Reduction of hyperelliptic curve equations

Marco Streng (Universiteit Leiden) joint work with Florian Bouyer (University of Warwick)

http://bit.ly/sdhyp

Sage Days: Algorithms in Arithmetic Geometry 25 July 2013

Elliptic curves

Elliptic curve (over k, for simplicity char(k) \nmid 6): $E: y^2 = x^3 + ax + b,$ (4 $a^3 + 27b^2 \neq 0$). *j*-invariant:

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2},$$

$$E\cong_{\overline{k}} E' \iff j(E)=j(E').$$

Given $j \in k$, let

$$E_j: y^2 = x^3 + ax + a,$$
 where $a = \frac{27}{4} \frac{j}{(1728 - j)},$
 $E_0: y^2 = x^3 - 1,$ $E_{1728}: y^2 = x^3 + x,$

then

$$j(E_j)=j.$$

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

Elliptic curves

Elliptic curve (over k, for simplicity $char(k) \nmid 6$):

$$E: y^2 = x^3 + ax + b,$$
 $(4a^3 + 27b^2 \neq 0).$

j-invariant:

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2},$$

$$E \cong_{\overline{k}} E' \iff j(E) = j(E').$$

Given $j \in k$, let

$$E_j: y^2 = x^3 + ax + a,$$
 where $a = \frac{27}{4} \frac{j}{(1728 - j)},$
 $E_0: y^2 = x^3 - 1,$ $E_{1728}: y^2 = x^3 + x,$

then

 $j(E_j)=j.$

http://bit.ly/sdhyp

Example

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$
$$E_j : y^2 = x^3 + ax + b \qquad a = b = \frac{27}{4} \frac{j}{(1728 - j)}$$

$$E : y^{2} = x^{3} + 2x + 3$$

$$\Rightarrow j(E) = 55296/275$$

$$\Rightarrow E_{j} : y^{2} = x^{3} + 8/9x + 8/9,$$

$$E \to E_{j} : (x, y) \mapsto (\frac{2}{3}x, \sqrt{\frac{2}{3}}y).$$

sage: EllipticCurve_from_j(55296/275)
Elliptic Curve defined by $y^2 = x^3 + 2*x - 3$ over
Rational Field

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

Motivation

genus 1

- There exist exactly 13 elliptic curves over Q with complex multiplication (CM).
- ► To compute them: evaluate j on imaginary quadratic integers, then compute E with given j.

genus 2

- ▶ van Wamelen (1999): numerical search for curves of genus two over Q with CM.
- Found 19, but all with very special CM-field (Galois C_4).
- ► For the generic case (Weyl CM-field, quartic *D*₄), there is a theoretical obstruction, need curves over quadratic fields.

Hyperelliptic curves $(char(k) \neq 2)$

- A hyperelliptic curve C of genus g ≥ 2 over k is (a smooth curve birational to) a curve of the form y² = f(x) with f(x) ∈ k[x] separable of degree 2g + 1 or 2g + 2.
- Every curve of genus two is hyperelliptic.
- $C = C_F : Y^2 = F(X, Z) \subset \mathbf{P}^{(1,g+1,1)}$, where

$$F(X,Z)=Z^{2g+2}f(X/Z)$$

is a binary form of degree 2g + 2.

• f(x) = F(x, 1)

Fractional-linear transformations: for $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$,

$$F \circ A = F(aX + bZ, cX + dZ)$$
 $f \cdot A = f\left(\frac{ax + b}{cx + d}\right).$

25-7-2013

 $\blacktriangleright C_F \cong C_{F'} \quad \Leftrightarrow \quad F' \sim_{\operatorname{GL}_2(k)} F$

Marco Streng (Universiteit Leiden)

Igusa invariants (char(k) \neq 2, 3, 5)

General g:

• Over
$$\overline{k}$$
, $C \cong y^2 = x(x-1)(x-\lambda_1)\cdots(x-\lambda_{2g-1})$.

• Need a 2g - 1-dimensional space instead of the *j*-line.

g = 2:

► Igusa-Clebsch invariants: polynomials *I*₂, *I*₄, *I*₆, *I*₁₀ in the coefficients of *F*.

• e.g.
$$I_{10}(C) = \Delta(F) \neq 0$$
.

•
$$C \cong_{\overline{k}} C' \quad \Leftrightarrow \quad I_n(C) = u^n I_n(C') \text{ for some } u \in \overline{k}^*.$$

- Given (x_2, x_4, x_6, x_{10}) with $x_{10} \neq 0$, $\exists C/\overline{k}$ with $I_n(C) = x_n$.
- ▶ Moduli space M_2 : $(x_{10} \neq 0) \subset \mathbf{P}^{(2,4,6,10)}$ (three-dimensional)

Igusa invariants (char(k) \neq 2, 3, 5)

•
$$C \cong_{\overline{k}} C' \quad \Leftrightarrow \quad I_n(C) = u^n I_n(C') \text{ for some } u \in \overline{k}^*.$$

- Given (x_2, x_4, x_6, x_{10}) with $x_{10} \neq 0$, $\exists C/\overline{k}$ with $I_n(C) = x_n$.
- ▶ Moduli space M_2 : $(x_{10} \neq 0) \subset \mathbf{P}^{(2,4,6,10)}$ (three-dimensional)
- ► Absolute Igusa invariants (∃ many choices, this one by Kohel)

$$i_1 = \frac{l_4 l_6}{l_{10}}, \quad i_2 = \frac{l_2^3 l_4}{l_{10}}, \quad i_3 = \frac{l_2^2 l_6}{l_{10}}$$

generate the function field of \mathcal{M}_2 .

▶ We use "better" absolute invariants from arXiv:0903.4766

Just a little bit more complicated than the *j*-invariant

Given
$$f = a_6 \prod_{i=1}^6 (X - \alpha_i)$$
, let
 $I_{10} = a_6^{10} \prod_{i < j} (\alpha_i - \alpha_j)^2 = \Delta(F).$

Use (*ij*) to denote $(\alpha_i - \alpha_j)$ and take sums over the S_6 -orbit of the given expression in $\mathbf{Q}[\alpha_i]$:

$$\begin{split} I_{2} &= a_{6}^{2} \sum_{15 \text{ terms}} (12)^{2} (34)^{2} (56)^{2} = a_{6} \sum_{\substack{\{f_{1}, f_{2}, f_{3}\}\\f = a_{6} f_{1} f_{2} f_{3}\\monic quadratic}} \Delta(f_{1}) \Delta(f_{2}) \Delta(f_{3}), \\ I_{4} &= a_{6}^{4} \sum_{10 \text{ terms}} (12)^{2} (23)^{2} (31)^{2} (45)^{2} (56)^{2} (64)^{2} = \sum_{\substack{\{f_{1}, f_{2}\}\\f = a_{6} f_{1} f_{2}\\monic cubic}} \Delta(f_{1}) \Delta(f_{2}), \\ I_{6} &= a_{6}^{6} \sum_{60 \text{ terms}} (12)^{2} (23)^{2} (31)^{2} (45)^{2} (56)^{2} (64)^{2} (14)^{2} (25)^{2} (36)^{2}, \end{split}$$

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

Sage (fortunately)

```
sage: P.\langle x \rangle = QQ[]
sage: C = HyperellipticCurve(x^6 + 25*x^2 + 7*x + 2013)
sage: ic = C.igusa_clebsch_invariants(); ic
(-7729920, 1680707527680, -4005339745316290560, -161890
2990629689481581559808)
sage: C.a
C.absolute_igusa_invariants_kohel
                                      C.ambient_space
C.absolute_igusa_invariants_wamelen
                                      C.an_element
C.affine_patch
                                      C.arithmetic_genus
C.algebra
sage: C.absolute_igusa_invariants_kohel()
(2139983069378211837363600/514635400972267621861,
 246772053462700544993280000/514635400972267621861,
 76079594767680786572928000/514635400972267621861)
```

From invariants to curves

• Given $j \in k$, there exists an elliptic curve E_j/k with $j(E_j) = j$:

$$E_j: y^2 = x^3 + ax + b$$
 $a = b = \frac{27}{4} \frac{j}{(1728 - j)}$

- Given p = (x₂ : x₄ : x₆ : x₁₀) ∈ M₂(k), there exists a hyperelliptic curve of genus two C/k with (I_n(C))_n = p. Over k? Can we construct it?
- Answer: Mestre's algorithm (1991)
 Assume Aut(C_k) = {1, ℓ}, where ℓ : (x, y) ↦ (x, -y)
 (Otherwise yes and yes by Cardona-Quer (2005)).

From invariants to curves

- Given p = (x₂ : x₄ : x₆ : x₁₀) ∈ M₂(k), there exists a hyperelliptic curve of genus two C/k with (I_n(C))_n = p. Over k? Can we construct it?
- Answer: Mestre's algorithm (1991)
 Assume Aut(C_k) = {1, ι}, where ι : (x, y) ↦ (x, -y)
 (Otherwise yes and yes by Cardona-Quer (2005)).
- ▶ Given p, Mestre constructs a conic M/k and an effective divisor {P₁,..., P₆} over k of degree 6 on it such that
 - If $M(k) = \emptyset$, then C has no model over k.
 - If $\varphi: M \to \mathbf{P}^1$, let $f \in k[x]$ be the polynomial with roots $\phi(P_i) \in \overline{k} \subset \mathbf{P}^1(\overline{k})$. Then *C* is given by $y^2 = f(x)$ over *k*.
- End of story?

Theoretically yes, practically no: horrible coefficients.

van Wamelen solved this problem for his 19 curves, but not good enough for ours.

