Igusa class polynomials

Marco Streng

THE UNIVERSITY OF WARWICK

Number Theory Seminar Nottingham 11 May 2011

Marco Streng Igusa class polynomials the University of Warwick

Elliptic curves

An *elliptic curve* E/k (char(k) ≠ 2) is a smooth projective curve

• *E* is a commutative algebraic group

Endomorphisms

- $End(E) = (ring of algebraic group morphisms E \rightarrow E)$
 - $(\phi + \psi)(P) = \phi(P) + \psi(P)$
 - $(\phi\psi)(P) = \phi(\psi(P))$
- Examples:
 - Z ⊂ End(E) with n: P → P + · · · + P.
 For "most" E's in characteristic 0, have End(E) = Z.
 - If $E: y^2 = x^3 + x$ and $i^2 = -1$ in k, then we have

$$i:(x,y)\mapsto (-x,iy),$$

and $\mathbf{Z}[i] \subset \operatorname{End}(E)$.

• If #k = q, we have

Frob :
$$(x, y) \mapsto (x^q, y^q)$$
.

The Hilbert class polynomial

The *j-invariant* is

$$j(E) = \frac{2^8 3^3 b^3}{2^2 b^3 + 3^3 c^2} \quad \text{for} \quad E : y^2 = x^3 + bx + c.$$
$$j(E) = j(F) \iff E \cong_{\overline{k}} F$$

Definition

Let K be an imaginary quadratic number field. Its Hilbert class polynomial is

$$H_{\mathcal{K}} = \prod_{\substack{E/\mathbf{C}\\ \mathsf{End}(E) \cong \mathcal{O}_{\mathcal{K}}}} (X - j(E)) \quad \in \mathbf{Z}[X].$$

Application 1: roots generate the Hilbert class field of K over K. Application 2: make elliptic curves with prescribed order over \mathbf{F}_p .

Marco Streng

Igusa class polynomials

Curves with prescribed order

- If p = ππ̄ for π ∈ O_K, then (H_K mod p) splits into linear factors.
- Let $j_0 \in \mathbf{F}_p$ be a root and let E_0/\mathbf{F}_p have $j(E_0) = j_0$.
- ► Then a twist *E* of *E*₀ has "Frob = π". Reason:
 - E_0 is the reduction of some \widetilde{E} with $\operatorname{End}(\widetilde{E}) = \mathcal{O}_K$
 - CM theory \implies Frob $\in \mathcal{O}_K$ and N(Frob) = p.

► We get

$$\#E(\mathbf{F}_p)=N(\pi-1)=p+1-\mathrm{tr}(\pi).$$

Computing Hilbert class polynomials (1)

- Any *E* is complex analytically \mathbf{C}/Λ for a lattice Λ
- ► Endomorphisms induce C-linear maps $\alpha : \mathbf{C} \to \mathbf{C}$ with $\alpha(\Lambda) \subset \Lambda$
- ► If $\operatorname{End}(E) \cong \mathcal{O}_{K}$, then $\Lambda = c\mathfrak{a}$ for an ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ and $c \in \mathbf{C}^{*}$.
- We get

$$\begin{array}{rcl} \mathsf{CI}_{\mathcal{K}} & \longleftrightarrow & \frac{\{E/\mathsf{C}: \mathsf{End}(E) \cong \mathcal{O}_{\mathcal{K}}\}}{\cong} \\ [\mathfrak{a}] & \longmapsto & \mathsf{C}/\mathfrak{a}. \end{array}$$

Computing Hilbert class polynomials (2)

• Write $\mathfrak{a} = \tau \mathbf{Z} + \mathbf{Z}$ and let $q = \exp(2\pi i \tau)$.

• Let $\theta_0 = 1 + 2 \sum_{n=1}^{\infty} q^{\frac{1}{2}n^2}$ and $\theta_1 = 1 + 2 \sum_{n=1}^{\infty} (-1)^n q^{\frac{1}{2}n^2}$. Then

$$j(z) = 256 \frac{(\theta_0^8 - \theta_0^4 \theta_1^4 + \theta_1^8)^3}{\theta_0^8 \theta_1^8 (\theta_0^4 - \theta_1^4)^2}$$

Compute

$$H_{\mathcal{K}} = \prod_{[\mathfrak{a}] \in \mathcal{CL}_{\mathcal{K}}} (X - j(\mathbf{C}/\mathfrak{a})) \in \mathbf{Z}[X].$$

- Other algorithms:
 - ▶ p-adic, [Couveignes-Henocq 2002, Bröker 2006]
 - Chinese remainder theorem. [Chao-Nakamura-Sobataka-Tsujii 1998, Agashe-Lauter-Venkatesan 2004]

