows: Proposition 4.13 computes Ỹ as a closed subset
of X̃ and it must have the reduced subscheme structure by (2) of Proposition
4.6. Another way to compute Ỹ is given by Lemma 4.3.

Example 4.14. As an example, let X be the affine plane over F and Y the
line in X given by ay = bx with a, b ∈ F not both zero. We will blow up
along the point (0, 0), which is given by the ideal (x, y). We identify Y with
an affine line via the parametrization f : t 7→ (at, bt). Then Y = Spec(F [t])
and X = Spec(F [x, y]) and f is given as a homomorphism of F -algebras by
x 7→ at, y 7→ bt. The inverse image ideal of (x, y) is generated by at and bt,
hence by t.

We get that Ỹ = A1
F (it is the subvariety of A1

F × P0
F with no relations).

Next, X̃ is a plane with the origin replaced by a projective line. It is given as a
subvariety of A2

F×P1
F by xt−ys = 0 where t, s are the homogeneous coordinates

of the projective line. Let J be the ideal that defines the strict transform of
Y . The function ay − bx is zero on π−1(Y \ 0), hence it is inside J . Moreover,
the ideal J contains b(xt − ys) = y(at − bs) and a(xt − ys) = x(at − bs). As
it is prime and does not contain both x and y (it could contain one, if a or b
is zero), we have that (at − bs) is in J . The only point in the projective line
x = y = 0 that satisfies that equation is (a : b). The line with direction (a : b)
therefore goes through the point (a : b) of the projective line. The conclusion:
lines on X that go through (0, 0) in different directions do not intersect on X̃.

We now give the statement of how a regular model is obtained by blowing
up. Let B be a Dedekind ring of dimension 1 and X → Spec(B) a fibered
surface with smooth generic fiber. We define a sequence

X = X0 ← X1 ← X2 ← · · · (4.15)
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of proper birational morphisms as follows: Let Si = Xi\Reg(Xi) be the singular
locus of Xi. Claim: Si is closed. We will prove this below. Give Si the reduced
(closed) subscheme structure and then blow Xi up along Si. Then we let Xi+1

be the normalization of the blowing-up.

Proposition 4.16. Consider the sequence (4.15). Each Si is closed and there
is an n such that Si is empty, i.e. the the sequence ends with a regular scheme
Z = Xn with a projective birational morphism π : Z → X. Moreover, Z is
projective over B and π is an isomorphism above every regular point of X.

Proof. Everything follows from [Liu02, 8.3.50] and the proof of [Liu02, 8.3.51],
except projectivity of Z over B. However, Z is projective over X and it is true
by assumption that X is projective over B. Using the Segre embedding, one
can prove ([Har77, II Exercise 4.9]) that a composition of projective morphisms
is projective.

Proposition 4.17. If X is a model of a regular connected projective curve C,
then Z as in the above proposition is a regular model of C.

Proof. The morphism π is an isomorphism above the generic fiber C of X. This
gives the isomorphism between the generic fiber of Z and C. Moreover, Z is
regular and projective. By construction, Z is also integral ((2) of Proposition
4.6), hence flat [Liu02, 4.3.10]. It is normal because it is regular and irreducible
([Liu02, 4.2.17]). Finally, [Liu02, 8.2.7] says that dimension is invariant under
proper birational morphisms of locally Noetherian integral schemes, hence the
dimension of Z is 2.

Example 4.18. The proof of Tate’s algorithm [Sil86, IV.9.4] starts with a
Weierstrass model and performs various changes of coordinates and blowings-
up. With suitable blowings-up, this leads to a series of case distinctions about
divisibilities and numbers of zeroes of certain polynomials over k and k. The
result is a diagram of questions and changes of variables ending in the reduction
type of the elliptic curve. This diagram is called Tate’s algorithm. The proof
is a nice way to practice blowing up fibered surfaces.

4.2 Contraction

Let B be a Dedekind ring of dimension 1 with field of fractions K.