Horrible coefficients

Recall $C: y^2 = x^6 + 25x^2 + 7x + 2013$. Apply Mestre's algorithm to its invariants to get

$$\begin{split} y^2 &= - \ 197220384903570541258693025850140409137495471786014139569984387835291188286163x^6 \\ &+ \ 7705096870070252252649995584659824094013182570280377424236459475407947725467909x^5 \\ &- \ 125480356159835906869796904159183440060677507167946002493908006308709159355315380x^4 \\ &+ \ 1090321883072289123852750020271533155487110716903023471315502508148195083934113770x^3 \\ &- \ 5331384549744199764425288568077464479982788366903898605124053176774011042922952195x^2 \\ &+ \ 13909648993550394785876798246155505974982100319395126989813089011028042418855639505x \\ &- \ 15129442990476714375403330597363303309852007272814366545312402484436587044868908694 \end{split}$$

But wait those coefficients have a gcd...

Horrible coefficients

Recall $C: y^2 = x^6 + 25x^2 + 7x + 2013$. Apply Mestre's algorithm to its invariants to get

 $y^2 = -\ 6091327792665873x^6$

 $+ 237978800887088439x^5$

 $-3875572909381249980x^4$

 $+ 33675565497741734670x^3$

 $-164664575100209805345x^{2}$

+ 429611936626468175355x

-467286364036379202674

Goal: given a hyperelliptic curve C/k, find a "small" hyperelliptic curve C'/k with $C \cong_{\overline{k}} C'$. Note: this example is very tame, conic-solving works much better over **Q** than over number fields!

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

Models over k and transformations over \overline{k}

Recall
$$C_F : y^2 = F(X, Z)$$
.
Given $[A, u] = [\begin{pmatrix} a & b \\ c & d \end{pmatrix}, u] \in GL_2(k) \times k^*$, let

$$F' = F \cdot [A, u] := u \cdot F \circ A.$$

Then
$$C_{F'} \cong_{\overline{k}} C_F$$

(i.e., $y^2 = F(X, Z) \cong y^2 = uF(aX + bZ, cX + dZ)$)

In fact (assuming Aut($C_{\overline{k}}$) = {1, ι }), given any pair $F, F' \in k[X, Z]$, we have

$$C_{F'} \cong_{\overline{k}} C_F \iff F' \in F \cdot (\operatorname{GL}_2(k) \times k^*).$$

So

Goal: given F, find a "small" element of its $(GL_2(k) \times k^*)$ -orbit.

Define "small"

For k a number field, "small" means

- 1. coefficients in the integers \mathcal{O}_k ,
- 2. . . .
- 3. coefficient height $(\max\{|a_i|_v : i, \operatorname{arch. val.} v\})$ "small" (sorry).

Define "small"

For k a number field, "small" means

- 1. coefficients in the integers \mathcal{O}_k ,
- 2. discriminant $\Delta(f)$ of minimal norm,
- 3. coefficient height $(\max\{|a_i|_v : i, \operatorname{arch. val.} v\})$ "small" (sorry).

Define "small"

For k a number field, "small" means

- 1. coefficients in the integers \mathcal{O}_k ,
- 2. discriminant $\Delta(f)$ of minimal norm,
- 3. coefficient height $(\max\{|a_i|_v : i, \operatorname{arch. val.} v\})$ "small" (sorry).
- For simplicity: class number one.
- Then
 - 1. is achieved by scaling,
 - 2. we deal with locally,
- ► Given 1. and 2., the only freedom left is the action of the subgroup GL₂(O_k) × 1, which will be step 3.

- Let k be a field with discrete valuation v.
- Given *F*, we want a *v*-integral element of the orbit $F \cdot (GL_2(k) \times k^*)$ with $v(\Delta)$ minimal.
- If v(Δ) > 0, then there is a multiple root in P¹ mod v. → generic p-adic stuff, or...

Proposition (B-S)? Suppose *f* is integral, degree 2g + 1 or 2g + 2, with Aut $((C_f)_{\overline{k}}) = \{1, \iota\}$. Let π be uniformizer of *v*. Then *F* is *non*-minimal at $v \iff$ one of the following holds

- 1. f is non-primitive, i.e., $h := f/\pi$ is integral.
- 2. $(f \mod \pi)$ has a (g + 2)-fold root $\overline{t} \mod \pi$. Moreover, for every lift t, $h := f(\pi X + t)/\pi^{g+2}$ is integral.
- 3. deg($f \mod \pi$) $\leq g$ Moreover, $h := f(x/\pi)\pi^g$ is integral.

In each case, we have $v(\Delta(h)) < v(\Delta(f))$.

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

Proposition (B-S)? Suppose f is integral, degree 2g + 1 or 2g + 2, with $Aut((C_f)_{\overline{k}}) = \{1, \iota\}$. Let π be uniformizer of v. Then F is *non*-minimal at $v \iff$ one of the following holds

1. f is non-primitive, i.e., $h := f/\pi$ is integral.

2. $(f \mod \pi)$ has a (g+2)-fold root $\overline{t} \mod \pi$. Moreover, for every lift t, $h := f(\pi X + t)/\pi^{g+2}$ is integral.

3. deg $(f \mod \pi) \le g$ Moreover, $h := f(x/\pi)\pi^g$ is integral.

In each case, we have $v(\Delta(h)) < v(\Delta(f))$.

 $gcd(\overline{f},\overline{f}',\overline{f}'',\ldots,\overline{f}^{(g+1)}) = \begin{cases} (x-\overline{t})^n & 1 \le n \le g+1, \text{ if } \overline{t} \text{ exists,} \\ 1 & \text{otherwise.} \end{cases}$

- \overline{t} is $-n^{-1}$ times the coefficient of x^{n-1} .
- 1., 2., 3., easy recursion!

Marco Streng (Universiteit Leiden)

Let k be a number field. If we know a factorization of $\Delta(F)$ into principal ideals, then the local algorithm yields a global algorithm. But...

- If there are non-principal ideals?
- Factoring

Let k be a number field. If we know a factorization of $\Delta(F)$ into principal ideals, then the local algorithm yields a global algorithm. But...

- If there are non-principal ideals?
 Then just make Δ(F) "almost minimal".
- Factoring seems to be essential:
 - Let p and q be large unknown primes. Given $n = p^2 q$, take

$$F = n^2 X^6 + X Y^5 + Y^6$$

with $\Delta(F) = (5^5 - 6^6 n^2) n^8$.

- Let $G(X, Y) = F(X, pY)/p^4 = q^2X^6 + pXY^5 + p^2Y^6$ with $\Delta(G) = (5^5 - 6^6p^4q^2)p^6q^8 = \Delta(F)/p^{10}$. For most *p* and *q*, *G* is the minimal model.
- If we can compute the minimal model G, then we can find $p = \sqrt[10]{\Delta(F)/\Delta(G)}$ and factor n.

Factoring seems to be essential:

• Let p and q be large unknown primes. Given $n = p^2 q$, take

$$F = n^2 X^6 + X Y^5 + Y^6$$

with $\Delta(F) = (5^5 - 6^6 n^2) n^8$.

- Let $G(X, Y) = F(X, pY)/p^4 = q^2X^6 + pXY^5 + p^2Y^6$ with $\Delta(G) = (5^5 - 6^6p^4q^2)p^6q^8 = \Delta(F)/p^{10}$. For most *p* and *q*, *G* is the minimal model.
- If we can compute the minimal model G, then we can find $p = \sqrt[10]{\Delta(F)/\Delta(G)}$ and factor n.
- So we spent hours factoring using Magma, GMP-ECM, and Cado-NFS,

- ► Factoring seems to be essential: (in worst case!)
 - Let p and q be large unknown primes. Given $n = p^2 q$, take

$$F = n^2 X^6 + X Y^5 + Y^6$$

with $\Delta(F) = (5^5 - 6^6 n^2) n^8$.

- Let $G(X, Y) = F(X, pY)/p^4 = q^2X^6 + pXY^5 + p^2Y^6$ with $\Delta(G) = (5^5 - 6^6p^4q^2)p^6q^8 = \Delta(F)/p^{10}$. For most *p* and *q*, *G* is the minimal model.
- If we can compute the minimal model G, then we can find $p = \sqrt[10]{\Delta(F)/\Delta(G)}$ and factor n.
- So we spent hours factoring using Magma, GMP-ECM, and Cado-NFS,
- but we did not need to!

Without factoring

- All we need to do is, given f and a
 - ► make ∆(f) smaller at the primes dividing a without affecting other primes,
 - find a non-trivial factor of α, or
 - prove f is minimal at all primes dividing a.
- ▶ We can't: we don't know how to factor n = p²q.
 ▶ Still....
 - Trial division
 - Recognize pure powers
 - Pretend a is prime:
 - Recall $gcd(\overline{f},\overline{f}',\overline{f}'',\ldots,\overline{f}^{(g+1)}) = (x-\overline{t})^n$
 - Euclid, division $\rightsquigarrow \overline{t}$ or non-trivial factor of a
 - If $\mathfrak{a} = (\pi)$ is square-free, use $f(\pi x + t)/\pi^{g+2}$.
- Works very well in practice.

f =

-6091327792665573;⁶ + 237978800887088439;⁵ - 3375572909331249980;⁴ + 33675565497741734670;³ - 164664575100209805345;² + 429611936626468175355; - 467286364036379202674 Discriminant $\Delta(f) = -2^{20}3^{61}$.