Performance

- ► The Hilbert class polynomial is huge: the degree h_K grows like |D|^{1/2}, as do the logarithms of the coefficients.
- Example: for $K = \mathbf{Q}(\sqrt{-101})$, get
 - $$\begin{split} & \mathcal{H}_{\mathcal{K}} = X^{14} 2652316292259287225437667968 X^{13} 136599668730128072947792591580941901484032 X^{12} \\ & -189147535478009382206055257852975491265982282858496 X^{11} 26181691797967322135414182137 \backslash \\ & 3607961509161995538407779991552 X^{10} 1193885115058826956622248802184209653984472912487 \backslash \\ & 39406654201659392 X^9 19970076081487858762907119018999559036025406760107290495924627270 \backslash \\ & 795264 X^8 + 705244925516002868577084501260475953570885384272689670514293686249241706496 X^7 \\ & 33872799529198964844915900102578375435327831844475016592225474796536885894184960 X^6 \\ & 28964740677799848606869471095560110578849599906939259716546639301246667627522162688 X^5 \\ & 2256682006851346287910284831850004190305688705440243677279242465209820098759090340102144 X^4 \\ & 200298571407255942413741032535199918038466280292881148988363030841251201350298522427064 \backslash \\ & 320 X^3 + 472600577635546438482679276036804879009539986568568135624498996903874536440493 \backslash \\ & 770310317768704 X^2 + 130938563560495587536701299947027165858686450832805101450845834339 \backslash \\ & 087741520825779034777771311104 X 1594321005753707552829297243529545040400813484400170 \backslash \\ & 06382564760342197351665472136478486380891078656 \end{split}$$

Performance

- ► The Hilbert class polynomial is huge: the degree h_K grows like |D|^{1/2}, as do the logarithms of the coefficients.
- Example: for $K = \mathbf{Q}(\sqrt{-101})$, get
 - $$\begin{split} H_{\mathcal{K}} = & X^{14} 2652316292259287225437667968 X^{13} 136599668730128072947792591580941901484032 X^{12} \\ 189147535478009382206055257852975491265982282858496 X^{11} 26181691797967322135414182137 \backslash \\ & 3607961509161995538407779991552 X^{10} 1193885115058826956622248802184209653984472912487 \backslash \\ & 39406654201659392 X^9 \end{split}$$

 $-1594321005753707552829297243529545040400813484400170063825647603421973516654721364 \\ 78486380891078656$

- Under GRH or heuristics, all three quasi-linear $O(|D|^{1+\epsilon})$.
- ► CRT (the underdog) is now the record holder: constructed a large finite field elliptic curve with -D > 10¹⁵, h_K > 10⁷. [Belding-Bröker-Enge-Lauter 2008, Sutherland 2009]

Curves of genus 2

Definition

A curve of genus 2 is a smooth geometrically irreducible curve of which the genus is 2.

"Definition" (char. $\neq 2$)

A curve of genus 2 is a smooth projective curve that has an affine model

$$y^2 = f(x), \quad \deg(f) \in \{5, 6\},$$

where f has no double roots.

The group law on the Jacobian

The Jacobian: group of equivalence classes of pairs of points.

• More precisely, divisor class group $Pic^{0}(C)$ $\{P_1, P_2\} \mapsto [P_1 + P_2 - D_{\infty}]$

The group law on the Jacobian

The Jacobian: group of equivalence classes of pairs of points.

► More precisely, divisor class group $Pic^0(C)$ $\{P_1, P_2\} \mapsto [P_1 + P_2 - D_\infty]$

Igusa class polynomials

- ► Elliptic curves E have CM if End(E) is an order in an imaginary quadratic field K = Q(√r) with r ∈ Q negative.
- Curves C of genus 2 have CM if End(J(C)) is an order in a CM field K of degree 4, i.e. $K = K_0(\sqrt{r})$ with K_0 real quadratic and $r \in K_0$ totally negative.
- ► Assume K contains no imaginary quadratic field.
- ► Igusa's invariants i_1, i_2, i_3 are the genus-2 analogue of j
- ► The *Igusa class polynomials* of a quartic CM field K are a set of polynomials of which the roots are the Igusa invariants of curves C of genus 2 with CM by O_K.

Applications

- Roots generate class fields.
 - ▶ not of *K*, but of its "reflex field" (no problem)
 - not the full Hilbert class field (but we know which field)
 - useful? efficient? (work in progress!)
- If $p = \pi \overline{\pi}$ in \mathcal{O}_K , construct curve C with

$$\#J(C)(\mathbf{F}_p) = N(\pi-1)$$
 and $\#C(\mathbf{F}_p) = p+1-\operatorname{tr}(\pi).$

Algorithms

- 1. Complex analytic [Spallek 1994, Van Wamelen 1999]
- p-adic [Gaudry-Houtmann-Kohel-Ritzenthaler-Weng 2002, Carls-Kohel-Lubicz 2008]
- 3. Chinese remainder theorem [Eisenträger-Lauter 2005]

None of these had running time bounds:

- denominators
- not known how to bound $|i_n(C)|$.
- algorithms not explicit enough
- ▶ no rounding error analysis for alg. 1 (not even for genus 1!!)