Definition. Let X → B be a regular fibered surface. A prime divisor E on
X is called an exceptional divisor or (-1)-curve if there exist a regular fibered
surface Y → S and a morphism f : X → Y of B-schemes such that f(E) is
reduced to a point, and that

f : X \ E → Y \ f(E)

is an isomorphism.
We call the morphism f the contraction of E.

Lemma 4.19. The contraction f of E is also the blowing-up of Y along the
closed point f(E).
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Proof. See [Liu02, 9.3.2 or 9.2.3].

We can recognize exceptional divisors with Castelnuovo’s criterion.

Proposition 4.20 (Castelnuovo’s criterion). Let X → S be a regular
fibered surface. Let D ⊂ Xs be a prime divisor. Let us set k′ = H0(D,OD).
Then D is an exceptional divisor if and only if D ∼= P1

k′ and D2 = −[k′ : k(s)].

Proof. This is [Liu02, 9.3.8]. See also [Sil94, IV.7.5] if k is algebraically closed.

We will not discuss intersection theory here in detail, but refer to [Liu02,
9.1.2]. However, we will say the following: let X → Spec(B) be a regular fibered
surface and let s ∈ Spec(B) be a closed point. Then the intersection pairing on
X over s is a bilinear map is : Div(X)×Divs(X)→ Z, which is symmetric on
Divs(X) × Divs(X) and satisfies is(D′, D) = 0 if D′ is a principal divisor. In
particular, if D is a divisor in the fiber Xs over a closed point s and we take for
D′ the fiber Xs, then it follows that D2 = −(D′ \D)D. In other words, D2 is
minus the intersection number of D with the other components of the special
fiber.

If there are no exceptional divisors to contract, then we have found the
minimal regular model:

Lemma 4.21. Let X be a regular fibered surface over a Dedekind domain B of
dimension 1 and with with generic fiber XK of arithmetic genus pa(XK) ≥ 1.
If X does not contain any exceptional fibers, then X is a minimal model of XK .

Proof. This is [Liu02, 9.3.24]. See also [Sil94, IV.7.5].

We call a regular fibered surface relatively minimal if it does not contain
any exceptional fibers.

Proposition 4.22. Let X be a regular fibered surface over a Dedekind domain
B of dimension 1 and let

X → X1 → X2 → · · · → Xn → · · ·

be a sequence of contractions of exceptional divisors. Then the sequence is finite
and ends in a relatively minimal regular fibered surface Y over B, together with
a birational morphism X → Y over B.

If X is a regular model of a smooth projective geometrically connected curve
C of genus g ≥ 1, then Y is the minimal regular model of X.

Proof. Finiteness of the sequence is [Liu02, 9.3.19]. By definition of the con-
traction, the curves are regular and the morphism X → Y is birational.

If the generic fiber C of X is a smooth projective geometrically connected
curve, then the birational map X → Y is an isomorphism of generic fibers,
hence Y is a regular model of C. It is minimal by Lemma 4.21.
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5 Potential good reduction

We say that E has potential good (resp. potential multiplicative) reduction if
there is a discrete valuation ring R′ that dominates R such that E has good
(resp. multiplicative) reduction over R′.

Lemma 5.1. An elliptic curve E over K has potential good reduction if and
only if j(E) ∈ R and potential multiplicative reduction if and only if j(E) 6∈ R.

Proof. This is [Liu02, 10.2.33] or [Sil86, VII.5.5].

If K is a (localization or non-archimedean completion of) a number field and
E/K has complex multiplication, then the j-invariant is an algebraic integer
([Sil94, II §6]) which eliminates the cases with v(j) < 0 from the table of Kodaira
and Néron ([Sil94, Table 4.1 on page 365]). In particular, elliptic curves over
K with complex multiplication have potential good reduction.
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Néron model, 1, 7

rational
map, 6
morphism, 6

reduction, 3
additive, 4
good, 3
multiplicative, 4

regular fibered surface, 5
regular model, 5
relatively minimal, 14

strict transform, 12

Weierstrass equation, 2
Weierstrass model, 2

16



References

[Art86] M. Artin. Néron models. In Gary Cornell and Joseph H. Silverman,
editors, Arithmetic Geometry, 1986.

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron
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