73471086592869851303644427746893403889666267546667046818392909627451877729118440209278238621067233680094429667618339707628861588789

f =

-691327792665873 t^6 + 237978800887088439 t^5 - 3875572909381249980 x^4 + 33675656497741734670 x^3 - 164664575100209805345 x^2 + 429611936626468175355x - 467286364036379202674 Discriminant $\Delta(f) = -2^{20}3^{61} \cdot$

 $^{73471086592869851303644427746893403889666267546667046818392909627451877729118440209278238621067233680094429667618339707628861588789 gcd of lgusa invariants: <math display="inline">2^8 3^{14} 7205197360802657286244559$ Finding the prime factors 2 and 3 is easy. Let's assume we have dealt with those.

f =

-6091327792665873x⁶ + 237978800887088439x⁵ - 3875572909381249990x⁴ + 33675555497741734670x² - 164664575100209805345x² + 429611936626468175355x - 467286364036379202674 Discriminant $\Delta(f) = -2^{20}3^{61} \cdot$

 $^{73471086592869851303644427746893403889666267546667046818392909627451877729118440209278238621067233680094429667618339707628861588789 gcd of lgusa invariants: <math display="inline">2^8 3^{14} 7205197360802657286244559$ Finding the prime factors 2 and 3 is easy. Let's assume we have dealt with those.

f =

 $\begin{array}{l} - 16711461708274x^{8} + 309734081346717x^{5} - 2393068441397265x^{4} + 9865584275416110x^{3} - 22888496673941935x^{2} + 28335144240596681x - 14625260694982851\\ gcd \ of \ lgusa \ invariants: \ 3 \cdot 7205197360802657286244559 \end{array}$

f =

 $\begin{array}{l} {}_{-16711461708274x^{8}+309734081346711x^{5}-2393068441397265x^{4}+9865584275416110x^{3}-22888496673941935x^{2}+28335144240596681x-14625260694982851} \\ gcd \ of \ lgusa \ invariants: \ 3\cdot72051973608802657286244559 \end{array}$

Let a = 7205197360802657286244559, not a perfect power, no obvious prime factors.

Work over $R = \mathbf{Z}/a\mathbf{Z}$, let $g = (f \mod a) \in R[x]$. Full degree.

So we compute gcd(g, g') by Euclid's algorithm: $g = q_1g' + r_1$ for some r_1 of degree ≤ 4 $g' = q_2r_1 + r_2$? Wait, the leading coefficient of r_1 has a factor 22061809 in common with *a*.

f =

 $\begin{array}{l} {}_{-16711461708274x^6+3097340813467117x^5-2393068441397265x^4+9865584275416110x^3-22888496673941935x^2+28335144240596681x-14625260694982851} \\ gcd \ of \ lgusa \ invariants: \ 3\cdot72051973608802657286244559 \end{array}$

Let a = 22061809 (and save 7205197360802657286244559/22061809 for later) Perfect power: $22061809 = 4697^2$

f =

 $\begin{array}{l} {}_{-16711461708274x^{8}+309734081346711x^{5}-2393068441397265x^{4}+9865584275416110x^{3}-22888496673941935x^{2}+28335144240596681x-14625260694982851} \\ gcd \ of \ lgusa \ invariants: \ 3\cdot72051973608802657286244559 \end{array}$

Let a = 22061809 (and save 7205197360802657286244559/22061809 for later) Perfect power: $22061809 = 4697^2$

Let a = 4697, not a perfect power, pretend for talk no obvious prime factors.

f =

 $\begin{array}{l} {}_{-16711461708274x^{6}+309734081346717x^{5}-2393068441397265x^{4}+9865584275416110x^{3}-22888496673941935x^{2}+28335144240596681x-14625260694982851} \\ gcd \ of \ lgusa \ invariants: \ 3\cdot72051973608802657286244559 \end{array}$

Let a = 4697, not a perfect power, pretend for talk no obvious prime factors.

Work over $R = \mathbf{Z}/a\mathbf{Z}$, let $g = (f \mod a) \in R[x]$. Full degree:

 $g = 2670x^6 + 2183x^5 + 3757x^4 + 1088x^3 + 3429x^2 + 4030x + 4014$

So we compute gcd(g, g') etc. Get $gcd(g, g', g'', g''') = 1004x^3 + 4161x^2 + 925x + 1831$. So $\overline{t} = -4161/1004/3 = 1360 \in R$. Take $f \rightsquigarrow f(ax + 1360)/a^4$.

f =

-16711461708274x⁶+309734081346717x⁵-2393068441397265x⁶+9865584275416110x³-23888496673941935x²+28335144240596681x-14625260694982851 gcd of lgusa invariants: $3 \cdot 7205197360802657286244559$ Get gcd $(g, g', g'', g''') = 1004x^3 + 4161x^2 + 925x + 1831$. So $\overline{t} = -4161/1004/3 = 1360 \in R$. Take $f \rightsquigarrow f(ax + 1360)/a^4$.

f =

f =

 $\begin{array}{l} -16711461708274x^{6}-28966530436059x^{5}-20920269727185x^{4}-8058177120130x^{3}-1745938196335x^{2}-201752837967x-9714024579\\ \mbox{gcd of lgusa invariants: 3, so no further reduction possible.} \end{array}$

2. If you don't want to twist

Recall:

1.
$$f(x) \rightsquigarrow f(x)/\pi$$
,
2. $f(x) \rightsquigarrow f(\pi x + t)/\pi^{g+2}$,
3. $f(x) \rightsquigarrow f(x/\pi)\pi^g$,

2. If you don't want to twist

Recall:

1.
$$y^2 = f(x) \quad \rightsquigarrow \quad y^2 = f(x)/\pi,$$

2. $y^2 = f(x) \quad \rightsquigarrow \quad y^2 = f(\pi x + t)/\pi^{g+2},$
3. $y^2 = f(x) \quad \rightsquigarrow \quad y^2 = f(x/\pi)\pi^g,$

- 1. is a quadratic twist by π
- 2. and 3. are quadratic twists by π if g is odd and are isomorphisms over k if g is even.
- If you want an isomorphism over k, then after finishing the reduction do

$$f \quad \rightsquigarrow \quad \pi^k f,$$

where $k \in \{0, 1\}$ is $\#1. + g \cdot (\#2. + \#3.)$ modulo 2.

3. van Wamelen's approach (1999)

Next, suppose $k = \mathbf{Q}$ and that we have an integral model $y^2 = F(X, Y)$ with globally minimal $\Delta(F)$.

- ► The globally minimal models are the GL₂(Z)-orbit of F, ¹₀ ⁰₋₁) does not change the size of the model.
- ► SL₂(**Z**) = $\langle S, T \rangle$, where $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- ► Let W be a set of small words in S, T, T⁻¹. Given f, find the smallest element of F · W (and start over with that new f).
- Works reasonably well, despite danger of local minima.
- We could not make it work for quadratic fields.

3. Stoll-Cremona reduction over \mathbf{Q} (2003)

Same problem: find minimal element of $SL_2(\mathbf{Z})$ -orbit of F. Idea: use a covariant $z = z(f) \in \mathcal{H}$, i.e.,

$$z(f\cdot A^{-1})=A\cdot z=rac{az+b}{cz+d}, \quad ext{for all} \quad A=inom{a \ b}{c \ d}\in \mathsf{SL}_2(\mathbf{R}).$$

Call f reduced iff z(f) is, i.e., iff $z(f) \in \mathbf{F}$.

Remark: we restrict to separable even degree binary forms over \mathbf{R} , they do more general arbitrary degree binary forms over \mathbf{R} and \mathbf{C} . 25-7-2013

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

3. What is z?

Multiple covariants exist. Most notably z_0 and z:

• $z_0(F)$ is the root in \mathcal{H} of

$$\sum_{j=1}^{2g+2} |f'(\alpha_i)|^{-1/g} (x-\alpha_i)(x-\overline{\alpha_i}).$$

(easy to implement, fast to evaluate)

 "The representative point z(F) is the unique point in upper half-space such that the sum of its distances from all the roots of F is minimal." [Prop. 5.3 in Stoll-Cremona] (very natural, yields better reduction in practice)

Stoll implemented both in Magma, we implemented z_0 in Sage and use Magma for z.

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

 $f = -16711461708274x^{5} - 28966530436059x^{5} - 20920269727185x^{4} - 8058177120130x^{3} - 1745938196335x^{2} - 201752837967x - 9714024579$ $z_{0} = -0.288883100864693 + 0.000138756004820783i$

 $z_0\mapsto -1/z_0, \quad f\mapsto f(-1/x)x^6$

 $f = -16711461708274x^{5} - 28966530436059x^{5} - 20920269727185x^{4} - 8058177120130x^{3} - 1745938196335x^{2} - 201752837967x - 9714024579$ $z_{0} = -0.288883100864693 + 0.000138756004820783i$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

$$\begin{split} f &= -9714024579x^{6} + 201752837967x^{5} - 1745938196335x^{4} + 8058177120130x^{3} - 20920269727185x^{2} + 28966530436059x - 16711461708274 \\ z_{0} &= 3.461607017858811 + 0.001662675517421363i \end{split}$$

 $z_0 \mapsto z_0 - 3$, $f \mapsto f(x + 3)$

 $f = -16711461708274x^{5} - 28966530436059x^{5} - 20920269727185x^{4} - 8058177120130x^{3} - 1745938196335x^{2} - 201752837967x - 9714024579$ $z_{0} = -0.288883100864693 + 0.000138756004820783i$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

$$\begin{split} f &= -9714024579x^{6} + 201752837967x^{5} - 1745938196335x^{4} + 8058177120130x^{3} - 20920269727185x^{2} + 28966530436059x - 16711461708274 \\ z_{0} &= 3.461607017858811 + 0.001662675517421363i \end{split}$$

 $z_0 \mapsto z_0 - 3$, $f \mapsto f(x + 3)$

 $f = -9714024579x^{6} + 26900395545x^{5} - 31038944995x^{4} + 19100908480x^{3} - 6611860500x^{2} + 1220652732x - 93896497$ $z_{0} = 0.461607017858111 + 0.00166267517421363i$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

$$\begin{split} f &= -9714024579x^6 + 201752837967x^5 - 1745938196335x^4 + 8058177120130x^3 - 20920269727185x^2 + 28966530436059x - 16711461708274 \\ z_0 &= 3.46160701785811 + 0.00166267517421363i \end{split}$$

 $z_0 \mapsto z_0 - 3$, $f \mapsto f(x + 3)$

$$\begin{split} f &= -9714024579x^6 + 26900395545x^5 - 31038944995x^4 + 19100908480x^3 - 6611860500x^2 + 1220652732x - 93896497\\ z_0 &= 0.461607017858111 + 0.00166267517421363i \end{split}$$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