Denominators

- ► CM elliptic curves have "potential good reduction", hence j(E) ∈ Z, hence Hilbert class polynomials are in Z[X]
- ► CM abelian varieties (such as J(C)) also have potential good reduction, but may have

 $(J(C) \mod \mathfrak{p}) = E_1 \times E_2 \text{ and } (C \mod \mathfrak{p}) = E_1 \cup E_2.$

- In that case, ∃*ι* : O_K → End(E₁ × E₂) and E₁ and E₂ are isogenous supersingular elliptic curves.
- Can bound denominators by studying the "embedding problem" [Goren-Lauter 2007], [Goren-Lauter 2011]

Step 1: Enumerating \cong -classes

$$\blacktriangleright \ K \otimes \mathbf{R} \cong_{\mathbf{R}-\mathsf{alg.}} \mathbf{C}^2$$

- ► For Φ an isomorphism and $\mathfrak{a} \subset \mathcal{O}_{K}$, get a lattice $\Lambda = \Phi(\mathfrak{a}) \subset \mathbf{C}^{2}$ and $\operatorname{End}(\mathbf{C}^{2}/\Lambda) = \mathcal{O}_{K}$.
- ► Also need a polarization, given by $\xi \in K^*$ with $\xi \mathfrak{a} \overline{\mathfrak{a}} \mathcal{D}_{K/\mathbf{Q}} = \mathcal{O}_K$, and $\Phi(\xi) \in i \mathbf{R}^2_{>0}$.

Then

$$\frac{\{(\Phi,\mathfrak{a},\xi)\}}{\sim} \quad \longleftrightarrow \quad \frac{\{C/\mathbf{C}: \operatorname{End}(J(C)) \cong \mathcal{O}_{\mathcal{K}}\}}{\cong}$$

Symplectic basis gives Λ = τZ² + Z² with τ ∈ Mat₂(C) symmetric with pos. def. imaginary part.

Step 2: Reduction (elliptic case)

For $E = \mathbf{C}/(\tau \mathbf{Z} + \mathbf{Z})$, the number τ is unique up to

 $SL_2(\mathbf{Z})$

acting via

$$\left(egin{array}{c} \mathsf{a} & b \ c & d \end{array}
ight) au = (\mathsf{a} au + b)(c au + d)^{-1}.$$

We make au reduced: 1. $|\operatorname{Re} \tau| \leq 1/2$, 2. $|\tau| \geq 1$

the University of Warwick

Step 2: Reduction (elliptic case)

For $E = \mathbf{C}/(\tau \mathbf{Z} + \mathbf{Z})$, the number τ is unique up to

$$\mathsf{SL}_2(\mathbf{Z}) = \{ M \in \mathsf{GL}_2(\mathbf{Z}) : M^{\mathsf{t}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \},$$

acting via

$$\left(egin{array}{c} \mathsf{a} & b \ c & d \end{array}
ight) au = (\mathsf{a} au + b)(c au + d)^{-1}.$$

We make τ reduced: 1. $|\operatorname{Re} \tau| \le 1/2$, 2. $|c\tau + d| \ge 1$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z})$

the University of Warwick

Step 2: Reduction

For $J(C) = \mathbf{C}^2/(\tau \mathbf{Z}^2 + \mathbf{Z}^2)$, the matrix τ is unique up to

$$\operatorname{Sp}_4(\mathbf{Z}) = \{ M \in \operatorname{GL}_4(\mathbf{Z}) : M^{\mathsf{t}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \},$$

acting via

$$\left(egin{array}{c} {\sf a} & {\sf b} \\ {\sf c} & {\sf d} \end{array}
ight) au = ({\sf a} au+{\sf b})({\sf c} au+{\sf d})^{-1}.$$

We make τ reduced:

1. entries of Re au have absolute value $\leq 1/2$,

2.
$$|\det(c\tau + d)| \ge 1$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_4(\mathbf{Z})$,
3. $\operatorname{Im} \tau = \begin{pmatrix} y_1 & y_3 \\ y_3 & y_2 \end{pmatrix}$ is reduced: $0 \le 2y_3 \le y_1 \le y_2$

Step 3: Numerical evaluation

Thomae's formula [1870] gives an equation for C, given τ, in terms of the ten even theta constants

$$\theta[c_1, c_2](\tau) = \sum_{v \in \mathbf{Z}^2} \exp(\pi i(v + c_1)\tau(v + c_1)^{t} + 2\pi i(v + c_1)c_2^{t})$$

with $c_1, c_2 \in \{0, \frac{1}{2}\}^2$, $2c_1c_2^t \in \mathbf{Z}$.