 $f = -93896497x^{6} - 1220652732x^{5} - 6611860500x^{4} - 19100908480x^{3} - 31038944995x^{2} - 26900395545x - 9714024579$ $z_{0} = -2.16631677508735 + 0.00780291672802818i$

 $z_0 \mapsto z_0 + 2$, $f \mapsto f(x - 2)$

 $f = -9714024579x^{6} + 26900395545x^{5} - 31038944995x^{4} + 19100908480x^{3} - 6611860500x^{2} + 1220652732x - 93896497$ $z_{0} = 0.461607017858111 + 0.00166267517421363i$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

 $f = -93896497x^{6} - 1220652732x^{5} - 6611860500x^{4} - 19100908480x^{3} - 31038944995x^{2} - 26900395545x - 9714024579$ $z_{0} = -2.16631677508735 + 0.00780291672802818i$

 $z_0 \mapsto z_0 + 2$, $f \mapsto f(x - 2)$

 $f = -93896497 * x^{6} - 93894768 * x^{5} - 39123000 * x^{4} - 8694240 * x^{3} - 1086835 * x^{2} - 72461 * x - 2013$ $z_{0} = -0.166316775087345 + 0.00780291672802818i$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

 $f = -93896497x^{6} - 1220652732x^{5} - 6611860500x^{4} - 19100908480x^{3} - 31038944995x^{2} - 26900395545x - 9714024579$ $z_{0} = -2.16631677508735 + 0.00780291672802818i$

 $z_0 \mapsto z_0 + 2$, $f \mapsto f(x - 2)$

 $f = -93896497 * x^{6} - 93894768 * x^{5} - 39123000 * x^{4} - 8694240 * x^{3} - 1086835 * x^{2} - 72461 * x - 2013$ $z_{0} = -0.166316775087345 + 0.00780291672802818i$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

 $f = -2013x^{6} + 72461x^{5} - 1086835x^{4} + 8694240x^{3} - 39123000x^{2} + 93894768x - 93896497$ $z_{0} = 5.99941721622790 + 0.281468618726764i$

 $z_0 \mapsto z_0 - 6$, $f \mapsto f(x + 6)$

 $f = -93896497 * x^{6} - 93894768 * x^{5} - 39123000 * x^{4} - 8694240 * x^{3} - 1086835 * x^{2} - 72461 * x - 2013$ $z_{0} = -0.166316775087345 + 0.00780291672802818i$

 $z_0\mapsto -1/z_0$, $f\mapsto f(-1/x)x^6$

 $f = -2013x^{6} + 72461x^{5} - 1086835x^{4} + 8694240x^{3} - 39123000x^{2} + 93894768x - 93896497$ $z_{0} = 5.99941721622790 + 0.281468618726764i$

 $z_0 \mapsto z_0 - 6$, $f \mapsto f(x+6)$

 $f = -2013 \times^{6} - 7 \times^{5} - 25 \times^{4} - 1$ $z_{0} = -0.000582783772097132 + 0.281468618726764i$

 $f = -2013x^{6} + 72461x^{5} - 1086835x^{4} + 8694240x^{3} - 39123000x^{2} + 93894768x - 93896497$ $z_{0} = 5.99941721622790 + 0.281468618726764i$

 $z_0 \mapsto z_0 - 6$, $f \mapsto f(x+6)$

 $f = -2013 \times^{6} - 7 \times^{5} - 25 \times^{4} - 1$ $z_{0} = -0.000582783772097132 + 0.281468618726764i$

$$z_0\mapsto -1/z_0$$
, $f\mapsto f(-1/x)x^6$

 $f = -x^{6} - 25x^{2} + 7x - 2013$ $z_{0} = 0.00735606612524563 + 3.55277869883883i$

 z_0 is reduced, so f is z_0 -reduced.

z = 0.00731702950415161 + 3.55336225369141i

z is also reduced, so f is (z-)reduced.

3. Stoll-Cremona reduction in general

If k is totally real of degree d, then take $\phi_1, \ldots, \phi_d : k \to \mathbf{R}$. $z(F) = z(\phi_i(F))_i \in \mathcal{H}^d$

$$z(f \cdot A^{-1}) = A \cdot z = \left(rac{\phi_i(a)z_i + \phi_i(b)}{\phi_i(c)z_i + \phi_i(d)}
ight)_i \in \mathcal{H}^d.$$

"We call *F* reduced if z(F) is in a fixed fundamental domain for the action of SL(2, \mathcal{O}_k)." [Stoll-Cremona]

We implemented a fundamental domain if k is real quadratic of class number one.

CD 11.	4
Table	18

DAB	Δ_{stable}	$\Delta(C)/\Delta_{\text{stable}}$	f , where $C : y^2 = f$
[5, 5, 5]	1	$2^8 \cdot 5^5$	$x^5 - 1$
[5 10 20]	2 ¹²	$2^{10} \cdot 5^5$	$4x^5 - 30x^3 + 45x - 22$
[0, 10, 20]	$2^{12} \cdot 11^{12}$	$2^{10} \cdot 5^5$	$8x^6 + 52x^5 - 250x^3 + 321x - 131$
[5 65 845]	11 ¹²	$2^{20} \cdot 5^5 \cdot 13^{10}$	$8x^6 - 112x^5 - 680x^4 + 8440x^3 + 28160x^2 - 55781x + 111804$
[0,00,040]	$31^{12} \cdot 41^{12}$	$2^{20} \cdot 5^5 \cdot 13^{10}$	$-9986x^{6} + 73293x^{5} - 348400x^{3} - 118976x - 826072$
[5 85 1445]	7112	$2^{20} \cdot 5^5 \cdot 17^{10}$	$-73x^{6} + 1005x^{5} + 14430x^{4} - 130240x^{3} - 1029840x^{2} + 760976x - 2315640$
[0,00,1440]	$11^{12} \cdot 41^{12} \cdot 61^{12}$	$2^{20} \cdot 5^5 \cdot 17^{10}$	$2160600x^{6} - 8866880x^{5} + 2656360x^{4} - 582800x^{3} + 44310170x^{2} + 6986711x - 444408$
[8, 4, 2]	26	2 ¹⁵	$x^{5} - 3x^{4} - 2x^{3} + 6x^{2} + 3x - 1$
[6 30 50]	$2^{6} \cdot 7^{12} \cdot 23^{12}$	$2^{15} \cdot 5^{10}$	$-8x^{6} - 530x^{5} + 160x^{4} + 64300x^{3} - 265420x^{2} - 529x$
[8, 20, 30]	$2^{6} \cdot 7^{12} \cdot 17^{12} \cdot 23^{12}$	$2^{15} \cdot 5^{10}$	$4116x^6 + 64582x^5 + 139790x^4 - 923200x^3 + 490750x^2 + 233309x - 9347$
[13, 13, 13]	1	$2^{20} \cdot 13^5$	$x^{6} - 8x^{4} - 8x^{3} + 8x^{2} + 12x - 8$
[12 96 59]	$2^{12} \cdot 3^{12} \cdot 23^{12}$	$2^{10} \cdot 13^5$	$-243x^{6} - 2223x^{5} - 1566x^{4} + 19012x^{3} + 903x^{2} - 19041x - 5882$
[15, 20, 52]	$2^{12} \cdot 3^{12} \cdot 23^{12} \cdot 131^{12}$	$2^{10} \cdot 13^5$	$59499x^{6} - 125705x^{5} - 801098x^{4} + 1067988x^{3} + 2452361x^{2} + 707297x - 145830$
[13 65 395]	312	$2^{20} \cdot 5^{10} \cdot 13^5$	$36x^5 - 1040x^3 + 1560x^2 + 1560x + 1183$
[15, 05, 525]	$3^{12} \cdot 53^{12}$	$2^{20} \cdot 5^{10} \cdot 13^5$	$-1323x^{6} - 1161x^{5} + 9360x^{4} + 9590x^{3} - 34755x^{2} + 1091x + 32182$
[29, 29, 29]	5 ¹²	$2^{20} \cdot 29^5$	$43x^6 - 216x^5 + 348x^4 - 348x^2 - 116x$
[37, 37, 333]	$3^{12} \cdot 11^{12}$	$2^{20} \cdot 37^5$	$-68x^{6} + 57x^{5} + 84x^{4} - 680x^{3} + 72x^{2} - 1584x - 4536$
[53, 53, 53]	$17^{12} \cdot 29^{12}$	$2^{20} \cdot 53^5$	$-3800x^{6} + 15337x^{5} + 160303x^{4} - 875462x^{3} + 896582x^{2} - 355411x + 50091$
[61, 61, 549]	$3^{24} \cdot 5^{12} \cdot 41^{12}$	$2^{20} \cdot 61^5$	$40824x^{6} + 103680x^{5} - 67608x^{4} - 197944x^{3} - 17574x^{2} + 41271x + 103615$

Table 1b

DAB	Δ_{stable}	$\Delta(C)/\Delta_{\text{stable}}$	f , where $C: y^2 = f$
[5 15 45]	$(2)^{12} \cdot (3)^6$	$(2a + 1)_{5}^{10}$	$-x^{6} + (-3a - 3)x^{5} + (5a + 15)x^{3} + (-15a - 3)x - 4a + 1$
[0, 10, 40]	$(2)^{12} \cdot (3)^6 \cdot (5a + 2)^{12}_{31}$	$(2a + 1)_5^{10}$	$(-2a + 3) x^{6} + (-9a + 18) x^{5} + (15a - 70) x^{3} + (39a + 54) x - 52a - 1$
	$(3a + 2)^{12}_{12} \cdot (2)^{18} \cdot (3)^6 \cdot (5a + 2)^{12}_{12}$	$(2a + 1)^{10}_{2}$	$684x^{6} + (390a + 90)x^{5} + (24a - 3138)x^{4} + (217a + 401)x^{3} +$
[5, 30, 180]		(== : =)5	$(96a + 3918) x^2 + (-2112a - 1698) x + 284a + 432$
	$(3a + 1)_{11}^{12} \cdot (2a - 11)_{139}^{12} \cdot (4a + 3)_{19}^{12}$	$(2a + 1)^{10}_{5}$	$(927a + 2906) x^{6} + (5541a + 18822) x^{5} + (-33535a - 124380) x^{3} +$
	$(2)^{16} \cdot (3)^{6} \cdot (5a + 2)^{12}_{31}$	(=== 1 =)3	(33417a + 183726) x + 12641a - 31928
	$(3a + 2)_{11}^{12} \cdot (2)_{12}^{12} \cdot (a + 6)_{29}^{12}$	$(2a \pm 1)^{10}$	$(-4527a - 783) x^{6} + (6392a + 7811) x^{5} + (-4500a - 17085) x^{3} +$
[5, 35, 245]	$(7)^{6} \cdot (a + 9)^{12}_{71}$	(201 + 1)5	(-6948a + 9783) x - 1687a + 39
	$(3a + 1)_{11}^{12} \cdot (11a + 5)_{151}^{12}$		$(-435a - 521) x^{6} + (353a + 110) x^{5} + (131927a + 189531) x^{4} +$
	$(2a + 15)^{12}_{191} \cdot (2)^{12}$	$(2a + 1)^{10}_{5}$	$(-696187a - 952511)x^3 + (-10094248a - 15393369)x^2 +$
	$(a - 5)^{12}_{29} \cdot (7)^6$		(94869598a + 145990333) x - 210533420a - 329328479
	$(2a \pm 1)^{12}$, $(2)^{6}$, $(7)^{6}$	$(2)^{20}$, $(2a \pm 1)^{10}$	$(-5a + 4) x^{6} + (-81a + 30) x^{5} + (-135a + 210) x^{4} + (450a - 210) x^{3} +$
[5, 105, 2205]	$(3u + 1)_{11} \cdot (3) \cdot (1)$	$(2) \cdot (2a + 1)_5$	$(360a - 1785) x^2 + (600a + 15) x - 950a + 5625$
	$(a + 11)^{12}_{109} \cdot (3a + 2)^{12}_{11} \cdot (3)^6$	$(2)^{20}$, $(2a \pm 1)^{10}$	$(-3a - 260) x^{6} + (1032a + 1389) x^{5} + (19160a + 8760) x^{3} +$
	$\cdot (7)^6 \cdot (8a + 3)^{12}_{79}$	$(2) \cdot (2a + 1)_5$	(-16224a + 163200) x + 162976a + 114632
[0 10 10]	$(a)_{2}^{12} \cdot (3)^{6}$	()30	$(24a - 54)x^{5} + (-66a + 96)x^{4} + (-32a + 220)x^{3} + (12a - 312)x^{2} +$
[0, 12, 10]	$(2a - 1)^{12}_7 \cdot (2a + 1)^{12}_7$	$(a)_2$	(96a + 21)x - 5a - 16
	$(2a \pm 15)^{12}$, $(a \pm 2)^{36}$		$(213a + 1875) x^{6} + (8071a + 4059) x^{5} + (-1045a + 58039) x^{4} +$
[17, 119, 3332]	$(a - 1)^{12}$, $(a + 7)^{12}$, $(7)^6$	$(2a + 1)^{10}_{17}$	$(32898a + 26657) x^3 + (-12585a + 3550) x^2 + (-46889a - 136176) x$
	$(a - 1)_2 \cdot (4a + 1)_{43} \cdot (1)$		-42057a - 104692

Continued on next page

http://bit.ly/sdhyp

25-7-2013 23 / 25

Table 1b, continued from previous page

DAB	Δ_{stable}	$\Delta(C)/\Delta_{\text{stable}}$	f , where $C : y^2 = f$
[17, 255, 15300	$(2a - 5)^{12}_{19} \cdot (a + 2)^{24}_{2} \cdot (a - 1)^{24}_{2^4} \cdot (3)^6 \cdot (2a + 31)^{12}_{883}$	$(2a+1)^{10}_{17} \cdot (5)^{10}$	$\begin{array}{l} (-4264a-13208)x^{5}+(9516a-94116)x^{5}+(331770a-503670)x^{4}+\\ (-1195640a+1593625)x^{3}+(1141785a-2476410)x^{2}+\\ (-69927a+2540472)x-301251a-1280828 \end{array}$
	$\begin{array}{c}(2a+3)^{12}_{13}\cdot(4a+17)^{12}_{157}\cdot(2a+7)^{12}_{19}\\\cdot(a+2)^{12}_{12}\cdot(a-1)^{12}_{2}\cdot(3)^{6}\\\cdot(4a+3)^{12}_{67}\cdot(2a-9)^{12}_{83}\cdot(2a+11)^{12}_{83}\end{array}$	$(2a + 1)^{10}_{17} \cdot (5)^{10}$	$(3703196a + 9037010)x^6 +$ $(12666396a + 36366348)x^5 + (33133830a + 56148570)x^4 +$ $(35333760a + 111063545)x^3 + (71845845a + 45282705)x^2 +$ (154100103a - 105860229)x + 81081415a - 36366223

Table 2b

DAB	DAB^{r}	a	Δ_{stable}	$\Delta(C)/\Delta_{\text{stable}}$	f , where $C : y^2 = f$
[5, 11, 29]	[29, 7, 5]	$\alpha^2 + 3$	$(2)^{12} \cdot (a-1)^{12}_5 \cdot (a+1)^{12}_7$	$(a + 2)_5^{10}$	$(18a + 60) x^6 + (-76a - 246) x^5 + (127a + 329) x^4 + (-77a - 209) x^3 + (-30a + 155) x^2 + (29a - 69) x + 71a - 156$
			$(2)^{12} \cdot (a+6)^{12}_{23} \cdot (a-1)^{12}_{5}$	$(a + 2)_5^{10}$	$\frac{(2a + 1)x^6 + (-a - 26)x^5 + (9a + 38)x^4 + (-40a - 25)x^3 + (-21a - 37)x^2 + (100a + 218)x + 102a + 268}{(-21a - 37)x^2 + (100a + 218)x + 102a + 268}$
[5,13,41]	$\left[41,11,20\right]$	$\alpha^2 + 5$	$(a - 3)_2^{12}$	$(a+4)^{20}_2 \cdot (2a-5)^{10}_5$	$(-a + 3) x^{6} + (4a - 8) x^{5} + 10x^{4} + (-a + 20) x^{3} + (4a + 5) x^{2} + (a + 4) x + 1$
[5, 17, 61]	[61,9,5]	α^2+4	$(a - 3)_3^{12}$	$(2)^{20} \cdot (a - 4)^{10}_5$	$(a + 4) x^{6} + (-8a - 42) x^{5} + (37a + 117) x^{4} + (-20a - 240) x^{3} + (56a - 9) x^{2} + (22a - 114) x + 9a - 28$
[5, 21, 109]	[109, 17, 45]	α^2+8	$(a-5)_3^{12} \cdot (3a+17)_5^{12}$	$(2)^{20} \cdot (3a - 14)^{10}_5$	$\begin{array}{l} \left(-28a+53\right)x^{6}+\left(-113a+913\right)x^{5}+\left(-495a+1890\right)x^{4}+\\ \left(-746a+3308\right)x^{3}+\left(-563a+3574\right)x^{2}+\\ \left(-378a+1069\right)x-151a-227\end{array}$
[5, 26, 149]	[149, 13, 5]	$\alpha^2 + 6$	$(a + 7)_5^{12} \cdot (a - 5)_7^{12}$	$(2)^{20} \cdot (a-6)^{10}_5$	$\begin{array}{l} (-125a-875)x^{6} \\ + (-1375a-8875)x^{5} + (-9090a-62160)x^{4} + \\ (-38862a-251798)x^{3} + (-73257a-489843)x^{2} + \\ (-53235a-347403)x - 12896a-86314 \end{array}$
[5, 33, 261]	[29, 21, 45]	$\frac{1}{3}\alpha^2 + 3$	$(a + 5)^{12}_{13} \cdot (3)^6$	$(2)^{20} \cdot (a+2)^{10}_5$	$ \begin{array}{c} (-27a-96) x^5 + (-18a-51) x^4 + \\ (-34a-58) x^3 + (-18a-36) x^2 - 15x - 9a - 27 \end{array} $
			$(3)^6 \cdot (a)^{12}_7$	$(2)^{20} \cdot (a+2)^{10}_5$	$(-3a + 6) x^{\circ} - 90x^{*} + (-128a - 136) x^{\circ} + (-72a - 744) x^{2} + (-240a - 240) x - 216$
[5, 34, 269]	[269, 17, 5]	$\alpha^2 + 8$	$\begin{array}{c} (a-7)_{11}^{12} \cdot (2a-15)_{13}^{12} \\ \cdot (a+9)_5^{12} \end{array}$	$(2)^{20} \cdot (a-8)^{10}_5$	$(-283a + 2246) x^{6} + (-4563a + 33800) x^{5} + (-11932a + 103166) x^{4} + (127408a - 1032304) x^{3} + (998576a - 7558008) x^{2} + (2439792a - 18969664) x + 2110776a - 16149072$
[5, 41, 389]	[389, 37, 245]	α^2+18	$\begin{array}{c}(2a+21)^{12}_{11}\cdot(8a+83)^{12}_{17}\\\cdot(5a+52)^{12}_{19}\cdot(3a-28)^{12}_{5}\end{array}$	$(2)^{20} \cdot (3a + 31)^{10}_5$	$\begin{array}{l} (1248a-11685)x^{6}+\\ (-16097a+150611)x^{5}+(37185a-349530)x^{4}+\\ (250806a-2359968)x^{3}+(-972081a+9046728)x^{2}+\\ (-942318a+8701533)x+4994791a-46866753 \end{array}$
[5, 66, 909]	[101, 33, 45]	$\frac{1}{3}\alpha^2 + 5$	$(a - 2)_{19}^{12} \cdot (3)^6$ $\cdot (2a + 13)_{43}^{12} \cdot (a - 4)_5^{12}$	$(2)^{20} \cdot (a+5)^{10}_5$	$\begin{array}{l} (-340a-1674)x^6+\\ (-4179a-26820)x^5+(-26433a-118800)x^4+\\ (-38358a-315240)x^3+(-46686a-41130)x^2+\\ (40761a-15348)x-13013a+39100 \end{array}$