▶ Write out, get [Bolza 1887, Igusa 1967]

$$i_k(\tau) = rac{ ext{pol. in } heta's}{\prod heta^4}, \qquad ext{e.g.} \qquad i_2(\tau) = rac{(\sum heta^8)^5}{\prod heta^4}.$$

Evaluate Igusa class polynomials numerically.

Bounds on Igusa invariants

► For running time bound, need upper bound on

$$|i_k| = rac{|\mathsf{pol. in } \theta'\mathsf{s}|}{\prod |\theta|^4}.$$

- Have |θ(τ)| < 2 for reduced τ, so only need lower bound on |θ(τ)|.
- Got a bound in terms of
 - 1. upper bound on entries of Im τ ,
 - 2. lower bound on $|\tau_{12}|$ (allowed to be weak)
- Part 2 for free from detailed analysis of our construction of τ .

Bound on $Im \tau$ (elliptic case)

For elliptic curves, we have

$$au = rac{-b + \sqrt{D}}{2a}$$

with $a, b \in \mathbf{Z}$, hence $\operatorname{Im} \tau \leq \frac{1}{2}\sqrt{|D|}$.

► For genus 2, it is not that simple.

Bound on $\operatorname{Im} \tau$

- Bound Im τ by proving existence of alternative τ' and relating it to τ via A ∈ Sp₄(Z).
- ▶ Elliptic curves: if $\tau = A\tau'$ and $\tau' = x + yi$, then

$$\operatorname{Im} \tau = \frac{\operatorname{Im} \tau'}{|c\tau' + d|^2} = \frac{y}{(cx + d)^2 + (cy)^2}$$
$$\leq \begin{cases} y & \text{if } c = 0\\ y^{-1} & \text{if } c \neq 0\\ \leq \max\{y, y^{-1}\} \end{cases}$$

Similar results for genus 2.

 To get τ', write a = zb + b⁻¹ and maximize N_{K/Q}(b²(z − z̄)O_K). (related to fundamental domains for SL₂(O_{K₀})).

Result

Theorem

Algorithm computes the Igusa class polynomials of K in time less than

cst.
$$(D_1^{7/2}D_0^{11/2})^{1+\epsilon}$$
,

where $D_0 = \text{disc } K_0$ and $D_1 D_0^2 = \text{disc } K$. The bit size of the output is between

$$\mathrm{cst.}(D_1^{1/2}D_0^{1/2})^{1-\epsilon}$$
 and $\mathrm{cst.}(D_1^2D_0^3)^{1+\epsilon}$

Bottlenecks:

- quasi-quadratic time theta evaluation (quasi-linear method not proven [Dupont 2006])
- 2. denominator bounds not optimal (special cases/conjectures [Bruinier-Yang 2006, Yang (preprint)])

What's next?

- g = 1: In practice, one does not use j, but uses "smaller functions" such as $\sqrt[3]{j}$, Weber functions, and (double) eta quotients.
- g = 2: Still stuck with Igusa's invariants.
- g = 1: Useful tool: explicit version of Shimura's reciprocity law, relating Galois action of \widehat{K}^* on values of modular functions to the action of $GL_2(\widehat{\mathbf{Q}})$ on the modular functions themselves.
- g = 2: I have been making Shimura's reciprocity law for g = 2 more explicit and have some ideas for "smaller functions".

The "embedding problem" (Goren-Lauter)

Given a quartic CM field K (not containing an imag. quadr. field). What are the primes p such that the following exist?

- ► a maximal order R in the quaternion algebra $B_{p,\infty}/\mathbf{Q}$,
- ► a fractional right *R*-ideal \mathfrak{a} with left order *R'*, and
- an embedding of $\mathcal{O}_{\mathcal{K}}$ into the matrix algebra

$$\left(\begin{array}{cc} R & \mathfrak{a}^{-1} \\ \mathfrak{a} & R' \end{array} \right)$$

such that complex conjugation on $\mathcal{O}_{\mathcal{K}}$ coincides with

$$\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right) \mapsto \left(\begin{array}{cc} \overline{\alpha} & \overline{\gamma} N(\mathfrak{a})^{-1} \\ \overline{\beta} N(\mathfrak{a}) & \overline{\delta} \end{array}\right)$$

Partial answer: we know the splitting behaviour of p in the normal closure of K and we know $p < c \cdot \text{disc}K$. [GL 2006]