Continued on next page

Table 2b, continued from previous page

DAP	DADT		14010 20,	$\Delta(C)/\Lambda$	f where $C : 2 - \ell$	
DAD	DAD	a	∆stable	$\Delta(C)/\Delta_{stable}$	y, where $C: y = j$	
			(0)6 ($(-6120a - 36189)x^{-} + (-22143a - 102375)x^{-} +$	
			$(3)^* \cdot (a+8)_{31}$	$(2)^{20} \cdot (a + 5)^{10}_{5}$	$(-21378a - 184140) x^{4} + (-31356a - 65810) x^{6} +$	
			$(2a - 7)_{37}^{*} \cdot (a - 4)_{5}^{*}$		$(765a - 81765) x^2 +$	
					(-3783a + 6192) x	
[8 10 17]	[17 5 2]	$\alpha^2 \pm 2$	$(a + 2)^{6}$	$(a \pm 2)^{45}$, $(a = 1)^{20}$	$x^{0} + (2a + 4)x^{0} + (3a + 14)x^{4} + (10a + 8)x^{3} +$	
[0, 10, 11]	[11,0,2]	a 12	(u + 2)2	(a + 2)2 (a + 1)2	$(-9a + 32)x^{2} + (16a - 16)x - 4a + 8$	
			$(a - 4)^6 \cdot (a + 5)^{12}$		$(a + 5) x^{0} + (28a + 132) x^{3} + (214a + 1026) x^{4} +$	
[8, 18, 73]	[73, 9, 2]	$\alpha^{2} + 4$	$(a - 15)^{12}$	$(a - 4)^{45}_{2}$	$(349a + 1658) x^3 + (259a + 1242) x^2 +$	
			·(4a = 15) ₃		(47a + 222) x - 3a - 14	
[09.66.9]	[en 11 e]	-2 - 5	$(a - 4)_{2}^{12} \cdot (a + 5)_{2}^{6}$	(- + 5)45	$(a - 4) x^{6} + (8a - 36) x^{5} + (16a - 62) x^{4} + (-13a + 57) x^{3} +$	
[0, 22, 09]	[09, 11, 0]	$\alpha + 0$	$(4a - 17)^{12}_{5}$	$(u + 3)_2$	$(-17a + 73) x^{2} + (13a - 57) x - a + 5$	
			(40 991)12 (0)6		$(-15024a + 118185) x^{6} +$	
10.04.0041	[004.48.0]	2	$(42a - 351)_{17} \cdot (a - 8)_2$	(0)45	$(310153a - 2435026) x^5 + (-2658057a + 20990488) x^4 +$	
[8, 34, 281]	[281, 17, 2]	$\alpha^2 + 8$	$(a+9)_{2}^{2a} \cdot (76a+675)_{5}^{2a}$	$(a - 8)_2^{40}$	$(12047831a - 97400942) x^{3} + (-33280854a + 231380920) x^{2} +$	
			$(8a - 63)_7^2$		(34989188a - 413796872) x - 37610304a + 81055944	
			(00 000)12 (00)12		$(-166628a - 1355047) x^{6} +$	
(($(38a - 271)_{13}^* \cdot (a + 8)_2^*$		$(-354121a - 2879769)x^{5} + (-318274a - 2588269)x^{4} +$	
[8, 38, 233]	[233, 19, 32]	$\alpha^2 + 9$	$(a - 7)_{2}^{0} \cdot (8a + 65)_{7}^{12}$	$(a - 7)_2^{40}$	$(-153661a - 1249743) x^{3} + (-41827a - 339754) x^{2} +$	
			$(8a - 57)_7^{12}$		(-6158a - 48444) = -441a - 2400	
					$(34a + 80) x^{6} + (140a + 224) x^{5} + (110a - 220) x^{4} +$	
			$(a + 2)^6$, $(a - 1)^{12}$, $(5)^6$	$(a \pm 2)^{45}$, $(5)^{15}$	$(-455a + 220) r^3 + (-5a + 190) r^2 +$	
[8, 50, 425]	[17, 25, 50]	$\frac{1}{5}\alpha^{2} + 2$	(a + 2)2 (a + 1)2 (b)	(4 + 2)2 (0)	(01a - 104) = 254a - 305	
					(31a - 104) x + 234a - 335 $(-1455a \pm 1511) x^6 \pm$	
			$(2a \pm 3)^{12}$, $(2a \pm 5)^{12}$		$(-1004a - 2656) \pi^5 + (-10100a + 20200) \pi^4 +$	
			$(2a + 0)_{13}$ $(2a - 0)_{19}$ $(a + 2)^6$ $(a - 1)^{24}$ $(5)^6$	$(a + 2)_2^{45} \cdot (5)^{15}$	$(-1004a - 2000)x^{+} + (-10100a + 20200)x^{+}$	
			$(a + 2)_2 \cdot (a - 1)_2 \cdot (3)$		(-3603a - 4360)x + (-12143a + 108000)x + (-7451a + 10748)x = 00205a + 155108	
			$(4a - 10)^{12} \cdot (a + 6)^{12}$		(-1451a + 10146)x - 39295a + 155108	
			$(4a - 19)_{11} \cdot (a + 0)_2$		$(-4215a - 14098) x^{-} +$	
[0.00.404#]	[440.00.40]	1.2	$(a - b)_2 \cdot (b)$	$(a - 5)^{45}_{2}$	(30030a + 338052)x + (-349570a - 134010)x +	
[8, 66, 1017]	[113, 33, 18]	$\frac{1}{3}\alpha^{*} + 5$	$(8a + 47)_{41}^{**} \cdot (6a + 35)_{7}^{***}$		$(-2945519a + 22716733)x^{3} + (12849441a - 76601511)x^{2} +$	
			$(6a - 29)_7^2$		(234523575a - 1115687637) x - 843111919a + 4054444133	
			$(a + 6)^{12}_{2} \cdot (a - 5)^{6}_{2}$		$(-27a - 2538)x^{o} +$	
			$(3)^{6} \cdot (2a + 13)^{12}$	$(a-5)^{45}_{2}$	$(7230a + 8412) x^{0} + (-3867a - 272622) x^{4} +$	
			$(28a + 163)^{12} \cdot (6a + 35)^{12}$	0.72	$(121693a + 458725) x^{3} + (-1686144a + 6014715) x^{2} +$	
			(200 1 200)53 (00 1 00)7		(-5324007a + 27892107)x + 110392412a - 532554277	
[13.9.17]	[17, 15, 52]	$\alpha^{2} + 7$	$(a + 2)^{12}_{22}$	$(2a - 1)^{10}_{10} \cdot (a - 1)^{20}_{20}$	$(a - 2) x^{0} + (-8a + 8) x^{0} + (14a - 32) x^{4} + (-19a + 27) x^{3} +$	
[-0,0,-1]	[(= 1 =)2	(=====)13 (===)2	$(6a - 21)x^2 + (3a + 9)x - 4a - 7$	
	I				$(9a - 22) x^{0} + (-19a + 21) x^{0} + (8a - 95) x^{4} +$	
[13, 18, 29]	[29, 9, 13]	$\alpha^2 + 4$	$(a - 1)_{5}^{12}$	$(a - 4)^{10}_{13} \cdot (2)^{20}$	$(-70a - 6) x^3 + (-23a - 148) x^2 +$	
	l				(-7a - 127)x - 18a - 7	
					$(-16581a - 119826) x^{6} +$	
[13 20 181]	[181 41 12]	$\frac{1}{2}a^2 + \frac{19}{2}$	$(6a - 37)^{12}_{29} \cdot (a - 6)^{12}_{3}$	$(3a - 10)^{10} \cdot (2)^{20}$	$(-52472a - 379062)x^{5} + (-67729a - 508419)x^{4} +$	
[10, 20, 101]	[101, 41, 15]	$\frac{3}{2}$ + $\frac{3}{2}$	$(a + 7)^{12}_{3} \cdot (4a + 29)^{12}_{5}$	(3a - 10)13 · (2)	$(-78876a - 162464) x^{3} + (-44960a + 21657) x^{2} +$	
	1	1		1	(14402a - 144114) x - 21885a + 131494	
Continued on most man						

25-7-2013 23 / 25

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

Table 2b, continued from previous page

DAB	DAB^{r}	a	A	$\Delta(C)/\Delta$	f where $C: u^2 = f$
DAD	DAD	u	⇔stable	$\Delta(C)/\Delta_{stable}$	f_{1} where $C_{2}g = f_{1}$
[13, 41, 157]	[157, 25, 117]	α^2+12	$\begin{array}{l} (3a+20)^{12}_{11} \cdot (a-7)^{12}_{17} \\ \cdot (a-6)^{12}_{3} \cdot (a+7)^{12}_{3} \end{array}$	$(2a - 11)^{10}_{13} \cdot (2)^{20}$	$\begin{array}{l} (-11814 + 7055) x^{2} + \\ (18395a - 104353) x^{5} + (-116071a + 664673) x^{4} + \\ (386042a - 2282384) x^{3} + (-742970a + 4253365) x^{2} + \\ (784564a - 4063679) x - 253294a + 2224205 \end{array}$
[17, 5, 2]	[8, 10, 17]	$\tfrac{1}{2}\alpha^2 + \tfrac{5}{2}$	1	$(3a + 1)^{10}_{17} \cdot (a)^{30}_{2}$	$(-3a + 4) x^{5} - x^{4} + (6a - 2) x^{3} + (9a - 5) x^{2} + (-3a + 8) x - 3a + 6$
[17, 15, 52]	$\left[13,9,17\right]$	$\alpha^2 + 4$	$(a)_3^{12}$	$(a - 4)^{10}_{17} \cdot (2)^{20}$	$-x^{6} - 2ax^{5} + (3a - 3)x^{4} + (8a + 4)x^{3} + (-19a + 39)x^{2} + (16a - 30)x + 3a - 36$
[17, 25, 50]	[8, 50, 425]	$\tfrac{1}{10}\alpha^2 + \tfrac{5}{2}$	$(a)_2^{24} \cdot (2a+1)_7^{12}$	$(3a + 1)^{10}_{17} \cdot (5)^{10}$	$\begin{array}{l} (6a-2)x^{6}+(-50a-64)x^{5}+(285a+485)x^{4}+\\ (-485a-435)x^{3}+(-70a+90)x^{2}+\\ (244a+92)x+70a-166 \end{array}$
			$(a)_2^{36} \cdot (a + 7)_{47}^{12} \cdot (2a + 1)_7^{12}$	$(3a + 1)^{10}_{17} \cdot (5)^{10}$	$\begin{array}{l} (315a+422)x^{6}+(1212a+1757)x^{5}+(-2605a-3240)x^{4}+\\ (-50a-625)x^{3}+(1730a-570)x^{2}+\\ (864a-212)x+72a+456 \end{array}$
[17, 46, 257]	[257, 23, 68]	α^2+11	$(11, a + 5)^{12} \cdot (13, a + 10)^{12}$ $\cdot (2, a)^{12} \cdot (2, a + 1)^{24}$ $\cdot (59, a + 14)^{12}$	$(17, a + 6)^{10} \cdot (2, a + 1)^{20}$	$\begin{array}{l} (-22a-1802)x^{9} + \\ (3596a+11488)x^{5} + (-30700a-354072)x^{4} + \\ (243927a+1843299)x^{3} + (-616892a-5576996)x^{2} + \\ (647768a+5283496)x-198146a-1755298 \end{array}$
[17, 47, 548]	[137, 35, 272]	α^2+17	$\begin{array}{l}(14a-75)^{12}_{11}\cdot(4a+25)^{12}_{19}\\\cdot(3a-16)^{12}_{2}\cdot(3a+19)^{24}_{2}\end{array}$	$(8a + 51)^{10}_{17}$	$\begin{array}{l} (285a+1620)x^9+\\ (-2683a-19110)x^5+(13341a+76698)x^4+\\ (-28642a-195577)x^3+(40284a+245904)x^2+\\ (-27600a-177408)x+8154a+51670 \end{array}$
[29, 7, 5]	[5, 11, 29]	$\alpha^2 + 5$	$(2)^{12} \cdot (2a+1)^{12}_5$	$(a-5)^{10}_{29}$	$\begin{array}{l} (-4a-5)x^{6}+(11a+37)x^{5}+(-65a-62)x^{4}+\\ (111a+104)x^{3}+(-28a-189)x^{2}+\\ (-28a+157)x-19a-76 \end{array}$
			$(2)^{12} \cdot (5a+3)^{12}_{31} \cdot (2a+1)^{12}_5$	$(a-5)^{10}_{29}$	$\begin{array}{l} \left(18a+42\right)x^{6}+\left(62a+194\right)x^{5}+\left(-209a+31\right)x^{4}+\\ \left(-648a-471\right)x^{3}+\left(116a+338\right)x^{2}+\\ \left(244a+259\right)x-65a-159\end{array}$
[29, 9, 13]	[13, 18, 29]	$\tfrac{1}{4}\alpha^2 + \tfrac{7}{4}$	$(a)_3^{12}$	$(2)^{20} \cdot (3a + 2)^{10}_{29}$	$\begin{array}{l} (-25a+56)x^6+(172a-39)x^5+(-39a+561)x^4+\\ (312a+234)x^3+(73a+354)x^2+\\ (76a+141)x+15a+37 \end{array}$
[29, 21, 45]	[5, 33, 261]	$\frac{1}{3}\alpha^2 + 5$	$(4a+1)^{12}_{19} \cdot (3)^6$	$(2)^{20} \cdot (a-5)^{10}_{29}$	$\begin{array}{l} (-a+20)x^6+(-87a-18)x^5+(-48a+198)x^4+\\ (-8a-296)x^3+(384a+360)x^2+\\ (-384a-480)x+144a+216 \end{array}$
			$(3)^{6}$	$(2)^{20} \cdot (a-5)^{10}_{29}$	$(-102a - 165) x^{\circ} + (45a + 72) x^{\circ} + (-174a - 262) x^{\circ} + (36a - 66) x^{2} + (69a - 144) x + 5a - 107$
[29, 26, 53]	[53, 13, 29]	$\alpha^2 + 6$	$\begin{array}{l}(a-1)^{12}_{11}\cdot(a+1)^{12}_{13}\\\cdot(a+6)^{12}_{17}\end{array}$	$(2)^{20} \cdot (a-6)^{10}_{29}$	$\begin{array}{l} (-790a+1564)x^6+\\ (241a-12431)x^5+(-15139a-14345)x^4+\\ (-2950a-165614)x^3+(-51588a-116086)x^2+\\ (-58139a-53507)x+12653a-123381 \end{array}$
[41, 11, 20]	[5, 13, 41]	α^2+6	1	$(2)^{20} \cdot (a-6)^{10}_{41}$	$ \begin{array}{c} (a+4)x^6 + (6a-2)x^5 + 17x^4 + (-12a-16)x^3 + (24a-5)x^2 + \\ (-54a-16)x + 33a + 9 \end{array} $
[53, 13, 29]	[29, 26, 53]	$\tfrac{1}{4}\alpha^2 + \tfrac{11}{4}$	$\begin{array}{l}(a+6)^{12}_{23}\cdot(a-1)^{12}_{5}\\\cdot(a)^{12}_{7}\end{array}$	$(2)^{20} \cdot (3a + 5)^{10}_{53}$	$(-31a + 70) x^{6} + (151a - 322) x^{5} + (-405a + 658) x^{4} + (238a - 846) x^{3} + (3288a + 2437) x^{2} + (-3262a + 12157) x - 27420a - 58255$

Continued on next page

Marco Streng (Universiteit Leiden)

http://bit.ly/sdhyp

Table 2b, continued from previous page

DAB	DAB^{r}	a	Δ_{stable}	$\Delta(C)/\Delta_{\text{stable}}$	f, where $C: y^2 = f$
[61 9 5]	[5 17 61]	$1\alpha^2 \pm 7$	1	$(2)^{20}$, $(7a \pm 4)^{10}$	$(a + 2) x^{6} + (-2a - 15) x^{5} + (36a - 4) x^{4} + (72a + 24) x^{3} +$
[01,0,0]	[0,11,01]	34 3	*	(2) (10 + 1)61	$(8a - 24)x^2 + (-48a - 80)x - 24a - 40$
		1 2 0	()04 (2))10	($(-12a - 6) x^{6} + (8a + 82) x^{5} + (-51a + 92) x^{4} +$
[73, 9, 2]	[8, 18, 73]	$\frac{1}{2}\alpha^{2} + \frac{9}{2}$	$(a)_{2}^{24} \cdot (2a - 1)_{7}^{12}$	$(2a - 9)^{10}_{73}$	$(-126a - 1)x^3 + (-36a + 35)x^2 +$
					(32a + 50)x + 10a + 8
			$(20a + 109)_{101}^{12} \cdot (7a + 38)_2^{24}$		$(23a - 43) x^{6} + (-149a - 1221) x^{6} + (8675a + 44883) x^{4} +$
[73, 47, 388]	[97, 94, 657]	$\frac{1}{8}\alpha^2 + \frac{43}{8}$	$\cdot (7a - 31)_{22}^{12} \cdot (2a - 9)_{3}^{12}$	$(22a + 119)^{10}_{73}$	$(-128038a - 698079) x^3 + (928849a + 5037588) x^2 +$
			$\cdot (2a + 11)_{3}^{12} \cdot (30a + 163)_{79}^{12}$		(123515a + 671208)x + 4023a + 21640
[89, 11, 8]	[8, 22, 89]	$\frac{1}{4}\alpha^2 + \frac{11}{4}$	$(a)_{2}^{24}$	$(7a + 3)^{10}_{89}$	$-x^{3} + (-4a + 2)x^{4} + 21x^{3} + (-16a + 64)x^{2}$
			(-, 4)12 $(-, + 5)12$		-160x + 142a - 190 (199252 - 611908) -6
			$(a - 4)_2 \cdot (a + 3)_2$ (14 - 52) ¹² (4 - 15) ¹²		$(-1262524 - 011296)x^{+}$ $(-084572a - 4700700)a^{5} + (-2071720a - 15204554)a^{4} +$
[97, 94, 657]	[73, 47, 388]	$\frac{1}{3}\alpha^2 + \frac{22}{3}$	$(14a - 55)_{23} \cdot (4a - 15)_3$ (4- + 10)12 (20- + 142)12	$(24a + 115)^{10}_{97}$	$(-984572a - 4709700)x^{-} + (-3071730a - 15394554)x^{-} + (-30707771)x^{-} + (-30707771)x^{-} + (-307077771)x^{-} + (-3070777771)x^{-} + (-3070777771)x^{-} + (-3070777771)x^{-} + (-30707777771)x^{-} + (-30707777771)x^{-} + (-30707777777771)x^{-} + (-30707777777777777777777777777777777777$
			$(4a + 19)_3 \cdot (30a + 143)_{41}$		$(-0889000a - 20077475)x^{-} + (-390505771a + 105355350)x^{-} + (174101751x - 670664106)x^{-} + 256966555x - 072717416$
			$(10a + 41)_{61}$		(174191751a - 079004100)x + 250800525a - 975717410
			(2)6 $(2n + 1)12$ $(7n + 2)12$	$(0_{22} + 5)10 = (2)20$	(-210a + 404)x + (-2304a - 48)x + (-3984a - 900)x + (-3984a - 900x +
[101, 33, 45]	[5, 66, 909]	$\frac{1}{12}\alpha^2 + \frac{9}{4}$	$(3) \cdot (2a + 1)_5 \cdot (1a + 3)_{61}$	$(3a + 3)_{101} \cdot (2)$	$(-804a + 3088)x^{+} + (-120a + 1422)x^{+} + (-4047a - 5222)x^{-} +$
					(-4047a - 3322)x - 818a - 2423 $(-5220a + 4010)a^{6} +$
			$(4a + 3)_{19}^{12} \cdot (4a + 1)_{19}^{12}$		$(-6132a - 6909) x^5 + (44637a - 2364) x^4 +$
			$\cdot (3)^6 \cdot (5a + 3)^{12}_{31}$	$(9a + 5)^{10}_{101} \cdot (2)^{20}$	$(53094a + 58660) x^3 + (-39159a + 19266) x^2 +$
			$(2a + 1)_5^{12}$		(-30363a - 55761) = -16848a - 16911
fr	(m. n	0	().10	($(-8a - 8) x^{6} - 16x^{5} + (8a + 72) x^{4} + (152a + 184) x^{3} +$
[109, 17, 45]	[5, 21, 109]	$\alpha^{2} + 10$	$(2a + 1)_{5}^{12}$	$(a - 10)_{109}^{10} \cdot (2)^{20}$	$(6a + 84) x^2 + (-255a - 339) x - 319a - 524$
			$(3a + 11)^{12}_{103} \cdot (a)^{24}_{2}$		$(122a + 800) x^{6} + (-1509a - 909) x^{5} + (36762a - 85470) x^{4} +$
[440.00.40]	[0.00.404#]	1 2 . 11	$\cdot (3)^6 \cdot (4a - 1)^{12}_{21}$	$(2a - 11)^{10}_{112}$	$(-116871a + 265713) x^3 + (-467682a + 704460) x^2 +$
[113, 33, 18]	[8,00,1017]	$\overline{6}\alpha^{-} + \overline{2}$	$(2a - 1)^{12}_7 \cdot (2a + 1)^{12}_7$		(-480528a + 365352) x - 7616a + 226442
			(-)24 (9)6		$(-418a - 190) x^{6} + (1476a - 660) x^{5} + (1146a + 6810) x^{4} +$
			$(u_{12} \cdot (3))$ $(4u + 1)^{12} \cdot (2u + 1)^{12}$	$(2a - 11)^{10}_{113}$	$(2145a + 2175) x^3 + (-1437a - 3489) x^2 +$
			$(4a + 1)_{31} \cdot (2a + 1)_7$		(-42a - 2736)x + 830a + 394
[197 95 979]	[17 47 549]	-2 + 92	$(2a - 5)_{19}^{12} \cdot (a + 2)_2^{12}$	$(6a - 1)^{10}$	$(4a + 6) x^{6} + (8a + 36) x^{5} + (-4a + 42) x^{4} + (586a + 1289) x^{3} +$
[157, 50, 272]	[17,47,040]	$\alpha + 23$	$(a - 1)_2^{12}$	(04 - 1)137	$(1066a + 2808) x^2 + 4ax + 25596a + 65566$
[140, 13, 5]	[5 26 140]	$\frac{1}{2}a^2 + \frac{11}{2}$	$(3a + 1)^{12}$	$(11a + 7)^{10}$, $(2)^{20}$	$8x^{6} + 96x^{5} + (-24a + 168)x^{4} + (-576a - 808)x^{3} +$
[143, 15, 5]	[0, 20, 140]	$\frac{1}{4}\alpha + \frac{1}{4}$	$(5a + 1)_{11}$	$(11a + 1)_{149} \cdot (2)$	$(66a - 132) x^2 + (292a + 47) x + 86a - 87$
					$(-3328a - 7633) x^{6} +$
[157, 25, 117]	[13, 41, 157]	$\frac{1}{2}\alpha^{2} + \frac{16}{10}$	$(a - 4)_{17}^{12} \cdot (3a - 1)_{23}^{12}$	$(7a + 5)^{10}_{27\pi} \cdot (2)^{20}$	$(-17510a - 39323) x^{5} + (-32518a - 68044) x^{4} +$
[]	[-0,, -0,]	9 9	$\cdot (a)_{3}^{2^{a}} \cdot (a+1)_{3}^{12}$	(14 1 0)157 (=)	$(-17960a - 66720) x^3 + (256a - 51704) x^2 +$
					(5184a - 22864) x + 1432a - 5264
[101 11 10]	[40.00.404]	1 2 . 13	$(a + 5)^{12}_{17} \cdot (3a + 2)^{12}_{20}$	(0. 40)10 (0)20	$(330a + 1417) x^{\circ} + (11102a + 1701) x^{\circ} + (1396a + 59742) x^{4} +$
[181, 41, 13]	[13, 29, 181]	$\frac{1}{3}\alpha^2 + \frac{10}{3}$	$(a)_{2}^{24} \cdot (a+1)_{2}^{12}$	$(3a - 13)^{10}_{181} \cdot (2)^{20}$	$(24016a + 92792) x^{3} + (74408a + 38064) x^{2} +$
					(35248a + 20160) x - 5784a + 21888
[000 10 00]	[0, 00, 000]	1 2 . 19	$(a)_{2}^{24} \cdot (a - 5)_{23}^{12}$	(11 + 2)10	$(2348a - 3054) x^{-} + (11828a - 12348) x^{-} + (4498a - 23598) x^{-} + (10704 - 0.000) x^{-} + (0.000) x^{-$
[233, 19, 32]	[0, 38, 233]	$\frac{1}{8}\alpha^{-} + \frac{1}{8}$	$(a + 5)_{23}^{12} \cdot (2a + 1)_{7}^{12}$	$(11d + 3)_{233}$	$(12704a + 9133) x^{-} + (-3101a - 14433) x^{-} + (-5244 - 1074) + 10 - 604$
L	I	I		1	(3344a - 1914)x + 18a - 004

25-7-2013 23 / 25

Table 2b, continued from previous page

DAB	DAB^{r}	a	Δ_{stable}	$\Delta(C)/\Delta_{\text{stable}}$	f , where $C : y^2 = f$
[257, 23, 68]	[17, 46, 257]	$\tfrac{1}{8}\alpha^2 + \tfrac{19}{8}$	$\begin{array}{c}(2a+3)^{12}_{13}\cdot(a+2)^{12}_{2}\\\cdot(a-1)^{24}_{2}\cdot(4a-3)^{12}_{43}\\\cdot(2a+9)^{12}_{47}\cdot(4a+13)^{12}_{53}\end{array}$	$(8a - 19)^{10}_{257}$	$\begin{array}{l} (-2809a-7326)x^6+\\ (5069a+3572)x^5+(52427a-51416)x^4+\\ (249518a+105951)x^3+(-311115a-180355)x^2+\\ (156533a-20215)x-34657a+19003 \end{array}$
[269, 17, 5]	[5, 34, 269]	$\tfrac{1}{4}\alpha^2 + \tfrac{15}{4}$	$(3a+1)^{12}_{11} \cdot (2a+1)^{12}_5$	$(2)^{20} \cdot (15a + 11)^{10}_{269}$	$\begin{array}{l} \left(-168a-272\right)x^{6}+\left(960a+1696\right)x^{5}+\left(472a-1008\right)x^{4}+\\ \left(-4448a-1552\right)x^{3}+\left(358a+904\right)x^{2}+\\ \left(945a+1690\right)x\end{array}$
[281, 17, 2]	[8, 34, 281]	$\tfrac{1}{2}\alpha^2 + \tfrac{17}{2}$	$\begin{array}{c} (a)_2^{36} \cdot (4a+1)_{31}^{12} \\ \cdot (2a-1)_7^{12} \cdot (2a+1)_7^{12} \end{array}$	$(2a - 17)^{10}_{281}$	$\begin{array}{l} (-835a+1960)x^{6}+(1343a+7589)x^{5}+(19630a+6428)x^{4}+\\ (26923a+13601)x^{3}+(-6743a+44228)x^{2}+\\ (-5762a+18262)x+17138a-23184 \end{array}$
[389, 37, 245]	[5, 41, 389]	$\tfrac{1}{5}\alpha^2 + \tfrac{18}{5}$	$\begin{array}{c} (3a+1)^{12}_{11} \cdot (3a+2)^{12}_{11} \\ \cdot (4a+3)^{12}_{19} \cdot (4a+1)^{12}_{19} \\ \cdot (a+6)^{12}_{29} \cdot (2a+1)^{12}_{5} \end{array}$	$(2)^{20} \cdot (18a + 13)^{10}_{389}$	$\begin{array}{l} (-22952a-6848)x^{6}+\\ (162272a-61136)x^{5}+(296568a+208208)x^{4}+\\ (-212600a-959344)x^{3}+(89874a+1610270)x^{2}+\\ (-428348a-1023457)x+315516a+343397 \end{array}$

Theorems about our list

Correctness:

- Thanks to denominator bounds for CM Igusa invariants (Lauter-Viray, see also Goren-Lauter, Bruinier-Yang).
- We implemented the denominator bounds and used interval arithmetic to evaluate Igusa invariants in Sage.
- This proves correctness.

Completeness:

- Is a class number one problem.
- Work in progress of Pinar Kiliçer.

Work to do in Sage

- Include our current Mestre and reduction code into Sage.
- ▶ Implement the covariant *z* instead of only a Magma-interface.
- Twist-preserving reduction.
- More general fundamental domains (also relevant to Hilbert modular forms).
- Hyperbolic 3-space / fields that are not totally real.
- ▶ Cardona-Quer (analogue of Mestre for Aut $(C_{\overline{k}}) \not\cong \{1, \iota\}$)
- Reduction if $\operatorname{Aut}(C_{\overline{k}}) \not\cong \{1, \iota\}.$
- Characteristic 2, 3, 5.
- ▶ ...

Contact me if interested.